文档视界 最新最全的文档下载
当前位置:文档视界 › 关于支墩推力的计算

关于支墩推力的计算

关于支墩推力的计算
关于支墩推力的计算

管道松冷推力计算方法探讨

管道松冷推力计算方法探讨 DL/T5366-2006《火力发电厂汽水管道应力计算技术规程》P.23 9.0.3条规定:在管道无冷紧或各方向采用相同的冷紧比时,在不计及持续外载的条件下,管道对设备(或端点)的推力(或推力及推力矩),可按下列公式计算: 在工作状态下, E t a t R E E R a 20 ) 3 21(γ- -= (9.0.3-1) 亦即)0(20时,即无冷紧 =- =γt t a E R E E R a 在冷状态下, E R R γ=20 (9.0.3-2) 或 E t b E t R E E R b )][1(2020 1σσ- = (9.0.3-3) 亦 即 )0()][())(][1(202020202020 1时,即无冷紧 =+ - =- - =γσσσσt t a t b E t t a t t a t b E t R E E E E E E R E E E E R a b a a b 规定指明“在不计及持续外载的条件下”,即可认为上述三式仅为管道热胀应变引起的对设备的推力和力矩的计算公式,热胀应变包括热胀、冷缩和其它位移作用。另外因为管道自重、支吊架反力以及其它持续载荷亦对端口产生推力及推力矩。GLIF 以及CAESARII 计算出的初热及初冷工况对端口的推力及推力矩应为上述热胀应变及自重等作用力的总和。此外(9.0.3-1)式为初热工况,(9.0.3-2)式为初冷工况,(9.0.3-3)式为应变自均衡工况。 CAESAR II 的SUS 工况对应初冷工况,OPE 对应初热工况,其中: SUS 工况:W+P1+H OPE 工况:W+D1+T1+P1+H EXP 工况:OPE-SUS=D1+T1 其中W(自重)、D1(端点附加位移)、T1(热胀)、P1(内压)、H (支吊架),由此可认为EXP 工况的Restraint Summary 计算出的端口推力及推力矩即为纯热胀应变工况下的数值

各类梁的弯矩剪力计算汇总表

表1 简单载荷下基本梁的剪力图与弯矩图

表2 各种载荷下剪力图与弯矩图的特征 表3 各种约束类型对应的边界条件 注:力边界条件即剪力图、弯矩图在该约束处的特征。

常用截面几何与力学特征表 表2-5 注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4 )。基本计算公式如下:??= A dA y I 2 2.W 称为截面抵抗矩(mm 3 ),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:max y I W = 3.i 称截面回转半径(mm ),其基本计算公式如下:A I i = 4.上列各式中,A 为截面面积(mm 2 ),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。 5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。

2.单跨梁的内力及变形表(表2-6~表2-10) (1)简支梁的反力、剪力、弯矩、挠度 表2-6 (2)悬臂梁的反力、剪力、弯矩和挠度 表2-7 (3)一端简支另一端固定梁的反力、剪力、弯矩和挠度 表2-8 (4)两端固定梁的反力、剪力、弯矩和挠度 表2-9 (5)外伸梁的反力、剪力、弯矩和挠度 表2-10 3.等截面连续梁的内力及变形表 (1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14) 1)二跨等跨梁的内力和挠度系数 表2-11 注:1.在均布荷载作用下:M =表中系数×ql 2 ;V =表中系数×ql ;EI w 100ql 表中系数4 ?=。 2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EI w 100Fl 表中系数3 ?=。 [例1] 已知二跨等跨梁l =5m ,均布荷载q =m ,每跨各有一集中荷载F =,求中间支

管道支吊架设计及计算

浅谈管道门字型支吊架的设计及计算 【文 摘】 用来支撑管道的结构叫管道支吊架,管道在敷设时都必须对管子进 行固定或支承,固定或支承管子的构件是支吊架。在机电工程里,管道支架是分布广、数量大、种类繁多的安装工事,同时管道支吊架的设计和安装对管道及其附件施工质量的好坏取决定性作用。如何采用安全适用、经济合理、整齐美观的管道支吊架是机电安装工程的一个重点。 【关键词】 管道布置 管道跨距 管架分析 管架内力计算 一、 管道的布置 对管道进行合理的深化和布置是管道支吊架设计的前提条件。欲设计安全使用、经济合理、整洁美观的管道支吊架,首先需对管道进行合理的布置,其布置不得不考虑以下参数: 1. 管道布置设计应符合各种工艺管道及系统流程的要求; 2. 管道布置应统筹规划,做到安全可靠、经济合理、满足施工、操作、维 修等方面的要求,并力求整齐美观; 3. 在确定进出装置(单元)的管道的方位与敷设方式时,应做到内外协调; 4. 管道宜集中成排布置,成排管道之间的净距(保温管为保温之间净距) 不应小于50mm 。 5. 输送介质对距离、角度、高差等有特殊要求的管道以及大直径管道的布 置,应符合设备布置设计的要求,并力求短而直,切勿交叉; 6. 地上的管道宜敷设在管架或管墩上,在管架、管墩上布置管道时,宜使 管架或管墩所受的垂直荷载、水平荷载均衡; 7. 管道布置应使管道系统具有必要的柔性,在保证管道柔性及管道对设备、 机泵管口作用力和力矩不超出过允许值的惰况下,应使管道最短,组成件最少; 8. 应在管道规划的同时考虑其支承点设置,并尽量将管道布置在距可靠支 撑点最近处,但管道外表面距建筑物的最小净距不应小于100mm ,同时应尽量考虑利用管道的自然形状达到自行补偿; 9. 管道布置宜做到“步步高”或“步步低”,减少气袋或液袋。不可避免 时应根据操作、检修要求设置放空、放净。 二、 管架跨距 管架的跨距的大小直接决定着管架的数量。跨距太小造成管架过密,管架数量增多,费用增高,故需在保证管道安全和正常运行的前提下,尽可能增大管道的跨距,降低工程费用。但是管架跨距又受管道材质、截面刚度、管道其它作用何载和允许挠度等的影响,不可能无限的扩大。所以设计管道的支吊架应先确定管架的最大跨距,管架的最大允许跨距计算应按强度和刚度两个条件分别计算,取其小值作为推荐的最大允许跨距。 1. 按强度条件计算的管架最大跨距的计算公式: []t W q L δφ124 .2max =

受静载荷梁的内力及变位计算公式

受静载荷梁的内力及变位计算公式 符号意义及正负号规定简图 P——集中载荷 q——均布载荷 R——支座反力,作用方向向上者为正 Q——剪力,对邻近截面所产生的力矩沿顺时针方向者为正 M——弯矩,使截面上部受压,下部受拉者为正 θ——转角,顺时针方向旋转者为正 f——挠度,向下变位者为正 E——弹性模量 I——截面的轴惯性矩 a、b、c——见各栏图中所示 简图 支座反力、 支座反力矩 区段剪力弯矩挠度转角 R B=P M B=-Pl Q x=-P M x=-P x R B=P M B=-Pb AC Q x=0M x=0 CB Q x=-P M x=-P(x-a) R B=nP R B=ql Q x=-qx R B=qc M B=-qcb AC Q x=0M x=0

CD Q x=-q(x-d)

DB Q x=-qc M x=-qc(x-a) AC CB R B=0 M B=M x=-M Q x=0M x=-M ω值见表梁分段的比值及ω的函数表; a、b、c——见各栏中所示 简图 支座反力、 支座反力矩 区段剪力弯矩挠度转角R A=R B= AC CB R A= R B= AC CB M x=Pa(1-ξ) M C=M max=

R A=R B=P AC Q x= P M x=Px CD Q x=0 M x=M max=Pa AC CD DB若a>c: 当n为奇数: 当n为偶数: 当n为奇数: 当n为偶数: 当n为奇数: 当n为偶数: 当n为奇数: 当n为偶数:

R CD Q x=0 R A=R B = AC CD AC CD DB R A=R B=qc AC Q x=qc M x=qcx CD DE Q x=0M x=M max=qcb

关于支墩推力的计算

关于室外直埋管固定墩选择的计算 室外直埋保温管热胀冷缩补偿工艺中,《施-S-04-02市政管线设计说明5.3附件》要求:敷设在市政管沟内的热水管每隔75米设复式拉杆式轴向型不锈钢波纹补偿器;组团内热水管道在地下室外边沿设不锈钢球形伸缩器;其工作压力应与所在管道工作压力一致。其它部位热水管道采用“门”形补偿器和管道敷设的自然弯曲吸收管道的自然变形。 直埋管道的“门”形补偿器设置时需同时配合设置固定支架、固定墩,可据各直埋管的规格,计算各单管推力后,依据《05R410 热水管道直埋敷设》确定固定墩尺寸。下面以“不锈钢无缝管57*3”为例,进行单管推力计算。 根据《CJJ /T81-98城镇直埋供热管道工程技术规程》附录E 确定,单管推力以max H=F l N +计算。 其中:max F ——轴线方向每米管道的摩擦力(N/m ); N ——管道工作循环最高温度下,锚固段内的轴向力(N/m ); 一、 抗外压稳定临界压力P cr (Mpa ) 依据《水电站压力钢管设计规范 DL t5141-2001》, 1.70.25612t P cr s r δ=() 其中:P cr ——抗外压稳定临界压力,Mpa ; t ——钢管壁计算厚度,mm ; r ——钢管内半径,mm ;

s δ——钢材屈服点,Mpa ;查《水电站压力钢管设计规范 DL t5141-2001》中表6.1.4-1可知,s δ=235 Mpa 。 故:323563.0225.5 1.70.25612MPa P cr ?==?()() 二、 径向均布外压力标准值ok P (Mpa ) 依据《水电站压力钢管设计规范 DL t5141-2001》, K P P c cr ok = 其中:K c ——抗外压安全稳定系数,1.8; 则:P ok =35.01(Mpa ) 三、 钢管管壁环向应力t σ(Mpa ) 依据《水电站压力钢管设计规范 DL t5141-2001》, ok P r t t σ?=- 其中:P cr ——抗外压稳定临界压力,Mpa ; t ——钢管壁计算厚度,mm ; r ——钢管内半径,mm ; P ok ——径向均布外压力标准值。 故:ok P r 35.0125.5297.61MPa t 3t σ??=- =-=-() 四、 钢管轴向推力(N ) 依据《CJJ /T81-98城镇直埋供热管道工程技术规程》, ()610t N aE t t A 10N νσ=--?????() 其中:a ——钢管的线性膨胀系数(m/m ·℃),查“常用钢材的弹性模量和线性膨胀系数表”可知,a=612.210-?(m/m ·℃); E ——钢材的弹性模量(Mpa ),查“常用钢材的弹性模量

各种梁的弯矩计算公式

1。两端固定支座,当一端产生转角;MAB=4i,MBA=2i其中i=EI/L 2。两端固定支座,当一端产生位移;MAB=-6i/L,MBA=-6i/L 3。两端固定支座,当受集中力时;MAB=-Pab(平方)/L(平方),MBA=Pab(平方)/L(平方)。当作用力于中心时即a=b时MAB=-PL/8,MBA=PL/8 4。两端固定支座,当全长受均布荷载时;MAB=-ql(平方)/12, MBA=ql(平方)/12 5。两端固定 1。两端固定支座,当一端产生转角;MAB=4i,MBA=2i其中i=EI/L 2。两端固定支座,当一端产生位移;MAB=-6i/L,MBA=-6i/L 3。两端固定支座,当受集中力时;MAB=-Pab(平方)/L(平方),MBA=Pab(平方)/L(平方)。当作用力于中心时即a=b时MAB=-PL/8,MBA=PL/8 4。两端固定支座,当全长受均布荷载时;MAB=-ql(平方)/12, MBA=ql(平方)/12 5。两端固定支座,当长度为a的范围内作用均布荷载时; MAB=-qa(平方)×(6l平方-8la+3a平方)/12L平方, MBA=qa(立方)×(4L-3a)/12L平方 6。两端固定支座,中间有弯矩时;MAB=Mb(3a-l)/l平方, MBA=Ma(3b-l)/l平方 7。当一端固定支座,一端活动铰支座,当固定端产生转角时;MAB=3i,MBA=0 8。当一端固定支座,一端活动铰支座,当铰支座位移时;MAB=-3i/L,MBA=0 9。当一端固定支座,一端活动铰支座,当作用集中力时; MAB=-Pab(l+b)/2L平方,MBA=0(当a=b=l/2时MAB=-3PL/16) 10。当一端固定支座,一端活动铰支座,当受均布荷载时; MAB=-ql平方/8 , MBA=0 11。当一端固定支座,一端活动铰支座,中间有弯矩时; MAB=M(L平方-3b平方)/2L平方,MBA=0 12。当一端固定支座,一端滑动支座,当固定端产生转角时;MAB=i,MBA=-i 13。当一端固定支座,一端滑动支座,当受集中力时; MAB=-Pa(2L-a)/2L,MBA=-Pa平方/2L (当a=b=L/2时MAB=-3PL/8,MBA=-PL/8) 14。当一端固定支座,一端滑动支座,当滑动支座处受集中力时; MAB=MBA=-PL/2 15。当一端固定支座,一端滑动支座,当受均布荷载时; MAB=-qL平方/3,MBA=-ql平方/6支座,当长度为a的范围内作用均布荷载时;MAB=-qa(平方)×(6l平方-8la+3a平方)/12L平方, MBA=qa(立方)×(4L-3a)/12L平方

支架受力分析

管道支架受力分析 ——曹伟 选取购物中心地下室某段压力排水管道进行受力分析: 系统:压力排水 材质:镀锌钢管 管径:DN100 管道数量:两根 相邻两支架间距:6米 一、管道重量由三部分组成:按设计管架间距内的管道自重、满管水重及以上两项之合10%的附加重量计算(管架间距管重均未计入阀门重量,当管架中有阀门时,在阀门段应采取加强措施)。 1、管道自重: 由管道重量表可查得,镀锌钢管 DN100:21.64Kg/m ,支架间距按6米/个考虑,计算所得管重为: f1=21.64*6kg=129.84kg*10=1298.4N 2.管道中水重 l=3.14*0.1062*1000*6kg=211.688kg=2116.88N f2=πr2ρ 介质 3、管道重量 f=f1+f2+(f1+f2)*10%=3756.81N 4、受力分析 根据支架详图,考虑制造、安装等因素,系数按1.35考虑,每个支架受力为: F=3756.81*1.35/2=2535.85N 假设选取50*5等边角钢(材质为Q235)做受力分析试验 1)应力应变关系如下:

绘制成应力应变曲线图如下: 从图中可以看出,应力/应变曲率变化平缓,处于弹性应力应变行为阶段,各部位均没有发生屈服现象。 由相关资料可查的50*5等边角钢的抗拉强度σb=423MPa,抗剪强度σr=σb*0.8=338.4MPa,型钢吊杆拉伸强度小于它的抗拉强度,型钢横担小于它的抗剪强度,所以50*5等边角钢可以满足使用要求。 2)危险部位应力分析 图中的蓝色区域为支架应变最大的地方,也即该处最容易发生变形与开裂,在设计中应对有较大变形的地方,解决办法有两个:1、加固:可以通过增加肋板来加固,在型钢焊接的地方更应该满焊以此增大接触面,从而减小开裂的可能;

气缸力计算公式

气缸力计算公式 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

气缸推力计算公式 气缸理论出力的计算公式: F:气缸理论输出力(kgf) F′:效率为85%时的输出力(kgf)--(F′=F×85%) D:气缸缸径(mm) P:工作压力(kgf/cm2) 例:直径340mm的气缸,工作压力为3kgf/cm2时,其理论输出力为多少芽输出力是多少 将P、D连接,找出F、F′上的点,得: F=2800kgf;F′=2300kgf 在工程设计时选择气缸缸径,可根据其使用压力和理论推力或拉力的大小,从经验表1-1中查出。 例:有一气缸其使用压力为5kgf/cm2,在气缸推出时其推力为 132kgf,(气缸效率为85%)问:该选择多大的气缸缸径 ●由气缸的推力132kgf和气缸的效率85%,可计算出气缸的理论推力为F=F′/85%=155(kgf) ●由使用压力5kgf/cm2和气缸的理论推力,查出选择缸径为63的气缸便可满足使用要求。 2.气缸理论基准速度为u=1920XS/A (mm/s).其中S为排气回路的合成有效面积,A为排气侧活塞的有效面积. 、耗气量:气缸往复一个行程的情况下,气缸以及缸与换向阀之间的配管内所消耗的空气量(标准大气压状态下) 2、最大耗气率:气缸活塞以最大速度运动时,单位时间内所消耗的空气量(标准大气压状态下)

气缸的最大耗气量: Q=活塞面积 x 活塞的速度 x 绝对压力通常用的公式是: Q=2v(p+) Q------标准状态下的气缸最大耗气量(L/min) D------气缸的缸径(cm) v------气缸的最大速度(mm/s) p------使用压力(MPa)气缸耗气量及气管流量计算方法

材料力学轴向拉压题目答案详解

2-4. 图示结构中,1、2两杆的横截面直径分别为10mm 和20mm ,试求两杆内 的应力。设两根横梁皆为刚体。 解:(1)以整体为研究对象,易见A 处的水平约束反力为零; (2)以AB 为研究对象 由平衡方程知 0===A B B R Y X (3)以杆BD 由平衡方程求得 KN N N N Y KN N N m C 200 10 01001101 0212 11==--===?-?=∑∑ (4)杆内的应力为 1

MPa A N MPa A N 7.6320 41020127104101023 2222 3111=???== =???==πσπσ 2-19. 在图示结构中,设AB 和CD 为刚杆,重量不计。铝杆EF 的l 1=1m , A 1=500mm 2,E 1=70GPa 。钢杆AC 的l 2=1.5m ,A 2=300mm 2,E 2=200GPa 。若载荷作用点G 的垂直位移不得超过2.5mm 。试求P 的数值。 解:(1)由平衡条件求出EF 和AC 杆的内力 P N N N P N N AC EF AC 4 3 32 2112===== (2)求G 处的位移 2 2221111212243)ΔΔ23 (21)ΔΔ(21Δ21ΔA E l N A E l N l l l l l l A C G + =+=+== (3)由题意 kN P P P A E Pl A E Pl mm l G 1125.2300 102001500500107010009212143435.23 3222111≤∴≤???+????=??+??≤ 2-27. 在图示简单杆系中,设AB 和AC 分别是直径 为20mm 和24mm 的圆截面 杆,E=200GPa ,P=5kN ,试求A 点的垂直位移。

支架受力分析

支架受力分析 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

管道支架受力分析 ——曹伟 选取购物中心地下室某段压力排水管道进行受力分析: 系统:压力排水 材质:镀锌钢管 管径:DN100 管道数量:两根 相邻两支架间距:6米 一、管道重量由三部分组成:按设计管架间距内的管道自重、满管水重及以上两项之合10%的附加重量计算(管架间距管重均未计入阀门重量,当管架中有阀门时,在阀门段应采取加强措施)。 1、管道自重: 由管道重量表可查得,镀锌钢管 DN100:21.64Kg/m ,支架间距按6米/个考虑,计算所得管重为: f1=21.64*6kg=129.84kg*10=1298.4N 2.管道中水重 l=3.14*0.1062*1000*6kg=211.688kg=2116.88N f2=πr2ρ 介质 3、管道重量 f=f1+f2+(f1+f2)*10%=3756.81N 4、受力分析 根据支架详图,考虑制造、安装等因素,系数按1.35考虑,每个支架受力为:

F=3756.81*1.35/2=2535.85N 假设选取50*5等边角钢(材质为Q235)做受力分析试验 1)应力应变关系如下: 绘制成应力应变曲线图如下: 从图中可以看出,应力/应变曲率变化平缓,处于弹性应力应变行为阶段,各部位均没有发生屈服现象。 由相关资料可查的50*5等边角钢的抗拉强度σb=423MPa,抗剪强度σr=σb*0.8=338.4MPa,型钢吊杆拉伸强度小于它的抗拉强度,型钢横担小于它的抗剪强度,所以50*5等边角钢可以满足使用要求。 2)危险部位应力分析 图中的蓝色区域为支架应变最大的地方,也即该处最容易发生变形与开裂,在设计中应对有较大变形的地方,解决办法有两个:1、加固:可以通过增加肋板来加固,在型钢焊接的地方更应该满焊以此增大接触面,从而减小开裂的可能;2、通过选择更大规格的型钢来试验,直到满

螺旋桨推力计算模型

螺旋桨推力计算模型 根据船舶原理知:4 2 D n K T T ρ=(T K 为螺旋桨的淌水特性) 通过资料查得:T K 为进速系数J 的二次多项式,但无具体的公式表示,只能通过图谱查得,同时t K K T T -= 10(0T K 为淌水桨在相同的转速情况下以速度为V A 运动时的推力、进速系数 nD W U nD V J P A p ) 1(-= = ) 估算推力减额分数的近似公式: 1. 汉克歇尔公式: 对于单螺旋桨标准型商船(C B =0.54~0.84) t=0.50Cp-0.12 对于单螺旋桨渔船: t=0.77Cp-0.30 对于双螺旋桨标准型商船(C B =0.54~0.84) t=0.50Cp-0.18 2. 商赫公式 对于单桨船 t=KW 式中:K 为系数 K=0.50~0.70 适用于装有流线型舵或反映舵者 K=0.70~0.90 适用于装有方形舵柱之双板舵者 K=0.90~1.5 适用于装单板舵者 对于双螺旋桨船采用轴包架者:t=0.25w+0.14 对于双螺旋桨船采用轴支架者:t=0.7w+0.06 3. 哥铁保公式 对于单螺旋桨标准型商船(C B =0.6~0.85) P B WP B C C C C t ??? ? ? ?+-=5.13.257.1 对于双螺旋桨标准型商船(C B =0.6~0.85) B WP B C C C t 5.13.267.1+-= 4. 霍尔特洛泼公式 对于单螺旋桨船 stern P C BT D C BC B L t 0015.0)/(1418.0000524.00585.1)/(001979.02101+--+-=式中:10C 的定义如下: 当L/B>5.2 L B C /10= 当L/B<5.2 )134615385.0//(003328402.025.010--=L B C 对于双螺旋桨船: BT D C t B / 1885.0325.0-=

光伏支架受力计算书

支架结构受力计算书 设计:___ ___ _日期:___ 校对:_ 日期:___ 审核:__ _____日期:____ 常州市**实业有限公司

1 工程概况 项目名称: *****30MW 光伏并网发电项目 工程地址: 新疆 建设单位: **集团 结构高度: 电池板边缘离地不小于500mm 2 参考规范 《建筑结构可靠度设计统一标准》GB50068—2001 《建筑结构荷载规范》GB50009—2012 《建筑抗震设计规范》GB50011—2010 《钢结构设计规范》GB50017—2003 《冷弯薄壁型钢结构设计规范》GB50018—2002 《不锈钢冷轧钢板和钢带》GB/T3280—2007 《光伏发电站设计规范》 GB50797-2012 3 主要材料物理性能 3.1材料自重 铝材——————————————————————327/kN m 钢材————————————————————3/78.5kN m 3.2弹性模量 铝材————————————————————270000/N mm 钢材———————————————————2206000/N mm 3.3设计强度 铝合金 铝合金设计强度[单位:2/N mm ]

钢材 钢材设计强度[单位:2/N mm ] 不锈钢螺栓 不锈钢螺栓连接设计强度[单位:2/N mm ] 普通螺栓 普通螺栓连接设计强度[单位:2/N mm ] 角焊缝 容许拉/剪应力—————————————————2160/N mm 4 结构计算 4.1 光伏组件参数 晶硅组件: 自重PV G :0.196kN (20kg /块) 尺寸(长×宽×厚)992164400mm ?? 安装倾角:37°

梁弯矩图梁内力图(剪力图与弯矩图)

简单载荷 梁内力图(剪力图与弯矩图) 梁的简图 剪力Fs 图 弯矩M 图 1 l a F s F F l a F l a l -+ - F l a l a ) (-+ M 2 l e M s F l M e + M e M + 3 l a e M s F l M e + M e M l a l -e M l a + - 4 l q s F + -2 ql 2 ql M 8 2ql + 2 l 5 l q a s F + -l a l qa 2) 2(-l qa 22 M 2 228)2(l a l qa -+ l a l qa 2) (2 -l a l a 2)2(- 6 l q s F + -3 0l q 6 0l q M 3 92 0l q + 3 )33(l - 7 a F l s F F + Fa -M

8 a l e M s F + e M M 9 l q s F ql + M 2 2ql - 10 l q s F 2 l q + M 6 20l q - 注:外伸梁 = 悬臂梁 + 端部作用集中力偶的简支梁 表2 各种载荷下剪力图与弯矩图的特征 某一段梁上的外力情况 剪力图的特征 弯矩图的特征 无载荷 水平直线 斜直线 或 集中力 F 突变 F 转折 或 或 集中力偶 e M 无变化 突变 e M 均布载荷 q 斜直线 抛物线 或 零点 极值 表3 各种约束类型对应的边界条件 约束类型 位移边界条件 力边界条件 (约束端无集中载荷) 固定端 0=w ,0=θ — 简支端 0=w 0=M

支架受力计算书

福成锅炉房改造支架受力计算书 管道计算参数: D720×10:管道总重q=640kg/m(管道重175.1kg/m,管内水重385 kg/m,保温重80kg/m); D630×10:管道总重q=483.88kg/m(管道重152.89kg/m,管内水重292kg/m,保温重39kg/m); D529×9:管道总重q=353.91kg/m(管道重115.42kg/m,管内水重205.1kg/m,保温重33.50kg/m); D478×9:管道总重q=301.16kg/m(管道重104.1kg/m,管内水重166.5kg/m,保温重30.75kg/m); D426×9:管道总重q=246.63kg/m(管道重92.55kg/m,管内水重130.7kg/m,保温重23.38kg/m); D325×8:管道总重q=156.16kg/m(管道重62.54kg/m,管内水重74.99kg/m,保温重18.63kg/m); 1kgf=9.8N; 聚四氟乙烯板滑动摩擦系数μ=0.1。 一、滑动支架 室内: 1. HN-1 主管一根:D720×10,7m;支管D325×8,4m(锅炉分支)+2.5m(旁通)=6.5m。垂直荷重:P=(q1×l1+q2×l2)×K×9.8=(640×7+156.16×6.5) ×1.5×9.8=80777N 水平摩擦力:F=μP=0.1×80777=8078N 2. HN-2 主管一根:D720×10,12m;支管D325×8,4m。 垂直荷重:P=(q1×l1+q2×l2)×K×9.8=(640×12+156.16×4) ×1.5×9.8=122078N 水平摩擦力:F=μP=0.1×122078=12208N 3. HN-3 主管一根:D720×10,11m;支管325×8,5.35m(锅炉分支)+2.5m(旁通)=7.85m。垂直荷重:P=(q1×l1+q2×l2)×K×9.8=(640×11+156.16×7.85) ×1.5×9.8=121508N

油缸的抽芯力计算方法

油唧结构紧凑,直线运动平稳,输出力大,在模中得到较多的运用;但因其工作效率低、控制繁琐,使其应用受到了一定的限制。 一、油唧的适用场合: 1、油唧抽前模行位: 前模行位用油唧驱动,可简化模具结构;但需注意动作顺序的控制和行位锁紧,以免动作错乱损坏模具或油唧锁紧力不足而无法封胶,抽芯力不足而抽不动行位。 2、油唧抽大行程行位或斜行位: 当行位行程较大或动模行位向动模边倾斜较大时,如用斜边抽芯,其受力较差,容易损坏;可用油唧而改善受力状况。 图二:大行程行位或斜行位用油唧驱动 3、油唧用于制品顶出: A、在顶出行程超过啤机顶出行程时,可考虑用油唧顶出。

C、从侧向顶出。 在此类应用中,应注意油唧的安装位置,尽可能使油唧顶出力与顶出元件对顶针组板的作用力构成平衡力系,减少顶针组板动哥林柱的倾覆力,使顶针组板动作顺。 图三:油唧用于制品顶出 二、油唧驱动力的计算: 一般情况下在模具设计时设计师通过类比的办法来选择油唧,对油唧驱动力不做计算。 但如果没有类比对象或在一些不常见的场合须对油唧驱动力进行正确的计算,才能选择合适大小的油唧。 推力F1 φD

图四:油唧力学模型 由力的计算公式可知: F = PS (P:压强; S:受压面积) 从上面公式可以看出,由于油唧在作推动和拉动时受压面积不同,故所产生的力也是不同即: 推力F1 = P×π(D/2)2 = P×π/4*D2 拉力F2 = P×π[(D/2)2-(d/2)2] = P×π/4* (D2-d2) (φD:油缸内径;d:活塞杆直径) 而在实际应用中,还需加上一个负荷率β。因为油缸所产生的力不会100%用于推或拉,β常选,故公式变为: 从以上公式可以看出,只要知道油缸内径φD和活塞直径φd 以及压强P(一般为常数)就可以算出该型号油唧所能产生的力。 例如: 东江常用的华信标准柱型油压缸的P值均可耐压至140kgf/cm2,油唧型号为:JHC140-FA100B*200BAB-1。 查资料得知:油缸内径D = 100mm活赛杆直径d = 56mm。注意直径的单位计算时需化为cm。 则: 推力F1 = P×πD2/4× = 140×π×102/4×≈ 8796(kgf) 拉力F2 = P×π(D2-d2)/4× = 140×π×≈ 6037(kgf) 三、油唧行程的确定: 油唧行程是根据运动部件的行程来确定的,确定油唧行程时还须考虑油唧的活塞端隙。 活塞端隙的作用是使油唧在起动时有足够的油压面积,使油唧能顺利起动,避免因起动油压面积不够而无法起动油唧,此外,减少活塞与缸的冲击。

管道支吊架设计和计算

浅谈管道门字型支吊架的设计及计算 【文摘】用来支撑管道的结构叫管道支吊架,管道在敷设时都必须对管子进行固定或支承,固定或支承管子的构件是支吊架。在机电工程里,管道 支架是分布广、数量大、种类繁多的安装工事,同时管道支吊架的设计 和安装对管道及其附件施工质量的好坏取决定性作用。如何采用安全适 用、经济合理、整齐美观的管道支吊架是机电安装工程的一个重点。【关键词】管道布置管道跨距管架分析管架力计算 一、管道的布置 对管道进行合理的深化和布置是管道支吊架设计的前提条件。欲设计安全使用、经济合理、整洁美观的管道支吊架,首先需对管道进行合理的布置,其布置不得不考虑以下参数: 1.管道布置设计应符合各种工艺管道及系统流程的要求; 2.管道布置应统筹规划,做到安全可靠、经济合理、满足施工、操作、维 修等方面的要求,并力求整齐美观; 3.在确定进出装置(单元)的管道的方位与敷设方式时,应做到外协调; 4.管道宜集中成排布置,成排管道之间的净距(保温管为保温之间净距) 不应小于50mm。 5.输送介质对距离、角度、高差等有特殊要求的管道以及大直径管道的布 置,应符合设备布置设计的要求,并力求短而直,切勿交叉;

6. 地上的管道宜敷设在管架或管墩上,在管架、管墩上布置管道时,宜使 管架或管墩所受的垂直荷载、水平荷载均衡; 7. 管道布置应使管道系统具有必要的柔性,在保证管道柔性及管道对设备、 机泵管口作用力和力矩不超出过允许值的惰况下,应使管道最短,组成件最少; 8. 应在管道规划的同时考虑其支承点设置,并尽量将管道布置在距可靠支 撑点最近处,但管道外表面距建筑物的最小净距不应小于100mm ,同时应尽量考虑利用管道的自然形状达到自行补偿; 9. 管道布置宜做到“步步高”或“步步低”,减少气袋或液袋。不可避免时应根 据操作、检修要求设置放空、放净。 二、 管架跨距 管架的跨距的大小直接决定着管架的数量。跨距太小造成管架过密,管架数量增多,费用增高,故需在保证管道安全和正常运行的前提下,尽可能增大管道的跨距,降低工程费用。但是管架跨距又受管道材质、截面刚度、管道其它作用何载和允许挠度等的影响,不可能无限的扩大。所以设计管道的支吊架应先确定管架的最大跨距,管架的最大允许跨距计算应按强度和刚度两个条件分别计算,取其小值作为推荐的最大允许跨距。 1. 按强度条件计算的管架最大跨距的计算公式: []t W q L δφ124 .2max = L max ——管架最大允许跨距(m ) q ——管道长度计算荷载(N/m ),q=管材重+保温重+附加重 W ——管道截面抗弯系数(cm 3)

SolidWorks支架受力分析报告

管道支吊架受力分析总结 管道安装在机电安装工程中占较大的比重,而管道支吊架的制安在管道安装中扮演着主要的角色,它直接关系到管道的承重流向及观感。有些支吊架不但影响观感,更存在着安全隐患,为了消除管道支吊架存在的各种隐患,使管道支吊架制安达到较高水平,有必要对管道支吊架进行荷载受力分析,确保支吊架荷载在安全范围以内。 选取宝鸡国金中心-购物中心地下室某段压力排水管道进行受力分析:系统:压力排水 材质:镀锌钢管 管径:DN100 管道数量:两根 两支架间距:6米 一、管道重量由三部分组成:按设计管架间距内的管道自重、满管水重及以上两项之合10%的附加重量计算(管架间距管重均未计入阀门重量,当管架中有阀门时,在阀门段应采取加强措施)。 1、管道自重: 由管道重量表可查得,镀锌钢管 DN100:21.64Kg/m ,支架间距按6米/个考虑,计算所得管重为: f1=21.64*6kg=129.84kg*10=1298.4N 2.管道中水重 f2=πr2ρ介质l=3.14*0.1062*1000*6kg=211.688kg=2116.88N 3、管道重量 f=f1+f2+(f1+f2)*10%=3756.81N 4、受力分析 根据支架详图,考虑制造、安装等因素,系数按1.35考虑,每个支架受力为: F=3756.81*1.35/2=2535.85N 假设选取50*5等边角钢(材质为Q235)做受力分析试验 分析过程:

1、支架建立 1)在REVIT导出要进行分析的支架剖面,然后打开solidworks软件,打开保存好的CAD支架剖面图; 2)通过草图绘制工具绘制支架轮廓; 3)通过插入-焊件-结构构件选择50*5等边角钢,并在绘制好的轮廓图上依次描图(如果没有需要的型钢号,可以下载国标型钢库放在solidworks指定的文件夹); 绘制型钢轮廓型钢的选择支架建立 4)赋材质:对支架模型赋予普通碳钢材质; 2、支架加载 1)定义受力面:对横担的水管投影区域进行分割,便于为下一步载荷选择指定面(我们等效管道的作用力集中在水平中心截面); 2)边界条件、载荷的定义:对支架的上端进行固定,保证在力的加载过程中不晃动,对支架进行加载,力的大小为2535.85N; 定义受力面力的加载

水平推力计算书

连云港规划一路复堆河桥台后填土水平力产生位移计算书 计算人: 校对人: 审核人: 江苏省交通科学研究院股份有限公司

计算项目:路基填土对承台以上水平力计算 ============================================================================ 原始条件: 原始条件: 路基填土高度(m) 3.60 路基填土宽度(m) 31.20 主动土压力系数Ka(KN)0.27 静止土压力K0(KN)0.43 承台顶面处竖向压力(KN)72.00 填筑材料平均重度(Kpa/m)20.00 承台以上填土内摩擦角(°)35.00 水位标高在承台顶以上高度(m)0.00 承台顶以上不同深度单桩水平推力: 承台顶以上不同深度重力水平应力合计单桩水平推力KN/m 3.6 0.0 0.0 0.0 3 12.0 5.1 11.4 2.5 22.0 9.4 20.9 2 32.0 13.6 30.4 1.5 4 2.0 17.9 39.9 1 52.0 22. 2 49.4 0.5 62.0 26.4 58.9 0 72.0 30.7 68.4 路基填土对承台以上水平力计算结果: 承台顶面处竖向压应力(KN)72 承台以上土竖向应力(KN) 4043.52 承台以上土压力(KN) 1724.3 折算单桩水平合力(KN) 123.16 单桩水平力作用位置在承台顶以上(m) 1.2

计算项目:路基填土对承台水平力计算 ============================================================================ 原始条件: 原始条件 承台高度 1.80 承台宽度31.20 承台顶面竖向应力(台后)72.00 承台顶面的附加应力系数0.50 承台地面的附加应力系数0.50 承台处土重度20.00 承台处土内摩擦角10.00 承台顶面竖向应力(台前)0.00 承台顶面的附加应力系数0.50 承台地面的附加应力系数0.50 承台范围(台后)水平力计算结果: 承台顶面竖向应力(附加)36.00 承台顶面竖向应力(总)36.00 承台范围内水面处应力(附加)36.00 承台范围内水面处应力(总)36.00 承台范围内水面处标高0.00 承台底面竖向应力(附加)36.00 承台底面竖向应力(总)54.00 承台范围内总竖向应力81.00 土压力系数0.83 主动土压力系数Ka 0.70 静止土压力K0 0.83 承台范围(台后)水平力2088.36

各种梁弯矩计算

各种梁的弯矩计算公式 1。两端固定支座,当一端产生转角;mab=4i,mba=2i其中i=ei/l 2。两端固定支座,当一端产生位移;mab=-6i/l,mba=-6i/l 3。两端固定支座,当受集中力时;mab=-pab(平方)/l(平方),mba=pab(平方)/l(平方)。当作用力于中心时即a=b时mab=-pl/8,mba=pl/8 4。两端固定支座,当全长受均布荷载时;mab=-ql(平方)/12, mba=ql(平方)/12 5。两端固定支座,当长度为a的范围内作用均布荷载时; mab=-qa(平方)×(6l平方-8la+3a平方)/12l平方, mba=qa(立方)×(4l-3a)/12l平方 6。两端固定支座,中间有弯矩时;mab=mb(3a-l)/l平方, mba=ma(3b-l)/l平方 7。当一端固定支座,一端活动铰支座,当固定端产生转角时;mab=3i,mba=0 8。当一端固定支座,一端活动铰支座,当铰支座位移时;mab=-3i/l,mba=0 9。当一端固定支座,一端活动铰支座,当作用集中力时; mab=-pab(l+b)/2l平方,mba=0(当a=b=l/2时mab=-3pl/16) 10。当一端固定支座,一端活动铰支座,当受均布荷载时; mab=-ql平方/8 ,mba=0 11。当一端固定支座,一端活动铰支座,中间有弯矩时; mab=m(l平方-3b平方)/2l平方,mba=0 12。当一端固定支座,一端滑动支座,当固定端产生转角时;mab=i,mba=-i 13。当一端固定支座,一端滑动支座,当受集中力时; mab=-pa(2l-a)/2l,mba=-pa平方/2l (当a=b=l/2时mab=-3pl/8,mba=-pl/8) 14。当一端固定支座,一端滑动支座,当滑动支座处受集中力时; mab=mba=-pl/2 15。当一端固定支座,一端滑动支座,当受均布荷载时; mab=-ql平方/3,mba=-ql平方/6

支吊架计算方案

中国建筑股份有限公司 CHINA STATE CONSTRUCTION ENGRG.CORP.LTD 十里铺城中村二期改造K5地块 机电管道支吊架体系计算方案 编制人: 审核人: 审批人: 中建二局 第三建筑工程有限公司 2019年4月

目录 一、编制目的 (3) 二、编制原则 (3) 三、编制依据 (4) 四、管道布置分析 (4) 五、管道载荷分析及支架计算 (5) 六、管道承重支架受力分析及计算实例 (13)

K5商业地下室机电管道较多,为达到整体安装效果简洁美观、节省空间,根据设计要求及项目的实际情况选取适当的支吊架形式。局部位置需要综合支架,为保证系统运行安全可靠,需从管线的具体布置及荷载要求方面进行分析,对机电支吊架的强度进行校核。 二、编制原则 1、适用性:根据设计要求及工程的实际情况选用适合工程的支吊架形式,地下室商业局部位置需要设置综合支架,BIM图纸中已经有所体现,根据管道规格设计合理支架方案; 2、安全性:计算选用的支架需合理,现场应严格按照方案实施,支架固定牢固,现场试验数据需准确;若管道型号过大,根据现场情况需请设计对结构承载力进行验证符合并签字; 3、经济型:在考虑竖向支架时,首先考虑使用圆钢吊杆,在圆钢吊杆不满足承重要求时再考虑使用角钢、槽钢; 4、美观性:保证所使用的支吊架成排成线,横平竖直,简单明了。 5、适用于综合排布的成排管道支吊架,其它形式支吊架参考图集《室内管道支架及吊架图集》03S402以及各地方标准图集。 机电管道支吊架选用除尊照本计算书外,还应满足国家现行有关规范、标准的规定。

1、施工图纸 2、《通风与空调工程施工质量验收规范》(GB50243-2016) 3、五金手册(电子版) 4、《热轧型钢》(GB/T706-2008) 5、《室内管道支吊架》(05R417-1) 6、《低压流体输送用焊接钢管》(GB/T3091-2008) 7、《室内管道支架及吊架图集》03S402 8、《动力管道设计手册》(机械工业出版社) 9、《膨胀螺栓规格及性能》(JB-ZQ4763-2006) 四、管道布置分析 对管道进行合理的深化和布置是管道支吊架设计的前提条件。设计使用安全、经济合理、整洁美观的管道支吊架,首先需对管道进行合理的布置,布置应考虑以下参数: 4.1、管道布置设计应符合各种工艺管道及系统流程的要求; 4.2、管道布置应统筹规划,做到安全可靠、经济合理,满足施工、操作、维修等方面的要求,并力求整齐美观; 4.3、管道宜集中成排布置,成排管道之间的净距(保温管为保温之间净距)不应小于50mm。 4.4、地上的管道宜敷设在管架或管墩上,在管架、管墩上布置管道时,宜使管架或管墩所受的垂直荷载、水平荷载均衡;

相关文档