文档视界 最新最全的文档下载
当前位置:文档视界 › 光电探测技术发展概况

光电探测技术发展概况

光电探测技术发展概况
光电探测技术发展概况

光电探测技术发展概况

学号:20121226465姓名:熊玉宝

摘要:本文扼要论述光电探测技术重要性,并简要地介绍了光电探测技术的几种主要方法及发展趋势。

关键词:光电;探测;技术

光电探测技术是根据被探测对象辐射或反射的光波的特征来探测和识别对象的一种技术,这种技术本身就赋予光电技术在军事应用中的四大优点,即看得更清、打得更准、反应更快和生存能力更强。

光电探测技术是现代战争中广泛使用的核心技术,它包括光电侦察、夜视、导航、制导、寻的、搜索、跟踪和识别多种功能。光电探测包括从紫外光(0.2~0.4μm)、可见光(0.4~0.7μm)、红外光(1~3μm,3~5μm,8~12μm)等多种波段的光信号的探测。

新一代光电探测技术及其智能化,将使相关武器获得更长的作用距离,更强的单目标/多目标探测和识别能力,从而实现更准确的打击和快速反应,在极小伤亡的情况下取得战争的主动权。同时使武器装备具有很强的自主决策能力,增强了对抗,反对抗和自身的生存能力。实际上,先进的光电探测技术已成为一个国家的军事实力的重要标志。

现代高技术战争的显著特点首先是信息战,而信息战中首要的任务是如何获取信息。谁获取更多信息,谁最早获取信息,谁就掌握信息战的主动权。光电探测正是获取信息的重要手段。微波雷达和光电子成像设备常常一起使用,互相取长补短,相辅相成,可以获取更多信息,可以更早获取信息。前者作用距离远,能全天候工作;后者分辨率高,识别能力和抗干扰能力强。无论侦察卫星、预警卫星、预警飞机还是无人侦察机往往同时装备合成孔径雷达和CCD相机、红外热像仪或多光谱相机。为改进对弹道导弹的预警能力,美国正在研制的天基红外系统(SBIRS)拟用双传感器方案,即一台宽视场扫描短波红外捕获传感器和一台窄视场凝视多色(中波/长波红外、长波红外/可见光)跟踪传感器,能捕获和跟踪弹道导弹从发射到再入大气的全过程。美国已经装备并正在不断改进的CR-135S眼镜蛇球预警机,采用可见光和中波红外像机,能精确测定420km外的导弹发射,确定发动机熄火点,计算出它的弹道和碰撞点。最近在上面加了一台远程激光测距机,其作用距离可达400km。美国海军也在为战区弹道导弹防御

系统研制称为“门警”系统的可进行主/被动监视的机载光电传感器系统。它包括一台红外搜索跟踪器(IRST),采用双波段6×960 元碲镉汞探测器阵列,探测距离可达800km,一台测距/跟踪器(LR/T),以128×128元锑化铟焦平面阵列精跟踪(约5μrad)目标,并以激光对目标测距(100-1000km),从而获得远距离目标的实时三维信息,赢得足够的预警时间。

在光电技术其它应用中,诸如精确制导、导航、火控、对抗武器、通信、显示等方面都占有较重要的地位。

光电探测技术

1.可见光探测

可见光CCD和CMOS成像器由于其体积小、重量轻、功耗低、寿命长、可靠和耐冲击等诸多特点,现在已广泛用于军事遥感、侦察、飞机导航、导弹和炸弹的制导等现代军事装备中。民用也极其广泛,如保安、监控、可视门铃、视频电子邮件、可视电话、视频会议、数码相机以及医学和生物科学实验记录等都在使用CCD和CMOS成像器。

现代可见光成像器已是数字化的,可以保存在软盘、硬盘和光盘中,再用计算机阅读、显示和打印出来。这种图像还可以修补、剪贴和远距离传输,这也是现代通讯的主要内容之一。

先进的图像传感器的基本指标是清晰度(光敏元数)、灵敏度(量子效率)、动态范围(满阱电荷数)、信噪比(暗电流等噪声源)等,并与实用中常碰到的光学孔径、拖影、光晕、闪烁、图像滞后等图像性质有关,因此现代的先进技术都是在为进一步提高这些基本指标和改善上述的图像性质而努力。

2.红外探测

由于温度高于绝对零度的任何物体都会辐射红外线,利用适当的对红外线足够灵敏的探测器,即使在夜里没有光照的情况下也能探测到物体的存在,还可得到它的外形图像。一些典型物体的温度和辐射峰值波长见表1。

表1 典型物体的温度和红外辐射的波长

由此可见,在战争中碰到的对象所辐射的红外线,大都在1~12μm 之间。

但是,在这个波段区的信号不是都能在大气中传播很远的,实践表明只有三个波段区的信号能在大气中传播较远,它们分别称为:短波红外(SWIR,1~3μm)、中波红外(MWIR,3~5μm)和长波红外(LWIR,8~12μm)。通常说的军用红外技术,主要是针对这三个红外波段,而且重点还在中波和长波红外。

对于红外探测装备其核心是红外探测器,从某种意义而言红外探测器的水平决定了红外光电探测装备的性能,国际上一般把单元和多元器件称为一代红外器件,把焦平面线列和阵列称二代器件,把双(多)波段和智能化焦平面器件称为三代器件,相应就演变成红外光电探测装备的分代。

2.1 PtSi红外探测器

这是早期红外探测器,工作在中、短波,由于其制造工艺相对简单,原始均匀性做得较好,成本相对价廉,因而获得了早期军用应用,例如早期的响尾蛇导弹采用的红外制导就是采用PtSi探测器,但由于其量子效率低,性能不高,影响了武器装备的性能发挥,被随后InSb、HgCdTe探测器所替代。

2.2InSb红外探测器

InSb工作波段在中波是目前使用最广泛,研究最成熟,军用中用于寻的头的常取128×128元凝视型阵列,因为有较好的性能/价格比,美、英、德和以色列等国研制的新型空-空导弹都使用了这一规格。要求精密、高速图像或在高价值场合使用时常取256×256,640×480或512×512InSb探测器,美国Lockheed Martim 公司生产的“狙击手”吊舱,Raytheon公司研制的ATFLIR吊舱,Northrop Grumman 公司与以色列拉发尔公司合作研制的LITENING吊舱以及美国前视红外系统公司研制的AN/AAQ-22 SAFIRE 热像仪等世界最先进的前视,导航和瞄准设备都使用了640×480 元或类似规模的InSb阵列。2000×2000InSb与可见光组合成低帧频、双色相机已有报导用于战场和环境监视。

2.3HgCdTe红外探测器

由于HgCdTe红外探测器的发明,使低温目标(需要长波探测)的红外探测成为可能。从原理上都可以取代前二类红外探测器,因而这类探测器是西方先进国家竞相发展,到目前仍然重点发展的一类探测器,而且集中在第二代和第三代红外探测器,这类探测器又分为4(6)×N 线列焦平面和阵列焦平面,前者主要是技术相对后者更成熟,采用并扫技术可做到同等数量元数阵列焦平面更高性能,且价格要比阵列焦平面低,因而西方国家亦在发展之列,典型的4×288、4(6)×576、6×960等;阵列焦平面典型品种有128×128,256×256(或320×256),512×512(或640×480),1024×1024等。

2.4GaAs/AlGaAs量子阱红外探测器(QWIP)

量子阱红外焦平面探测器在384×288,640×512规模以上的大面阵和双色焦平面方面有应用价值,目前主要应用在工业及医疗。在允许进行长时间积分的军事领域也有应用,如德国的坦克驾驶员观察用热像仪,使用的是640×512 元长波量子阱红外焦平面探测器,光谱响应范围8-9μm。量子阱红外焦平面探测器未来最有潜力的发展方向是空间军事应用,如多色(4色),超长波(14~16μm)大面阵。

2.5非致冷红外焦平面探测器

由于制冷红外焦平面探测器功耗大、成本高、操作不方便等不利因素,各国都在寻求制造非制冷红外焦平面的新技术,目前该技术发展是迅速的。非制冷红外焦平面探测器目前已发展到320×240,640×480规模。非致冷红外探测器可分二类,即铁电型和热电阻型。以Vox和X-Si 热电阻型非致冷红外探测器发展较快,主要的技术着眼点是提高阵列的规模以达到640×480 元的数量级,降低光敏元尺寸以达到中心距25μm,并进一步改善噪声等效温差、动态范围等重要性能指标,进一步降低成本和方便使用等。主要用于工业、安全、单兵武器观瞄等领域,其价格相对低廉,也有用于性能要求不太高短距离的导弹制导。

2.6第三代红外探测器

美国已开始研制第三代红外探测器,并提出了第三代红外热像仪的概念,主要是双色或三色高性能、高分辨率、制冷型热像仪和智能焦平面阵列探测器,美

军夜视和电子传感器管理局认为开发第三代红外传感器是美国保持夜战优势的关键。因此红外探测技术较长远的发展趋势是开发第三代红外探测器,第三代红外焦平面探测器的主要参数见表2。

表2 第三代红外探测器要求的性能参数

由于国外红外探测器技术的不断完善,在探测器芯片上提升技术已相当困难。为进一步提高红外探测器的性能,人们现在正把注意力转到红外探测器的信号读出集成电路(ROIC)上。随着计算机技术和集成电路的发展,ROIC已有很大的进展,中规模的红外焦平面阵列和相应的读出电路在20世纪90年代已形成生产规模,现在先进国家正在研制用于大规模焦平面阵列(三代器件)和其有多种功能的ROIC和智能化焦平面阵列。

智能焦平面阵列也叫做片上系统,片上信号处理意思是在光敏元芯片上或是最接近光敏元的区域内模仿脊椎动物视网膜的功能,对光-电转换后的信号作前期的处理,然后再输出后续的数据处理。这个过程虽然不属于直接接收光信号的过程,但对光电探测器的综合性能有极大影响。

3.紫外探测技术

紫外探测技术在国防、国民经济和科学研究领域有许多应用,如导弹威胁预警,星际通信,化学与生物战剂的探测和光谱测量,发动机与核反应堆监测、植物生长、辐射剂量测量、水提纯、污染监测(如臭氧)火焰探测、煤气(发生)

炉监测和紫外天文。

近20年来,主要发展有三种类型紫外(UV)探测器,即光电倍增管、成像紫外传感器和AlGaN/GaN光电二极管成像阵列,被称作一、二、三代紫外成像传感器。

在上述许多应用中,希望只探测紫外光而不对可见光和红外辐射灵敏,尤其是阳光,以减少虚假探测和背景通量。所以近年来在短波紫外探测器领域的研究集中在实现“日盲”探测器上,即对~280nm以上的光子不灵敏探测器,亦即称谓是第三代紫外探测器。

紫外探测的军事应用主要有导弹制导,来袭导弹告警,生化战剂探测,军用气象和军用短程通信等。

4.微小型成像传感器

微小型成像传感器的主要特征是尺寸显著减小,保持较高的空间分辨率和低功耗。微小型成像传感器的主要应用领域诸如有机器人、微型车辆、微型航空器、微型航天器、无人值守传感器和监视网络以及警戒和执法等。其应用前景有:·支持网络中心战(NCW)的网络传感测点

·用于战场情报的便携式监视和无人值守的网络化监视

·无人机和地面无人车辆的视频控制

·用于设施警戒的自动化监视

·灵巧武器的目标识别

·装甲车和导弹的精确瞄准系统

·机器人视觉

·公安、边防巡逻、执法和交通监视

·视频会议今后几年在微型传感器方面的总目标是:

·演示声、地震和红外成像微型传感的小规模集成网络;

·验证超轻量、低成本、小体积的三维集成封装应用于开销得起的紧凑设

计;

·发展自组网络以支持已处理的信息的保密通信,微传感的网络区与作战

人员之间的战术通信距离达10km。

5.成像偏振探测

成像偏振探测技术目的是提高目标的对比度,抑制背景杂波,提供目标表面材料的信息,区分天然物体与人造物体。所以,成像偏振探测可以提高对目标的探测和识别能力,有可能探测等温物体中的伪装目标。

目前进行的有短波、中波、长波和多光谱,超光谱成像偏振探测试验,主要

试验是探雷,测云以及地球海洋表面的海面温度,发射率和海风矢的探测,应该说还处于早期研究阶段。

6.多光谱/超光谱成像技术

光学遥感无凝是采集目标和背景数据的一种有效方法。然而,由于光学空间分辨率有限,以辐射强度为基础的空间信息并非总能提供足够的目标信息,例如远距离的小目标或隐匿在更亮背景干扰下的目标,仅仅根据它们辐射强度特性就无法分辨出来。因此,遥感中采用光谱特性、偏振特性和时间特性等多维判别方法来识别目标和背景,并越来越重要。光谱成像就是在这种观念下研究发展起来的,光谱成像技术按波段数目和分辨率大致可分为三类:多光谱成像,其波段为10~50 个,光谱分辨率(Δλ/λ)为0.1;超光谱成像,其波段为50~1000个,光谱分辨率为0.01;极光谱成像其波段为10-100 个,光谱分辨率为0.001。目前,除极光谱成像技术未用于军事遥感外多种多光谱或超光谱成像系统已装备遥感卫星,如“伊科诺斯2”(IKONOS)卫星和侦察飞机如u-2 高空侦察机等,重点民用应用是环境监测和资源管理。

对多光谱/超光谱成像数据分析表明,这种独特的数据的价值并不在于它是否能产生漂亮的图像,而在于多光谱/超光谱成像仪获得的独特的光谱特征所固有的信息,例如隐藏在树下的车辆和埋置的地雷等目标的信息。

多光谱成像仪使用最多的焦平面阵列是可见光CCD和红外HgCdTe焦平面阵列,今后其发展趋势主流仍然是CCD和多色红外焦平面阵列。

其发展的技术特点是:尽可能提高光谱分辨率;充分利用能透过大气的各类电磁波谱;向红外、远红外和微波方面扩展;将光谱段划分得更细。例如美国陆地卫星主题测绘仪有7 个光谱段;A VIRIS机载可见光和红外多光谱成像仪在可见光和红外谱段内划分为224个波段;我国机载光谱成像仪有72 个波段,其中可见光32个波段,短波红外32个波段,长波红外8 个波段。

因此,今后遥感技术将是向多光谱/超光谱成像仪与干涉雷达,被动雷达和合成孔径雷达等多传感器融合,可同时采集多维数据的传感器系统,通过先进的数据融合技术,可以获得需要的足够的目标信息,使遥感技术向多尺度、多波段、全天候、高精度、高效快速的目标发展。

7.激光雷达成像技术

对军事目标进行识别、分类、精密探测和精确瞄准是激光雷达追求的目标。激光雷达以其抗干扰和成像能力强等优势,已经成为重点发展的高灵敏度探测雷达。

在许多图像处理中,需要自动目标识别(ATR),从而促进了激光雷达的发展。例如在对地形背景中的静止目标的探测,多普勒雷达及可见光或红外热成像系统都有其困难的一面,而激光雷达的优点是每个像元既具有高的角分辨率,又可获得准确的距离数据,具有稳定的目标和背景特征,因而能在ATR 系统中准确地进行模型化处理。当然在某些应用中,激光雷达由于光束窄,扫描速度有限,需要与红外、可见光、毫米波雷达一起工作,进而通过数据融合,提高系统性能。激光成像技术目前主要有扫描成像,激光照明距离选通成像、激光照明单次成像和相干激光雷达。

激光雷达与无线电雷达从原理上是相同的,所不同的是采用光波段激光发射机和与相之适应的激光接收器。早期采用CO2激光器作激光雷达发射机技术上已相当成熟,并已研制出多种陆基和机载样机,但由于CO2激光器体积大,光学孔径较大,探测器需致冷等因素制约了其机动环境,尤其是机载战术应用的竞争力。随着激光二极管泵浦技术(DPSSL)和新的固体激光材料研究的进展,高效、全固体化且人眼安全的小型固体激光雷达正在得到发展,已经实验用于外差多普勒激光雷达、距离成像和障碍物回避等领域。半导体激光器历来由于其体积小,重量轻,坚固可靠,高效率和低成本,近年来高功率小光束角激光二极管的快速发展,在激光雷达应用方面有很大潜力,典型应用于直升机障碍回避和地物探测,面前最大应用优势是机器人视觉系统和激光水下目标成像探测。

恰恰是适合探测激光的焦平面阵列探测器阵列研制已成为发展泛光照明单次成像的关键。

8.多传感器数据融合技术

现代探测技术都向多传感器融合的方向努力,以弥补单一探测技术的某些缺陷,使被探测目标信息尽量丰富,准确、迅速、实时,使战时掌握信息优先权、主动权,赢得宝贵的先发制时间,从而赢得战争的胜利。正因为多传感器融合就必然采用数据融合技术;在当前由于新型先进的传感器和先进处理技术的涌现以及软硬件的改进,使实时数据融合越来越有可能实现而得到极快发展。

单一平台装备的传感器类型可能包括:雷达、激光测距机/目标指示器/跟踪器、前视红外系统、电视(含激光电视)、敌我识别器、雷达告警机、导弹逼近告警接收机、激光告警接收机等不同类传感器间的融合。

多平台装备不同类型传感器,通过借助日益发展成熟的数据链路技术,能够显著扩大传感器探测的空域、频域和时域。

综上所述,实际上光电子技术是无线电波段的扩展和延伸,为已经高度发达的电子技术提供了一个更加广阔的新天地,因此光电探测技术当属探测技术领域中的重要技术之一,这里强调的重要,而不是唯一,恰恰是论述了光电探测利用它的探测特性与其它探测技术是互补而不是替代,目的是获取的信息尽量丰富、准确、迅速、实时,使战时掌握信息优先权、主动权,赢得宝贵的先发制时间,从而赢得战争的胜利,因此光电探测技术需要引起业内人士的普遍关注,并在装备研制中占有一定的地位。

作者简介

张伟忠(1941- ),1964年毕业于上海交大,毕业后从事激光技术研究,教授级高工。中国电子科技集团公司第十一研究所原所长,现所长顾问。

光镊原理

1.1光镊技术简介 光镊是以激光的力学效应为基础的一种物理工具,是利用强会聚的光场与微粒相互作用时形成的光学势阱来俘获粒子的【4】。1969年,A. Ashkin等首次实现了激光驱动微米粒子的实验。此后他又发现微粒会在横向被吸入光束(微粒的折射率大于周围介质的折射率)。在对这两种现象研究的基础上,Ashkin提出了利用光压操纵微粒的思想,并用两束相向照射的激光,首次实现了对水溶液中玻璃小球的捕获,建立了第一套利用光压操纵微粒的工具。1986年,A. Ashkin等人又发现,单独一束强聚焦的激光束就足以形成三维稳定的光学势阱,可以吸引微粒并把它局限在焦点附近,于是第一台光镊装置就诞生了【5,6】。也因此,光镊的正式名称为“单光束梯度力势阱” (single-beam optical gradient force trap)。 由于使用光镊来捕获操纵样品具有非接触性、无机械损伤等优点,这使得光镊在生物学领域表现出了突出的优势。这些年来,随着研究的深入和技术的不断完善,光镊在生物学的应用对象由细胞和细胞器逐步扩展到了大分子和单分子等。目前,光镊常被用来研究生物过程中的细胞和分子的运动过程【7-10】,也常被用来测量生物过程中的一些力学特征【11-14】。 1.2光镊的原理与特点 众所周知,光具有能量和动量,但是在实际应用中人们经常利用了光的能量,却很少利用光的动量。究其原因,这主要是因为在生活中我们接触到的自然光和照明光等的力学效应都很小,无法引起人们可以直接感受到或观察到的宏观效应。而科学家们利用激光所具有的高亮度和优良的方向性,使得光的力学效应在显微镜下显现了出来,在这里我们要介绍的光镊技术正是以这种光的力学效应为基础发展起来的。 1.2.1光压与单光束梯度力光阱 光与物质相互作用的过程中既有能量的传递,也有动量的传递,动量的传递常常表现为压力,简称光压。1987年,麦克斯韦根据电磁波理论论证了光压的存在,并推导出了光压力的计算公式。1901年,俄国人П.Н.列别捷夫用悬在细丝下的悬体实现了光压的实验测量【15】。此后,美国物理学家尼克尔、霍尔也

专题19可持续发展(解析版)

2019年浙江省中考科学真题解析分类汇编 专题19 可持续发展 一、选择题 1.(2019·宁波1)“垃圾是放错位置的资源”。乱丢垃圾会造成资源浪费和环境污染,所以我们要将垃圾进行分类处理。废弃的草稿纸应放入下列四个垃圾桶中的() A B C D 【答案】B 【考点】环境污染的危害性与防治措施 【解析】【分析】根据废纸可回收利用分析。 【解答】废弃的草稿纸应放到可回收物垃圾桶中; 故答案为:B。 2.(2019·嘉兴、舟山3)从2019年5月20日起,用普朗克常数定义质量的单位一千克,以代替工作了100多年的国际千克原器(如图)。下列有关质量的说法,正确的是() A. 体积为1立方米水的质量为千克 B. 实验室可用弹簧测力计来测量物体的质量 C. 千克原器因生锈而质量减小,故不宜作为标准 D. 物体的质量不会随温度的改变而改变 【答案】D 【考点】质量及其特点 【解析】【分析】(1)水的密度会随着状态和温度的变化而变化; (2)弹簧测力计是测力的工具; (3)铁与空气中的氧气和水分发生反应生成铁锈,因此质量会增加; (4)质量是物质本身的一种属性,不随物质形状、状态、位置和温度的变化而变化。 【解答】A.如果水的密度是1g/cm3 ,那么1m3的水质量是1kg;但是水的密度会发生变化,因此1m3的水质量也会发生变化,故A错误; B.实验室用弹簧测力计测量物体的重力,而不是质量,故B错误; C.千克原器因生锈而质量增大,故C错误; D.物体的质量不会随温度的改变而改变,故D正确。

故选D。 3.(2019·衢州10)如图为小科与妈妈在牛排馆用餐的对话: 小科叙述中的“?”可能是( C ) A.加热还原氧化铜反应时通入足量氢气 B.二氧化碳溶于水后加入紫色石蕊试液 C.加热氯酸钾制取氧气时加入二氧化锰 D.将氧化钙转化成氢氧化钙时要加入水 【答案】C 【分析】在化学反应里能改变反应物化学反应速率(提高或降低)而不改变化学平衡,且本身的质量和化学性质在化学反应前后都没有发生改变的物质叫催化剂(固体催化剂也叫触媒)。 【解答】由小科与妈妈的对话可知,蛋白酶能够加速蛋白质的分解,这时酶起到催化剂的作用; 加热还原氧化铜反应时通入足量氢气,是为了使氧化铜完全被还原;故A不符合; 二氧化碳溶于水后加入紫色石蕊试液,是为了检测溶液的酸碱性;故B不符合; 加热氯酸钾制取氧气时加入二氧化锰,是为了加快反应的速率;故C符合; 将氧化钙转化成氢氧化钙时要加入水,是作为反应物参与反应;故D不符合; 故答案为:C。 4.(2019·金华、义乌、丽水1)生活垃圾通常可分为可回收物,有害垃圾,其他垃圾三类,处置矿泉水瓶的正确方法是() A.扔进有害垃圾桶B.扔进其他垃圾桶 C.扔进可回收物垃圾桶D.看到垃圾桶就扔进去。 【答案】C 【考点】材料制造与环境保护 【解析】【分析】垃圾分类,指按一定规定或标准将垃圾分类储存、分类投放和分类搬运,从而转变成公共资源的一系列活动的总称。分类的目的是提高垃圾的资源价值和经济价值,力争物尽其用。 【解答】矿泉水瓶属于废旧塑料,可以重新利用,因此应该扔进可回收物垃圾桶里; 故答案为:C。 5.(2019·金华、义乌、丽水4)国际千克原器作为质量计量标准,有由铂铱合金制成,科学家发现其质量有微小变化。2019年5月20日,服役129年的国际千克原器退役,今后将使用普朗克常量来定义千克,以提

光电检测技术试题及答案

光电检测技术试题及答案 光电检测技术试题及答案1、光电器件的基本参数特性有哪些? (响应特性噪声特性量子效率线性度工作温度) @响应特性分为电压响应度电流响应度光谱响应度积分响应度响应时间频率响应 @噪声分类:热噪声散粒噪声产生-复合噪声 1/f噪声信噪比S/N 噪声等效功率NEP 2、光电信息技术是以什么为基础,以什么为主体,研究和发展光电信息的形成、传输、接收、变换、处理和应用。 (光电子学光电子器件) 3、光电检测系统通常由哪三部分组成 (光学变换光电变换电路处理) 4、光电效应包括哪些 外光电效应和内光电效应) 外光电效应:物体受光照后向外发射电子——多发生于金属和金属氧化物。内光电效应:物体受到光照后所产生的光电子只在物质内部而不会逸出物体外部——多发生在半导体。 内光电效应又分为光电导效应和光生伏特效应。

光电导效应:半导体受光照后,内部产生光生载流子,使半导体中载流子数显著增加而电阻减少的现象。 光生伏特效应:光照在半导体PN结或金属—半导体接触面上时,会在PN结或金属—半导体接触的两侧产生光生电动势。 5、光电池是根据什么效应制成的将光能转换成电能的器件,按用途可分为哪几种? (光生伏特效应太阳能光电池和测量光电池) 6、激光的定义,产生激光的必要条件有什么? ( 定义:激光是受激辐射的光放大粒子数反转光泵谐振腔) 7、热释电器件必须在什么样的信号的作用下才会有电信号输出? (交变辐射) 8、 CCD是一种电荷耦合器件,CCD的突出特点是以什么作为信号,CCD的基本功能是什么? (电荷 CCD的基本功能是电荷的存储和电荷的转移。) 9根据检查原理,光电检测的方法有哪四种。 (直接作用法差动测量法补偿测量法脉冲测量法) 10、光热效应应包括哪三种。 (热释电效应辐射热计效应温差电效应) 11、一般PSD分为两类,一维PSD和二维PSD,他们各自用途是什么?

光电探测技术发展概况

光电探测技术发展概况 学号:20121226465姓名:熊玉宝 摘要:本文扼要论述光电探测技术重要性,并简要地介绍了光电探测技术的几种主要方法及发展趋势。 关键词:光电;探测;技术 光电探测技术是根据被探测对象辐射或反射的光波的特征来探测和识别对象的一种技术,这种技术本身就赋予光电技术在军事应用中的四大优点,即看得更清、打得更准、反应更快和生存能力更强。 光电探测技术是现代战争中广泛使用的核心技术,它包括光电侦察、夜视、导航、制导、寻的、搜索、跟踪和识别多种功能。光电探测包括从紫外光(0.2~0.4μm)、可见光(0.4~0.7μm)、红外光(1~3μm,3~5μm,8~12μm)等多种波段的光信号的探测。 新一代光电探测技术及其智能化,将使相关武器获得更长的作用距离,更强的单目标/多目标探测和识别能力,从而实现更准确的打击和快速反应,在极小伤亡的情况下取得战争的主动权。同时使武器装备具有很强的自主决策能力,增强了对抗,反对抗和自身的生存能力。实际上,先进的光电探测技术已成为一个国家的军事实力的重要标志。 现代高技术战争的显著特点首先是信息战,而信息战中首要的任务是如何获取信息。谁获取更多信息,谁最早获取信息,谁就掌握信息战的主动权。光电探测正是获取信息的重要手段。微波雷达和光电子成像设备常常一起使用,互相取长补短,相辅相成,可以获取更多信息,可以更早获取信息。前者作用距离远,能全天候工作;后者分辨率高,识别能力和抗干扰能力强。无论侦察卫星、预警卫星、预警飞机还是无人侦察机往往同时装备合成孔径雷达和CCD相机、红外热像仪或多光谱相机。为改进对弹道导弹的预警能力,美国正在研制的天基红外系统(SBIRS)拟用双传感器方案,即一台宽视场扫描短波红外捕获传感器和一台窄视场凝视多色(中波/长波红外、长波红外/可见光)跟踪传感器,能捕获和跟踪弹道导弹从发射到再入大气的全过程。美国已经装备并正在不断改进的CR-135S眼镜蛇球预警机,采用可见光和中波红外像机,能精确测定420km外的导弹发射,确定发动机熄火点,计算出它的弹道和碰撞点。最近在上面加了一台远程激光测距机,其作用距离可达400km。美国海军也在为战区弹道导弹防御

《光镊原理及应用》课程教学大纲

《光镊原理及应用》课程教学大纲 一、课程基本信息 课程中文名称:光镊原理及应用 课程英文名称:Optical tweezers theory and application 开课学期:2 学时:16 学分:1 二、课程目的和任务 激光生物学是多学科交叉的新兴学科,其中以激光微束光阱效应为基础的光镊技术是生命科学和生物工程研究的有力工具,已成为当前生物物理学中新方法和新仪器的研究热点之一。是光子技术和生命科学相互交叉与渗透而形成的一门新的边缘学科,课程教学目标:让光镊在生命学科及其他应用领域中的作用与地位,逐步树立科学的世界观,促进综合素质的提高;帮助学生获得光镊的基本知识,掌握光镊相关技术。通过课程小论文与研讨,让学生了解本学科的发展前沿,培养学生的创造型思维;开放式的教学,提高学生的综合分析和解决问题的能力。 三、教学内容与基本要求 教学主要内容及对学生的要求: 教学主要内容 第一章 光镊技术的产生与发展 光镊技术的理论研究、光镊技术的应用研究 国内外光镊技术的研究现状 第二章 光镊技术及其基本原理 光镊技术的描述、光镊的基本原理、光辐射压力、 梯度力和散射力、二维光学势阱、基于激光微束的三维光学势阱 第三章 光镊的理论分析与计算方法 光镊理论计算的意义、粒子分类与计算方法、光阱力与光操纵束缚条件第四章 光镊的系统构成与技术性能

传统光镊的原理、系统构成、激光器和显微镜的选取、多光镊技术 第五章 光纤光镊技术 远场光纤光镊、近场光镊 第5章 光镊技术的发展应用 光镊技术在生物学方面应用、光镊在分子生物学领域的应用、光镊与其它技术的结合应用 对学生的要求: 1、 对光镊原理方法有明确认识。 2、 对光镊系统的性能、参数能深入了解,并能自由运用。 3、 能够了解光阱力的计算方法。 4、 有查阅外文资料的能力。 五、教学设计及方法 教学方式 1) 教学与科研结合,激发学生的求知欲 2)专家讲授与教师专题讲座相结合,拓展学生知识面 3)理论与实践结合,加强学生实验技能的训练 4)中、英双语教学相结合,提高学生国际交流能力 5)撰写专题调研报告,培养学生的自主创新能力 教学手段 将多种现代的教学手段运用于课程教学之中,多方位多途径地展教学活动,以激发学生学习兴趣,提高教学效果。 1)将多媒体教学与板书相结合,以解决学时少内容多的矛盾 2)课件与电视录像片相结合,以提高学生的自学能力 3)丰富的网络资源为学生学习提供良好的软环境 六、调查、参观、实践、实验内容 七、主要参考资料 [1]《光镊原理、技术和应用》李银妹编译中国科学技术大学出版社1996 [2]《时域有限差分法FDTD Method 》 高本庆 国防工业出版社.1995年 [3][《非均匀介质中的场与波》美]Weng Cho Chew 著聂在平,柳清伙译电子工业出版社,1992年 [4] Ashkin A. Optical trapping and manipulation of single cells using infrared laser beams. Nature, 1987, 33: 256-

半导体激光器的发展及其应用

浅谈半导体激光器及其应用 摘要:近十几年来半导体激光器发展迅速,已成为世界上发展最快的一门激光技术。由于半导体激光器的一些特点,使得它目前在各个领域中应用非常广泛,受到世界各国的高度重视。本文简述了半导体激光器的概念及其工作原理和发展历史,介绍了半导体激光器的重要特征,列出了半导体激光器当前的各种应用,对半导体激光器的发展趋势进行了预测。 关键词:半导体激光器、激光媒质、载流子、单异质结、pn结。 自1962年世界上第一台半导体激光器发明问世以来,半导体激光器发生了巨大的变化,极大地推动了其他科学技术的发展,被认为是二十世纪人类最伟大的发明之一。近十几年来,半导体激光器的发展更为迅速,已成为世界上发展最快的一门激光技术。半导体激光器的应用范围覆盖了整个光电子学领域,已成为当今光电子科学的核心技术。由于半导体激光器的体积小、结构简单、输入能量低、寿命较长、易于调制以及价格较低廉等优点,使得它目前在光电子领域中应用非常广泛,已受到世界各国的高度重视。 一、半导体激光器 半导体激光器是以直接带隙半导体材料构成的Pn 结或Pin 结为工作物质的一种小型化激光器。半导体激光工作物质有几十种,目前已制成激光器的半导体材料有砷化镓、砷化铟、锑化铟、硫化镉、碲化镉、硒化铅、碲化铅、铝镓砷、铟磷砷等。半导体激光器的激励方式主要有三种,即电注入式、光泵式和高能电子束激励式。绝大多数半导体激光器的激励方式是电注入,即给Pn 结加正向电压,以使在结平面区域产生受激发射,也就是说是个正向偏置的二极管。因此半导体激光器又称为半导体激光二极管。对半导体来说,由于电子是在各能带之间进行跃迁,而不是在分立的能级之间跃迁,所以跃迁能量不是个确定值, 这使得半导体激光器的输出波长展布在一个很宽的范围上。它们所发出的波长在0.3~34μm之间。其波长范围决定于所用材料的能带间隙,最常见的是AlGaAs双异质结激光器,其输出波长为750~890nm。 半导体激光器制作技术经历了由扩散法到液相外延法(LPE), 气相外延法(VPE),分子束外延法(MBE),MOCVD 方法(金属有机化合物汽相淀积),化学束外延(CBE)以及它们的各种结合型等多种工艺。半导体激光器最大的缺点是:激光性能受温度影响大,光束的发散角较大(一般在几度到20度之间),所以在方向性、单色性和相干性等方面较差。但随着科学技术的迅速发展, 半导体激光器的研究正向纵深方向推进,半导体激光器的性能在不断地提高。以半导体激光器为核心的半导体光电子技术在21 世纪的信息社会中将取得更大的进展, 发挥更大的作用。 二、半导体激光器的工作原理 半导体激光器是一种相干辐射光源,要使它能产生激光,必须具备三个基本条件: 1、增益条件:建立起激射媒质(有源区)内载流子的反转分布,在半导体中代表电子能量的是由一系列接近于连续的能级所组成的能带,因此在半导体中要实现粒子数反转,必须在两个能带区域之间,处在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠给同质结或异质结加正向偏压,向有源层内注入必要的载流子来实现, 将电子从能量较低的价带激发到能量较高的导带中去。当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用。 2、要实际获得相干受激辐射,必须使受激辐射在光学谐振腔内得到多次反馈而形成激光振荡,激光器的谐振腔是由半导体晶体的自然解理面作为反射镜形成的,通常在不出光的那一端镀上高反多层介质膜,而出光面镀上减反膜。对F—p 腔(法布里—珀罗腔)半导体激光器可以很方便地利用晶体的与p-n结平面相垂直的自然解理面构成F-p腔。 3、为了形成稳定振荡,激光媒质必须能提供足够大的增益,以弥补谐振腔引起的光损耗及从腔

光学探测技术

光学探测技术 为了更好的理解之后的学习内容,我们将回顾一下光在光电检测中的基本概念。最基本的考虑因素是光电探测器,它可以将光转变为电流。通过使用雷达和通讯系统在有频谱和红外光频谱中有各种各样的检测技术显示了高性能。由于体积小、性能的原因,大多数应用依靠现代半导体器件的基于光电效应,产生光电流检出率。还有,光电流是包含光生的初级电子和孔的损耗区域的检测器。温和上涨10-100可以通过雪崩过程取得许多检测器,如光电倍增管(PMT)和雪崩光电二极管(APD).有设备通常具有一个多余的乘法和雪崩过程中,在接收器设计时必然考虑到所产生的噪音。使用APD设备远远超过了雪崩击穿的偏见,使探测器在盖革模式下,工作,使造成非常高的增益(10~6),超快速的上升时间(皮秒),单光子事件的敏感性,仍然可以实现高增益。它已经被所有情况证明,主要的光电子统计数据是相同冲击碰撞光子流的。泊松统计的,而需要更复杂的统计模型来描述雪崩过程。 光接收机使用光探测器可以用两种方法来完成检测,即直接检测和相干检测。直接检测可以看作是一个简单的能量收集过程,只需要在镜焦平面上放置一个光电探测器,然后产生的信号电流被一个电子放大器放大。相比之下,相干检测则要求光电探测器表面存在能与信号光束混合的本地光学信号谐振器。相干混合过程对信号光和本地振荡器的调试方式规定了严格的要求,以便两个从根本上不同的方法都能有效地执行。如果信号光和本地振荡器频率不同或不相关,这个过

程成为外差检波;如果他们的频率是相同的或相关的,就是零差检测。图3-3显示了一般光外差器结构,有单独的激光器非别产生不相关的、不同频的信号光和本地振荡光。将它们用一个光波分复用器合成为一个反射率很高、信号损耗很低、可以提供足够能量的本地振荡光。图3-4显示了一个可能的同频安排,其中一小部分传输光用于本地振荡器,从而达到相关频率的要求。 在零差激光雷达应用中,信号与本地振荡信号的频率之间的相干性关于往返运动的时间参数τR ,经常用一个具有比τR 更长的相干时间的激光发射器来维持。另外,激光发射器和本地振荡器的频率可以是相同的,也可以是不同的,它取决于(在这个)光学系统中是否采用变频器。单模激光频移系统,有的也被称为失调零差系统,多普勒频频量Vo1远离基带的信号也可以发生频移,其中Vo1=±2|V|/λ为多普勒频率。这个相反的轨迹与远离信号源的运动一致,以至于多普勒频率在零带重叠产生出一个确定的频率Vo1,用于发射和接收频率之间的固有相干性,这些过程仍旧可以被看做零差。 零差检测被证明在量子学领域有一些独特的特殊功能,它展示了实现光子噪声水平低于量子的可能性。这种噪音水平被体积为海森堡的不确定原理的相干性的挤压状态,然而这种幅度或相位的变化并不能同时进行。相干态是一个在不确定性原理上的最底线,即众人所知的激光灯,这些状态是与聚合束和反聚合束统计的光子密切相关的,在4.8.2节中将提到APD检测统计。

光镊原理浅析

光镊原理浅谈 岑学学 光镊技术由来已久,阿瑟·阿什金(Arthur Ashkin )在1986年就发明了第一代光镊。经过30多年的发展,光镊技术已经越来越成熟,并应用在生物学、物理学、医学等领域。这里我们将尽量通俗地介绍光镊的原理。 光镊,简单来讲,就是用激光来俘获、操纵、控制微小粒子的技术。这微小粒子可以是小水珠,活细胞,生物大分子等。当激光打到小粒子的时候,粒子就被光“吸住”了,并且会被吸到光强最强的地方,也就是焦点处,移动光束,就可以移动粒子。 那么,粒子为什么会被吸到光强最强的地方并被束缚住呢? 光与物质是可以相互左右的。一柱水喷我们身上,或者一阵风迎面吹来,我们都能感觉到些许压力,具有波粒二象性的光自然也一样会对我们产生压力,只不过这个力很小很小而已,这就是光压。而在某些情况下,光还能对物体产生拉力,这样就形成了能束缚粒子的一个“陷阱”,通常被称为势阱。那么势阱又是如何产生的呢?我们需要先来复习一些中学的物理知识---动量守恒定律。

如图,有两个小球,铜球有一个初速度,动量为p1,钢球则是静止的,动量为p2=0。把这两个小球看作一个系统,那么这个系统的初始动量就是p=p1+p2。

铜球撞上钢球后,它们各自的速度都发生了变化,动量也变了。但是系统的动量是不变的,还是等于p,这就是动量守恒定律。 我们回来看光束和透明小球组成的系统,如图,光束有一个动量,而小球则是静止的,动量为0,而光束的动量是水平的,系统在竖直方向上的动量为0. 当光束照射到小球但不通过中心的时候,小球会使光线折射,如图。

这时光束在竖直方向上有了一个向下的动量。为了使系统的动量守恒,小球必须有一个向上的动量,这个动量就把小球“吸”向光速的轴线。 如果小球在光束的轴线上但在焦点之外,那小球就会使光束汇聚,如图。

光电检测技术与应用-郭培源-课后答案

光电检测技术与应用课后答案 第1章 1、举例说明你说知道的检测系统的工作原理。 (1)光电检测技术在工业生产领域中的应用:在线检测:零件尺寸、产品缺陷、装配定位…(2)光电检测技术在日常生活中的应用: 家用电器——数码相机、数码摄像机:自动对焦---红外测距传感器自动感应灯:亮度 检测---光敏电阻 空调、冰箱、电饭煲:温度检测---热敏电阻、热电偶遥控接收:红外检测---光敏二极管、光敏三极管可视对讲、可视电话:图像获取---面阵CCD 医疗卫生——数字体温计:接触式---热敏电阻,非接触式---红外传感器办公商务——扫描仪:文档扫描---线阵CCD 红外传输数据:红外检测---光敏二极管、光敏三极管(3)光电检测技术在军事上的应用:夜视瞄准机系统:非冷却红外传感器技术激光测距仪:可精确的定位目标光电检 测技术应用实例简介点钞机 (1)激光检测—激光光源的应用用一定波长的红外激光照射第五版人民币上的荧光字,会使荧光字产生一定波长的激光,通过对此激光的检测可辨别钞票的真假。由于仿制 困难,故用于辨伪很准确。(2)红外穿透检测—红外信号的检测红外穿透的工作原理是利用人民币的纸张比较坚固、密度较高以及用凹印技术印刷的油墨厚度较高,因而 对红外信号的吸收能力较强来辨别钞票的真假。人民币的纸质特征与假钞的纸质特征 有一定的差异,用红外信号对钞票进行穿透检测时,它们对红外信号的吸收能力将会 不同,利用这一原理,可以实现辨伪。 (3)荧光反应的检测—荧光信号的检测荧光检测的工作原理是针对人民币的纸质进行检测。人民币采用专用纸张制造(含85%以上的优质棉花),假钞通常采用经漂白处理后的普通纸进行制造,经漂白处理后的纸张在紫外线(波长为365nm的蓝光)的照射下会出现荧光反应(在紫外线的激发下衍射出波长为420-460nm的蓝光),人民 币则没有荧光反应。所以,用紫外光源对运动钞票进行照射并同时用硅光电池检测钞 票的荧光反映,可判别钞票真假。 (4)纸宽的检测—红外发光二极管及接收二极管的应用主要是用于根据钞票经过此红外发光及接收二极管所用的时间及电机的转速来间接的计算出钞票的宽度,并对机器 的运行状态进行判断,比如有无卡纸等;同时也能根据钞票的宽度判断出其面值。

光电检测技术

光电检测技术总结 经过一学期的光电检测技术课程的学习,我们大致上了解了光电检测技术有许多方面的知识,按照传感器、转换电路、检测装置划分排列。接下来我们来仔细探讨一下究竟有什么值得我们学习的。 首先是光电技术的定义。何为光电技术?光电检测技术是以激光、红外、光纤等现代光电子器件作为基础,通过对被检测物体的光辐射,经光电检测器接收光辐射并转换为电信号,由输入电路、放大滤波等检测电路提取有用信息,或进入计算机处理,最终显示输出所需要的检测物理参数。其中检测和测量有一些不同的地方:检测:通过一定的物理方式,分辨出被测参量并归属到某一范围带,以此来判别被测参数是否合格或是否存在。测量:将被测的未知量与同性质的标准量比较,确定被测量对标准量的倍数,并通过数字表示出这个倍数的过程。而光电检测技术的应用存在在生活中的每一个部分。比如人的视觉功能,人眼是一个直径为23mm的近似球体,眼球前方横径为11mm的透明角膜具有屈光作用,角膜后的虹膜中央有称为瞳孔的圆孔,它可以扩大或缩小以调节进入眼球的光亮。虹膜后的水晶体相当于光学系统中的透镜,其直径为9mm。在眼球的后方有视网膜,这是光学细胞和杆状细胞,它们和视网膜上的其他细胞组成的微小感光单元。这些感光单元接收光刺激后转化为神经冲动,经视神经传导到大脑的高级视觉中枢,从而产生亮度和彩色的感觉,同时也形成有关物体状和大小的判断。因此,人眼是一个高灵敏度、高分辨率和极为复杂而精巧的光传感器。正好光学仪器是人眼的视觉扩展,通过利用光辐射的各种现象和特性,摄取信息实现控制的有力工具,它是人类视觉参与下才能工作的。光学仪器一共在人类视觉上做出了以下的扩展:1、时间上扩展,可以通过摄像机记录过去的样子;2、空间上的扩展,通过地球卫星观看世界个地的样貌;3、识别能力的扩展,通过放大镜和显微镜我们能够观测到人眼看不见的细微东西。 光电检测系统由哪些东西组成?典型的光电仪器包括了精密机械、光学系统、光电信号传感器、电信号处理器和运算控制计算机以及输出显示设备等环节。各种环节分别实现各自的职能,组成光、机、电的综合系统。一个典型的光电检测系统的组成由辐射源开始,依次为传输媒质、检测目标、光学系统、光点检测器件、信息处理、输出设备。其中辐射源通过传输媒质由对象空间进入到光电系统。

第五组——光镊技术的新应用剖析

光镊技术的新应用 纪美伶,白中博,王娜,马学进(西安交通大学生物医学工程) 摘要激光光镊自从1986年发明以来,作为一种无直接接触、无损伤、可产生和检测微小力以及精确测量微小位移的物理学工具,在生命科学等多个领域得到了广泛的应用。本文从光镊的诞生出发,简要讨论了光镊的原理,光镊装置的基本结构,并简要介绍了各个种类光镊的独特功能以及基于光镊的一些新技术,进而对光镊技术及其在生命科学中的应用现状和进一步发展作了评述和讨论,阐述了光镊在生命科学研究中的潜在地位和巨大的发展前景。关键词光镊;生命科学;原理;基本结构;应用现状;发展 New Applications of Optical Tweezer Ji Mei-ling,Bai Zhong-bo,Wang Na,Ma Xue-jin Abstract The optical tweezer technique has emerged as a flexible and powerful tool for exploring a variety of scientific processes such as life science since it was invented in 1986. From the birth of the optical tweezer, this paper will briefly discuss its working principle, its basic structure and introduce some kinds of optical tweezers with novel features or some new technologies based on it. Then its recent developments on both the technology and applications in life science will be reviewed. It is shown that optical tweezer will have great potential in life science. Key words:optical tweezer; life science; principle; basic structure; application; development 光镊简介 一百年前,爱因斯坦提出的光量子学说最终导致了激光的诞生,20世纪60年代激光器的发明,使光与物质相互作用产生的力学效应真正走向实际的应用。20世纪70年代,美国贝尔实验室的学者Arthur Ashkin等人[1]发现了激光具有移动微粒的能力,并首先提出利用光压操控微小粒子的概念:在氩离子激光器发出的TEM00模式激光束作用下,硅小球在横向梯度力的作用下陷入光束中心,然后在光束散射力的作用下沿着光束传播的方向加速运动;还发现了折射率低于周围介质的粒子(气泡)会被激光束排斥,同时也会被激光束沿着激光传播的方向加速。其后Ashkin 利用两束相对照射的TEM00模式激光去捕获高折射率粒子,发现粒子在激光横向梯度力的作用下陷入光束中心,然后沿着光束传播的方向运动到一个稳定的平衡点停止下来,这样粒子就被两束相对照射的激光束稳定捕获了。这时它还不能称之为光镊,因为只能实现横向二维捕获,而在轴向上由于强烈的散射力的存在无法实现捕获。 1971 年,Ashkin 和Dziedzic 第一次使用了单光束捕获粒子[2]。他们利用一束聚焦的TEM00模式激光从下向上照射粒子,在轴向散射力的作用下粒子被顶起,同时粒子受到向下的重力作用。当粒子运动到平衡位置时,向上的散射力和向下的重力达到平衡,粒子在轴向上稳定下来。在横向上,由于光束的横向梯度力始终指向光束中心,因此粒子被稳定地捕获在光束中心。这样就形成了一个单光束悬浮光阱(opticallevitation trap)。在1986年,Ashkin 发表了一篇具有深远意义的论文[3],标志着光镊的诞生。在此文中Ashkin仅仅利用一束激光就实现了在三维方向上捕获电介质粒子,而且在轴向上利用的是梯度力捕获粒子,而非利用重力作用的悬浮光阱。实验中Ashkin利用高度聚焦的单光束焦点形成的单光束梯度力势阱(single beam gradientforce trap),在水中成功地捕获了直径从25nm 到10μm 的电介质粒子,且在横向和轴向上所施加的捕获力都来自于光场梯度力。由于这种单光束梯度力势阱

光镊技术在原子物理和生命科学中的应用与发展

光镊技术在原子物理和生命科学中的应用与发展 信息工程系 王 坚 [摘要] 激光陷阱和控制、操作中性微小粒子的光镊技术是以光的辐射压原理为基础的,利用光与物质间动量的传递的力学效应形成三维梯度光学陷阱。光压的实际应用在20世纪激光诞生后才得以实现。由于激光突出的高方向性、高相干性、高亮度产生的辐射压高于一般的光,所以使得基于光压原理的光镊能够被发现并运用。光镊能够捕获和操纵微米尺度粒子成为捕获操纵粒子独特且有效的手段,并且这种方法在物理和生物科学等领域掀起了一场技术革命。本文简要回顾了早期光镊技术在原子物理和生命科学中的应用与发展,以及当代光镊技术研究的最新成就。 [关键词] 激光陷阱,光镊,激光 1. 引言 光镊是基于光的力学效应的一种新的物理工具,它如同一把无形的机械镊子,可实现对活细胞及细胞器的无损伤的捕获与操作。光镊的发明正适应了生命科学深入到细胞、亚细胞层次的研究趋势,也为生物工程技术提供了一种新的手段。仅仅20年光镊的应用已展示其在物理和生命科学领域中无限美好的应用前景。 2. 光镊技术原理 2.1光压原理 光镊技术是基于光压原理的,光压原理在牛顿和开普勒时期就已经提出来了但是一直都没有什么应用。光的压力原理早期只有在天文学中有些应用,德国的天文学家开普勒,在17世纪初提出彗尾之所以背向太阳的原因是,其受到了太阳辐射光压的作用力。因为只有在天文学研究中当光的强度和距离都非常大的时候,光压对物质的影响才会明显的表现出来。1873年Maxwell 从光的波动理论角度根据电磁理论推导出了光压的存在(电磁辐射压)并且给出了垂直入射到部分反射吸收体表面的光束的光压为: ()R c E p +=1 其中,E 为每秒钟垂直入射到12m 上的能量,c 为光速,R 为物体对光的反射系数。

光镊原理及其应用

光镊原理及其应用 摘要:激光的发明使得光的力学效应走向了实际应用。本文介绍了光镊技术的基本原理及其在生物科学方面的一些应用。 关键词:光镊;光的力学效应;生物科学;应用 1 引言 光镊是A. Ashkin[1]在关于光与微粒子相互作用实验的基础上于1986年发明的。光镊在问世之初被看作是微小宏观粒子的操控手段,并渐渐成了光的力学效应的研究和应用最活跃的领域之一。近20年来光镊技术的研究和应用得到了迅速的发展,特别是在生命科学领域,光镊已成为研究单个细胞和生物大分子行为不可或缺的有效工具。 2 基本原理 光镊的基本原理在于光与物质微粒之间的动量传递的力学效应。对于直径大于波长的米氏散射粒子来说,光镊的势阱原理可以用几何光学来解释[1~3]。如图1(a)所示。入射光线A将光子的动量以辐射压的形式作用于粒子小球,力的作用方向与光线入射方向相同。A经过若干反射、折射后,以光线A’出射。入射光线的辐射压减去出射光线的辐射压为粒子小球所受的净剩力F A。图1(b)为作用力简图,实际力的作用过程较此复杂,A’应为所有(包括反射光透射光)出射光线辐射压的合力,但结果与此相似,小球受轴向指向焦点的力。 对于直径小于激光波长的瑞利散射颗粒,适用于波动光学理论[1]和电磁模型。波动光学理论(也是光镊的基本理论)认为,在光轴方向有一对作用力:与入射光同向正比于光强的散射力和与光强梯度同向正比与强度梯度的梯度力。在折射率为n m的介质中,折射率为n p 的瑞利粒子所受的背离焦点的散射力为[1] F scat =n m P scat/ c (1) 这里P scat为被散射的光功率。或用光强I0和有效折射率m = n p / n m表示为 (2) 对于极化率为α的球形瑞利粒子所受的指向焦点的梯度力为

光电检测与应用第五章答案

直接检测系统的基本原理是什么?为什么说直接检测又称为包络检测? )(t d A A i 2221 s αα+=所谓光电直接检测是将待测光信号直接入射到光检测器光敏面上,光检测器响应于光辐射强度(幅度)而输出相应的电流或电压信号。 式中:第一项为直流项。若光检测器输出端有隔直流电容,则输出光电流只包含第二项,就是包络检测的意思。 对直接检测系统来说,如果提高输入信噪比? 答:对于光电检测系统来说,其噪声主要有三类:(1)光子噪声包括:A.信号辐射产生的噪声;B.背景辐射产生的噪声。(2)探测器噪声包括:热噪声;散粒噪声;产生—复合噪声;1/f 噪声;温度噪声。(3)信号放大及处理电路噪声在实际的光电探测器中,由于光电转换机理不同,各种噪声的作用大小亦各不相同。若综合上述各种噪声源,其功率谱分布可用下图表示。由图可见:在频率很低时,1/f 噪声起主导作用;当频率达到中间范围频率时,产生——复合噪声比较显著;当频率较高,甚至于截至频率时,只有白噪声占主导地位,其它噪声影响很小。很明显,探测器应当工作在1/f 噪声小、产生-复合噪声为主要噪声的频段上。因此,对于直接探测系统,提高输入信噪比的措施有:(1)利用信号调制及选频技术可抑制噪声的引入白噪声的大小与电路的频带宽度成正比,因此放大器应采用带宽尽可能窄的选频放大器或锁相放大器。(2)将器件制冷,减小热发射,降低产生-复合噪声。采用半导体制冷、杜瓦瓶液态气体制冷或专用制冷机制冷。(3)采用最佳条件下的偏置电路,使信噪比(S/N )最大。 什么是直接检测系统的量子极限?说明其物理意义。 答:当入射信号光波所引起的散粒噪声为主要噪声, 其他噪声可忽略时,此时信噪比为:()f h 2P p s SNR ?=νη 该式为直接检测理论上的极限信噪比。也称为直接检测系统的量子极限。量子极限检测为检测的理想状态 试根据信噪比分析具有内增益光电检测器的直接检测系统为什么存在一个最佳倍增系数。 答:当光检测器存在内增益(如:光电倍增管)时当2M 很大时,热噪声可忽略。若光电倍增管加致冷、屏蔽等措施以减小暗电流和背景噪声,则可达到散粒噪声极限。在直接检测中,光电倍增管、雪崩管的检测能力高于光电导器件,采用有内增益的检测器是直接检测系统可能趋近检测极限的唯一途径。

《光镊技术》阅读答案(2019年四川省内江市中考题)

阅读下文,完成第21~23题。(12分) 九旬美国物理学家阿瑟·阿什金因为发明“光镊技术”,获得 2018 年诺贝尔物理学奖。很多科研界人士甚至压根没听说过“光镊”这种技术。“光镊”虽然内涵深奥,但其实稍加简介就能让普通人建立概念。今天,我们就先试着让大家了解一下这个能够以光的力量来操纵细胞的诺贝尔奖成就。 “光镊”诞生的发想——光之力 伴随着上世纪60年代以来激光束流相关的产生、控制技术的进展,利用光来操作微小物体的“光镊”随之登上了历史舞台。阿瑟·阿什金教授曾在贝尔实验室和朗讯科技公司任职,他很早就开始进行光操控微粒的研究工作,并最终于1986年公开了他的第一代“光镊”。大家都知道光可以协助动物产生视觉,可以为植物提供能量来源,可以加热物体,但是对“光的力学领域”可能并不熟悉。实际上,光镊正是利用了“光的力”(也译为光压、辐射压等等),并诞生了举世瞩目的成果。 什么是“光的力”? 中学物理中,我们已经了解了光同时具有波和粒子的双重性质,所谓波粒二象性。与人体被飞来的棒球击中后产生冲击一样,光的粒子即光子在接触物体后,同样会对该物体施加力的作用。 你可能会感到奇怪,既然如此,我们为什么没有被强烈的日光或者探照灯击倒在地呢? 这是因为,光的压力大概仅仅在10亿分之一到100亿分之一N这个数量级,所以说能用肉身感受到光压的人显然是不存在的。 然而,越是微小的物体,就越容易被微小的力所撼动。例如,红血球、细菌一类人体细胞或者微生物等等都对光压非常敏感。来自光的微小压力可以让微小的物体在不受到积压破坏的前提下进行移动。 光镊是如何让光操控微粒成为可能的 具体来说,光镊系统一般由照明光路和控制光路构成。 照明光路负责采集成像所需的信号,而控制光路用来控制和限制微小物体的运动。控制光路的核心是汇聚性能特别好的激光束发射系统。 激光的特性之一就是可以被汇聚到一个十分微小的光斑上,这是普通光源所无法实现的。对于所要操控的微小物体来说,这种激光束汇聚形成的强聚焦光斑会形成一个类似“陷阱”的机构(称为三维光学势阱),微粒将会被束缚在其中。 一旦微粒偏离这个“陷阱”中的能量最低点(即位置的稳定点),就会受到指向稳定点的恢复力作用,好像掉进了一个无法摆脱的“陷阱”一般。如果移动聚焦光斑,微粒也会随之移动,因此便能实现对微粒的捕获和操控。 光镊技术早已大显神通 光镊技术在生物学研究领域已经有了相当广泛的应用,例如将不同细胞挤压在一起,或者向细胞中注入微量物质或者微小物体一类场合,都是光镊大显身手的时机。 又比如,在环境科学领域,经常会有区分水中数种微小物体的需求,利用光镊可以将各种物质在无损条件下容易地分离,给之后的精密分析创造良好的条件。 此外,在操控的同时,鉴于激光波长良好的稳定性和高精度,光镊还可以同时获得大量空间测量数据。 一个有趣的应用实例就是,有研究人员利用光镊测量了驱动蛋白在微管上行走的距离数据,从而推算出驱动蛋白每走一步的能量正好相当于一个ATP水解所释放的能量,堪称光镊操控性和测量性结合的绝好案例。

光电探测技术

第一章: 1,光电检测系统的基本组成及各部分的主要作用? 光源——光学系统——被测对象——光学变换——光电转换——电信号放大与处理[存储,显示,控制] 作用:光学变换:将被测量转换为光参量,有时需要光信号的匹配处理,目的是更好的获得待测量的信息。 电信号放大与处理的作用:存储,显示,控制。 第二章: 1、精密度、准确度、精确度、误差、不确定度的意义、区别。 答:精密度高指偶然误差较小,测量数据比较集中,但系统误差大小不明确; 准确度高指系统误差较小,测量数据的平均值偏离真值较少; 精确度高指偶然误差和系统误差都比较小,测量数值集中在真值附近; 误差=测量结果-真值;不确定度用标准偏差表示。 2、朗伯辐射体的定义?有哪些主要特性? 答:定义:辐射源各方向的辐亮度不变的辐射源。特性:自然界大多数物体的辐射特性,辐亮度与观察角度无关。 3、光谱响应度、积分响应度、量子效率、NEP、比探测率的定义、单位及物理意义。 答:灵敏度又叫响应度,定义为单位辐射度量产生的电信号量,记作R,电信号可以是电流,称为电流响应度;也可以是电压,称为电压响应度。对应不同辐射度量的响应度用下标来表示。辐射度量测量中,测不同的辐射度量,应当用不同的响应度。 对辐射通量的电流响应度(AW-1 ) 对辐照度的电流响应度(AW-1 m 2 ) E 对辐亮度的电流响应度(AW-1 m 2 Sr)L 量子效率:在单色辐射作用于光电器件时,单位时间产生的的光电子数与入射的光子数之比,为光电器件的量子效率。 NEP:信噪比等于1时所需要的最小输入光信号的功率。单位:W。物理意义:反映探测器理论探测能力的重要指标。 比探测率:定义;物理意义:用单位探测系统带宽和单位探测器面积的噪声电流来衡量探测器的探测能力。 第三章: 1、光源的分类及各种光源的典型例子;相干光源和非相关光源包括哪些? 答:按照光波在时间、空间上的相位特征,一般将光源分成相干光源和非相干光源;按发光机理可分为:热辐射光源,常用的有:太阳、黑体源、白炽灯,典型军事目标辐射;气体辐射光源,广泛用作摄影光源;固体辐射光源,用于数码、字符和矩阵的显示;激光光源,应用:激光器。相干光源:激光;非相关光源:普通光源。 2、对一个光电检测系统的光源通常都有哪方面要求? 答:1.波长(光谱)特性2.发光强度(光功率)3.光源稳定性(强度、波长) 3、辐射效率和发光效率的概念及意义 答:在给定λ1~λ2波长范围内,某一辐射源发出的辐射通量与产生这些辐射通量所需比,称为该辐射源在规定光谱范围内的辐射效率;某一光源所发射的光通量与产生这些光通量所需的电功/率之比,就是该光源的发光效率。 4、色温,配光曲线的概念及意义 答:色温:如果辐射源发出的光的颜色与黑体在某一温度下辐射出的光的颜色相同,则黑体的

激光加工技术发展的研究

激光加工技术发展的探究 摘要:激光加工是将激光束照射到工件的外表,以激光的高能量来切除、熔化质料以及转变物体外表性能。由于激光束的能量和光束的移动速率均可调治,因此激光加工可应用于任意层面和领域上。本文分别从激光加工技术的原理及其应用综合品评了激光加工较传统加工技术的良好性,说明其在制造行业中不行替换的作用.结合我国激光加工制造现状与国际的差距,对我国激光加工业发展做了良好的预测.在阐发外国研究动向的基础上,指出激光制造技术的发展趋向,将重点定位在微结构、微刻蚀、微工具以及多功效性微技术、微工程的研究与开发上。可以预测,三维微纳尺度的激光微制造技术必将成为新世纪的主流制造技术。 关键词:激光加工激光制造体系技术发展 1.前言 激光的研究及其在各个领域的应用得到了迅速的发展。其高相干性在高细密丈量、物质结构阐发、信息存储及通讯等领域得到了普遍应用。激光的高单色性,可在光化学领域对一些相距很近的能级作选择引发,进行重金属的同位素疏散;激光的高偏向性和高亮度可普遍应用于加工制造业(大到航天器、飞机、汽车工业,小到微电子、信息、生物细胞疏散等微技术)。随着激光器件、新型受激辐射光源,以及相应工艺的不停改造与优化,尤其是近20年来,激光制造技术已渗透到诸多高新技术领域和产业,并开始取代或革新某些传统的加工行业。 2.正文 激光制造技术包括两方面的内容,一是制造激光光源的技术,二是使用激光作为工具的制造技术。前者为制造业提供性能优良、稳固可靠的激光器以及加工体系,后者使用前者进行各种加工和制造,为激光体系的不停发展提供广阔的应用空间。两者是激光制造技术中不可或缺的部分,不行偏废。激光制造技术具有许多传统制造技术所没有的优点,是一种切合可持续发展战略的绿色制造技术。比如,质料浪费少,在大规模生产中制造资本低;凭据生产流程进行编程控制(自动化),在大规模制造中生产屈从高;可靠近或到达“冷”加工状态,实现通例技术不能实验的高细密制造;对加工工具的顺应性强,且不受电磁干扰,对制造工具和生产情况的要求低;噪声低,不孕育发生任何有害的射线与剩余,生产历程对情况的污染小等等。因此,为顺应21世纪高新技术的产业化、满足宏观与微观制造的需要,研究和开发高性能光源势在必行。现在正在积极研制超紫外、超短脉冲、超大功率、高光束质量等特性的激光,尤其是能顺应微制造技术要求的激光光源更是倍受关注,并已形成国际性竞争。可以

相关文档