文档视界 最新最全的文档下载
当前位置:文档视界 › 离子印迹介孔材料制备及其吸附重金属的应用_田慧娟

离子印迹介孔材料制备及其吸附重金属的应用_田慧娟

离子印迹介孔材料制备及其吸附重金属的应用_田慧娟
离子印迹介孔材料制备及其吸附重金属的应用_田慧娟

离子吸附型稀土矿镁盐体系绿色高效浸取技术研究

离子吸附型稀土矿镁盐体系绿色高效浸取技术研究离子吸附型稀土矿是一种新型外生稀土矿物,于1969年首次在我国江西省赣州市被发现。此类矿物广泛分布于我国南方的江西、广东、广西等省份,其稀土配分齐全,放射性低,且富含中重稀土元素,是我国宝贵的战略矿产资源。 离子吸附型稀土矿是世界中重稀土的主要来源,它的开发利用可以解决独居石、氟碳铈矿、混合型稀土矿等几乎只产轻稀土而缺乏中重稀土的问题。目前工业生产普遍采用铵盐原地浸取工艺回收稀土,即采用硫酸铵作为浸取剂原地浸出离子吸附型稀土矿中的稀土,然后采用碳酸氢铵对浸出液进行除杂、沉淀富集稀土,最后焙烧获得离子型稀土精矿。 虽然上述工艺已广泛应用于离子矿工业开采,但仍存在以下问题:(1)硫酸铵浸取剂消耗高,带来严重的氨氮污染:对于花岗岩离子吸附型稀土矿,每生产1吨离子型稀土精矿需消耗7-9吨铵盐(以(NH4)2SO4计,下同),而对于广西地区广泛存在的火山岩离子吸附型稀土矿,由于渗透性较差,导致浸出效果不佳,每生产1吨离子型稀土精矿则需要消耗12吨以上铵盐。据统计,我国每年生产离子型稀土精矿6万吨左右,而离子吸附型稀土矿开采过程中会有大量的氨氮进入土壤和地下水,对环境造成严重污染。 同时,浸取尾液含大量氨氮,难以处理达标;(2)硫酸铵浸取过程中原矿土壤中的钙、镁等营养元素被浸出进入浸出液中而流失,造成土壤养分比值失调,尾矿修复困难;(3)硫酸铵浸取选择性较差,浸出液铝含量高,而且硫酸铵只浸取大部分离子相稀土,不能浸取胶态相及矿物相中的稀土。为此,本论文以广西崇左六汤稀土矿区典型的火山岩离子吸附型稀土矿为研究对象,在对稀土在粘土矿物中的吸附和迁移机理研究以及离子吸附型稀土矿浸取过程研究基础上,创新性的系统

生物吸附法去除重金属离子的研究进展

生物吸附法去除重金属离子的研究进展 摘要:本文主要对生物吸附去除重金属离子污染的研究现状进行了综合评述。 首先,介绍了重金属污染的危害和传统去除重金属离子的技术存在的局 限性,指出生物吸附法作为新兴的处理方法的优势;然后,讨论了生物 吸附剂的来源及特点,生物吸附重金属的机理研究,影响重金属生物吸 附的因素以及重金属离子的解析;最后,展望了生物吸附在去除重金属 离子的前景,也提出了其存在的局限性。 1前言 重金属一般指密度大于4.5克每立方厘米的金属,如铅(Pb)、砷(As)、镉(Cd)、汞(Hg)、铜(Cu)、金(Au)、银(Ag)等。这些难降解的重金属随工业废水的超量排放对环境构成威胁,通过食物链在生物体富集,破坏生物体正常代活动,危害人体健康。自从日本发生轰动世界的水俣病(汞中毒)和痛疼病(镉中毒)后,如何治理重金属废水,已经受到科学家们的普遍关注[1]。因此,有效地处理重 金属废水、回收贵重金属已经成为当今环保领域和食品安全领域中重要的课题。 目前处理含重金属废水的方法主要有化学沉淀、溶解、渗析、电解、反渗透、蒸馏、树脂离子交换与活性炭吸附等。各种方法的优缺点如表一所示. 表1 去除重金属离子传统技术[2] Table 1 Conventional technologies for heavy metal removal 处理方法优点缺点 化学沉淀和 过滤简单、便宜对于高浓度的废水,分离困难效果较差,会产 生污泥 氧化和还原无机化 需要化学试剂生物系统速率慢 电化学处理可以回收金属价格较贵 反渗透出水好,可以回用 需要高压膜容易堵塞价格较贵 离子交换处理效果好,金属可以回 收 对颗粒物敏感 树脂价格较贵 吸附可以利用传统的吸附剂 (活性炭) 对某些金属不适用 蒸发出水好,可以回用 能耗高价格较贵产生污泥

几种吸附材料处理重金属废水的效果

摘要:用室内分析的方法研究了几种吸附材料对含铬、铜、锌、铅的废水的吸附处理效果。结果表明,在几种吸附材料中,以活性炭的吸附量和去除率比较高,且吸附量随废水中重金属含量的降低而减小,除铬外,其他离子的去除率则以低浓度时比较高。所有吸附材料均对铅的吸附量比较大,改性硅藻土和改性高岭土对重金属的吸附量也比较大,宜于在重金属处理中作为吸附剂推广使用。 关键词:吸附材料重金属废水吸附率吸附量 近年来,含有重金属的废水对人类的生活环境造成了巨大的危害,重金属离子随废水排出,即使浓度很小,也能造成公害,严重污染环境,影响人们的健康。所以,研究如何降低废水中重金属的含量,减轻重金属对环境的污染具有重大意义。目前,去除废水中重金属的方法主要有三种:一是通过发生化学反应除去废水中重金属离子的方法 [1];二是在不改变废水中的重金属的化学形态的条件下对其进行吸附、浓缩、分离的方法;三是借助微生物或植物的絮凝、吸收、积累、富集等作用去除废水中重金属的方法[2]。其中吸附法是比较常用的方法之一。本试验采用物理吸附的方法研究几种吸附材料处理含重金属废水的效果,以便找出比较高效和便宜的吸附材料,为降低处理含重金属的废水成本和增加经济效益服务。 1 材料与方法 1.1 试验材料 1.1.1 吸附材料实验所用吸附剂除黄褐土外均来自于安徽科技学院资源与环境实验室,部分吸附材料在查阅文献的基础上进行了化学改性[3,4]。所用的吸附材料包括改性硅藻土、酸改性高岭土、改性高岭土、活性炭和黄褐土。改性硅藻土的处理过程为:将40 g硅藻土加入到0.1 mol/L的Na2CO3溶液中,边搅拌边慢慢地加入饱和的CaCl2溶液。反应结束后,过滤,置于烘箱内 105 ℃条件下干燥。酸改性高岭土的处理过程为:将高岭土过100目筛,在850 ℃煅烧5 h后,取一定量的高岭土加盐酸浸没,在90 ℃恒温下处理7 h,4000转下离心分离30 min,洗涤,120 ℃下烘干过夜。改性高岭土的处理过程为:取5 g高岭土加入2 g SiO2,1 g Na2CO3,1 g KClO3放入研钵中研细,混匀,置于高温炉中,控制温度在800 ℃,恒温3 h。活性炭直接取自于资环实验室。黄褐土采自于安徽科技学院种植科技园,土壤样品采集后,风干,过100目筛备用[4]。

重金属离子吸附剂

重金属离子吸附剂的策划书随着我国IT 行业、化学和冶金工业的快速发展,来自电解液、电镀液中的铅、铜、铬、锌等重金属离子的废水对环境的污染越来越严重,采用重金属离子吸附剂技术处理后可以达标排放,也可回收。 重金属离子吸附剂的实际消费者是化工、冶金、电镀、IT生产企业,使用者和购买决策者是污水处理人员和厂长,实际购买者是采购部门。市场特征呈现为使用者、购买决策者与实际购买者分离的特殊性。随着我国节能减排政策的大力实施,这将会极大地推动企业的实际需求以及决策者的购买意愿。 重金属离子吸附剂市场是集团市场,购买过程属集团购买行为,人员推销及技术服务是最有效的销售方式。工厂首先根据污水类型和要求选择吸附剂种类、规格,同时会受使用习惯、品牌好坏、地域差异等因素的影响。 重金属离子吸附剂属于化工污水处理设备类,环保管理机构如国家环保管理局制定的宏观政策法规会对其发展产生重要影响。 对于化工污水处理设备的销售国家没有严格的要求,只要产品合格,能满足企业需求即可,所以其生产过程主要执行《企业标准》。 一. 生产工艺流程 (一).生产要求: 1.生产周期:从原料到吸附剂产品的生产周期为15天。 2.工人要求:相关专业大专以上学历、经过三个月的专业培训。 3.技术关键:重金属离子吸附剂制备的工艺。 (二).厂址选择: 原材料采用汽车运输,运输量不大,对道路要求不高;每月用水300吨左右,用电1000千瓦,一般投资环境均能满足;公司坐落于风景宜人的国家级(合肥)高新技术产业开发区,邻近中国科学院合肥分院与大蜀山自然风景区,交通便利。

公司占地3500多平方米,分为生产厂区、办公区、设有生产加工车间、销售部、售后服务中心、研发中心、质检部、企划部以及办公室等多个部门。 (三).生产工艺流程: 1.原材料: 废水处理设备以重金属离子吸附剂为核心材料;通过它的阴、阳离子交换基团来吸附、分离重金属离子。 2.生产设备 表1. 生产设备一览表 3.生产工艺流程

风化壳离子吸附型稀土矿提取工艺流程

风化壳离子吸附型稀土矿提取工艺流程 稀土金属(rare earth metals)又称稀土元素,是元素周期表ⅢB族中钪、钇、镧系17种元素的总称,常用R或RE表示。它们的名称和化学符号是钪(Sc)、钇(Y)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)。它们的原子序数是21(Sc)、39(Y)、57(La)到71(Lu)。 风化壳离子吸附型稀土矿 我国风化壳离子吸附型稀土矿20世纪60年代末期首先在江西省龙南足洞发现离子吸附重稀土矿及寻乌河岭离子吸附轻稀土矿后,相继在福建、湖南、广东、广西等南岭地区均有发现,但以江西比较集中、量大。离子吸附型稀土矿是一种国外未见报导过的我国独特的新型稀土矿床。经20多年的研究,查明该类型矿分布地面广,储量大,放射性低,开采容易,提取稀土工艺简单、成本低,产品质量好等特点。已探明工业储量100万吨(REO),远景储量1000多万吨。目前年生产含REO>60 %混合稀土精矿1万吨(REO)。 一、矿石性质 风化壳离子吸附型稀土矿系含稀土花岗岩或火山岩经多年风化而形成,矿体覆盖浅,矿石较松散,颗粒很细。在矿石中的稀土元素80%~90%呈离子状态吸附在高岭土、埃洛石和水云母等粘土矿物上;吸附在粘土矿物上的稀土阳离子不 溶于水或乙醇,但在强电解质(如 Na Cl、(NH 4) 2 SO 4 、NH 4 Cl、NH 4 Ac等)溶液 中能发生离子交换并进入溶液和具有可逆反应。 二、稀土提取工艺及技术指标 (一)氯化钠法 20世纪60年代末期发现该矿床后, 1970年即研究出“氯化钠池浸法”工艺,它是20世纪70年代处理这种类型矿石的主要方法。从采场运来的矿石,送进一个长方形的水泥池中浸泡,浸出液从池底的过滤层的排出口排出,浸渣人工清除,浸出液在饱和的草酸溶液中沉淀,过滤的滤饼即为草酸稀土,经灼烧、水洗、再灼烧得混合稀土氧化物。 (二)硫酸铵池浸法 氯化钠浸矿法存在浸矿时间长,氯化钠浓度大,消耗量大,钠离子共沉淀多,影响一次灼烧产品,纯度只能达到70 %,需对一次灼烧产品水洗脱钠,再灼烧的复杂工艺,并且浸渣(尾矿)中含有大量氯化钠,造成土地盐化,污染环境。制定了用3%~5%硫酸铵溶液浸泡矿石、滤液草酸沉淀(由于草酸较贵,20世纪80年代末期已开始用碳酸氢铵代草酸作稀土沉淀剂,现在已应用在部份厂矿中生产晶型碳酸稀土)。草酸稀土一次灼烧即可获得含REO>90%的混合稀土氧化物,滤液补加硫酸铵返回再用。与氯化钠相比,硫酸铵浸矿能力强,用量少,铵离子沉淀少,灼烧时易挥发,浸渣不会造成土壤盐化。化学选矿的工艺流程见图1。

介孔二氧化硅材料重金属离子吸附性能研究毕业论文

毕业论文 论文题目:介孔二氧化硅材料重金属离子吸附性能研究

Kunming University of Science and Technology Graduation Thesis Thesis Title :The adsorption properties of mesoporous silica materials for heavy metal ion College :Environmental Science and Engineering College Specialty : Renewable resources, science and technology Class:081 Student ID :200810703112 Name :Chen Dawei Teacher :Zhu Wenjie 目录 第一章、绪论 (6) 1.1 国内水环境污染现状及危害 (6)

1.2 水体重金属污染的治理方法 (7) 1.2.1 物理化学方法 (7) (1) 稀释法 (7) (2) 混凝沉淀法 (7) (3) 离子还原法和交换法 (7) (4) 电动力学修复技术 (8) (5) 吸附处理技术 (8) 1.2.2 生物修复法 (9) (1) 植物修复法 (9) (2) 动物修复法 (10) (3) 微生物修复法 (10) 1. 3 介孔二氧化硅材料简述 (10) 1.3.1多孔无机材料的分类 (11) 1.3.2具有有序孔道结构介孔材料的发现 (11) 1.3.3介孔二氧化硅材料 (12) (1) 合成的基本特征 (12) (2) 生成机理 (12) (3) 介孔氧化硅的结构 (13) 1.3.4 介孔材料的研究展望 (13) 第二章、实验 (14) 2.1实验设备和试剂 (14) 2.2 实验 (14) 2.2.1铜离子吸附实验 (14) (1) 不同吸附剂在不同浓度溶液中的吸附性能测试 (14) (2) 不同吸附剂在不同吸附时间下的吸附性能测试 (15) (3) 不同吸附剂不同用量下的吸附性能测试 (15) 2.2.2 铅离子的吸附试验 (15) (1) 不同吸附剂在不同浓度溶液中的吸附性能测试 (15) (2) 不同吸附剂在不同吸附时间下的吸附性能测试 (16) (3) 不同吸附剂不同用量下的吸附性能测试 (16) (4) 介孔二氧化硅材料在不同PH下吸附性能测试 (16) 2.2.3Cd2+的吸附试验 (17) (1) 不同吸附剂在不同浓度溶液中的吸附性能测试 (17) (2) 不同吸附剂在不同吸附时间下的吸附性能测试 (17) (3) 不同吸附剂不同用量下的吸附性能测试 (17) (4) 介孔二氧化硅材料在不同pH下吸附性能测试 (18) 第三章、实验结果处理与分析 (18) 3.1 计算公式 (18) 3.2 铜离子吸附结果分析 (19) 3.2 铅离子吸附结果分析 (22) 3.3 Cd2+吸附结果分析 (25) 第四章、结论与建议 (28) 一. 结论 (28) 二.建议 (28)

花岗岩风化壳离子吸附型稀土矿床的找矿方法

花岗岩风化壳离子吸附型稀土矿床的找矿方法 李泽华 文章内容:内荔,///1991年第1—2期云南地质科技情报13花岗岩风化壳离子吸附型稀土矿床的找矿方法……/(广东省汕头稀土金属公司),()'一路线踏勘根据1//,比例尺地质图,选择有利成矿岩体和控矿构造,如大岩基的舌状突出部位,岩体内构造发育部位,各种构造形式交汇部位和岩体内裂隙密集,节理发育部位进行路线踏勘,并采取随机样品.二加密取样根据路线踏勘随机样品结果,选择品位富集地段加密取样,一般在山上可选山脊取样,淘谷可沿步行小道在山坡,山麓采样,采样间距100--200米.如山脊和山坡,山麓两条路线的取样结果有半数样品品位20&;0.,则可选取品位富集地段进行普查评价.三找矿评价离子吸附型稀土矿床采治容易,生产工艺简单,选择富矿地段进行找矿评价后,即可作浸取试验,投人生产.对民营生产的小型矿山可以简化手续,快速评价.一般选取富矿地段,面积&;0.5平方公里,按100×50米或8040米网度布置工程.工程以锹孔(洛阳铲)为主,洞锹孔用1英寸小型度锌水管(每条长2米余)连接进行人工操作,可以随进尺探浅自由拆卸,4人操作,孔探可达10米,每米工价约5元.洞锹孔打穿疆土后,按采样长度1米采取样品,野外就地加工缩分后留取500克,分作两样,一半送半定量分折,一半另作它用.由于洞锹孔口径较小,样品结果可能偏低,可按洞锹孔工程量的1-2,在原孔位用浅井进行检查,重复取样.除大型矿床可按规范正规系统详勘,由国家投资建设外,一般中小型矿区可由地质队或地区专业金属公司和地方联办进行开发.评价工作可由地质队或地区专业金属公司负责,提出报告,电单位组织审查后,即可选点作浸取试验,再扩大建池生产.四民营矿山的土法找矿建矿前自亍进行土法找矿在不同部位打洞锹孔,打穿覆土后,将不同深度的凤化花岗岩14云南地幔科技情报第1—2朗(采矿)装入铁饮料罐空罐内.加5硫铵水蒋浸泡10分钟.过滤倒人玻璃怀中.再加草醛维沉淀?进行定性删量.如加草酸蔽后台矿溶液迅速变化并有幻慵花状的百色絮披反映或破璃怀【=部沉淀厚覃一层白邑草酸稀土.即表明有矿或矿多.再在有矿或矿多的地方取风化花尚岩就地进行浸取回收试验(用水缸作工具),如回收效果满意.立即建池进行正式生产.笔者在广东调查近百个离子吸附型稀土生产矿山.主要为民营土硅找矿的生产矿山.从末发现有任何生产矿山开采时无矿停采或亏损.五样品野外半定量分析离子吸附型稀土矿床的找矿评价应采取快速工作,快出成果的地质工作方法.关健在于野外样品要能就地半定量分析.我们在工作中摸索出一套就地化验,及时得出成果的野外半定量分析工作方法在野外将同一洋品分作两份,一份作半定量分析,其操作方法是:取原洋(湿洋)50克,用5硫铵液浸泡2—3小时.用滤纸过滤人量杯中,加12草酸液.使之沉淀成草酸稀土液.再将草酸稀土液例人25量杯中.澄清半小时后.例掉草酸稀土以上的清水(即同一批弹品部用同体积25,同时间——澄清半小时进行操作对比)测量草酸稀土在量杯中的维积后乘一个常数.即可得出半定量品位.求常数有两种方法;1,在一二批送正规化验的定量分析样品中.将化验结果用纵坐标标出,再将同一样品用前述方法得出的草酸稀土体积用横座标标出.在两个座标轴间得出若干交点,把交点连成直线,即成24.丧角.2,把横座标的草酸稀土体积投在相交直线上.再从相交直线处垂直于正规化验成果的纵座标线上.在相应的奇格纸图上找出相交的点,此点读数即野外半定量分析成果.两种作图方法得出的结果极为近.在野外实际工作中可以简单归纳为:根据其样品化验操作方法.凡在量杯中阕』量的草酸稀上体积×24.=2.5×0.4:0.1.即为:;的野外半定量分析成果.一般在0.3平方公里面积上进行野外评价工作.野外洞锹孔工程施工数天厦可结束.10—15天便可提交评价报告.野外样品采集后,常规操作方接是:于当天晚饭后浸泡样品.临睡觉前过穗人量杯中,加草酸液使之沉淀,第二天清晨将草酸稀土液恻人25!量杯中.澄清半小时,除去清水.测量草酸稀土在量杯中的体积×24.,即得出样品:的半定量品位.各矿区因原样含矿程度不同,风化程度不同.原矿浸泡后泥化程度不同,浸出回收率不同和其他因素的影响,不能套用我们摸索出的冬式,可自行根据矿区的特点进行试验.根据野外半定量分忻成果,:,&;0.03的不再送化验定量分析,:,.03—0.5的适当进化验定量分析硷查.:,&;0.05的送化验定量分析,这样就避免了将含量太低的样品都送化验而造成浪费.或把相邻2—3个3&;0.05样品品位接近时合并分析,采样长度增大至2—3米,这样也可节约部分化验工作量.凡参加储量计算的样品都需送化验定量分析.六轻,重稀土的配分含量1991年第1—2期云南地质科技情报51用差减法计算稀土总量():重稀土&;)钇组()23越太越好轻稀土()铈组()2越小越小配分含量一():/:×100举耐如下;2()():03()23/23×100()()()0.08850.03020.058334.120.0720.0300.042467在矿区踏勘或初步普查队段,可采用差减法尽快求出钇组(重稀土)和铈组(轻稀土)的配分比值,以尽快了解稀土矿床的经济价值.其作法是将样品含量,&;.05的单样或相邻2—3个大于边界品位的样品和全工程,&;.05的所有样品组合后作铈组():分析(样品由化验室正样中挑

吸附重金属离子

几种吸附材料处理重金属废水的效果 来源:考试吧(https://www.docsj.com/doc/089977341.html,)2006-3-5 13:27:00【考试吧:中国教育培训第一门户】论文大全 摘要用室内分析的方法研究了几种吸附材料对含铬、铜、锌、铅的废水的吸附处理效果。结果表明,在几种吸附材料中,以活性炭的吸附量和去除率比较高,且吸附量随废水中重金属含量的降低而减小,除铬外,其他离子的去除率则以低浓度时比较高。所有吸附材料均对铅的吸附量比较大,改性硅藻土和改性高岭土对重金属的吸附量也比较大,宜于在重金属处理中作为吸附剂推广使用。 关键词吸附材料重金属废水吸附率吸附量 近年来,含有重金属的废水对人类的生活环境造成了巨大的危害,重金属离子随废水排出,即使浓度很小,也能造成公害,严重污染环境,影响人们的健康。所以,研究如何降低废水中重金属的含量,减轻重金属对环境的污染具有重大意义。目前,去除废水中重金属的方法主要有三种:一是通过发生化学反应除去废水中重金属离子的方法[1];二是在不改变废水中的重金属的化学形态的条件下对其进行吸附、浓缩、分离的方法;三是借助微生物或植物的絮凝、吸收、积累、富集等作用去除废水中重金属的方法。其中吸附法是比较常用的方法之一。本试验采用物理吸附的方法研究几种吸附材料处理含重金属废水的效果,以便找出比较高效和便宜的吸附材料,为降低处理含重金属的废水成本和增加经济效益服务。 1 材料与方法 1.1 试验材料 1.1.1 吸附材料实验所用吸附剂除黄褐土外均来自于安徽科技学院资源与环境实验室,部分吸附材料在查阅文献的基础上进行了化学改性[3,4]。所用的吸附材料包括改性硅藻土、酸改性高岭土、改性高岭土、活性炭和黄褐土。改性硅藻土的处理过程为:将40 g硅藻土加入到0.1 mol/L的Na2CO3溶液中,边搅拌边慢慢地加入饱和的CaCl2溶液。反应结束后,过滤,置于烘箱内 105 ℃条件下干燥。酸改性高岭土的处理过程为:将高岭土过100目筛,在850 ℃煅烧5 h后,取一定量的高岭土加盐酸浸没,在90 ℃恒温下处

水中重金属离子吸附研究

水中重金属离子吸附研究 1 引言 重金属作为一类常规的水体污染物,因其具有毒性较高,无法降解等特点,成为水体污染物中危害极大且备受关注的一种.随着工业的发展,重金属的污染问题日益突出.目前为止,对于水体的重金属污染,主要的处理方法包括吸附法、化学沉淀法、离子交换法、膜分离法、生物絮凝法等.其中,吸附法拥有材料便宜易得,操作简单,重金属处理效果较好等优点,因而被研究者所重视. 吸附法是使重金属离子通过物理或者化学方法粘附在吸附剂的活性位点表面,进而达到去除重金属离子目的的方法,常用的吸附剂包括天然材料和人工材料两种,天然材料包括活性炭(Mouni et al., 2011)、矿物质(Kul and Koyuncu, 2010)、农林废弃物(谭优等,2012)、泥沙(夏建新等,2011)等,人工材料包括纳米材料(黄健平和鲍姜伶,2008)等.一般来说,天然材料较易获取,成本较低,但吸附效果较差,人工材料制备成本高于天然材料,但吸附效果较好. 由Kasuga于1998年首次合成的钛酸盐纳米管(Titanate Nanotubes,TNTs)是近年来新兴的人工吸附材料(Kasuga et al., 1998).由于TNTs表面积大,管径小,表面富含大量离子交换位点(Liu et al., 2013;Wang et al., 2013a; Wang et al., 2013b),使得TNTs拥有极强的重金属离子吸附性能,研究证明其对水中的Pb(Ⅱ)和Cd(Ⅱ)吸附能力分别超过了500 mg·g-1和200 mg·g-1,远超于其他吸附材料(Xiong et al., 2011).同时,由于其良好的沉降性能和极快的吸附速率,以及易于解吸再生的特点(Wang et al., 2013b),使得TNTs拥有良好的研究价值和应用潜力. 然而,传统的TNTs合成方法以P25型TiO2为钛前驱体,需130 ℃水热反应72 h(Wang et al., 2013a; Liu et al., 2013),较长的高温反应时间带来了较高的能量消耗,限制了其在工业上的应用前景(Ou and Lo, 2007).为了克服这此缺陷,本文采用纳米级锐钛矿作为反应的原材料,成功的将水热反应时间缩短为6 h,大大节约了生产制备的成本,为TNTs在实际工业领域的应用创造了便利条件.同时,文章中利用TEM、XRD和FT-IR等多种表征手段对新制备的材料进行了表征,并研究了其对重金属离子的吸附行为,证实了新制备的材料具有良好的重金属吸附效果及吸附选择性. 2 材料与方法 2.1 实验试剂与仪器 本研究中的使用的化学试剂均为分析纯或以上.TiO2(锐钛矿颗粒,99.7%,平均粒径25 nm)购于Sigma-Aldrich 公司;NaOH、HCl、无水乙醇等(分析纯)和KBr(光谱纯)购于国药集团化学试剂有限公司;PbCl2(>99.5%)、CdCl2·2.5H2O(>99.0%)和CrCl3·6H2O(>99.0%)用以配制相应的重金属储备液,均购自天津市光复精细化工研究所.分别称取0.6711 g PbCl2、1.0157 g CdCl2·2.5H2O和2.5622 g CrCl3·6H2O于500 mL容量瓶中,用以配制1000 mg·L-1的Pb(Ⅱ)、Cd(Ⅱ)和Cr(Ⅲ)储备液. 2.2 TNTs的合成与表征

无机吸附材料在处理含重金属离子废水中的应用进展

2007,Vol.24No.6 化学与生物工程 Chemistry &Bioengineering 8  基金项目:国家自然科学基金资助项目(20571039),鲁东大学教学改革基金项目(Y0527,Y0715)和大学生科技创新基金项目收稿日期:2007-03-14 作者简介:吕晓凤(1982-),女,山东招远人,主要从事无机多孔材料的研究与应用;通讯联系人:殷平(1971-),女,江苏东台人,博 士,副教授,主要从事无机多孔材料的研究和开发。E 2mail :yinping426@https://www.docsj.com/doc/089977341.html, 。 无机吸附材料在处理含重金属离子废水中的应用进展 吕晓凤,殷 平,胡玉才,徐晓慧 (鲁东大学化学与材料科学学院,山东烟台264025) 摘 要:综述了近年来无机吸附材料在处理含重金属离子废水中的应用,简要介绍了几种主要无机吸附材料对各种重金属离子的吸附能力等方面的研究成果,并对此类材料的发展前景进行了探讨。 关键词:无机吸附材料;重金属离子;工业废水 中图分类号:TQ 42412 X 703 文献标识码:A 文章编号:1672-5425(2007)06-0008-03 现在每年冶炼、电解、电镀、医药、染料等工矿企业排放大量含有重金属离子的工业废水,造成水体的严重污染,对生态安全以及人类自身的生存和健康都会产生极大危害。因此,工业废水的处理和再生利用问题已成为倍受国内外科研工作者关注的一个热点。吸附法[1]是重金属离子废水处理应用中一种重要的物理化学方法,现今的研究重点主要集中在廉价、高效、易处理吸附剂的开发应用上。传统的吸附剂活性炭[2]是孔性炭素材料,具有大孔隙结构和表面积,故而其优点是吸附能力强和去除效率高,但高昂的价格在一定程度上限制了其应用。作者在此介绍了近年来几类主要的无机吸附材料在处理重金属废水方面的研究进展和今后的发展趋势。 1 价格低廉的工业废料及天然矿物材料 粉煤灰是燃煤电厂等企业常年排放的大量工业废渣,是从烧煤粉的锅炉烟气中收集的粉状灰粒,因细度小且比表面积高而具有一定的重金属吸附能力[3,4]。使用粉煤灰等工业废渣作为废水处理的吸附剂,既有原料价廉易得、工业操作简单等优点,又可解决废水废渣的环境污染以及回收再利用的问题,达到以废治废的目的,具有明显的经济效益和社会意义。席永慧等[5]利用X 2射线荧光研究了粉煤灰等去除溶液中有毒金属离子Zn 2+的吸附过程,结果表明吸附过程快速,在0~2h 内Zn 2+浓度可降低40%~50%,24h 后基本达到吸附平衡状态。由其Langmuir 吸附等温线求得Zn 2+在粉煤灰中的最大吸附量可达到57180mg ?g -1,约为粘土、粉质粘土的4~5倍。彭荣华等[6]对粉煤灰进行适当改性,加入一定量的硫铁矿烧渣和适量的固体NaCl ,在90℃用硫酸废液搅拌浸取后在300℃进行焙制。经原子吸收分光光度法测定,改性粉煤灰处理电镀废水,对Cr 6+、Pb 2+、Cu 2+、Cd 2+的去除率高于9715%,达到国家排放标准。进行对比实验后发现改性粉煤灰对金属离子的去除率比未改性粉煤灰高,分析其中原因在于粉煤灰中含有较多类似于活性炭的残碳,用酸在较高温度下浸提可使其表面和微孔内粗糙,显著增加其比表面积,相当于对粉煤灰进行了活化处理;再者,粉煤灰中的金属氧化物与硫酸反应后生成的硫酸盐使其改性后又具有混凝性能。 焦化厂出炉的热焦炭在熄焦塔用水熄焦过程中从焦炭表面脱落的焦粉被称为熄焦粉,由于在产生的过程中受到水和汽的作用被活化而具有吸附性能。张劲勇等[7]用混有少量硫酸的硝酸对熄焦粉进行氧化改性,可显著增加其表面酸性基团含量,提高熄焦粉的表面亲水性。改性熄焦粉可大幅提高其对原始水的处理效果,对Fe 3+优先吸附,具有较强的选择性吸附能力。 在作为吸附材料的天然矿产中,膨润土是研究得较多的一种,它是以蒙脱石为主要矿物成分的粘土矿。蒙脱石是一种层状铝硅酸盐类矿物,其单位晶胞系由硅氧四面体和铝氧八面体按2∶1组成的晶层,在晶层内存在广泛的同晶置换,使晶层中产生永久性负电荷,这样层间可通过吸附阳离子来达到电荷平衡,同时层

改性沸石对重金属离子吸附性能的试验研究

改性沸石对重金属离子吸附性能的试验研究 谢华林1,2 李立波2 (1 湖南工学院化工系,衡阳 421008;2 中南大学化学化工学院应化系,长沙 410083) 摘 要 在静态和动态条件下,研究了改性斜发沸石对工业废水中重金属离子Cu2+、Zn2+、Cd2+、Pb2+的吸附。结果表明,改性斜发沸石对重金属离子有较好的吸附,p H值是影响吸附的主要因素。采用1mol/L HCl+NaCl(V/V=1∶1)混合溶液作为斜发沸石的再生剂,可使其重复再生使用。 关键词 改性沸石 吸附 重金属离子 再生 Experimental Study on Adsorption Capability about The Heavy Metal Ions from Water Using Modified Clinoptilolite Xie Hualin1,2 Li Libo2 (1 Department of Chemical Engineering,Hunan Institute of Technology,Hengyang 421008;2 College of Chemistry and Chemical Engineering, Central South University,Changsha 410083) Abstract The adsorption capability of natural clinoptilolite can be improved by modification.The adorption effect of modified clinoptilolite to heavy metal ions from waste water such as Cu2+,Zn2+,Cd2+and Pb2+was studied under static state condition and dynamic state condition.The results showed that modified clinoptilolite had better adsorbability for heavy metal ions,moreover p H value of solution was the main factor affecting adsorption. The mixed solution of1mol/L HCl+NaCl(V/V=1∶1)could be repeatedly used as the regeneration reagent of clioptilolite. K ey w ords modified clinoptilolite absorb heavy metal ions regenerate 工业废水中主要含有Cu2+、Zn2+、Cd2+、Pb2+等重金属离子。目前,我国多采用化学沉淀法处理含重金属离子的废水,但由于不同重金属离子生成氢氧化物沉淀时的最佳p H值不同,以及某些重金属离子可能与溶液中其他离子形成络合物而增加了它在水中的溶解度,所以处理效果并不理想;另外,重金属离子在碱性介质中生成的氢氧化物沉淀,一部分会在排放中随p H值的降低而重溶于水,也使处理效果不理想。 沸石是一族具有连通孔道、呈架状构造的含水铝硅酸盐矿物,特殊的晶体化学结构使沸石拥有离子交换、高效选择吸附、催化、耐酸、耐辐射等优异性能和环境属性。斜发沸石作为天然沸石家族的一员,被认为是一种有工业应用前景的矿物,国内外对其性能及应用的研究较多[1~5]。本文介绍了通过NaCl和N H4Cl将斜发沸石改性为钠型和铵型沸石,在静态和动态条件下,通过对水中Cu2+、Zn2+、Cd2+和Pb2+的吸附研究,探讨了它们的吸附机理和改性斜发沸石处理工业废水中重金属离子的可行性,取得良好的效果,为工业水处理提供了一种高效而实用的新方法。 1 试验 1.1 主要仪器与试剂 ICPS21000Ⅱ型等离子体原子发射光谱仪(日本岛津);p HS22型酸度计;7621型电动搅拌机;ST2 03A型比表面孔径测试仪;超级恒温水浴箱;马弗炉;烘箱;电动振荡器;粉碎机;棒磨机。 重金属标准溶液:Cu、Zn、Cd、Pb标准溶液(1000mg/L)由国家标准物质研究中心提供,然后据不同元素测定需要,配制成适当浓度的标准溶液。 NaCl、N H4NO3、H2SO4、HCl、HNO3、NaOH,均为分析纯;水为亚沸蒸馏水。 1.2 样品制备及其化学成分 选取一定量的块状斜发沸石原矿和烟煤,分别用粉碎机粗碎至3~5mm,再分别用棒磨机细磨至200目左右,然后过200目筛。将沸石粉和煤粉(质量比为 2.5∶1.0)充分混匀,加入适量水搅拌挤压成粒状,在l00℃下烘干后,于650℃马弗炉中灼烧60min,取出自然冷却至室温,制得20~40目、40~60目、60~80目、80~100目粒级,供试验用。 沸石的化学成分(%):SiO2,70183;CaO,3138; Al2O3,11178;Fe2O3,0167;MgO,1106;MnO,0104; TiO2,0131;K2O,2123;Na2O,0145。硅铝比SiO2/ Al2O3,10114;铵离子交换容量,12316mmoL/100g。 1.3 沸石改性 1.3.1 改性钠型斜发沸石:选取经破碎、筛分后粒 第28卷第1期2005年1月 非金属矿 Non2Metallic Mines Vol.28No.1 Jan.,2005

离子吸附型稀土矿

离子吸附型稀土矿 离子吸附型稀土矿 ion adsorption type rare earth ore 1 121 xifuxing xitukuang 离子吸附型稀土矿(ion adsorption type rare earth ore)稀土元素以离子状态吸附于矿石中的粘土类矿物表面的矿床。中国于1991年将其命名为风化壳淋积型稀土矿床。此种矿床分布在中国南部的花岗岩及其他岩类的风化壳矿床中,具有重要的工业价值。20世纪70年代首先于中国赣南地区发现,80年代在广东、福建、广西等省又相继发现,至今未见其他国家有这类矿床的报道。此类矿床是含稀土的花岗岩类、火山岩类在湿热气候和低山丘陵的地貌条件下,经强烈的风化淋滤作用而形成的。按稀土配分特征可分为富忆重稀土型、中忆重稀土型、富馆低忆轻稀土型、富斓富馆轻稀土型、中忆低铺轻稀土型等。离子吸附型稀土矿含REZ认。.05%~0.3%,一般约为。.1写,稀土总量中离子吸附相占有率一般为75%~96%,其余为单矿物相及类质同象。这类矿床常呈面型分布,具有明显的分带性。自上而下依次为残坡积层、全风化层、半风化层和基岩。其中全风化层厚度大、稀土品位高,是主要工业矿层。全风化层中原岩矿物已基本解离,主要由石英、高岭石、埃洛石、云母及水云母等矿物组成。稀土元素主要呈离子相吸附在粘土类矿物晶粒表面及晶层间。在此类矿床的水平方向上稀土配分值较稳定,而垂直方向上则存在明显的差异。如斓和钱在全风化层中最高,往上或向下均变贫,’饰则与此相反;忆自上而下变富。在全风化层中饰含量低于翎是其特点之一。离子吸附型稀土矿规模大、易开采、放射性低、提取工艺简单,是中国目前生产忆族稀土及馆的主要原料。在开发利用这类矿床时要加强环境保护。用此类稀土矿经富集后的混合稀土氧化物中的主要稀土组分列举于表。从离子吸附型稀土矿提取混合稀土氧化物的主要组分(质量分数。/%)

碳材料对重金属离子的吸附性实验

碳材料对重金属的吸附及gamma射线辐照还原 一:碳材料的选择 活性炭;活性炭纤维;碳纳米管;磁性多孔碳材料;氧化石墨烯①。 材料的选择主要考虑材料的吸附容量和吸附速度,还需要考虑材料的机械强度,选择性跟抗干扰性。然后再对材料进行一系列的预处理。 常用的处理方法: 1 化学试剂处理 2 辐射照射处理 3 共聚接枝 比如具有吸附能力碳纳米管(CNTs)的预处理,就是选用一定浓度的过氧化氢,次氯酸钠,硝酸,高锰酸钾溶液。吸附能力增强的几个原因。 二:材料的吸附 材料的吸附性实验,即是一种探究性优化实验。 资料中一般用材料吸附一些生活生产中常见的重金属污染物。如:镉离子,铜离子,铅离子,铬离子等等。随即研究这种材料在不同时间,不同的pH,不同的吸附剂用量。依此得出这种材料最佳的吸附条件。 最后绘制等温吸附曲线。用朗缪尔,弗罗因德等温吸附方程式拟合。继而进一步分析这种材料的吸附机理。 三:gamma射线的辐照还原 辐照还原的实质就是对已经吸附的重金属离子进行解析。使这种吸附材料能够重复利用。 附录: ①:其吸附机理可大致分为三大类:10 不发生化学反应,由分子间的相互引力

产生吸附力即物理吸附。20 发生化学反应,通过化学键力引起的化学吸附。30 由于静电引力使重金属离子聚集到吸附剂表面的带电点上,置换出吸附剂原有的离子的交换吸附。 活性炭对金属离子的吸附机理是金属离子在活性炭表面的离子交换吸附,同时还有金属离子同其表面含氧基团之间的化学吸附以及金属离子在其表面沉积而产生的物理吸附。 两个常用的等温式:langmuir,freundlich

斜对角线原则 材料的吸附容量和吸附速度,还需要考虑材料的机械强度,选择性跟抗干扰性。孔径跟比表面积。 材料对金属离子吸附效果的依赖性。 酸处理跟碱处理 酸处理会增加含氧官能团,酸性官能团,从而提高亲水性跟离子交换性能 碱处理会增加微孔数目。 典型制备方法: 将ACF GAC反复用蒸馏水冲洗至溶液的pH不变,再于80℃干燥过夜。 干燥过的ACF GAC 中分别加入1.0mol/l 硝酸溶液加热煮沸3h,再用蒸馏水洗涤,于80℃干燥过夜。 碱处理即把硝酸改为KOH溶液。 负载ZnO-GAC 碳纳米管吸附性好坏明显依赖溶液的PH和碳纳米管的表面状态。

重金属离子的吸附性材料

摘要:许多工业废水如金属冶炼和矿物开采过程中含有铬,铜,铅,锌,镍等重金属离子这些废水中有可能含有较高浓度的重金属离子,这些重金属离子必须要从水中去除这些废水如果不经处理直接进入排水系统将对后续的生物处理产生影响含有CO32-的碳羟磷灰石碳羟磷灰石比纯羟基磷灰石HAP在室温下能更好地固化水溶性重金属离子Pb2+、Cd2+、Hg2+等在前人研究的基础上,为降低污水处理的成本,本文以废弃的鸡蛋壳为原料,尿素为添加剂,采用掺杂技术,合成新型的碳羟磷灰石吸附剂,用以处理含重金属离子废水最佳的制备条件是将经过预处理的鸡蛋壳磨成粉末,过30目筛,按摩尔质量比为11的比例加入到H3PO4溶液中并控制pH值在1~3,在30~40℃反应2~3h,过滤去除不溶物,按照11的比例添加尿素和CaOH2粉末,用NaOH调节pH值在9~12,在50~60℃条件下热处理24h,反应产物经冷却后,用1%的NH4Cl洗涤至中性,在60℃下干燥并粉碎得到碳羟磷灰石粉末利用扫描电镜和能谱仪对产物进行了观察、分析本研究中对碳羟磷灰石吸附重金属分为两个部分,包括碳羟磷灰石对单种重金属的吸附和碳羟磷灰石对重金属的同时吸附,分别考察单种金属离子和混合溶液的重金属离子浓度、pH值、时间、吸附温度对吸附效果的影响绘制了吸附等温线,对吸附过程的动力学和热力学进行了研究,然后又对吸附了重金属离子的产品进行了观察、分析最后对吸附了Zn2+的碳羟磷灰石分别用0.2molL的NaCl、0.2molL的NaNO3、pH=3.93的HAC、pH=4.93的HAC、0.05molL的CaCl2和0.1molL的CaCl2和超声波进行解吸研究结果表明碳羟磷灰石对Cd2+、Cu2+、Zn2+和Pb2+具有较强的吸附效果用2.5gL的碳羟磷灰石处理Cd2+废水,在Cd2+初始浓度为80mgL、温度为40℃左右、pH值为6、作用时间1h的条件下,去除率为93%左右碳羟磷灰石对Cd2+的吸附等温线符合Freundlich和Langmuir两种模式用2.5gL的碳羟磷灰石处理Cu2+废水,在Cu2+初始浓度为60mgL、温度为40℃左右、pH值为6、作用时间1h的条件下,去除率为93.17%碳羟磷灰石对Cu2+的吸附等温线符合Freundlich和Langmuir 两种模式用2.5gL的CHAP处理Zn2+废水,在Zn2+初始浓度为100mgL、温度为40℃左右、pH值为6~7、作用时间45min的条件下,去除率为98.67%CHAP对Zn2+的吸附等温线符合Langmuir和Freundlich两种模式CHAP对重金属离子的吸附在低pH条件下主要是离子交换吸附和表面吸附,在高pH条件下易形成氢氧化物沉淀碳羟磷灰石对Zn2+的热力学研究表明,碳羟磷灰石吸附Zn2+的过程是吸热过程共存离子吸附研究表明四种重金属离子共存时使得每种重金属离子的吸附容量均降低,因为共存的金属离子对结合位点相互竞争结合解吸实验表明各种解吸剂对Zn2+的解吸能力有限,这表明碳羟磷灰石对重金属离子有较好的亲和力在对吸附了重金属离子的碳羟磷灰石进行观察发现,吸附了重金属的样品表明有针尖状结构 标题:工业废水重金属离子吸附剂碳羟磷灰石吸附性能 桔子皮纤维素化学改性生物吸附剂制备方法重金属吸附吸附动力学

离子吸附型稀土矿资源潜力遥感定量预测

第1期,总第92期国土资源遥感 No.1,20122012年3月15日 REMOTE SENSING FOR LAND &RESOURCES Mar.,2012 doi :10.6046/gtzyyg.2012.01.22 离子吸附型稀土矿资源潜力遥感定量预测 ———基于SPOT 5数据的地貌研究王耿明,黄铁兰,朱俊凤,徐燕君 (广东省地质调查院,广州510080) 摘要:为了探讨现代地貌遥感信息的示矿意义,以广东省全境所涉及的1?5万标准图幅(共546幅)范围为研究区,采用SPOT 5卫星遥感数据进行地貌的解译和定位,查明了区内地貌类型及其分布特征,获取了有效的示矿地貌信息。该成果可为广东省离子吸附型稀土矿勘查部署和矿产资源开发提供借鉴和指导。关键词:SPOT 5数据;稀土矿;地貌;遥感定量预测中图法分类号:TP 79 文献标志码:A 文章编号:1001-070X (2012)01-0127-05 收稿日期:2011-08-18;修订日期:2011-10-01 基金项目:中国地质调查局全国矿产资源潜力评价广东省矿产资源潜力评价项目(编号:1212010881623)资助。 0引言在矿产资源勘查遥感技术应用中,通常采用中、高分辨率的遥感数据,运用图像增强技术提取与成矿有关的现代地貌信息,结合区域成矿地质背景建立遥感地质找矿模型,达到识别矿床和圈定找矿远 景区的目的[1] 。广东省离子吸附型稀土矿产资源 十分丰富, 广泛分布于粤北、粤东等地区,其中以揭阳、和平、英德及平远等地较为丰富。 本文以SPOT 5卫星遥感数据为信息源,归纳了离子吸附型稀土矿含矿岩石建造内地貌面元影像特征和解译方法,总结了离子吸附型稀土矿的时空分布规律,圈定了离子吸附型稀土矿的赋矿地貌面元,进行了矿产资源量的遥感预测。该成果对广东省离子吸附型稀土矿勘查部署和矿产资源开发具有一定的参考价值和指导意义。 1研究区地理地质概况 广东省位于我国南岭金属成矿带东端,是我国有 色金属、稀有稀土金属和放射性金属等矿产资源的重要聚集区。省内稀土矿产资源丰富且种类多、储量大、 分布广,大部分易采、易选,是全国重要产区之一,素有“稀土金属之乡”美称。该省地处亚热带,雨量充沛,植被繁茂,风化壳发育和保存良好,具有形成离子吸附型稀土矿的优越地质条件和地理环境。 广东省地貌类型复杂多样,沟谷水系发育。粤北、粤东、粤西多为中低山地和高丘陵,南部沿海则多平原和台地。丘陵大多分布在山地周围,与山地连接,或零星分布于沿海平原和台地之上。 2数据源及其处理 采用SPOT 5卫星遥感数据进行地貌解译。首 先,应用ERDAS 软件对覆盖广东省范围的82景SPOT 5图像进行几何纠正、数字镶嵌等预处理;然后,通过主成分分析、方向滤波、比值增强、反差扩展及线性变换等方法,增强图像的地貌信息;最后,选择B2(R ), B3(G ),B1(B )的波段组合方案[2-3]进行图像假彩色合成,制作出色彩层次丰富、纹理清晰,可以满足地貌解译的遥感影像图。 3 研究方法 3.1 高程信息提取 通过对研究区地形图的再编辑,利用遥感影像 信息制作了广东省地势高程图(图1), 并在低山丘 图1 广东省地势高程 Fig.1 Altitude map of Guangdong province

相关文档