文档视界 最新最全的文档下载
当前位置:文档视界 › 蒸汽换热器的选型计算

蒸汽换热器的选型计算

蒸汽换热器的选型计算
蒸汽换热器的选型计算

一换热器结构形式的选择

螺旋板式操作温度在300~400℃以下,整个换热器焊为一体,密封性良好螺旋板换热器直径在1.5m之内,板宽200~1200mm,板厚2~4mm,两板间距5~25mm,可用普通钢板和不锈钢制造,目前广泛用于化工、轻工、食品等行业。其具有以下特点:

(1)总传热系数高由于流体在螺旋形通道内受到惯性离心力的作用和定距柱的干扰,低雷诺数(Re=1400~1800)下即可达到湍流,允许流速大(液体为2m/s,气体为20m/s),故传热系数大。

(2)不易结垢和堵塞由于流速较高且在螺旋形通道中流过,有自行冲刷作用,故流体中的悬浮物不易沉积下来。

(3)能利用低温热源由于流道长而且两流体可达到完全逆流,因而传热温差大,能充分利用温度较低的热源。

(4)结构紧凑由于板薄2~4mm,单位体积的传热面积可达到150~500m2/m3。

相对于螺旋板式换热器,板式换热器处理量小,受密封垫片材料性能的限制,其操作温度一般不能高于200℃,而且需要经常进行清洗,不适于用在蒸汽冷凝的场合。

综上原因,选择螺旋板式换热器作为蒸汽冷凝设备。

二大流量换热器选型参数

1 一次侧介质质量流量

按最大质量流量14t/h进行计算

2 饱和蒸汽压力

换热器饱和蒸汽入口处的最高压力在2.0MPa左右

3 饱和蒸汽温度

饱和蒸汽最高温度按照214℃进行计算

3

温度t℃

0 2 4 6 8

压力密度压力密度压力密度压力密度压力密度

4 一次侧(高温侧)、二次侧(低温侧)的进出口温度 热侧入口温度 T1=214℃ 热侧出口温度 T2=50℃ 冷侧进口温度 t1=40℃ 冷侧出口温度 t2=60℃

三 总传热量(单位:kW)计算

有相变传热过程计算公式为:

)t -(t .)T -(T .r .122S c c h h h c q c q q Q =+=

其中r .h q 是饱和蒸汽凝结所放出的热量;

)T -(T .2S h h c q 是饱和水温度降至目标温度时所需放出的温度;)t -(t .12c c c q 是冷却水吸收的热量。 式中:Q ------换热量,KW

h q ------饱和蒸汽的质量流量,Kg/s ,此处取14t/h 即3.89 Kg/s

r ----------蒸汽的汽化潜热,KJ/Kg ,2.0MPa 、214℃条件下饱和蒸汽的气化潜

热值为890.0KJ/Kg

S T ----------饱和蒸汽入口侧压力下水的饱和温度,在2.0MPa 时,水的饱和温度

为214℃

h c ----------热流体的平均常压比热容,KJ/(Kg.℃),即冷凝水在平均温度

2

2

T T S +时的比热容,代入S T =214℃,2T =50℃,则水在132℃时的比热容为4.258 KJ/(Kg.℃)

2T ----------冷凝水出口温度,此处为60℃

c q ----------换热所需冷却水的质量流量, Kg/s 。这是一个待确定的参数 c c ----------冷流体的平均常压比热容,KJ/(Kg.℃),即冷却水在平均温度

2

2

1t t + 时的比热容,代入1t =40℃,2t =60℃,则水在50℃时的比热容为4.178 KJ/(Kg.℃)

1t ----------冷却水的入口温度,40℃ 2t ---------冷却水的出口温度,60℃ 代入数值,计算得总传热量为

KW

6178.53 C)50-C (214C)./(258.4/89.3/890/3.89 )

T -(T .r .2S =?????+?=+=Kg KJ s Kg Kg KJ s Kg c q q Q h h h

四 冷却水质量流量计算

)t -(t .)T -(T .r .122S c c h h h c q c q q Q =+=。

其中)T -(T .r .2S h h h c q q Q +==KW 6178.53 则 )t -(t .12c c c q =KW 6178.53

代入各参数的数值求得c q =73.9Kg/s,即266.2t/h

五 换热面积的初步计算

1 换热面积的计算公式 m

T K Q

A ?=

. 式中:A ------换热面积,2m

Q ------总换热量(传热功率),W ,

m T ?----传热面平均温差,℃ K --------总传热系数C ?2W/m

2 传热面平均温差的计算

(1)当 1221--t T t T >时:

1

2211221--)

-(-)-(t T t T Ln

t T t T T m =

?

(2)当 1221--t T t T =时: 21-t T T m =? (3)当 1221--t T t T <时: 2

1122112--)

-(-)-(t T t T Ln

t T t T T m =

?

此处,C t T ?==15460-214-21 C t T ?==1040-50-12

C Ln t T t T Ln

t T t T T m ?===

?52.7515.40

1-541--)-(-)-(1

2211221

3 总传热系数的计算

1.K 的物理意义

物理意义:冷热流体温度差为1℃时,单位面积单位时间内导入(或导出)的热量,J 。或:总传热系数在数值上等于单位温度差下的总传热通量。当Δt=1℃时,K=dQ/dS

总传热系数是用来衡量换热器传热阻力的一个参数。传热阻力主要是由传热板片材料和厚度、污垢和流体本身等因素构成。单位:W/m2℃or kcal/h ,m2℃。总传热系数倒数1/K 代表间壁两侧流体传热的总热阻。 2.K 的计算方法

总的传热系数用下式计算:

2121111R R K ++++=λ

δαα 其中:

k------总传热系数(W/m 2℃) α1------一次测的换热系数(W/m 2℃)

湍流下的传热系数计算公式

0.3

1

118.01111111)()(023

.0λμμρλαp c u d d = 注:该公式的使用条件为40001

1

111

>=μρu d R e 且1606.01

1

11<=

<λμp r c P

式中:

1λ—一次侧流体导热系数[W/m·℃ ] ,

1d —通道1的当量直径[m], 1u —一次侧流体的流速[m/s],

1ρ—一次侧流体的密度[kg/m 3], 1μ—一次侧流体的粘度[Pa·S], 1p c —一次侧流体的比热[J/kg ·℃ ],

α2------二次测的换热系数(W/m2℃)

湍流下的传热系数计算公式

0.4

2

228.02222222)()(023.0λμμρλαp c u d d =

注:该公式的使用条件为40002

2

222>=

μρu d R e 且1602

6.02

22<=

<λμp r c P

式中:

2λ—二次侧流体导热系数[W/m·℃ ] ,

2d —通道2的当量直径[m], 2u —二次侧流体的流速[m/s],

2ρ—二次侧流体的密度[kg/m 3], 2μ—二次侧流体的粘度[Pa·S], 2p c —二次侧流体的比热[J/kg ·℃ ],

δ------传热板片的厚度(m),4mm

λ------板片的导热系数(W/m ℃) ,换热器板材采用918Ni OCr 耐热不锈钢,

其导热系数为16.2 W/m ℃

R1------一次侧的污垢系数(m 2℃/W),取0.000009 m 2℃/W R2------二次侧的污垢系数(m 2℃/W),取0.000052 m 2℃/W

换热器中的污垢热阻值

3.K 的计算

K 值的计算要分两个阶段进行计算,即蒸汽冷凝阶段的冷凝水冷却阶段。

(1) 蒸汽冷凝阶段 0.3

1

118.01111111)()(023

.0λμμρλαp c u d d =

1λ—一次侧流体导热系数[W/m·℃ ] ,

水的导热系数表

此处取蒸汽的导热系数为0.0235 W/m·℃

1d —通道1的当量直径[m],

取螺旋板宽度 H =1500mm 一次侧通道间距为1b =16mm

m b H Hb d 032.0016.05.1016

.05.122111=+??=+=

1ρ—一次侧流体的密度[kg/m3],

在214℃时,蒸汽的密度为10.37 kg/m3,

1u —一次侧流体的流速[m/s],

Kg/s 3.89...111=ρb H u 求得 15.63m /s 1=u

1μ—一次侧流体的粘度[Pa·S],

此处取蒸汽的粘度为-3

100.01635?Pa·S

蒸汽粘度表

1p c —一次侧流体的比热[J/kg ·℃ ],

查阅饱和蒸汽特性数据表可得,在214℃时,饱和蒸汽的比热容为3.001 KJ/kg ·℃

带入以上数据求得

C

c u

d d p ?=???

?

?????

??

???????==20.3

3-0.8

3-0.3

1

118.01111111531.98W/m 0.0235100.016353001100.0163510.3715.630.0320.0320.02350.023)

()(023.0λμμρλα

0.4

2

228.02222222)()(023

.0λμμρλαp c u d d = 式中: 2λ—二次侧流体导热系数[W/m·℃ ] ,

查表得水在40℃时的导热系数为0.64 W/m·℃

2d —通道2的当量直径[m],

取螺旋板宽度 H =1500mm 二次侧通道间距为2b =18mm m b H Hb d 5603.08

01.05.18

01.05.122222=+??=+=

2ρ—二次侧流体的密度[kg/m 3],

水在40℃时的密度为 992.212 kg/m 3

2u —二次侧流体的流速[m/s],

Kg/s 73.9...222=ρb H u 求得

2.76m /s 1=u

2μ—二次侧流体的粘度[Pa·S],

查表可得,水在40℃时的粘度为0.6560×10-3 Pa·S

2p c —二次侧流体的比热[J/kg ·℃ ],

查表得水在40℃ 时的比热容为4.178 KJ/kg ·℃

带入以上数据求得

C

c u

d d p ?=???

?

?????

??

???????==20.4

3-0.8

3-0.4

2

228.02222222 W/m 10161.950.64100.65604178100.6560992.2122.760.03560.03560.640.023)

()(023.0λμμρλα

则蒸汽冷凝阶段的总传热系数计算为

0.0022890.0000520.00000916.2

0.004

10161.951531.9811112121=++++=++++='R R K λδααC K ?='2436.87W/m

(2) 凝结水冷却阶段

0.3

1

118.01111111)()(023.0λμμρλαp c u d d =

1λ—一次侧流体导热系数[W/m·℃ ] ,取

水的导热系数表

214℃冷凝水的导热系数为 0.67 W/m·℃

1d —通道1的当量直径[m],

取螺旋板宽度 H =1500mm 一次侧通道间距为1b =16mm

m b H Hb d 032.0016

.05.1016

.05.122111=+??=+=

1ρ—一次侧流体的密度[kg/m 3],

在214℃时,水的密度约为950 kg/m 3,

1u —一次侧流体的流速[m/s],

Kg/s 3.89...111=ρb H u 求得 0.17m /s 1=u

1μ—一次侧流体的粘度[Pa·S], 此处取水的粘度为-3100.6560?Pa·S

1p c —一次侧流体的比热[J/kg ·℃ ],

在214℃时,水的比热容为4.438 KJ/kg ·℃

带入以上数据求得

C

c u

d d p ?=???

? ?????

??

???????==20.3

3-0.8

3-0.3

1

118.011111111005.8W/m 0.67100.65604438100.65609500.170.0320.0320.670.023)

()(023.0λμμρλα

0.4

2

228.02222222)()(023.0λμμρλαp c u d d =

式中: 2λ—二次侧流体导热系数[W/m·℃ ] ,

查表得水在40℃时的导热系数为0.64 W/m·℃

2d —通道2的当量直径[m],

取螺旋板宽度 H =1500mm 二次侧通道间距为2b =18mm m b H Hb d 5603.08

01.05.18

01.05.122222=+??=+=

2ρ—二次侧流体的密度[kg/m 3],

水在40℃时的密度为 992.212 kg/m 3

2u —二次侧流体的流速[m/s],

Kg/s 73.9...222=ρb H u 求得

2.76m /s 1=u

2μ—二次侧流体的粘度[Pa·S],

查表可得,水在40℃时的粘度为0.6560×10-3 Pa·S

2p c —二次侧流体的比热[J/kg ·℃ ],

查表得水在40℃ 时的比热容为4.178 KJ/kg ·℃

带入以上数据求得

C c u d d p ?=???

?

?

?????

?

???????

==20.4

3

-0.8

3-0.4

2

228.02222222 W/m 10161.950.6410

0.65604178100.6560992.2122.760.03560.03560.640.023)

()(023.0λμμρλα

则蒸汽冷凝阶段的总传热系数计算为

0.0013990.0000520.00000916.2

0.004

10161.9511005.811112121=++++=++++=''R R K λδαα C K ?=''2714.8W/m

(3)则C K K K ?=+='+''=

2575.84W/m 2

436.87

.87142 4 换热面积的计算

m

T K Q

A ?=

. 其中 W Q 6178530=

C K ?=2575.84W/m

C T m ?=?52.75 代入数据求得,换热面积为

2203.452.75575.846178530

.m T K Q A m

=?=

?=

六 螺旋板式换热器的选型要求

参考山东寿光亚亨公司的相关产品,满足选型的要求的螺旋板换热器的相关参数为: 换热量:5965KW 换热面积:1802m

高:1.5m

直径:1.8m 重量:7220Kg

板式换热器选型计算书

目录 1、目录 1 2、选型公式 2 3、选型实例一(水-水) 3 4、选型实例二(汽-水) 4 5、选型实例三(油-水) 5 6、选型实例四(麦芽汁-水) 6 7、附表一(空调采暖,水-水)7 8、附表二(空调采暖,汽-水)8 9、附表三(卫生热水,水-水)9 10、附表四(卫生热水,汽-水)10 11、附表五(散热片采暖,水-水)11 12、附表六(散热片采暖,汽-水)12

板式换热器选型计算 1、选型公式 a 、热负荷计算公式:Q=cm Δt 其中:Q=热负荷(kcal/h )、c —介质比热(Kcal/ Kg.℃)、m —介质质量流量(Kg/h )、Δt —介质进出口温差(℃)(注:m 、Δt 、c 为同侧参数) ※水的比热为1.0 Kcal/ Kg.℃ b 、换热面积计算公式:A=Q/K.Δt m 其中:A —换热面积(m 2)、K —传热系数(Kcal/ m 2.℃) Δt m —对数平均温差 注:K值按经验取值(流速越大,K值越大。水侧板间流速一般在0.2~0.8m/s 时可按上表取值,汽侧 板间流速一般在15m/s 以时可按上表取值) Δt max - Δt min T1 Δt max Δt min Δt max 为(T1-T2’)和(T1’-T2)之较大值 Δt min 为(T1-T2’)和(T1’-T2)之较小值 T T1’ c 、板间流速计算公式: T2 其中V —板间流速(m/s )、q----体积流量(注意单位转换,m 3/h – m 3/s )、 A S —单通道截面积(具体见下表)、n —流道数 2、板式换热器整机技术参数表: 计压力1.0Mpa 、垫片材质EPDM 、总换热面积为9 m 2 板式换热器。 注:以上选型计算方法适用于本公司生产的板式换热器。 选型实例一(卫生热水用:水-水) Ln Δt m =

蒸汽换热器的选型计算

一换热器结构形式的选择 螺旋板式操作温度在300~400℃以下,整个换热器焊为一体,密封性良好螺旋板换热器直径在1.5m之内,板宽200~1200mm,板厚2~4mm,两板间距5~25mm,可用普通钢板和不锈钢制造,目前广泛用于化工、轻工、食品等行业。其具有以下特点: (1)总传热系数高由于流体在螺旋形通道内受到惯性离心力的作用和定距柱的干扰,低雷诺数(Re=1400~1800)下即可达到湍流,允许流速大(液体为2m/s,气体为20m/s),故传热系数大。 (2)不易结垢和堵塞由于流速较高且在螺旋形通道中流过,有自行冲刷作用,故流体中的悬浮物不易沉积下来。 (3)能利用低温热源由于流道长而且两流体可达到完全逆流,因而传热温差大,能充分利用温度较低的热源。 (4)结构紧凑由于板薄2~4mm,单位体积的传热面积可达到150~500m2/m3。 相对于螺旋板式换热器,板式换热器处理量小,受密封垫片材料性能的限制,其操作温度一般不能高于200℃,而且需要经常进行清洗,不适于用在蒸汽冷凝的场合。 综上原因,选择螺旋板式换热器作为蒸汽冷凝设备。 二大流量换热器选型参数 1 一次侧介质质量流量 按最大质量流量14t/h进行计算 2 饱和蒸汽压力 换热器饱和蒸汽入口处的最高压力在2.0MPa左右 3 饱和蒸汽温度 饱和蒸汽最高温度按照214℃进行计算 3 温度t℃ 0 2 4 6 8 压力密度压力密度压力密度压力密度压力密度

4 一次侧(高温侧)、二次侧(低温侧)的进出口温度 热侧入口温度 T1=214℃ 热侧出口温度 T2=50℃ 冷侧进口温度 t1=40℃ 冷侧出口温度 t2=60℃ 三 总传热量(单位:kW)计算 有相变传热过程计算公式为: )t -(t .)T -(T .r .122S c c h h h c q c q q Q =+= 其中r .h q 是饱和蒸汽凝结所放出的热量; )T -(T .2S h h c q 是饱和水温度降至目标温度时所需放出的温度;)t -(t .12c c c q 是冷却水吸收的热量。 式中:Q ------换热量,KW h q ------饱和蒸汽的质量流量,Kg/s ,此处取14t/h 即3.89 Kg/s r ----------蒸汽的汽化潜热,KJ/Kg ,2.0MPa 、214℃条件下饱和蒸汽的气化潜 热值为890.0KJ/Kg S T ----------饱和蒸汽入口侧压力下水的饱和温度,在2.0MPa 时,水的饱和温度 为214℃

热网加热器选型方案及特点

热网加热器选型设计说明: 一、根据本次招标文件对热网加热器的求,本投标设备:热网加热器其结构采用:卧式、固定管板式结构。依据其介质特性,采用二管程、单壳程。加热蒸汽走壳程,循环水走管程。管板与壳体、管箱均采用焊接结构,管箱上设有人孔,便于换热管的维护清理和更换。(注:由于设备直径比较大,法兰连接密性较差,易泄漏,为了保证其密封性,易采焊接联接。大家都知道,联结基本形式有三种:焊接、法兰联结、螺纹连接,其联结强度及密封性依次降低) 二、本投标设备:热网加热器有以下性能特点: 由于本热网特殊结构和加工工艺,同时强化汽水两侧,传热系数高。(凝结水导流装置、管内增加水流速形成紊流)、水侧阻力小、耐高压、高温、不易泄露、较宽的负荷范围热工性能变化不大等特点 三、优化的结构设计: 1)为减小热应力,换热器壳体采用大筒体间和小筒体用两个半波膨胀节相连,这样既满足了蒸汽进口的流通面积要求同时也消除了管束与壳体的膨胀差应力。 2)在蒸汽进口设置蒸汽分散组件,在特大蒸汽流量状态下,具有蒸汽分散作用,使进入管束的蒸汽流速迅速降低到10m/s以下,大大缓解了特大流量对管束的冲刷;该组件在蒸汽进口处设置较大的弧形有锈钢防冲板,对开车阶段开启蒸汽阀门瞬间对管束的冲击或正常操作阶段进入壳程的蒸汽流对管束的冲击具有阻挡和分流的作用,延长了管束使用寿命。

3)为了减小热网加热器在运行中管束的震动,采取减小管束无撑跨距。管板与换热管采用强度焊加贴胀的方式以消除间隙并防止间隙腐蚀。 4)为防止蒸汽冷凝液在换热管外表面形成大量水膜及底部换热管被上部换热管冷凝液所浇淋,特设置蒸汽分区导流装置,减少了冷凝水大量的附着在换热管表面。 5)由于本热网加热器直径较大,按常规的布管方式则管束心部的换热管对于蒸汽凝结换热来讲,将很难参与换热,这样就影响了换热效果。为此本热网加热器在布管上均匀地增设了蒸汽通道,使加热蒸汽能顺利地进入到管束心部,使所有的换热管都充分地参与换热。6)为保证较低的疏水温度,避免蒸汽进入凝结水管道,确保水泵不发生气蚀现象,使疏水更加稳定、可靠,特设置疏水井,便于水位调节。 7)本设备还设置了安全泄压装置,以便保护设备。 为防止管程循环水由于误关阀门,而蒸汽继续通入使循环水受热膨胀,造成设备损坏,管侧设置安全阀,使循环水受热膨胀时通过安全阀释放压力,保护设备。 为防止由于换热管的破裂而使循环水进入壳程蒸汽侧,使壳程水位急剧升高,当水位高于设定水位时,平衡容器会与紧急疏水阀一起将过量的水泄掉,保护设备。当出现特别情况时,壳程会灌满水,相应压力会高到危及设备的安全,此时安全阀自动打开,与紧急疏水阀一起泄水,确保热网加热器的安全。

蒸汽散热器选型计算书

散热器选型计算说明书 一、根据客户提供的工艺参数: 蒸汽压力:10kgf/cm2温度:175℃ 热空气出风温度150℃温差按15℃,闭式循环 烤箱内腔尺寸:716*1210*4000MM 风量G=6000-7000M3/H 补新风量为20% 二、选型计算: 1.满足工艺要求的总负荷 Q1=0.24Gγ(Δt)=0.24×6500×0.9×15 =21060Kcal/h Q2=0.24Gγ(Δt2)=0.24×6500×20%×1.0×125 =39000 Kcal/h 总热负荷Q=Q1+Q2=60060Kcal/h 2.根据传热基本方程式Q=KA△Tm △T m=△Tmax - △Tmin ln△Tmax/△Tmin =(100-20)-(175-150) ln(75/30) =47.4℃ 则换热面积A=Q / ψK△Tm 根据我公司产品性能及工艺要求,初选换热系数K=33Kcal/h·m2·℃ 则换热面积A=60060 / 1.0×(33×47.4) =38.4m2 设计余量取18% 则总换热面积A=45m2

根据空气阻力小,风速较低,受风面积较大的原则,初选风速V=4m/s 则所需排管受风表面积=6500 /(3600×4)=0.45m2 根据客户提供空间尺寸,推荐参数800×500mm,受风面积为: 0.4m2 所以,初选散热器换热面积为45 m2 表面管数:11根. ¢18X2.0-38不锈钢铝复合管. 排数:8排. 3.性能复核计算: 1)此散热器净通风截面积为0.4m2 2)实际风速V=6500/(3600×0.4×0.55)=8.2m/s 查表知此温度下的空气比重γ=0.95KG/M3 5)根据我公司的散热管性能曲线图,当片距为3.0mm Vr=7.8kg/ m2·s时,散热管的空气阻力h=3.6mmWg 6)该散热排管8排,其空气阻力h=3.6×8=29mmWg 此空气阻力远小于900Pa 的风压,所以,我公司所选型号: SGL-8R-11-800-Y,换热面积为45 m2, 迎风尺寸:800X500mm。符合设计要求。 以上选型供参考。 广州捷玛换热设备有限公司 2017-03-02

板式换热器选型计算

板式换热器选型计算 板式换热器是一种高效紧凑型热交换设备,它具有传热效率高、阻力损失小、结构紧凑、 拆装方便、操作灵活等优点,目前广泛应用于冶金、机械、电力、石油、化工、制药、纺织、造 纸、食品、城镇小区集中供热等各个行业和领域,因此掌握板式换热器的选型计算 对每个工程设计人员都是非常重要的目前板式换热器的选型计算一般分为手工简易算 法、手工标准算法及计算机算法三种,以下就三种算法的特点进行简要的说明 手工简易算法 计算公式:F=Wq/(K* △ T) 式中F —换热面积m2 Wq —换热量 K —传热系数W/m 2 △T—平均对数温差C 根据选定换热系统的有关参数,计算换热量、平均对数温差,设定传热系数,求出换热面积。选定厂家及换热器型号,计算板间流速,通过厂家样本提供的传热特性曲线及流阻特性曲线,查出实际传热系数及压降。若实际传热系数小于设定传热系数,则应降低设定传热系数,重新计算。若实际传热系数大于设定传热系数,而实际压降大于设定压降,则应进一步降低设定传热系数,增大换热面积,重新计算。经过反复校核,直到计算结果满足换热系统的要求,最终确定换热器型号及换热面积大小。这种算法的优点是计算 简单,步骤少,时间短;缺点是结果不准确,应用范围窄。造成结果不准确的原因主要是样本所提供的传热特性曲线及流阻特性曲线是一定工况条件下的曲线,而设计工况可能与 之不符。此外样本所提供的传热特性曲线及流阻特性曲线仅为水一水换热系统,在使用中 有很大的局限性。 以下给出佛山显像管厂总装厂房低温冷却水及40 C热水两套换热系统实例加以说明

采用手工简易算法得出的计算结果与实测结果的差别:BR35 F=36m 2北京市华都换热设备厂 计算方法与步骤 (一)工艺条件 热介质 进出口温度C Th1 Th2 流量m 3/h Qh 压力损失(允许值)MPa △ Ph 冷介质 进出口温度C Tc1 Tc2 流量m 3/h Qc

板式换热器选型与计算方法

板式换热器选型与计算方法 板式换热器的选型与计算方法 板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: 总传热量(单位:kW). 一次侧、二次侧的进出口温度 一次侧、二次侧的允许压力降 最高工作温度 最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 T2 = 热侧出口温度 t1 = 冷侧进口温度 t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为: (热流体放出的热流量)=(冷流体吸收的热流量)

在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; mh,mc-----热、冷流体的质量流量,kg/s; Cph,Cpc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为: 一侧有相变化 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中 r,r1,r2--------物流相变热,J/kg; D,D1,D2--------相变物流量,kg/s。 对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。 对数平均温差(LMTD) 对数平均温差是换热器传热的动力,对数平均温差的大小直接关系到换热器传热难易程度.在某些特殊情况下无法计算对数平均温差,此时用算术平均温差代替对数平均温差,介质在逆流情况和在并流情况下的对数平均温差的计算方式是不同的。在一些特殊情况下,用算术平均温差代替对数平均温差。 逆流时: 并流时:

换热器选型详解讲解

换热器选型详解 各种类型的换热器作为工艺过程必不可少的设备,如何根据不同的工艺生产流程和生产规模,设计出投资省、能耗低、传热效率高、维修方便的换热器是一项非常重要的工作。 换热器分类 按工艺功能分类 冷却器、加热器、再沸器、冷凝器、蒸发器、过热器、废热锅炉等。按传热方式和结构分类 间壁传递热量式和直接接触传递热量式,其中间壁传热式又分为管壳式、板式、管式、液膜式等其他形式的换热器。 从工艺功能选择换热器 冷却器 间壁式冷却器 ☆当传热量大时,可以选择传热面积和传热系数较大的板式换热器比较经济,但是板式换热器的使用温度一般不大于150℃,压降较大。 ☆对于压降和温度压力较高的情况,选用管壳式换热器较为合理。 ☆板翅式换热器由于翅片的作用,适用于气体物料的冷却,其使用温度一般也小于150℃。

☆空冷器适用于高温高压的工艺条件,其热物流出口温度要求比设计温度高15~20℃。 直接接触式冷却器 ☆适用于需要急速降低工艺物料的温度、伴随有吸收或除尘的工艺物料的冷却、大量热水的冷却和大量水蒸气的冷凝冷却等工况。 加热器 高温情况:当温度要求高达500℃以上时可选用蓄热式或直接火电加热等方式。 中温情况:对于150~300℃工况一般采用有机载热体作为加热介质。分为液相和气相两种。 低温情况:当温度小于150℃时首先考虑选用管壳式换热器,只有工艺物料的特性或者工艺条件特殊时,才考虑其他形式,例如热敏性物料加热多采用降膜式或波纹板式换热器。 再沸器 图1 四种再沸器类型

多采用管壳式换热器,分为强制循环式、热虹吸式和釜式再沸器三种。其设计温差一般选用20~50℃,单程蒸发率一般为10%~30%。

电加热器设备技术选型计算!技术出身真才实学!

胡明云做电加热设备网站:https://www.docsj.com/doc/081624257.html,(奥德控温) 电热设备/导热油电加热器/油加热器/电加热器/水加热器设计资料 产品名称 电加热设计 ●电热设计资料●电加热功率计算●有关加热功率计算的参考数据●常用的设计图表 电热设计资料 计量单位 1.功率:W、Kw 1Kw=3.412BTU/hr英热单位/小时=1.36(马力)=864Kcal/hr 2.重量:kg 1Kg=2.204621b(磅) 3.流速:m/min 4.流量:m3/min、kg/h 5.比热:Kcal/(kg℃) 1Kcal/(Kg℃)=1BTU/hr.0F=4186.8J/(Kg℃) 6.功率密度:W/cm21W/cm2=6.4516W/in2 7.压力:Mpa 8.导热系数:W/(m℃) 1 W/(m℃)=0.01J/(cms℃)=0.578Btu/( ft.h.F) 9.温度:℃1‘F=9/5℃+32 1R=9/5℃+491.67 1K=I℃+273.15 电加热功率计算 加热功率的计算有以下三个方面: 运行时的功率 启动时的功率 系统中的热损失 所有的计算应以最恶劣的情况考虑: 技术出身真才实学!品质创品牌!

胡明云做电加热设备网站:https://www.docsj.com/doc/081624257.html,(奥德控温) 最低的环境温度 最短的运行周期 最高的运行温度 加热介质的最大重量(流动介质则为最大流量) 计算加热器功率的步骤 根据工艺过程,画出加热的工艺流程图(不涉及材料形式及规格)。 计算工艺过程所需的热量。 计算系统起动时所需的热量及时间。 重画加热工艺流程图,考虑合适的安全系数,确定加热器的总功率。 决定发热元件的护套材料及功率密度。 决定加热器的形式尺寸及数量。 决定加热器的电源及控制系统。 有关加热功率在理想状态下的计算公式如下: 系统起动时所需要的功率: 加热系统的散热量 管道 技术出身真才实学!品质创品牌!

加热冷却功率计算精编版

加热冷却功率计算公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

模温机的加热功率和计算方法 点击次数:183 发布时间:2011-10-13 模温机选型的计算方法 ? 1.特殊的情况需进行计算: ? A、求加热器功率或冷冻功率KW=W×△t×C×S/860×T ? W=模具重量或冷却水 KG ? △t=所需温度和起始温度之间的温差。 ? C= 比热油,钢,水(1),塑料~ ? T=加温至所需温度的时间(小时) ? B、求泵的大小 ? 需了解客户所需泵浦流量和压力(扬程) ?

P(压力Kg/cm2)=×H(扬程M)×α(传热媒体比重,水=1,油= ? L(媒体所需流量L/min)=Q(模具所需热量Kcal/H)/C(媒体比热水=1 油=×△t(循环媒体进出模具的温差)×α×60 ? 2.冷冻机容量选择 ? A、Q(冷冻量Kcal/H)=Q1+Q2 ? Q1(原料带入模具的热量Kcal/H)=W(每小时射入模具中原料的重量 KG)×C×(T1-T2)×S(安全系数~2) T1 原料在料管中的温度;T2 成品取出模具时的温度 ? Q2 热浇道所产生的热量Kcal/H ? B、速算法(有热浇道不适用) ? 1RT=7~8 OZ 1OZ=28.3g(含安全系数) ? 1RT=3024Kcal/H=12000BTU/H= ? 1KW=860 Kcal/H 1 Kcal=

? 3、冷却水塔选用=A+B ? A、射出成型机用 ? 冷却水塔RT=射出机马力(HP)××860Kcal×÷3024 ? B、冷冻机用 ? 冷却水塔RT=冷冻机冷吨(HP)× ? 选择模具温度控制器时,以下各点是主要的考虑因素;? 1.泵的大小和能力。 ? 2.内部喉管的尺寸。 ? 3.加热能力。 ? 4.冷却能力。 ?

列管式换热器选型设计计算

第一部分列管式换热器选型设计计算 一.列管式换热器设计过程中的常见问题 换热器设计的优劣最终要以是否适用、经济、安全、负荷弹性大、操作可靠、检修清洗方便等为考察原则。当这些原则相互矛盾时,应在首先满足基本要求的情况下再考虑一般原则。 1.流体流动空间的选择原则 (1)不洁净和易结垢的流体宜走管内,因为管内清洗比较方便。 (2)腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。(3)压强高的流体宜走管内,以免壳体受压,可节省壳体金属消耗量。 (4)饱和蒸气宜走管间,以便于及时排出冷凝液,且蒸气较洁净,它对清洗无要求。(5)有毒流体宜走管内,使泄漏机会较少。 (6)被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。 (7)粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,可以提高对流传热系数。 (8)对于刚性结构的换热器,若两流体的温度差较大,对流传热系数较大者宜走管间,因壁面温度与α大的流体温度相近,可以减少热应力。 在选择流体流径时,上述各点常不能同时兼顾,应视具体情况抓住主要矛盾。2.流体流速的选择 根据管内湍流时对流传热系数αi∝u0.8,流速增大,则αi增大,同时污垢热阻R si 减小,利于传热,从而可减少传热面积,节约设备费用;但同时又使压降增大,加大了动力消耗,提高了操作费用。可见应全面分析权衡比较适宜的流速。 (1)所选流速要尽量使流体湍流,有利传热。 (2)所选流速应使管长或程数恰当。管子过长,不便于清洗管内污垢;而管子过短,管程数增加,使结构复杂化,传热温差减少,均会降低传热效果。 (3)粘度大的流体,流速应小些,可按滞流处理。 (4)高密度流体(液体),阻力消耗与传热速率相比一般较小,可适当提高流速。 在我们教材及换热器设计手册中均给了出一些经验数据,以供参考。 3.管子规格及排列情况 (1)管径选择:国内换热器系列标准件中管子规格为Φ25×2.5mm、Φ19×2mm,在再沸器中可采用Φ38×3mm。 (2)管长:以清洗方便和合理使用管材为原则,系列标准件中采用1.5m,2m,3 m和6m四种。 (3)管子排列方法 管子在管板上的排列方法有三种:正三角形,正方形直列和正方形错列(见化工原理下册,天大版,P256,图4-25)。 正三角形排列使用最普遍,在同一管板面积上可以排列较多传热管,管外流体搅动较大,对流传热系数较高,但相应阻力也较大,管间不易清洗;正方形直列便于清洗管外表面,但传热系数较小;正方形错列介于上述两者之间,对流传热系数高于正方形直列。 (4)管中心距t 管子与管板采用胀管法连接t=(1.3-1.5)d o,管子与管板采用焊管法连接t=1.25d o,相邻两管外壁间距不应小于6mm。 4.折流挡板 前面已述常用的有圆缺形和盘环形挡板(见化工原理下册,天大版,P257,图4-27),而又以缺口面积为壳体内截面积25%的圆缺形折板用的最广泛。 折流挡板间距h:h=0.2~1D(壳内径),系列标准件中采用的板间距为:固定管板式有150、300、600mm三种,浮头式有150、200、300、480和600mm五种。 5.流体流动阻力

热交换器的选型和设计指南(20210201114130)

热交换器的选型和设计指南内容 1 概述 2 换热器的分类及结构特点 3 换热器的类型选择 4 无相变物流换热器的选择 5 冷凝器的选择 6 蒸发器的选择 7 换热器的合理压力降 8 工艺条件中温度的选用 9 管壳式换热器接管位置的选取 10 结构参数的选取 11 管壳式换热器的设计要点 12 空冷器的设计要点 13 空冷器设计基础数据

1概述 本工作指南为工艺系统工程师提供换热器的选型原则和工艺参数的选取及计算方法2换热器的分类及结构特点。 3换热器的类型选择 换热器的类型很多,每种型式都有特定的应用范围。在某一种场合下性能很好的换热器, 如果换到另一种场合可能传热效果和性能会有很大的改变。 因此,针对具体情况正确地选择换热器的类型,是很重要的。换热器选型时需要考虑的因素是多方面的,主要有: 1)热负荷及流量大小 2)流体的性质 3)温度、压力及允许压降的范围 4)对清洗、维修的要求 5)设备结构、材料、尺寸、重量 6)价格、使用安全性和寿命

在换热器选型中,除考虑上述因素外,还应对结构强度、材料来源、加工条件、密封性、安 全性等方面加以考虑。所有这些又常常是相互制约、相互影响的,通过设计的优化加以解决。 针对不同的工艺条件及操作工况,我们有时使用特殊型式的换热器或特殊的换热管,以实现 降低成本的目的。因此,应综合考虑工艺条件和机械设计的要求,正确选择合适的换热器型 式来有效地减少工艺过程的能量消耗。对工程技术人员而言,在设计换热器时,对于型式的 合理选择、经济运行和降低成本等方面应有足够的重视,必要时,还得通过计算来进行技术 经济指标分析、投资和操作费用对比,从而使设计达到该具体条件下的最佳设计。 管壳式换热器 管壳式换热器的应用范围很广,适应性很强,其允许压力可以从高真空到 41.5MPa ,温度可 以从-100 °以下到1100°C 高温。此外,它还具有容量大、结构简单、造价低廉、清洗方便 等优点,因此它在换热器中是最主要的型式。 特殊型式的换热器 特殊型式的换热器包括有:板式换热器、空冷器、多管式换热器、折流杆式换热器、板翅式换 热器、螺旋板式换热器、蛇管式换热器和热管换热器等。它们的使用是受设计温度和设计压 力限制的。在下图中给出了特殊型式的换热器的适用范围,可供参考。 7001 -------------------------------------------- , 600- 500- 400 300- 表3- 1特殊型式换热器的使用范围 1C 0

电加热器设备技术选型计算!技术出身真才实学!

电热设备/导热油电加热器/油加热器/电加热器/水加热器设计资料 产品名称 电加热设计 ●电热设计资料●电加热功率计算●有关加热功率计算的参考数据●常用的设计图表 电热设计资料 计量单位 1.功率:W、Kw 1Kw=3.412BTU/hr英热单位/小时=1.36(马力)=864Kcal/hr 2.重量:kg 1Kg=2.204621b(磅) 3.流速:m/min 4.流量:m3/min、kg/h 5.比热:Kcal/(kg℃) 1Kcal/(Kg℃)=1BTU/hr.0F=4186.8J/(Kg℃) 6.功率密度:W/cm21W/cm2=6.4516W/in2 7.压力:Mpa 8.导热系数:W/(m℃) 1 W/(m℃)=0.01J/(cms℃)=0.578Btu/( ft.h.F) 9.温度:℃1‘F=9/5℃+32 1R=9/5℃+491.67 1K=I℃+273.15 电加热功率计算 加热功率的计算有以下三个方面: 运行时的功率 启动时的功率 系统中的热损失 所有的计算应以最恶劣的情况考虑: 最低的环境温度 最短的运行周期 最高的运行温度 加热介质的最大重量(流动介质则为最大流量) 计算加热器功率的步骤 1 / 11

根据工艺过程,画出加热的工艺流程图(不涉及材料形式及规格)。 计算工艺过程所需的热量。 计算系统起动时所需的热量及时间。 重画加热工艺流程图,考虑合适的安全系数,确定加热器的总功率。 决定发热元件的护套材料及功率密度。 决定加热器的形式尺寸及数量。 决定加热器的电源及控制系统。 有关加热功率在理想状态下的计算公式如下: 系统起动时所需要的功率: 加热系统的散热量 管道 平面 计量单位 1.功率:W、Kw 1Kw=3.412BTU/hr英热单位/小时=1.36(马力)=864Kcal/hr 2.重量:kg 1Kg=2.204621b(磅) 3.流速:m/min 4.流量:m3/min、kg/h 5.比热:Kcal/(kg℃) 1Kcal/(Kg℃)=1BTU/hr.°F=418 6.8J/(Kg℃) 6.功率密度:W/cm2 1W/cm2=6.4516 W/in2 7.压力:Mpa 2 / 11

电加热计算公式

电加热计算公式 计量单位 1.功率:W、Kw 1Kw=3.412BTU/hr英热单位/小时=1.36(马力)=864Kcal/hr 2.重量:kg 1Kg=2.204621b(磅) 3.流速:m/min 4.流量:m3/min、kg/h 5.比热:Kcal/(kg℃)1Kcal/(Kg℃)=1BTU/hr.°F=418 6.8J/(Kg℃) 6.功率密度:W/cm2 1W/cm2=6.4516 W/in2 7.压力:Mpa 8.导热系数:W/(m℃)1 W/(m℃)=0.01J/(cm s℃)=0.578Btu/(ft.h.F) 9.温度:℃1F=9/5℃+32 1R=9/5℃+491.67 1K=1℃+273.15 电加热功率计算 加热功率的计算有以下三个方面: ●运行时的功率●起动 时的 功率 ●系统中的热损失 所有的计算应以最恶劣的情况考虑: ●最低的环境温度●最短的运行周期 ●最高的运行温度●加热介质的最大重量(流动介质则为最大流量) 计算加热器功率的步骤 ●根据工艺过程,画出加热的工艺流程图(不涉及材料形式及规格)。 ●计算工艺过程所需的热量。 ●计算系统起动时所需的热量及时间。 ●重画加热工艺流程图,考虑合适的安全系数,确定加热器的总功率。 ●决定发热元件的护套材料及功率密度。 ●决定加热器的形式尺寸及数量。 ●决定加热器的电源及控制系统。 有关加热功率在理想状态下的计算公式如下: ●系统起动时所需要的功率: ●系统运行时所需要的功率:

加热系统的散热量 ●管道 ●平面 式中符号,含义如下: P功率:kW Q散热量:管道为W/m;平面为W/m2 m 1 介质重量:kg λ保温材料的导热数:W/mk c 1 介质比热:kcal/kg℃δ保温材料厚度:mm m 2 容器重量:kg d管道外径:mm c 2 介质比热:kcal/kg℃L管道长度:m m 3每小时增加的介质重量或流量: kg/h S系统的散热面积:m2 c 3 介质比热:kcal/kg℃△T介质和环境温度之差或温升:℃h加热时间:h

板式换热器选型计算的方法及公式

(1)求热负荷Q Q=G.ρ.CP.Δt (2)求冷热流体进出口温度 t2=t1+ Q /G .ρ .CP (3)冷热流体流量 G= Q / ρ .CP .(t2-t1 (4)求平均温度差Δtm Δtm=(T1-t2)-(T2-t1)/In(T1-t2)/(T2-t1)或Δtm=(T1-t2)+(T2-t1)/2 (5)选择板型 若所有的板型选择完,则进行结果分析。 (6)由K值范围,计算板片数范围Nmin,Nmax Nmin = Q/ Kmax .Δtm .F P .β Nmax = Q/ Kmin .Δtm .F P .β (7)取板片数N(Nmin≤N≤Nmax ) 若N已达Nmax,做(5)。 (8)取N的流程组合形式,若组合形式取完则做(7)。 (9)求Re,Nu Re = W .de / ν Nu =a1.Re a2.Pr a3 (10)求a,K传热面积F a = Nu .λ / de K= 1 / 1/a h+1/ a c+γc+γc+δ/λ0

F = Q /K .Δtm .β (11)由传热面积F求所需板片数NN NN= F/ Fp + 2 (12)若N <NN ,做(8)。 (13)求压降Δp Eu = a 4.Re a 5 Δp = Eu .ρ.W 2 .ф (14) 若Δp >Δ允 ,做(8); 若Δp ≤Δ允 ,记录结果 ,做(8)。 注: 1.(1)、(2)、(3)根据已知条件的情况进行计算。 2.当T 1 -t 2=T 2-t 1时采用Δtm = (T 1-t2)+(T2-t1)/2 3.修正系数β一般0.7~0.9。 4.压降修正系数ф ,单流程ф度=1~1.2 ,二流程、三流程ф=1.8~2.0,四流程ф=2.6~2.8。 5.a 1、a2、a3、a4、a5为常系数。

加热冷却功率计算

模温机的加热功率和计算方法 点击次数:183 发布时间:2011-10-13 模温机选型的计算方法 1.特殊的情况需进行计算: A、求加热器功率或冷冻功率KW=W×△t×C×S/860×T W=模具重量或冷却水KG △t=所需温度和起始温度之间的温差。 C= 比热油(0.5),钢(0.11),水(1),塑料(0.45~0.55) T=加温至所需温度的时间(小时) B、求泵的大小

需了解客户所需泵浦流量和压力(扬程) P(压力Kg/cm2)=0.1×H(扬程M)×α(传热媒体比重,水=1,油=0.7-0.9) L(媒体所需流量L/min)=Q(模具所需热量Kcal/H)/C(媒体比热水=1 油=0.45)×△t(循环媒体进出模具的温差)×α×60 2.冷冻机容量选择 A、Q(冷冻量Kcal/H)=Q1+Q2 Q1(原料带入模具的热量Kcal/H)=W(每小时射入模具中原料的重量 KG)×C×(T1-T2)×S(安全系数1.5~2) T1 原料在料管中的温度;T2 成品取出模具时的温度 Q2 热浇道所产生的热量Kcal/H B、速算法(有热浇道不适用)

1RT=7~8 OZ 1OZ=28.3g(含安全系数) 1RT=3024Kcal/H=12000BTU/H=3.751KW 1KW=860 Kcal/H 1 Kcal=3.97BTU 3、冷却水塔选用=A+B A、射出成型机用 冷却水塔RT=射出机马力(HP)×0.75KW×860Kcal×0.4÷3024 B、冷冻机用 冷却水塔RT=冷冻机冷吨(HP)×1.25 选择模具温度控制器时,以下各点是主要的考虑因素;

板式换热器选型

板式换热器选型计算书 目录 1、目录 1 2、选型公式 2 3、选型实例一(水-水) 3 4、选型实例二(汽-水) 4 5、选型实例三(油-水) 5 6、选型实例四(麦芽汁-水) 6 7、附表一(空调采暖,水-水)7 8、附表二(空调采暖,汽-水)8 9、附表三(卫生热水,水-水)9 10、附表四(卫生热水,汽-水)10 11、附表五(散热片采暖,水-水)11 12、附表六(散热片采暖,汽-水)12

板式换热器选型计算 1、选型公式 a 、热负荷计算公式:Q=cm Δt 其中:Q=热负荷(kcal/h )、c —介质比热(Kcal/ Kg.℃)、m —介质质量流量(Kg/h )、Δt —介质进出口温差(℃)(注:m 、Δt 、c 为同侧参数) ※水的比热为1.0 Kcal/ Kg.℃ b 、换热面积计算公式:A=Q/K.Δt m 其中:A —换热面积(m 2)、K —传热系数(Kcal/ m 2.℃) Δt m —对数平均温差 K 值表: 介质 水—水 蒸汽-水 蒸汽--油 冷水—油 油—油 空气—油 K 2500~4500 1300~2000 700~900 500~700 175~350 25~58 注:K值按经验取值(流速越大,K值越大。水侧板间流速一般在0.2~0.8m/s 时可按上表取值,汽侧板 间流速一般在15m/s 以内时可按上表取值) Δt max -Δt min T1 Δt max Δt min Δt max 为(T1-T2’)和(T1’-T2)之较大值 Δt min 为(T1-T2’)和(T1’-T2)之较小值 T2’ T1’ c 、板间流速计算公式: q T2 A S n 其中V —板间流速(m/s )、q----体积流量(注意单位转换,m 3 /h – m 3 /s )、 A S —单通道截面积(具体见下表)、n —流道数 2、板式换热器整机技术参数表: BR0.05 BR0.1 BR0.25 BR0.3 BR0.35 BR0.5 BR0.7 BR1.0 BR1.35 最高使用压力Mpa 2.5 使用温度范围℃ -19~200 装机最大换热面积 5 15 30 65 80 120 220 350 500 最大流量m 3 /h 10 25 40 120 150 250 430 650 1730 标准接口法兰DN 25 40 65 80 100 125 150 250 350 单板换热面积m 2 0.051 0.109 0.238 0.308 0.375 0.55 0.71 1.00 1.35 平均流道截面积m 2 0.000494 0.000656 0.00098 0.00118 0.00119 0.001691 0.002035 0.0286 0.004 设备参考质量Kg 87 290 485 870 980 1800 2800 3700 7200 型号说明:BR0.3-1.0-9-E 表示波形为人字形、单板公称换热面积0.3m 2 、设计压力1.0Mpa 、垫片材质EPDM 、总换热面积为9 m 2 板式换热器。 注:以上选型计算方法适用于本公司生产的板式换热器。 选型实例一(卫生热水用:水-水) Ln Δt m = V= 型 号 设 备 参 数

板式换热器选型计算的方法及公式

板式换热器选型计算的方法及公式 (1)求热负荷Q Q=G .ρ.CP .Δt (2)求冷热流体进出口温度 t 2=t 1+Q/G .ρ.CP (3)冷热流体流量 G=Q/ρ.CP .(t2-t1 (4)求平均温度差Δtm Δtm=(T1-t2)-(T2-t1)/In(T1-t2)/(T2-t1)或Δtm=(T 1-t2)+(T2-t1)/2 (5)选择板型 若所有的板型选择完,则进行结果分析。 (6)由K值范围,计算板片数范围Nmin ,Nmax Nmin=Q/Kmax .Δtm.FP .β Nmax=Q/Kmin .Δtm.FP .β (7)取板片数N (Nmin ≤N≤Nmax ) 若N 已达Nmax ,做(5)。 (8)取N 的流程组合形式,若组合形式取完则做(7)。 (9)求Re ,Nu Re=W .de/ν Nu=a 1.Re a 2.Pr a 3 (10)求a ,K 传热面积F a=Nu .λ/de K=1/1/a h+1/a c+γc+γc+δ/λ0 F=Q/K .Δtm.β

艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD 艾瑞德专业生产可拆式板式换热器(PHE )、换热器密封垫(PHEGASKET )、换热器板片(PHEPLATE)并提供板式换热器维护服务(PHEMAINTENANCE )的专业换热器厂家。 ARD 艾瑞德拥有卓越的设计和生产技术以及全面的换热器专业知识,一直以来ARD 致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,良好地运行于各行业,ARD 已发展成为可拆式板式换热器领域卓越的厂家。 ARD 艾瑞德同时也是板式换热器配件(换热器板片和换热器密封垫)领域专业的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval 、斯必克/SPX 、安培威/APV 、基伊埃/GEA 、传特/TRANTER 、舒瑞普/SWEP 、桑德斯/SONDEX 、艾普尔.斯密特/API.Schmidt 、风凯/FUNKE 、萨莫威孚/Thermowave 、维卡勃Vicarb 、东和恩泰/DONGHWA 、艾克森ACCESSEN 、MULLER 、FISCHER 、REHEAT 等)的所有型号将近2000种的板式换热器板片和垫片,ARD 艾瑞德实现了与各品牌板式换热器配件的完全替代。全球几十个国家的板式换热器客户正在使用ARD 提供的换热器配件或接受ARD 的维护服务(包括定期清洗、维修及更换配件等维护服务)。 无论您身在何处,无论您有什么特殊要求,ARD 都能为您提供板式换热器领域的系统解决方案。 (11)由传热面积F求所需板片数NN NN=F/Fp+2 (12)若N <NN ,做(8)。 (13)求压降Δp Eu=a 4.Re a 5 Δp=Eu .ρ.W 2 .ф (14)若Δp >Δ允 ,做(8); 若Δp ≤Δ允 ,记录结果,做(8)。

浸没式电加热器选型参数表

Note —Drawing is For Illustration Purposes Only. Screw plug size, number of elements, thermowell option, terminal box configuration, etc. will vary according to options selected. Screw Plug Immersion Heaters Form PD309Customer Name: Reference No.:Date: Operating Conditions 1.APPLICATION (Describe in Detail): 2.MATERIAL HEATED (Specify): 3.OPERATING TEMPERATURE:°F 4.OPERATING PRESSURE:psig. 5.s Indoor s Outdoor 6.HAZARDOUS AREA ENVIRONMENT:Class Div. Group 7.AMBIENT TEMPERATURE:°F Heater Specifications (Check All That Apply) 1.RATING:Volts Phase Kilowatts 2.SCREW PLUG SIZE (In., NPT)/NUMBER OF HEATING ELEMENTS:s 1"/1s 1-1/4"/1s 1-1/4"/2s 2"/1 s 2"/2 s 2"/3 s 2-1/2"/3 3.SCREW PLUG MATERIAL:s Carbon Steel s Brass s 304 Stainless Steel s 316 Stainless Steel s Other (Specify) 4.HEATING ELEMENT SHEATH MATERIAL:s Steel s Copper s 304 Stainless Steel s 316 Stainless Steel s INCOLOY ? s Other (Specify) 5.HEATING ELEMENT WATT DENSITY:s 6 W/In 2s 15 W/In 2s 20 W/In 2s 23-26 W/In 2s 40-50 W/In 2 s 51-60 W/In 2 s 61-85 W/In 2 s Other (Specify) 6. HEATING ELEMENT IMMERSION LENGTH:(“B”) Dimension Inches: 7.TERMINAL SEALS: s None s Silicone Fluid (500°F) s Silicone Resin (450°F)s RTV (450°F)s Epoxy (250°F)s Hermetic (Maximum 1000°F Sheath Temperature)s Other (Specify) 8.TERMINAL BOX CONSTRUCTION:s General Purpose s Moisture Resistant s Explosion Resistant/Moisture Resistant 9.INTEGRAL THERMOSTAT: s None s 1" and 1-1/4" Size, SPST Contacts s 0-127°F s 60-180°F s 60-240°F s 2" and 2-1/2" Size, DPST Contacts s 0-100°F s 60-250°F s 200-550°F 10. ELECTRICAL CODES: s National Electrical Code (Standard)s U.L. Listed s C.S.A. Certified s Other (Specify) 11. OTHER SPECIAL FEATURES: a.)s Temperature Limit Stop on Thermostat Set at °F b.)s Overheat Thermocouple Welded to Element Sheath Type s J or s K c.)s Other (Specify) 12. MODEL NUMBER: 99-060

相关文档