文档视界 最新最全的文档下载
当前位置:文档视界 › 利用函数图像的对称性解题

利用函数图像的对称性解题

利用函数图像的对称性解题
利用函数图像的对称性解题

利用函数图像的对称性解题

【摘要】函数是数学的重要基础,函数性质的考察和应用重点和热点,而函数图像是函数性质的一种直观表现。函数图像的对称性,充分体现了数学的对称美,具有很好的数学价值。

【关键词】函数;图像;对称性;辅助函数;

二次函数是初中数学的重点内容之一,在初中代数中占有重要位置。其图象是一种直观形象的交流语言,含有大量的信息,为考查同学们的数形结合思想和应用图象信息的能力,二次函数图象信息题成了近年来各地中考的热点。所以学会从图象找出解题的突破点成了关键问题,那就要熟练掌握二次函数的基本知识。比如:二次函数的解析式,二次函数的顶点坐标对称轴方程,各字母的意义以及一些公式,对于这些知识,同学们掌握并不是很困难,但对二次函数图象的对称性,掌握起来并不是很容易,而且对于有关二次函数的一些题目,如果用别的方法会很费力,但用二次函数图象的对称性来解答,也许会有事倍功半的效果。现将这两个典型例题,供同学们鉴赏:例1、已知二次函数的对称轴为x=1,且图象过点(2,8)和(4,0),求二次函数的解析式。

分析:此题中我们可以按照常规的解法,用二次函数的一般式来解,但运算量会很大,因为我们将会解一个三元一次方程组。

另外,我们还可以利用二次函数的对称性来解决此题。本道题目的特点是给了抛物线的对称轴方程及一个x轴上的点坐标。因此我们

可以依据二次函数的对称性,求出抛物线所过的x轴上的另一个点的坐标为(-2,0),这样的话我们就可以选择用二次函数的交点式来求解析式。设二次函数的解析式为y=a(x+2)(x-4),然后将(2,8)代入即可求出a值,此题得解。

本题利用二次函数的对称性解题减少了大量的运算,既可以准确解题又节省了时间,不失为一种好的方法。

例2、若二次函数y=ax2+b(ab≠0),当x取x1、x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值是____________ 分析:此题我们可以采用常见的将x1、x2代入解析式,由于y 值相等,则可求出x1+x2的值为0,将x=0代入解析式可得函数值为b。

我们也可以用二次函数的对称性来解题。由于二次函数的对称性,当函数值相等时,则两点为对称点,且本题中的二次函数y=ax2+b(ab≠0)的对称轴为y轴(x=0),所以,我们也可以得到x1+x2的值为0,将x=0代入解析式可得函数值为b。

相比较我们可以知道,利用二次函数的对称性解决本题,减少了运算量,但对于知识点的理解和掌握的要求大大增加了。要求学生对二次函数的对称性的把握要进一步理解、深化。

我们还可以将上题中的解析式变为一般式y=ax2+bx+c,其他条件不变,结果为c。

下面仅以a>0时为例进行解答。当a<0时也是成立的。

由二次函数的对称性可知,x1+x2在第一个图中为点D的横坐标,

在第二个图中为点F 的横坐标,而求当x=x1+x2时的y 值也就是求此两点的纵坐标,再由对称性可知,在第一个图中点D 的纵坐标与点C 的纵坐标相同,在第二个图中点F 的纵坐标与点D 的纵坐标相同,均为二次函数与y 轴交点的纵坐标。

所以,对于二次函数y=ax2+bx+c (a≠0),当x 取x1、x2时,y

值相等(x1≠x 2),则当x 取-b 2a

时,y 值为顶点纵坐标的值,即y=4ac-b2/4a ,当x 取x1+x2时,y 值为二次函数与y 轴交点的纵坐标,即y=c 。

函数的自对称问题

函数y=f(x)的图象关于直线x=a 对称?f(a+x)=f(a-x); 特别,函数y=f(x)的图象关于y 轴对称?f(x)=f(-x).

函数y=f(x)的图象关于点(a,b)对称?f(a+x)+f(a-x)=2b ; 特别,函数y=f(x)的图象关于原点对称?f(-x)=-f(x).

主要题型:

1.求对称轴(中心):除了三角函数y=sinx ,y=cosx 的对称轴(中心)可以由下列结论直接写出来(对称轴为函数取得最值时的x=)(,2Z k k x k ∈=+ππ

π,对称中心为函数与x 轴的交点()()Z k k k ∈??? ??+2,0,πππ)外,其它函数的对称轴(中心)就必须求解,求解

有两种方法,一是利用对称的定义求解;二是利用图象变换求解.

例1确定函数()x x x f +-=3

1)(的图象的对称中心.

解析1设函数()x x x f +-=3

1)(的图象的对称中心为(h ,k ),在图象上任意取一点P (x ,y ),它关于(h ,k )的对称点为Q (2h-x ,2k-y ),Q 点也在图象上,即有

()x h x h y k -+--=-21223,由于()x x y +-=3

1,两式相加得 ()()h x x h k 211223

3+-+--=,化简得 ()()()()

01241161322=+-+--+---h k h h h x h h x h (*). 由于P 点的任意性,即(*)式对任意x 都成立,从而必有x 的系数和常数项都为0,即h=1,k=1.

所以函数()x x x f +-=3

1)(的图象的对称中心为(1,1). 解析2设函数()x x x g +=3,则g(x)为奇函数,其对称中心为原点,

由于()1)1(1)1(1)(3

+-=+-+-=x g x x x f ,说明函数f(x)的图象是由g(x)的图象分别向右、向上平移1个单位得到,而原点向右、向上分别平移1个单位得到点(1,1).

所以函数()x x x f +-=3

1)(的图象的对称中心为(1,1). 例2曲线f(x)=ax3+bx2+cx ,当x=1-3时,f(x)有极小值;当x=1+3时,f(x)有极大值,且在x=1处切线的斜率为23

.

(1)求f(x);

(2)曲线上是否存在一点P ,使得y=f(x)的图象关于点P 中心对称?若存在,求出点P 的坐标,并给出证明;若不存在,请说明理由.

解析(1)()x f '=3ax2+2bx+c ,由题意知1-3与1+3是

()x f '=3ax2+2bx+c=0的根,代入解得b=-3a ,c=-6a.

又f(x)在x=1处切线的斜率为23,所以

()231'=f ,即3a+2b+c=23,解得

1,21,61==-=c b a .所以f(x)x x x ++-=232161.

(2)假设存在P(x0,y0),使得f(x)的图象关于点P 中心对称,则f(x0+x)+f(x0-x)=2y0, 即-+++++-x x x x x x 02030)(21)(610020302)(21)(61y x x x x x x =-+-+-, 化简得

()0300202023121y x x x x x =-++-.由于是对任意实数x 都成立,

所以 ??

???==??????-+==-341312201003002000y x x x x y x ,而P ??? ??34,1在曲线y=f(x)上. 所以曲线上存在点P ??? ??34,1,使得y=f(x)的图象关于点P 中心对称.

2.证明对称性:证明对称性有三种方法,一是利用定义,二是利用图象变换,三是利用前面的结论(函数y=f(x)的图象关于点(a,b)对称?f(a+x)+f(a-x)=2b)来解决.

例3求证函数

x x y -=28log 2的图象关于点P (1,3)成中心对称. 证明1在函数x x y -=28log 2

的图象上任意取一点A (x ,y ),它关于点P (1,3)的对称点为B (2-x ,6-y ),因为

)2(2)2(8log 2x x ----=--=-+=-=62log 32log 3)2(8log 222x x x x x x x x -28log 2

y -=6,

所以点B 在函数

x x y -=28log 2的图象上,故函数x x y -=28log 2的图象关于点P (1,3)对称.

证明2因为

()()1111log 32log 328log 222---++=-+=-=x x x x x x y . 由于x x y -+=11log 2是奇函数,所以

x x y -+=11log 2的图象关于原点对称,将它的图象分别向右平移1个单位,向上平移3个单位,就得到函数x x y -=28log 2的图象,所以x x y -=28log 2的图象关于点P (1,3)对称.

()()()()()()()()32664log 111164log 1218log 1218log )1()1( 32222

?===??

????+--+=---++-+=-++x x x x x x x x x f x f 证明所以x x y -=28log 2的图象关于点P (1,3)对称.

已知函数的对称性求函数的值或参数的值:

由函数的对称性求值,关键是将对称问题转化为等式问题,然后对变量进行赋值求解.例4已知定义在R 上的函数f(x)的图象关于点??? ??-0,43对称,且满足,2)0(,1)1(),23()(-==-+-=f f x f x f 则f(1)+f(2)+f(3)+…+f(2005)的值为().

A .-2B.-1C.0D.1

解析由f(x)的图象关于点??? ??-0,43对称,则说明函数

)43(-x f 是奇函数,也就是有

-=--)43(x f )43(-x f ,即)23()(---=x f x f ,又

)23()(+-=x f x f ,所以)23(--x f )23(+=x f ,即)()(x f x f =-,函数f(x)

是偶函数.

所以1)1()1(==-f f ,又)()23()2323()3(x f x f x f x f =+-=++=+,即f(x)以3为周期,f(2)=f(-1)=1,f(3)=f(0)=-2,

所以f(1)+f(2)+f(3)+…+f(2005)=668(f(1)+f(2)+f(3))+f(2005)=f(2005)=f(1)=1,选D.

例5已知函数f(x)=x x a x a ++-

2326的图象关于点??? ??34,1中心对称,求f(x).

解析1设f(x)图象上任意一点A (x ,y ),它关于点??? ??34,1的对称

点为B ??? ??--y x 38,2,由于A 、B 都在f(x)上,所以

()()?????-+-+--=-++-=x x a x a y x x a x a y 2222638262323,相加整理得23238+=a ,解得a=1.

所以f(x)=x x x ++-

232161. 5结论

其图象是一种直观形象的交流语言,含有大量的信息,为考查同学们的数形结合思想和应用图象信息的能力,二次函数图象信息题成了近年来各地中考的热点。所以学会从图象找出解题的突破点成了关键问题,那就要熟练掌握二次函数的基本知识。

参考文献

[1]仇志刚.运用空间图形的对称性解题举隅[J].中国西部科技.2008(35)

[2]刘书安.对称思想在中学物理中的应用[J].新课程(教育学术版).2008(12)

[3]陈建勋.函数图像的对称性探究[J].考试(教研版).2008(11)

[4]武燕,张丽,李靖.第二类曲线和曲面积分的对称性[J].中国教育技术装备.2008(18)

《函数对称性的解题方法归纳》

函数对称性的解题方法归纳 讲函数的对称性主要是讲奇偶函数图像的对称性,函数与反函数图像的对称性。前者是函数自身的性质,而后者是函数的变换问题。下文中我们均简称为函数的变换性。函数的对称性在近几年高考中屡见不鲜,对于解决其它问题也很有帮助,同时也是数学美的很好体现。现通过函数自身的对称性和不同函数之间的对称变换这两个方面来探讨函数对称性有关的性质。 1. 函数自身的对称性探究 设函数 )2()2(),()(x f x f x f +=-∞+-∞上满足在,)7()7(x f x f +=-,且在闭区间[0,7]上只有0)3()1(==f f (1)试判断函数)(x f y =的奇偶性; (2)试求方程0)(=x f 在闭区间[-2005,2005]上根的个数并证明你的结论。 分析:由)7()7(),2()2(x f x f x f x f +=-+=-可得:函数图象既关于x =2对称,又关于x =7对称,进而可得到周期性,然后再继续求解,而本题关键是要首先明确函数的对称性,因此,熟悉函数对称性是解决本题的第一步。 定理1 函数)(x f y =的图像关于直线x =a 对称的充要条件是)()(x a f x a f -=+即)2()(x a f x f -= 证明(略) 推论 函数)(x f y =的图像关于y 轴对称的充要条件是)()(x f x f -= 定理2 函数)(x f y =的图像关于点A (a ,b )对称的充要条件是 b x a f x f 2)2()(=-+ 证明(略) 推论 函数)(x f y =的图像关于原点O 对称的充要条件是0)()(=-+x f x f 偶函数、奇函数分别是定理1,定理2的特例。 定理3 ①若函数)(x f y =的图像同时关于点A (a ,c )和点B (b ,c )成中心对称(b a ≠),则)(x f y =是周期函数,且b a -2是其一个周期。

函数的对称性

函数的对称性 知识梳理 一、对称性的概念及常见函数的对称性 1、对称性的概念 ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数;②一次函数;③二次函数;④反比例函数;⑤指数函数;⑥对数函数;⑦幂函数;⑧正弦函数; ⑨正弦型函数sin()y A x ω?=+既是轴对称又是中心对称;⑩余弦函数;⑾正切函数;⑿耐克函数; ⒁绝对值函数:这里主要说的是(||)y f x =和|()|y f x =两类。前者显然是偶函数,它会关于y 轴对称;后者是把x 轴下方的图像对称到x 轴的上方,是否仍然具备对称性,这也没有一定的结论,例如|ln |y x =就没有对称性,而|sin |y x =却仍然是轴对称。 ⒂形如(0,)ax b y c ad bc cx d +=≠≠+的图像是双曲线,其两渐近线分别直线d x c =- (由分母为零确定)和直线a y c =(由分子、分母中x 的系数确定),对称中心是点(,)d a c c -。 二、抽象函数的对称性 【此类问题涉及到了函数图象的两种对称性,一种是同一函数自身的对称性,我们称其为自对称;另一种是两个函数之间的对称性 ,我们称其为互对称。】 1、函数)(x f y =图象本身的对称性(自对称问题) (1)轴对称 ①)(x f y =的图象关于直线a x =对称 ?)()(x a f x a f -=+ ?)2()(x a f x f -= ?)2()(x a f x f +=-

利用函数图像的对称性解题

利用函数图像的对称性解题 【摘要】函数是数学的重要基础,函数性质的考察和应用重点和热点,而函数图像是函数性质的一种直观表现。函数图像的对称性,充分体现了数学的对称美,具有很好的数学价值。 【关键词】函数;图像;对称性;辅助函数; 二次函数是初中数学的重点内容之一,在初中代数中占有重要位置。其图象是一种直观形象的交流语言,含有大量的信息,为考查同学们的数形结合思想和应用图象信息的能力,二次函数图象信息题成了近年来各地中考的热点。所以学会从图象找出解题的突破点成了关键问题,那就要熟练掌握二次函数的基本知识。比如:二次函数的解析式,二次函数的顶点坐标对称轴方程,各字母的意义以及一些公式,对于这些知识,同学们掌握并不是很困难,但对二次函数图象的对称性,掌握起来并不是很容易,而且对于有关二次函数的一些题目,如果用别的方法会很费力,但用二次函数图象的对称性来解答,也许会有事倍功半的效果。现将这两个典型例题,供同学们鉴赏:例1、已知二次函数的对称轴为x=1,且图象过点(2,8)和(4,0),求二次函数的解析式。 分析:此题中我们可以按照常规的解法,用二次函数的一般式来解,但运算量会很大,因为我们将会解一个三元一次方程组。 另外,我们还可以利用二次函数的对称性来解决此题。本道题目的特点是给了抛物线的对称轴方程及一个x轴上的点坐标。因此我们

可以依据二次函数的对称性,求出抛物线所过的x轴上的另一个点的坐标为(-2,0),这样的话我们就可以选择用二次函数的交点式来求解析式。设二次函数的解析式为y=a(x+2)(x-4),然后将(2,8)代入即可求出a值,此题得解。 本题利用二次函数的对称性解题减少了大量的运算,既可以准确解题又节省了时间,不失为一种好的方法。 例2、若二次函数y=ax2+b(ab≠0),当x取x1、x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值是____________ 分析:此题我们可以采用常见的将x1、x2代入解析式,由于y 值相等,则可求出x1+x2的值为0,将x=0代入解析式可得函数值为b。 我们也可以用二次函数的对称性来解题。由于二次函数的对称性,当函数值相等时,则两点为对称点,且本题中的二次函数y=ax2+b(ab≠0)的对称轴为y轴(x=0),所以,我们也可以得到x1+x2的值为0,将x=0代入解析式可得函数值为b。 相比较我们可以知道,利用二次函数的对称性解决本题,减少了运算量,但对于知识点的理解和掌握的要求大大增加了。要求学生对二次函数的对称性的把握要进一步理解、深化。 我们还可以将上题中的解析式变为一般式y=ax2+bx+c,其他条件不变,结果为c。 下面仅以a>0时为例进行解答。当a<0时也是成立的。 由二次函数的对称性可知,x1+x2在第一个图中为点D的横坐标,

北京--正弦函数图象的对称性(檀晋轩)CASIO

课题:正弦函数、余弦函数的图象和性质(五)——正弦函数图象的对称性 教材:人教版全日制普通高级中学数学教科书(必修)第一册(下) 【教学目标】 1.使学生掌握正弦函数图象的对称性及其代数表示形式,理解诱导公式 x x sin )sin(=-π(∈x R )与x x sin )2sin(-=-π(∈x R )的几何意义,体会正 弦函数的对称性. 2.在探究过程中渗透由具体到抽象,由特殊到一般以及数形结合的思想方法,提高学生观察、分析、抽象概括的能力. 3.通过具体的探究活动,培养学生主动利用信息技术研究并解决数学问题的能力,增强学生之间合作与交流的意识. 【教学重点】 正弦函数图象的对称性及其代数表示形式. 【教学难点】 用等式表示正弦函数图象关于直线2 π =x 对称和关于点)0,(π对称. 【教学方法】 教师启发引导与学生自主探究相结合. 【教学手段】 计算机、图形计算器(学生人手一台). 【教学过程】 一、复习引入 1.展示生活实例 对称在自然界中有着丰富多彩的显现,各种对称图案、对称符号也都十分普遍(见下图). 2.复习对称概念

初中我们已经学习过轴对称图形和中心对称图形的有关概念: 轴对称图形——将图形沿一条直线折叠,直线两侧的部分能够互相重合; 中心对称图形——将图形绕一个点旋转180°,所得图形与原图形重合. 3.作图观察 请同学们用图形计算器画出正弦函数的图象(见右图),仔细观察正弦曲线是否是对称图形?是轴对称图形还是中心对称图形? 4.猜想图形性质 经过简单交流后,能够发现正弦曲线既是轴对称图形也是中心对称图形,并能够猜想出一部分对称轴和对称中心.(教师点评并板书) 如何检验猜想是否正确? 我们知道, 诱导公式x x sin )sin(-=-(∈x R ),刻画了正弦曲线关于原点对称,而x x cos )cos(=-(∈x R ),刻画了余弦曲线关于y 轴对称. 从这两个特殊的例子中我们得到一些启发,如果我们能够用代数式表示所发现的对称性,就可以从代数上进行严格证明. 今天我们利用图形计算器来研究正弦函数图象的对称性.(板书课题) 二、探究新知 分为两个阶段,第一阶段师生共同探讨正弦曲线的轴对称性质,第二阶段学生自主探索正弦曲线的中心对称性质. (一)对于正弦曲线轴对称性的研究 第一阶段,实例分析——对正弦曲线关于直线2 π =x 对称的研究. 1.直观探索——利用图形计算器的绘图功能进行探索 请同学们在同一坐标系中画出正弦曲线和直线 2 π = x 的图象,选择恰当窗口并充分利用画图功能对问 题进行探索研究(见右图),在直线2 π =x 两侧正弦函 数值有什么变化规律? 给学生一定的时间操作、观察、归纳、交流,最后得出猜想:当自变量在2 π =x 左右对称取值时,正 弦函数值相等.

函数的对称性82459

函数的对称性 一、教学目标 函数图象的对称性是一类函数的特性,是函数性质的重要方面,它包括自身对称和两个函数图象之间的对称,理解掌握函数对称性,对数学问题的解决有很大的帮助,对也是数形结合思想的重要体现。 1.自身对称函数,函数图象本身具有对称轴或是对称中心,该函数的图象是轴对称图形或是中心对称图形,奇函数与偶函数是最典型的两类函数,其它自身对称的函数都可以由奇偶函数平移得到; 2.两个函数图象的对称,是指两个图形之间的关系,它们之间存在某种关联,即它们关于某一点对称或是关于某一条直线对称,研究其中一个函数的性质就可知另一个函数的特点(互为反函数的两个函数图象)。 二、举例分析 例1. 设()f x 是定义在R 上的函数, (1)若对任意x R ∈,都有()()f a x f b x -=+成立,则函数()f x 的图象关于直线2 a b x +=对称; (2)若对任意x R ∈,都有()()22f x f a x b +-=,则函数()f x 的图象关于点(),a b 成中心对称。 选题目的:通过此题的学习,让学生明白一个道理,函数()f x 的图象是轴对称或是中心对称,函数解析式()f x 应满足一关系式是什么,并能通过奇偶函数的平移获得理解这种关系式的钥匙。 思路分析: (1)要证明()f x 图象上任意一点()00,P x y 关于直线2 a b x +=对称的点()00,Q a b x y +-也在()f x 的图象上。 事实上,()()()()00000y f x f a a x f b a x f a b x ==--=+-=+-????????,即得点()00,Q a b x y +-也在()f x 的图象上。

巧用二次函数图象的对称性解题解析

巧用二次函数图象的对称性解题解析 新盈中学王永升 2010-6-29 二次函数是初中数学的重点内容之一,在初中代数中占有重要位置。其图象是一种直观形象的交流语言,含有大量的信息,为考查同学们的数形结合思想和应用图象信息的能力,二次函数图象信息题成了近年来各地中考的热点。所以学会从图象找出解题的突破点成了关键问题,那就要熟练掌握二次函数的基本知识。比如:二次函数的解析式,二次函数的顶点坐标对称轴方程,各字母的意义以及一些公式,对于这些知识,同学们掌握并不是很困难,但对二次函数图象的对称性,掌握起来并不是很容易,而且对于有关二次函数的一些题目,如果用别的方法会很费力,但用二次函数图象的对称性来解答,也许会有事倍功半的效果。现将这两个典型例题,供同学们鉴赏:例1、已知二次函数的对称轴为x=1,且图象过点(2,8)和(4,0),求二次函数的解析式。 分析:此题中我们可以按照常规的解法,用二次函数的一般式 来解,但运算量会很大,因为我们将会解一个三元一次方程组。 另外,我们还可以利用二次函数的对称性来解决此题。本道题 目的特点是给了抛物线的对称轴方程及一个x轴上的点坐标。因此 我们可以依据二次函数的对称性,求出抛物线所过的x轴上的另一 个点的坐标为(-2,0),这样的话我们就可以选择用二次函数的

交点式来求解析式。设二次函数的解析式为y=a(x+2)(x-4),然后将(2,8)代入即可求出a值,此题得解。 本题利用二次函数的对称性解题减少了大量的运算,既可以准确解题又节省了时间,不失为一种好的方法。 例2、若二次函数y=ax2+b(ab≠0),当x取x1、x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值是____________ 分析:此题我们可以采用常见的将x1、x2代入解析式,由于y 值相等,则可求出x1+x2的值为0,将x=0代入解析式可得函数值为b。 我们也可以用二次函数的对称性来解题。由于二次函数的对称性,当函数值相等时,则两点为对称点,且本题中的二次函数 y=ax2+b(ab≠0)的对称轴为y轴(x=0),所以,我们也可以得到x1+x2的值为0,将x=0代入解析式可得函数值为b。 相比较我们可以知道,利用二次函数的对称性解决本题,减少了运算量,但对于知识点的理解和掌握的要求大大增加了。要求学生对二次函数的对称性的把握要进一步理解、深化。 我们还可以将上题中的解析式变为一般式y=ax2+bx+c,其他条件不变,结果为c。 下面仅以a>0时为例进行解答。当a<0时也是成立的。

正弦函数图象的对称轴与对称中心

正弦函数图象的对称轴与对称中心 Revised on November 25, 2020

函数 )sin(?ω+=x A y 图象的对称轴与对称中心 新疆民丰县一中 亚库普江·奥斯曼 摘要: 新课标高中数学教材上函数的性质就着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏的会出现函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴、反此例函数的对称性、三角函数的对称性,因而考查的频率一直比较高。以我的经验看,这方面一直是教学的难点,尤其是轴象函数的对称性判断。所以这里我对高中阶段所涉及的函数)sin(?ω+=x A y 的对称性知识提出自己的观点。 关键词:对称轴,对称中心,正弦型函数 函数轴对称:如果一个函数的图象沿一条直线对折,直线两则的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 中心对称:如果一个函数的图像沿一个点折旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 正弦函数x y sin =的图像既是轴对称又是中心对称,它的图象关于过最值点且垂直于x 轴的直线分别成轴对称图形; x y sin =的图象的对称轴是经过其 图象的“峰顶点”或“谷底点”,且平行于y 轴的无数条直线;它的图象关于x 轴 的交点分别成中心对称图形。 ∴正弦函数x y sin =的对称轴方程为2 π π+ =k y ,对称中心点为 (0,πk ),其中 Z k ∈。 正弦型函数 )sin(?ω+=x A y 是由正弦函数x y sin =演变而成。

(完整word)高考专题函数对称性

函数对称性 一知识点精讲: I 函数)(x f y =图象本身的对称性(自身对称) 1、)()(x b f x a f -=+?)(x f y =图象关于直线2 2)()(b a x b x a x +=-++=对称 证明:函数)(x f y =图象上的任一点00(,)P x y (满足00()f x y =)关于直线a b x +=的对称点为 (Q a b +∴点Q 推论1推论2推论32、f ((Q a b +∴点Q 推论1推论2推论3II 1、y 2、y 345.函数证明:函数()y f a x =+图象上的任一点00(,)P x y (满足00()f a x y +=)关于直线2b a x -= 的对称点为00(,)Q b a x y --,Q 000[()]()f b b a x f a x y ---=+= ∴点Q 在函数()y f b x =-的图象上;反之函数()y f b x =-的图象上任一点关于直线2 b a x -= 的对称点也在函数()y f a x =+图象上.从而函数()y f a x =+与()y f b x =-的图象关于直线2 b a x -=对称. 推论1:函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称 推论2:函数)(x f y =与)2(x a f y -=图象关于直线a x =对称 推论3:函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称

6若函数)(x f y =的定义域为R ,则函数()y f a x =+与()y f b x =--的图象关于点( ,0)2 b a -对称. 证明:函数()y f a x =+图象上的任一点00(,)P x y (满足00()f a x y +=)关于点(,0)2 b a -的对称点为00(,)Q b a x y ---,Q 000[()]()f b b a x f a x y ----=-+=- ∴点Q 在函数()y f b x =--的图象上;反之函数()y f b x =--的图象上任一点关于点(,0)2 b a -的对称点也在函数()y f a x =+图象上.从而函数()y f a x =+与()y f b x =--的图象关于点(,0)2b a -对称. 二典例解析: 11x (log 2f 解析:)(x f -(log f 234 5 解析:的,故6、设y )2(x f =解析:)2(x f 是由2 1=x ,=x 7个实根之和为解析:)(x f y =的图象关于直线3=x 对称,故五个实根,有两对关于直线3=x 对称,它们的和为12,还有一个根就是3。故这5个实根之和为15,正确答案为15 8、设函数)(x f y =的定义域为R ,则下列命题中, ①若)(x f y =是偶函数,则)2(+=x f y 图象关于y 轴对称; ②若)2(+=x f y 是偶函数,则)(x f y =图象关于直线2=x 对称; ③若)2()2(x f x f -=-,则函数)(x f y =图象关于直线2=x 对称; ④)2(-=x f y 与)2(x f y -=图象关于直线2=x 对称, 其中正确命题序号为_______。 解析:①错)2(+=x f y 关于直线2-=x 对称,②对③错若)2()2(x f x f -=-,则函数)(x f y =图象关于直线0=x 对称;④对正确答案为②④

二次函数经典解题技巧

龙文教育学科教师辅导讲义

解:(1)根据题意,得?????+?-?=-+-?--?=. 0405, )1(4)1(02 2c a c a …2分 解得 ? ? ?-==.5, 1c a …………………………3分 ∴二次函数的表达式为542 --=x x y .……4分 (2)令y =0,得二次函数542 --=x x y 的图象与x 轴 的另一个交点坐标C (5, 0).……………5分 由于P 是对称轴2=x 上一点, 连结AB ,由于262 2= +=OB OA AB , 要使△ABP 的周长最小,只要PB PA +最小.…………………………………6分 由于点A 与点C 关于对称轴2=x 对称,连结BC 交对称轴于点P ,则PB PA += BP +PC =BC ,根据两点之间,线段最短,可得PB PA +的最小值为BC . 因而BC 与对称轴2=x 的交点P 就是所求的点.……………………………………8分 设直线BC 的解析式为b kx y +=,根据题意,可得? ? ?+=-=.50,5b k b 解得???-==.5, 1b k 所以直线BC 的解析式为5-=x y .…………………………………………………9分 因此直线BC 与对称轴2=x 的交点坐标是方程组? ? ?-==5,2x y x 的解,解得???-==.3, 2y x 所求的点P 的坐标为(2,-3).……………………………10分 压轴题中求最值 此种题多分类讨论,求出函数关系式,再求各种情况的最值,最后求出最值。 典型例题: 1如图,在梯形ABCD 中,AD ∥BC ,∠B =90°,BC =6,AD =3,∠DCB =30°.点E 、F 同时从B 点出发,沿射线BC 向右匀速移动.已知F 点移动速度是E 点移动速度的2倍,以EF 为一边在CB 的上方作等边△EFG .设E 点移动距离为x (x >0). ⑴△EFG 的边长是____(用含有x 的代数式表示),当x =2时,点G 的位置在_______; ⑵若△EFG 与梯形ABCD 重叠部分面积是y ,求 ①当0<x ≤2时,y 与x 之间的函数关系式; ②当2<x ≤6时,y 与x 之间的函数关系式; ⑶探求⑵中得到的函数y 在x 取含何值时,存在最大值,并求出最大值. A D

正弦函数图象的对称轴与对称中心

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 函数)sin(?ω+=x A y 图象的对称轴与对称中心 新疆民丰县一中 亚库普江·奥斯曼 摘要: 新课标高中数学教材上函数的性质就着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏的会出现函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴、反此例函数的对称性、三角函数的对称性,因而考查的频率一直比较高。以我的经验看,这方面一直是教学的难点,尤其是轴象函数的对称性判断。所以这里我对高中阶段所涉及的函数)sin(?ω+=x A y 的对称性知识提出自己的观点。 关键词:对称轴,对称中心,正弦型函数

函数轴对称:如果一个函数的图象沿一条直线对折,直线两则的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 中心对称:如果一个函数的图像沿一个点折旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 正弦函数x y sin =的图像既是轴对称又是中心对称,它的图象关于过最值点且垂直于x 轴的直线分别成轴对称图形; x y sin =的图象的对称轴是经过其图象的“峰顶点”或“谷底点”,且平行于y 轴的无数条直线;它的图象关于x 轴的交点分别成中心对称图形。 ∴正弦函数x y sin =的对称轴方程为 2 π π+ =k y ,对称中心点为(0,πk ),其中 Z k ∈。 正弦型函数)sin(?ω+=x A y 是由正弦函数 x y sin =演变而成。 一般只要知道正弦函数x y sin =图象的对称轴与对称中心就可以快速准确的求出正弦型函数

二次函数图像和性质习题精选(含答案)

二次函数图像和性质习题精选 一.选择题(共30小题) 1.已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是() A.B.> D. C. 2.函数y=ax2+1与y=(a≠0)在同一平面直角坐标系中的图象可能是() A.B.| D. C. 3.已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是()A.B.# D. C. 4.已知反比例函数y=的图象如图,则二次函数y=2kx2﹣4x+k2的图象大致为() C.D. A.B.% 5.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表: X﹣101" 3 y﹣1353 下列结论:(1)ac<0; (2)当x>1时,y的值随x值的增大而减小. (3)3是方程ax2+(b﹣1)x+c=0的一个根; (4)当﹣1<x<3时,ax2+(b﹣1)x+c>0. / 其中正确的个数为() A.4个B.3个C.2个D.1个

6.二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是() A.函数有最小值B. 对称轴是直线x= ` C.当x <,y随x的增大而减小 D.当﹣1<x<2时,y>0 7.如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M是抛物线y=x2+bx+c的顶点,则方程x2+bx+c=1的解的个数是() A.0或2B.: 0或1 C.1或2D.0,1或2 8.已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是() A.6B.# 5 C.4D.3 9.二次函数y=ax2+bx+c图象上部分点的坐标满足下表: x…﹣3﹣2$ ﹣1 01… y…﹣3﹣2﹣3﹣6& ﹣11 … 则该函数图象的顶点坐标为() A.(﹣3,﹣3)B.(﹣2,﹣2)C.(﹣1,﹣3)/ D. (0,﹣6) 10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是()

正弦函数图象的对称轴与对称中心

正弦函数图象的对称轴 与对称中心 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

函数 )sin(?ω+=x A y 图象的对称轴与对称中心 新疆民丰县一中 亚库普江·奥斯曼 摘要: 新课标高中数学教材上函数的性质就着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏的会出现函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴、反此例函数的对称性、三角函数的对称性,因而考查的频率一直比较高。以我的经验看,这方面一直是教学的难点,尤其是轴象函数的对称性判断。所以这里我对高中阶段所涉及的函数)sin(?ω+=x A y 的对称性知识提出自己的观点。 关键词:对称轴,对称中心,正弦型函数 函数轴对称:如果一个函数的图象沿一条直线对折,直线两则的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 中心对称:如果一个函数的图像沿一个点折旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 正弦函数x y sin =的图像既是轴对称又是中心对称,它的图象关于过最值点且垂直于x 轴的直线分别成轴对称图形; x y sin =的图象的对称轴是经过其 图象的“峰顶点”或“谷底点”,且平行于y 轴的无数条直线;它的图象关于x 轴 的交点分别成中心对称图形。 ∴正弦函数x y sin =的对称轴方程为2 π π+ =k y ,对称中心点为 (0,πk ),其中 Z k ∈。 正弦型函数 )sin(?ω+=x A y 是由正弦函数x y sin =演变而成。

三角函数图象的对称性

三角函数图象的对称性质及其应用 观察三角函数的图象,不难发现它们都具有对称性 ,虽然历届高考中关于三角函数图象的对称性问题屡有涉及,但教材中却是一个盲点。为此,本文谈谈三角函数图象的对称性质及其应用。 一、正弦曲线和余弦曲线都是轴对称图形 性质1、函数)sin(?ω+=x A y 和)cos(?ω+=x A y 的图象关于过最值点且垂直于x 轴的直线分别成轴对称图形; )sin(?ω+=x A y 对称轴方程的求法是:令1)sin(±=+?ωx ,得 2ππ?ω+=+k x )(Z k ∈,则ω ?π22)12(-+= k x ,所以函数)sin(?ω+=x A y 的图象的对称轴方程为ω?π22)12(-+=k x ; )cos(?ω+=x A y 对称轴方程的求法是:令1)cos(±=+?ωx ,得π?ωk x =+)(Z k ∈,则ω?π-= k x ,所以函数)cos(?ω+=x A y 的图象的对称轴方程为ω?π-=k x 。 例1、函数)62sin(3π+ =x y 图象的一条对称轴方程是( ) (A )0=x (B )32π=x (C )6π-=x (D )3π=x 解:由性质1知,令1)62sin(3±=+ πx 得262πππ+=+k x )(Z k ∈,即62ππ+=k x )(Z k ∈,取1=k 时,3 2π=x ,故选(B )。 例2、函数)3 3cos(21)(π+=x x f 的图象的对称轴方程是 解:由性质1知, 令1)33cos(±=+ πx 得ππk x =+33)(Z k ∈,即93ππ-=k x )(Z k ∈,所以)3 3cos()(π+=x x f 的图象的对称轴方程是9 3ππ-=k x )(Z k ∈。 二、正弦曲线和余弦曲线都是中心对称图形 性质2、函数)sin(?ω+=x A y 和)cos(?ω+=x A y 的图象关于其与x 轴的交点分别成中心对称图形; )sin(?ω+=x A y 的对称中心求法是:令0)sin(=+?ωx ,得

(推荐)高中数学函数:题型分类

高中数学函数学生常见问题以及函数常见题型、解法指导 一、学生常见问题: (一)、认知层面的问题: 这个问题是在高一学习函数时就一直在困扰学生的问题。我们要了解高一学生在学习数学时产生困难的原因,首先要了解学生的数学认知结构。即学生在对数学对象、数学知识和数学经验感知和理解的基础上形成的一种心理结构。通俗地说:数学认知结构就是人们按照自己的经验与理解,根据自己的感知、记忆、思维的特点,把数学知识在大脑中组合而成的具有内部规律的整体结构。数学认知结构受个体认知特点的制约,具有浓厚的认知主体性与鲜明的个性色彩。高一新生在学习数学时的困难正是由于数学认知结构的特点所决定。高一新生在学习高中数学时,碰到的困难比如无法理解函数的概念,无法建立对应的观念,对集合的概念理解不够透彻等问题,导致高中数学的学习存在很大的困难。 (二)、基础知识层面的问题: 在进行高三复习的时候,同学们普遍的反映都不太好。原因在于,同学们感觉学校老师复习得很快。学校老师的讲课思路是先大致的把知识点串讲一遍,接着在课上做一些例题,课后给同学发一些卷子以做为练习,这些练习在做完之后老师也不一定会仔细的讲解,知识点的落实也不太扎实。因此同学感觉老师的复习很快。(因此这里学生会出现的问题就是基础知识不扎实)那么我们在具体的操作中,首先应该了解学生复习的程度。在总复习的过程中侧重于整体性,所以可以先了解一下学生是否有一个整体的框架。(框架的作用是帮助PEC检查学生的知识体系是否完善) 函数被分成了两块:横轴和纵轴。(参见策略库函数基本概念第一部分)

接下来,就是要求学生能够对这个表格里的每个点都比较了解。(框架完善了,就要看基础知识点是否真的落实)

2020中考数学 解题技巧专题:二次函数图像信息题归类

解题技巧专题:二次函数图像信息题归类 ◆类型一 由抛物线的位置确定代数式的符号或未知数的值 1.二次函数y =ax 2+bx +c(c ≠0)的图像如图所示,a ,b ,c 的取值范围分别是( ) A .a<0,b<0,c<0 B .a<0,b>0,c<0 C .a>0,b>0,c<0 D .a>0,b<0,c<0 第1题图 第2题图 2.二次函数y =ax 2+bx +c(a ≠0)的图像如图所示,则点??? ?b ,c a 在第________象限( ) A .一 B .二 C .三 D .四 3.(保定高阳县期末)已知二次函数y =ax 2+bx +c +2的图像如图所示,顶点坐标为(-1,0),下列结论:①abc <0;②b 2-4ac =0;③a >2;④4a -2b +c >0.其中正确结论的个数是( ) A .1个 B .2个 C .3个 D .4个 第3题图 第4题图 4.已知y =ax 2+bx +c 的图像如图所示,则a +b +c________0,a -b +c________0,2a +b________0. ◆类型二 利用二次函数的图像解方程或不等式 5.已知函数y =x 2-2x -2的图像如图所示,根据其中提供的信息,可求得使y ≥1成立的x 的取值范围是( ) A .-1≤x ≤3 B .-3≤x ≤1 C .x ≥-3 D .x ≤-1或x ≥3 第5题图 第6题图 第7题图 6.已知 二次函数y =-x 2+2x +m 的部分图像如图所示,则关于x 的一元二次方程-x 2+2x +m =0的解为________________.【方法13】 7.★如图是函数y =x 2+bx -1的图像,根据图像提供的信息,确定使-1≤y ≤2的自变量x 的取值范围是________________. ◆类型三 根据抛物线的特征确定其他函数的图像 8.二次函数y =ax 2+bx +c 的图像如图所示,那么一次函数y =ax +b 的图像大致是( )

正弦函数的图像和性质

1 定义编辑数学术语 正弦函数是三角函数的一种. 定义与定理 定义:对于任意一个实数x 都对应着唯一的角(弧度制中等于这个实数) ,而这个角又对应 着唯一确定的正弦值Sin X ,这样,对于任意一个实数X都有唯一确定的值Sin X与它对应, 按照这个对应法则所建立的函数,表示为f(x)=sin X ,叫做正弦函数。 正弦函数的定理:在一个三角形中,各边和它所对角的正弦的比相等,即a/Sin A=b/Sin B=c/Sin C 在直角三角形ABC中,/ C=90 ,y为一条直角边,r为斜边,X为另一条直角边(在坐标 系中,以此为底),贝U Sin A=y∕r,r= √( x^2+y^2) 2 性质 编辑图像 图像是波形图像(由单位圆投影到坐标系得出) ,叫做正弦曲线(Sine curve) 正弦函数X∈& 定义域 实数集R 值域 [-1,1] (正弦函数有界性的体现) 最值和零点 ①最大值:当X=2k ∏+ ( ∏/2) , k ∈Z 时,y(max)=1 ②最小值:当X=2k ∏+ (3∏/2), k∈Z 时,y(min)=-1 零值点:( kπ ,0) ,k∈Z 对称性 既是轴对称图形,又是中心对称图形。 1) 对称轴:关于直线X= ( π /2) +kπ , k∈Z 对称 2) 中心对称:关于点(k ∏ , 0), k∈Z对称 周期性最小正周期:y=SinX T=2 π 奇偶性 奇函数(其图象关于原点对称) 单调性 在[-∏∕2+2k ∏ , ∏∕2+2k ∏], k∈Z 上是单调递增. 在[∏∕2+2k ∏ , 3∏∕2+2k ∏], k ∈Z 上是单调递减. 3 正弦型函数及其性质 编辑 正弦型函数解析式:y=Asin (ω x+ φ )+h

函数对称性

函数对称性 一 知识点 I 函数图象本身的对称性(自身对称) 若,则具有周期性;若,则具有对称性:“内同表示周期性,内反表示对称性”。 1、图象关于直线对称 推论1:的图象关于直线对称 推论2、的图象关于直线对称 推论3、的图象关于直线对称 2、的图象关于点对称 推论1、的图象关于点对称 推论2、的图象关于点对称 推论3、的图象关于点对称 II 两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解) 1、与图象关于Y轴对称 2、与图象关于原点对称函数 3、函数与图象关于X轴对称 4、函数与其反函数图象关于直线对称 5.函数与图象关于直线对称 推论1:函数与图象关于直线对称 推论2:函数与图象关于直线对称 推论3:函数与图象关于直线对称 二典例解析: 1、定义在实数集上的奇函数恒满足,且时, ,则________。 2、已知函数满足,则图象关于__________对称。 3、函数与函数的图象关于关于__________对称。 4、设函数的定义域为R,且满足,则的图象关于__________对称。 5、设函数的定义域为R,且满足,则的图象关于__________对称。 6、设的定义域为R,且对任意,有,则关于__________对称,图象关于

__________对称,。 7、已知函数对一切实数x满足,且方程有5个实根,则这5个实根之和为() A、5 B、10 C、15 D、18 8、设函数的定义域为R,则下列命题中,①若是偶函数,则图象关于y 轴对称;②若是偶函数,则图象关于直线对称;③若,则函数图象关于直线对称;④与图象关于直线对称,其中正确命题序号为_______。

关于函数图像对称性问题

关于函数图像对称性的问题 胡春林 指导老师:刘荣玄 【摘要】函数图象的对称性反映了函数的特性,是研究函数性质的一个重要方面,函数图象的对称性包括一个函数图象自身的对称性与两个函数图象之间的对称性。 【关键词】函数图像对称性轴对称中心对称 一、函数自身的对称性的问题 函数是中学数学教学的主线,是中学数学的核心内容,也是一个高中数学的基础。函数的性质是高考的重点与热点,函数的对称性是函数的一个基本性质,也是难点,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质的一些思考。 例题1. 函数y = f (x)的图像关于点A (a ,b)对称的充要条件是 f (x) + f (2a-x) = 2b 证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P ‘(2a-x,2b-y)也在y = f (x)图像上,∴2b-y = f (2a-x) 即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。 (充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0) ∵ f (x) + f (2a-x) =2b∴f (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。 故点P‘(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P‘关于点A (a ,b)对称,充分性得征。例题2 ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对 (a≠b),则y = f (x)是周期函数,且2| a-b|是其一个周期。 ②若函数y = f (x) 图像同时关于直线x = a 和直线x = b成轴对称(a≠b),则y = f (x)是周期函数, 且2| a-b|是其一个周期。 ③若函数y = f (x)图像既关于点A (a ,c) 成中心对称又关于直线x =b成轴对称(a≠b),则y = f (x)是周期函数,且4| a-b|是其一个周期。 ①②的证明留给读者,以下给出③的证明:

人教版数学九年级巧用二次函数的对称性解题

人教版数学九年级巧用二次函数的对称性解题 一 依托函数的解析式,利用函数的对称性探求抛物线与x 轴的另一个交点 例1 抛物线 y=2 x -4x+ 2 m 与x 轴的一个交点的坐标为(l,0), 则此抛物线与x 轴的另一个交点的坐标是 . 思路点拨: 解答时同学们要储备好如下的知识: (1)找准抛物线的对称轴:直线x=-a b 2; (2)明确抛物线y=a 2 x +bx+c (a ≠0)与x 轴交点的横坐标与抛物线对称轴的关系: 设抛物线y=a 2 x +bx+c (a ≠0)与x 轴交点的坐标分别是(1x ,0),(2x ,0),且2x 在原点的右侧,根据对称性知道:-a b 2-1x =2x -(-a b 2),所以221x x +=-a b 2. 解:因为抛物线 y=2 x -4x+ 2m 的对称轴是:直线x=-a b 2=-2 4 -=2; 设抛物线与x 轴的另一个交点的坐标是(2x ,0),所以 2 12 x +=2,解得2x =3, 所以抛物线与x 轴的另一个交点的坐标是(3,0). 二 依托函数的图像,利用函数的对称性探求抛物线与x 轴的另一个交点 例 2 抛物线y=a 2 x +bx+c (a ≠0)的图像如图1所示,则抛物线的对称轴是直线_____________,抛物线与x 轴的另一个交点的坐标是 . 思路点拨: 仔细观察函数的图像,从中找出解题所需要的关键,有价值的信息是解题的核心. 解:仔细观察图像,知道函数的对称轴是:直线x=1,抛物线与x 轴的一个交点的横坐标 为3,设抛物线与x 轴的另一个交点的坐标是(2x ,0),所以 2 32 x +=1,解得2x =-1, 所以抛物线与x 轴的另一个交点的坐标是(-1,0). 三 依托表格,利用函数的对称性探求抛物线与x 轴的另一个交点 例3 抛物线y=-2 x +bx+c 上部分点的横坐标x ,纵坐标y 的对应值如下表:

高一数学函数的对称性知识点总结

高一数学《函数的对称性》知识点总结 高一数学《函数的对称性》知识点总结 一、函数自身的对称性探究 定理1.函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是 f (x) + f (2a-x) = 2b 证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P'(2a-x,2b-y)也在y = f (x)图像上,∴ 2b-y = f (2a-x) 即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。(充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0) ∵ f (x) + f (2a-x) =2b∴f (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。 故点P'(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P'关于点A (a ,b)对称,充分性得征。 推论:函数 y = f (x)的图像关于原点O对称的充要条件是f (x) + f (-x) = 0 定理2. 函数 y = f (x)的图像关于直线x = a对称的充要条件是 f (a +x) = f (a-x) 即f (x) = f (2a-x) (证明留给读者) 推论:函数 y = f (x)的图像关于y轴对称的充要条件是f (x) = f (-x) 定理3. ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(a≠b),则y = f (x)是周期函数,且2 a-b是其一个周期。 ②若函数y = f (x) 图像同时关于直线x = a 和直线x = b成轴对称(a≠b),则y = f (x)是周期函数,且2 a-b是其一个周期。 ③若函数y = f (x)图像既关于点A (a ,c) 成中心对称又关于直线x =b成轴对称(a≠b),则y = f (x)是周期函数,且4 a-b是其一个周期。 ①②的证明留给读者,以下给出③的证明: ∵函数y = f (x)图像既关于点A (a ,c) 成中心对称, ∴f (x) + f (2a-x) =2c,用2b-x代x得:

函数对称性的三类题型

对称性 一、有关对称性的常用结论 (一)函数图象自身的对称关系(加法) 1、轴对称 (1))(x f -=)(x f ?函数)(x f y =图象关于y 轴对称; (2) 函数)(x f y =图象关于a x =对称?)()(x a f x a f -=+?()(2)f x f a x =- ?()(2)f x f a x -=+; (3)若函数)(x f y =定义域为R ,且满足条件)()(x b f x a f -=+,则函数)(x f y =的 图象关于直线对称。 2、中心对称 (1))(x f -=-)(x f ?函数)(x f y =图象关于原点对称;. (2)函数)(x f y =图象关于(,0)a 对称?)()(x a f x a f --=+?()(2)f x f a x =-- ?)2()(x a f x f +=-; (3)函数)(x f y =图象关于),(b a 成中心对称?b x a f x a f 2)()(=++- (4)若函数)(x f y = 定义域为R ,且满足条件c x b f x a f =-++)()((c b a ,,为常数), 则函数)(x f y =的图象关于点 对称。 (二)两个函数图象之间的对称关系(减法) 1.若函数)(x f y =定义域为R ,则两函数)(x a f y +=与)(x b f y -=的图象关于直线 对称。 推论1:函数)(x a f y +=与函数)(x a f y -=的图象关于直线0=x 对 称。 推论2:函数)(a x f y -=与函数)(x a f y -=的图象关于直线a x =对称。 2.若函数)(x f y =定义域为R ,则两函数)(x a f y +=与)(x b f c y --=的图象关于点 对称。 推论:函数)(x a f y +=与函数)(x b f y --=图象关于点)0,2 ( a b -对称。 类型一:双对称问题 1. 设)(x f 是定义在R 上的偶函数,且)1()1(x f x f -=+,当01≤≤-x 时, 2 a b x -= )2 ,2( c a b -2 b a x += )2 ,2(c b a +

相关文档