文档视界 最新最全的文档下载
当前位置:文档视界 › 大学物理热学复习提纲

大学物理热学复习提纲

大学物理热学复习提纲
大学物理热学复习提纲

期 末 复 习

理想气体状态方程

一、 理想气体:温度不太低,压强不太高的实际气体可视为理想气体。 宏观上,在任何情况下都符合玻-马、盖-吕、查理三定律的气体。

二、 三个实验定律:(1)玻—玛定律: pV = 常数 或 T = 常数

(2)盖.吕萨克定律:V

T = 常数 或 p = 常数 (3)查理定律: T

P = 常数 或 V = 常数 三、 理想气体状态参量:

体积(V ),压强(p ),温度(T ) ;内能(E ),焓(H ),熵(S ),摩尔数(ν )

四、 理想气体分子模型:

①全同质点;②弹性碰撞;③除碰撞瞬间外无相互作用,忽略重力

五、

普遍适用 112212p V p V T T = :状态变化中质量不变

阿佛伽德罗定律: p nkT =

六、 道尔顿分压定律:

● 混合气体的压强等于组成混合气体的各成分的分压强之和

● (几种温度相同的气体混于同一容器中,各气体的平均平动动能相等)

● 12112212222()333

t t t p n n n n p p =++=++=++εεε

七、 关于p nkT =:

1. 是状态方程的微观式,大学物理中常用此式

2. 式中N N n V V

==d d :气体的分子数密度,即单位体积内的分子数 3. R = 8.31 J/(mol·K) :普适气体常数

4. 23123

8.31 1.3810J K 6.0210A R k N --===???:玻耳兹曼常量 八、 关于压强p :

● Γ:单位时间内碰在单位面积器壁上的平均分子数(气体分子碰壁数)

● 压强p :单位时间内气体(全部分子)

① 压强的定义体现了统计平均。

② V x >0的分子占总分子的一半,或分子速度在某方向的分量平均值为0 ● (例如:在x 方向,有0x v =;在y 方向,有0y v =;在z 方向,有0z v =)这是机会均等的表现。

③ 2

213x

v v = 也是机会均等的表现。 ④ 22i

ix x i n v v n =∑∑ 是统计平均的表现。

九、

1. 压强是相应的微观量:分子数密度和平动动能的统计平均。

● 压强与分子数密度n 有关,与气体种类无关。

2. 温度是相应的微观量:平均平动能的统计平均值。

● 温度是大量气体分子热运动的外在表现,实质就是反映了气体内部分子热运动的剧烈程度。

◆ 对不同气体,平衡态时,若T 相同,表示kt ε相同,但2v

或不一定相同,

因为还要考虑分子的质量m

;同样,若T 相同。

3. 只有宏观量才能被测量,微观量不能。

4. 压强和温度都是大数量分子的微观量的统计平均,对于少数分子没有压强和温度可言。

十、 分子力:分子力是由静电力、电子轨道不同状态的结合力等组成的,并非来自万有引力

麦克斯韦分布律

一、 速率分布函数()N f v N v =d d :分布在速率v 附近的单位速率间隔内的分子数占总分子数的比例,是速

率v 的函数。

1. 涨落现象:偏离统计平均值的现象

2. 统计规律永远伴随着涨落现象(粒子数越少,涨落现象越明显)。

3. 是统计规律,只适用于大量分子组成的集体。也有涨落,非常小。

二、 三种速率(理想气体、温度为T 的平衡态)

(1)

讨论速率分布(概率)时用到

● (是速率分布中的最大速率吗?)

(2)

在讨论分子平均碰撞频率(平均自由程)时用到 (3)

在计算分子的平均平动动能时用到

● 同一气体:P rms v v v <<

● 不同气体:

它们都∝

输运过程

1、 气体分子碰撞

● 使平衡态下分子速度有稳定分布;

● 实现能量均分;

● 使气体由非平衡态→平衡态。

(1) 描述的物理量有:碰撞截面σ;平均碰撞频率Z ;平均自由程

(2) 刚球模型:把分子看作直径为d ,无引力作用的弹性刚球。

(3) 有效直径d :两分子在碰撞中其中心所能接近的最小距离,相当于完全弹性小球的直径d 。它是统计平均值,可视为常数。

(4) 碰撞截面σ:以分子的有效直径d 为半径的球体的最大截面σ=πd 2. 若两种不同的分子相碰,σ的半径为(d 1+d 2)/2

(5) 平均碰撞频率z :一个分子在单位时间与其他分子的平均碰撞次数。

(∵v =,p nkT =) ● 一般109次/秒:即每秒碰几十亿次!

● 讨论:z 如何变化?

● 温度不变时,

z 随压强的增大而增大:z P ∝

● 压强不变时,z 随温度的增大而减小:1∝ (6) 平均自由程λ:分子在相邻两次碰撞之间自由走过

的平均路程 (是统计平均值)

● λ一般10-8~10-9 m (nm 级),约为d 的200倍。

● 讨论:λ如何变化?

● 温度不变时,λ随压强的增大而减小:1p λ∝ ● 压强不变时,λ随温度的增大而增大:T λ∝

● z 和λ都反映了分子间碰撞的频繁程度:在v

一定时,分子间的碰撞越频繁,

z 就越大,λ就越小。

2、 三类输运过程:

输运过程是指系统由非平衡态向平衡态的变化过程,其过程的快慢取决于分子间碰撞的频繁程度(即碰撞频率)。输运过程中都有相应物理量的定向迁移。

(1) 粘滞现象:因各气层定向流速不均匀而使相邻两气层互现切向内摩擦力的现象。

◆ 宏观表现为分子定向运动的动量迁移。

(2) 热传导现象:因气体各层的温度不均匀而使相邻两气层有热量传递。 ◆ 宏观表现为气体分子热运动能量迁移。

(3) 扩散:当气体的密度不均匀时,气体的质量将从密度大的区域向密度小的区域移动的现象。单纯由热运动产生的扩散叫纯扩散。

◆ 宏观表现为由于分子热运动所产生的气体宏观粒子迁移或质量迁移。 ● 分子的热运动和分子间的碰撞是输运过程的内因,是出发点。

密度不均匀 温度不均匀 流速不均匀

定向运动动量

运动平均动能 质量 λρηv 31=13V v C κρλ=13D v λ=扩散 热传导 粘滞 现 象 原 因 传递量 系数公式 d d d d M D A t z ρ=-d d d d Q T A t z κ=-?d d d d K u A t z

η=-动量沿流速减

小的方向输运 质量沿密度减小的方向输运 热量沿温度降低的方向输运

输运定律 输运特征

热力学第一定律

一、正确理解:准静态与非准静态过程;可逆与不可逆过程;自发与非自发过

程;绝热与非绝热过程

(1)只有准静态过程才能用过程曲线表示(是否只能用p-V图?)

(2)自然界的一切自发过程都是不可逆过程

(3)一切与热有关的过程都是不可逆过程

(4)准静态过程是否一定是可逆过程?

(5)不可逆过程是否就是不能向相反方向进行?

(6)绝热过程是否一定是等熵过程?

例:

图示的系统(做绝热自由膨胀的气体)。

1.初态、末态是平衡态

2.但中间态不是平衡态,所以经历的是非准静

态的过程

这是一个自发、不可逆、绝热、非准静态过程

3.该过程不能用过程曲线表示出来

4.但初态与末态可以在过程曲线中表示出来

(1)系统对外没有作功—隔板抽掉,自由膨胀

(2)系统的内能减少——∵?Q=0,T减小

(3)*系统的熵增加——∵是不可逆过程

二、 能量均分定理和热容量

1. 自由度i :决定一个物体的位置所需要的独立坐标数。

i = t (平动)+ r (转动)+ s (振动)。

当忽略振动自由度(经典热力学,常温):i = t+r

自由度、比热容比、摩尔热容:

2. 能量按自由度均分定理(能量均分定理)

(1) 在温度为T 的平衡态下,物质每个分子的每一个自由度具有相同的平均动能kT /2。

(2) 1(2)2t r s kT ++?*(3) 1mol γ = C p ,m /C V ,m C p ,m =C V ,m +R

i=t+r C V ,m =iR /2 单原子

3(3+0) 5/3=1.67 3R /2 5R /2 刚性双原子

5(3+2) 7/5=1.4 5R /2 7R /2 刚性多原子 6(3+3) 4/3=1.33 3R 4R 但若系统做的是准静态绝热膨胀呢?

1. 初态、末态、中间态都是平衡态

2. 是一个非自发的、可逆的、绝热的、准静态的过程

3. 全过程、全部状态(初态、末态、中间态)都可以在过程曲线中表示出来

4. 过程曲线可以用p-V 图反映,也可以画成p-T 图,或画T-V 图

(1) 系统对外作了功——不是迅速抽掉隔板,一定是气体缓缓地推动隔板

(2) 系统的内能减少——∵?Q=0,T 减小

(3) *系统的熵不变——∵?Q=0,又是可逆过程

单原子 32kT =

ε ,32m V m U RT C T == 常温双原子 52kT =ε 52

m U RT =,V m C T = *高温双原子(考虑振动自由度s ) 72kT =

ε 72m U RT =,V m C T = (4) M 千克物质的内能

▲ 能量均分定理仅限于均分动能(含平动动能和转动动能)。

三、 热力学第一定律 21U U Q A -=+, d U = ?Q + ?A (微变式) 1. 2

1d V V A p V =-?:外界对系统作的功,是过程量。 ● 外界对系统作功(体积压缩功)为正功;体积膨胀功为负功。 2.

n 表示不同的过程,也是过程量

● 系统吸热为正,放热为负。

3.

● 理想气体的内能仅是温度的单值函数(态函数)

4. 仅有体积功时:d U =?Q ﹣p d V

四、 热力学第一定律的应用

1. 等体过程:A V =0; ,2V V m M i Q U R T C T =?=??=??νμ; p C T

= 2. 等压过程:A p =-p △V =-νR △T ; ,m p p Q C T =?ν ;,V m U C T ?=??ν;

V C T = 3. 等温过程:△U =0 ;1212ln ln T p V Q RT RT V p ==νν ;T T A Q =- ;pV C =

4. 绝热过程:Q =0;,V m U C T ?=??ν; A U =?

● 绝热方程:1pV C γ= ; 12TV C γ-= ; 13p T C γγ--=

或:1122p V p V γγ=; 111122TV T V γγ--= ;111122p T p T γγγγ

----=

● 多方方程:——将绝热方程中的γ改做n 即可。

五、 热机:利用工作物质连续不断地把热转换为功的装置

1. 正循环:p-V 图中的顺时针闭合曲线

▲ 系统经历一个循环之后,内能不改变

2.

(1) Q 1: 热机从热源吸收的总热量;|Q 2|: 热机向热源放出的总热量(Q 2<0);

A: 热机对外界所做的净功

(2) 理想气体准静态过程的卡诺循环的效率只由高温热源和低温热源的温度

决定,与工作物质无关。

(3)

1 (4) ηη≤不可逆可逆——卡诺定理2

六、 制冷机:通过外界作功,从低温热源吸热的装置

1. 逆循环:p-V 图中的逆时针闭合曲线

2. 制冷系数:2212

Q Q A Q Q ==-ε;卡诺制冷机制冷系数212C T T T =-ε (1) |Q 1| : 制冷机向高温热源放出的总热量 (Q 1<0)

(2) Q 2: 制冷机从低温热源吸收的总热量

(3) A: 外界对制冷机所做的功

热力学第二定律

一、 开尔文表述:

不可能从单一热源吸收热量,使之完全变为有用功而不产生其它影响。

● 功转化为热的过程是不可逆的

——是否就是说:“功可以转换为热,而热不能转换为功?”

二、 克劳修斯表述:

不可能把热量从低温物体传到高温物体而不引起其它影响。

● 与热相联系的自发过程都是不可逆的

三、 *熵S :状态量【态函数,即(,)S T V 或(,)S T p 】

任意可逆循环中,系统由平衡态1经任意过程过渡到平衡态2时,其熵的增量 2211R Q S S S T ?=-=

?()d ●

S 1 -- 初态熵, S 2 -- 末态熵,熵的单位 -- J/K ●

积分路径 R 为任意可逆过程; ● 积分值只和始、末态有关,和中间过程无关。

四、 *熵增加原理:一个孤立系统的熵永不减少。

即:对封闭系统中的一切绝热过程 (ΔS)绝热≥0(=可逆,>不可逆) ● 表示在不可逆绝热过程中熵总是增加的;在可逆绝热过程中熵不变。 物态与相变

一、 五种物态:固态、液态、气态、等离子态、超密态

1. 液体与气体的交界处,有一表面层,表面层内存在表面张力;

2. 液体与固体接触处,有一附着层,附着层内出现弯曲液面:有不润湿(凸液面)与润湿(凹液面)现象

二、 相变

1. 相:物理性质均匀的部分,它和其它部分之间有一定的分界面隔离开来。例如:冰和水的混合物,冰块和水有分界面,冰块里水物理性质是均匀的,液体中的水物理性质也是均匀的。那么,冰是一个相,水也是一个相。

2. 相变:物质在压强、温度等外界条件不变的情况下,从一个相转变为另一个相的过程。相变过程就是物质结构发生突然变化的过程。

● 相变是在一定的温度和压强下进行的。例如,在1atm 和100℃时,水由液相变成汽相,但若P 不是1atm 时,沸点也不再是100℃。高压锅就是这样。

3. 一级相变特征:相变时有体积变化和相变潜热(T 、p 不变)

三、 气液相变:凝结与汽化(体积突变,伴有相变潜热——汽化热l )

1. 凝结:由气相变为(同温同压)液相的过程;汽化由液相变为(同温同压的)气相的过程。汽化有蒸发与沸腾两种,从相变机构看,无区别。

2. 有沸点:在一定的压强下,液体要升高到一定的温度才汽化,这温度称为沸点。在沸点时汽、液两相共存。

3. 有相变潜热——汽化热l (汽化潜热):1kg 物质气液相变时所吸收或放出的热量(两种情形:是1千克液体汽化为同温度下的气体时所吸收的热量,也是1千克气体凝结为同温度下的液体时所放出的热量)。单位:J/kg ● 是在T 、p 不变时发生

● 所以,m (kg )液体汽化(全部变成汽分子逸出液面)所需热量Q = L =lm

四、 固液相变:溶解和凝固(体积突变,伴有相变潜热——溶解热l )

1. 溶解:由固相变为液相的过程;凝固:由液相变为固相的过程。

2. 有熔点:在一定的压强下,晶体要升高到一定的温度才熔解,这温度称为熔点。在熔点时固、液两相共存。

3. 溶解热l (溶解潜热):1kg 物质固液相变时吸或放的热量。单位:J/kg ● 同样,含两种情形:是1kg 物质固相变(同温度)液相所吸收的热量,也是1kg 物质由液相变为(同温度)固相所放出的热量(在T 、p 不变时发生) ● m (kg )液体凝固所需热量:Q=L=lm

五、 固气相变:升华与凝华及升华点(略)

六、 克拉珀龙方程:21

d d ()=-p l T v v T

七、 相图——ppt 中截图

● 气液相变(21d ,0d >∴>p v v T

,斜率为正): 沸点随压强的增加而升高,随压强的减小而降低

● 固液相变:——两种情形

若熔解时体积膨胀(大多数物质),则熔解曲线的斜率为正(d 0d >p T ):熔点随压强的增加而升高;

若熔解时体积减小(如冰熔为水),则熔点随压强的增加而降低(斜率为负)。

(完整word版)大学物理气体动理论热力学基础复习题及答案详解

第12章 气体动理论 一、 填空题: 1、一打足气的自行车内胎,若在7℃时轮胎中空气压强为4.0×510pa .则在温度变为37℃,轮胎内空气的 压强是 。(设内胎容积不变) 2、在湖面下50.0m 深处(温度为4.0℃),有一个体积为531.010m -?的空气泡升到水面上来,若湖面的 温度为17.0℃,则气泡到达湖面的体积是 。(取大气压强为50 1.01310p pa =?) 3、一容器内储有氧气,其压强为50 1.0110p pa =?,温度为27.0℃,则气体分子的数密度 为 ;氧气的密度为 ;分子的平均平动动能为 ;分子间的平均 距离为 。(设分子均匀等距排列) 4、星际空间温度可达 2.7k ,则氢分子的平均速率为 ,方均根速率为 ,最概然速率 为 。 5、在压强为51.0110pa ?下,氮气分子的平均自由程为66.010cm -?,当温度不变时,压强 为 ,则其平均自由程为1.0mm 。 6、若氖气分子的有效直径为82.5910cm -?,则在温度为600k ,压强为21.3310pa ?时,氖分子1s 内的 平均碰撞次数为 。 7、如图12-1所示两条曲线(1)和(2),分别定性的表示一定量的 某种理想气体不同温度下的速率分布曲线,对应温度高的曲线 是 .若图中两条曲线定性的表示相同温 度下的氢气和氧气的速率分布曲线,则表示氧气速率分布曲线的 是 . 8、试说明下列各量的物理物理意义: (1) 12kT , (2)32 kT , (3)2i kT , (4)2 i RT , (5)32RT , (6)2M i RT Mmol 。 参考答案: 1、54.4310pa ? 2、536.1110m -? 3、25332192.4410 1.30 6.2110 3.4510m kg m J m ----???? 4、21 21121.6910 1.8310 1.5010m s m s m s ---?????? 图12-1

大学物理_热学试题

大学物理热学试卷 一、选择题: 1、三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为 ()()() 2 /122 /122 /12::C B A v v v =1∶2∶4,则其压强之比A p ∶B p ∶ C p 为: (A) 1∶2∶4. (B) 1∶4∶8. (C) 1∶4∶16. (D) 4∶2∶1. [ ] 2、温度为T 时,在方均根速率s /m 50) (2 12±v 的速率区间内,氢、氨两种气体分子数占总分 子数的百分率相比较:则有(附:麦克斯韦速率分布定律: v v v ?????? ? ? ?-?? ? ??π=?22 2 /32exp 24kT m kT m N N , 符号exp(a ),即e a .) (A) ()()22N H //N N N N ?>? (B) ()()22N H //N N N N ?=? (C) ()()22N H //N N N N ??温度较高时()()22N H //N N N N ?

大学物理章热力学基础试题.doc

第 9 章热力学基础 一、选择题 1.对于准静态过程和可逆过程 , 有以下说法.其中正确的是 [ ] (A)准静态过程一定是可逆过程 (B)可逆过程一定是准静态过程 (C)二者都是理想化的过程 (D)二者实质上是热力学中的同一个概念 2.对于物体的热力学过程 , 下列说法中正确的是 [ ] (A)内能的改变只决定于初、末两个状态,与所经历的过程无关 (B)摩尔热容量的大小与所经历的过程无关 (C)在物体内 , 若单位体积内所含热量越多 , 则其温度越高 (D)以上说法都不对 3.有关热量 , 下列说法中正确的是 [ ] (A)热是一种物质 (B)热能是物质系统的状态参量 (C)热量是表征物质系统固有属性的物理量 (D)热传递是改变物质系统内能的一种形式 4.关于功的下列各说法中 , 错误的是 [ ] (A)功是能量变化的一种量度 (B)功是描写系统与外界相互作用的物理量 (C)气体从一个状态到另一个状态 , 经历的过程不同 , 则对外作的功也不一样 (D)系统具有的能量等于系统对外作的功

5. 理想气体状态方程在不同的过程中有不同的微分表达式, 式p d V M R d T 表 示 [ ] (A)等温过程(B)等压过程 (C) 等体过程(D)绝热过程 6.理想气体状态方程在不同的过程中可以有不同的微分表达式 , 式V d p M R d T 表示 [ ] (A) 等温过程(B) 等压过程 (C) 等体过程(D) 绝热过程 7. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 式V d p pdV 0表 示 [ ] (A) 等温过程(B) 等压过程 (C) 等体过程(D) 绝热过程 8.理想气体状态方程在不同的过程中可以有不同的微分表达式 , 则式 M V d p p dV R d T 表示 [ ] (A)等温过程(B)等压过程 (C)等体过程(D)任意过程 9.热力学第一定律表明 : [ ] (A)系统对外作的功不可能大于系统从外界吸收的热量 (B)系统内能的增量等于系统从外界吸收的热量 (C)不可能存在这样的循环过程,在此过程中,外界对系统所作的功

大学物理热学总结

大学物理热学总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

大学物理热学总结 (注:难免有疏漏和不足之处,仅供参考。 ) 教材版本:高等教育出版社《大学物理学》热力学基础 1、体积、压强和温度是描述气体宏观性质的三个状态参量。 ①温度:表征系统热平衡时宏观状态的物理量。摄氏温标,t表示,单位摄氏度(℃)。热力学温标,即开尔文温标,T表示,单位开尔文,简称开(K)。 热力学温标的刻度单位与摄氏温标相同,他们之间的换算关系: T/K=273.15℃+ t 温度没有上限,却有下限,即热力学温标的绝对零度。温度可以无限接近0K,但永远不能达到0K。 ②压强:气体作用在容器壁单位面积上指向器壁的垂直作用力。单位帕斯卡,简称帕(Pa)。其他:标准大气压(atm)、毫米汞高(mmHg)。 1 atm =1.01325×105 Pa = 760 mmHg ③体积:气体分子运动时所能到达的空间。单位立方米(m3)、升(L) 2、热力学第零定律:如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡,则这两个系统也必处于热平衡。 该定律表明:处于同一热平衡状态的所有热力学系统都具有一个共同的宏观特征,这一特征可以用一个状态参量来表示,这个状态参量既是温度。3、平衡态:对于一个孤立系统(与外界不发生任何物质和能量的交换)而言,如果宏观性质在经过充分长的时间后保持不变,也就是系统的状态参量不再岁时间改变,则此时系统所处的状态称平衡态。 通常用p—V图上的一个点表示一个平衡态。(理想概念) 4、热力学过程:系统状态发生变化的整个历程,简称过程。可分为: ①准静态过程:过程中的每个中间态都无限接近于平衡态,是实际过程进行的无限缓慢的极限情况,可用p—V图上一条曲线表示。 ②非准静态过程:中间状态为非平衡态的过程。

大学物理热学复习提纲

期 末 复 习 理想气体状态方程 一、 理想气体:温度不太低,压强不太高的实际气体可视为理想气体。 宏观上,在任何情况下都符合玻-马、盖-吕、查理三定律的气体。 二、 三个实验定律:(1)玻—玛定律: pV = 常数 或 T = 常数 (2)盖.吕萨克定律:V T = 常数 或 p = 常数 (3)查理定律: T P = 常数 或 V = 常数 三、 理想气体状态参量: 体积(V ),压强(p ),温度(T ) ;内能(E ),焓(H ),熵(S ),摩尔数(ν ) 四、 理想气体分子模型: ①全同质点;②弹性碰撞;③除碰撞瞬间外无相互作用,忽略重力 五、 普遍适用 112212p V p V T T = :状态变化中质量不变 阿佛伽德罗定律: p nkT = 六、 道尔顿分压定律: ● 混合气体的压强等于组成混合气体的各成分的分压强之和 ● (几种温度相同的气体混于同一容器中,各气体的平均平动动能相等) ● 12112212222()333 t t t p n n n n p p =++=++=++εεε

七、 关于p nkT =: 1. 是状态方程的微观式,大学物理中常用此式 2. 式中N N n V V ==d d :气体的分子数密度,即单位体积内的分子数 3. R = 8.31 J/(mol·K) :普适气体常数 4. 23123 8.31 1.3810J K 6.0210A R k N --===???:玻耳兹曼常量 八、 关于压强p : ● Γ:单位时间内碰在单位面积器壁上的平均分子数(气体分子碰壁数) ● 压强p :单位时间内气体(全部分子) ① 压强的定义体现了统计平均。 ② V x >0的分子占总分子的一半,或分子速度在某方向的分量平均值为0 ● (例如:在x 方向,有0x v =;在y 方向,有0y v =;在z 方向,有0z v =)这是机会均等的表现。 ③ 2 213x v v = 也是机会均等的表现。 ④ 22i ix x i n v v n =∑∑ 是统计平均的表现。 九、 1. 压强是相应的微观量:分子数密度和平动动能的统计平均。 ● 压强与分子数密度n 有关,与气体种类无关。 2. 温度是相应的微观量:平均平动能的统计平均值。 ● 温度是大量气体分子热运动的外在表现,实质就是反映了气体内部分子热运动的剧烈程度。

大学物理力学试题

一、选择题:(每题3分) 1、某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作 (A) 匀加速直线运动,加速度沿x 轴正方向. (B) 匀加速直线运动,加速度沿x 轴负方向. (C) 变加速直线运动,加速度沿x 轴正方向. (D) 变加速直线运动,加速度沿x 轴负方向. [ ] 2、一质点沿x 轴作直线运动,其v -t 曲 线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为 (A) 5m . (B) 2m . (C) 0. (D) -2 m . (E) -5 m. [ ] 3、图中p 是一圆的竖直直径pc 的上端点,一质点从p 开始分 别沿不同的弦无摩擦下滑时,到达各弦的下端所用的时间相比 较是 (A) 到a 用的时间最短. (B) 到b 用的时间最短. (C) 到c 用的时间最短. (D) 所用时间都一样. [ ] 4、 一质点作直线运动,某时刻的瞬时速度=v 2 m/s ,瞬时加速度2/2s m a -=, 则一秒钟后质点的速度 (A) 等于零. (B) 等于-2 m/s . (C) 等于2 m/s . (D) 不能确定. [ ] 5、 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中 a 、 b 为常量), 则该质点作 (A) 匀速直线运动. (B) 变速直线运动. (C) 抛物线运动. (D)一般曲线运动. [ ] 6、一运动质点在某瞬时位于矢径()y x r , 的端点处, 其速度大小为 (A) t r d d (B) t r d d (C) t r d d (D) 22d d d d ?? ? ??+??? ??t y t x [ ] 7、 质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中, 其平均速度大小与平均速率大小分别为 -12 O a p

大学物理章热力学基础试题(卷)

第9章热力学基础 一、选择题 1. 对于准静态过程和可逆过程, 有以下说法.其中正确的是 [ ] (A) 准静态过程一定是可逆过程 (B) 可逆过程一定是准静态过程 (C) 二者都是理想化的过程 (D) 二者实质上是热力学中的同一个概念 2. 对于物体的热力学过程, 下列说法中正确的是 [ ] (A) 内能的改变只决定于初、末两个状态, 与所经历的过程无关 (B) 摩尔热容量的大小与所经历的过程无关 (C) 在物体内, 若单位体积内所含热量越多, 则其温度越高 (D) 以上说法都不对 3. 有关热量, 下列说法中正确的是 [ ] (A) 热是一种物质 (B) 热能是物质系统的状态参量 (C) 热量是表征物质系统固有属性的物理量 (D) 热传递是改变物质系统内能的一种形式 4. 关于功的下列各说法中, 错误的是 [ ] (A) 功是能量变化的一种量度 (B) 功是描写系统与外界相互作用的物理量 (C) 气体从一个状态到另一个状态, 经历的过程不同, 则对外作的功也不一样 (D) 系统具有的能量等于系统对外作的功 5. 理想气体状态方程在不同的过程中有不同的微分表达式, 示 [ ] (A) 等温过程(B) 等压过程 (C) 等体过程(D) 绝热过程 6. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 式 [ ] (A) 等温过程(B) 等压过程 (C) 等体过程(D) 绝热过程

7. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 式0d d =+V p p V 表示 [ ] (A) 等温过程 (B) 等压过程 (C) 等体过程 (D) 绝热过程 8. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 则式 [ ] (A) 等温过程 (B) 等压过程 (C) 等体过程 (D) 任意过程 9. 热力学第一定律表明: [ ] (A) 系统对外作的功不可能大于系统从外界吸收的热量 (B) 系统内能的增量等于系统从外界吸收的热量 (C) 不可能存在这样的循环过程, 在此过程中, 外界对系统所作的功 不等于系统传给外界的热量 (D) 热机的效率不可能等于1 10. 对于微小变化的过程, 热力学第一定律为d Q = d E +d A .在以下过程中, 这三者同时为正的过程是 [ ] (A) 等温膨胀 (B) 等容膨胀 (C) 等压膨胀 (D) 绝热膨胀 11. 对理想气体的等压压缩过程,下列表述正确的是 [ ] (A) d A >0, d E >0, d Q >0 (B) d A <0, d E <0, d Q <0 (C) d A <0, d E >0, d Q <0 (D) d A = 0, d E = 0, d Q = 0 12. [ ] (A) 理想气体 (B) 等压过程 (C) 准静态过程 (D) 任何过程 13. 一定量的理想气体从状态),(V p 出发, 到达另一状态)2 ,(V p . 一次是等温压缩到2V , 外界作功A ;另一次为绝热压缩到2 V , 外界作功W .比较这两个功值的大小是 [ ] (A) A >W (B) A = W (C) A <W (D) 条件不够,不能比较 14. 1mol 理想气体从初态(T 1、p 1、V 1 )等温压缩到体积V 2, 外界对气体所作的功为

大学物理热力学论文[1]

《大学物理》课程论文 热力学基础 摘要: 热力学第一定律其实是包括热现象在内的能量转换与守恒定律。热力学第二定律则是指明过程进行的方向与条件的另一基本定律。热力学所研究的物质宏观性质,特别是气体的性质,经过气体动理论的分析,才能了解其基本性质。气体动理论,经过热力学的研究而得到验证。两者相互补充,不可偏废。人们同时发现,热力学过程包括自发过程和非自发过程,都有明显的单方向性,都是不可逆过程。但从理想的可逆过程入手,引进熵的概念后,就可以从熵的变化来说明实际过程的不可逆性。因此,在热力学中,熵是一个十分重要的概念。关键词: (1)热力学第一定律(2)卡诺循环(3)热力学第二定律(4)熵 正文: 在一般情况下,当系统状态变化时,作功与传递热量往往是同时存在的。如果有一个系统,外界对它传递的热量为Q,系统从内能为E1 的初始平衡状态改变到内能为E2的终末平衡状态,同时系统对外做功为A,那么,不论过程如何,总有: Q= E2—E1+A 上式就是热力学第一定律。意义是:外界对系统传递的热量,一部分

是系统的内能增加,另一部分是用于系统对外做功。不难看出,热力学第一定律气其实是包括热量在内的能量守恒定律。它还指出,作功必须有能量转换而来,很显然第一类永动机违反了热力学第一定律,所以它根本不可能造成的。 物质系统经历一系列的变化过程又回到初始状态,这样的周而复始的变化过程称为循环过程,或简称循环。经历一个循环,回到初始状态时,内能没有改变,这是循环过程的重要特征。卡诺循环就是在两个温度恒定的热源(一个高温热源,一个低温热源)之间工作的循环过程。在完成一个循环后,气体的内能回到原值不变。卡诺循环还有以下特征: ①要完成一次卡诺循环必须有高温和低温两个热源: ②卡诺循环的效率只与两个热源的温度有关,高温热源的温 度越高,低温热源的温度越低,卡诺循环效率越大,也就 是说当两热源的温度差越大,从高温热源所吸取的热量Q1 的利用价值越大。 ③卡诺循环的效率总是小于1的(除非T2 =0K)。 那么热机的效率能不能达到100%呢?如果不可能到达100%,最大可能效率又是多少呢?有关这些问题的研究就促进了热力学第二定律的建立。 第一类永动机失败后,人们就设想有没有这种热机:它只从一个热源吸取热量,并使之全部转变为功,它不需要冷源,也没有释放热量。这种热机叫做第二类永动机。经过无数的尝试证明,第二类永动

大学物理题库-热力学

热力学选择题 1、在气缸中装有一定质量的理想气体,下面说法正确的是:( ) (A ) 传给它热量,其内能一定改变。 (B ) 对它做功,其内能一定改变。 (C ) 它与外界交换热量又交换功,其内能一定改变。 (D ) 以上说法都不对。 (3分) 答案:D 2、理想气体在下述过程中吸收热量的是( ) (A )等容降压过程 (B )等压压缩过程 (C )绝热膨胀过程 (D )等温膨胀过程 (3分) 答案:D 3、理想气体卡诺循环过程的两条绝热线下的面积大小分别为1S 和2S ,二者的关系是( ) (A )21S S > (B )21S S < (C )S 1 =S 2 (D )不能确定 (3分) 答案:C 4、有两个可逆的卡诺循环,ABCDA 和11111A B C D A ,二者循环线包围的面积相等,如图所示。设循环ABCDA 的热效率为η,每次循环从高温热源吸收热量Q ,循环11111A B C D A 的热效率为 η,每次循环从高温热源吸收热量1Q ,则( ) (A )11,Q Q <<ηη (B )11,Q Q ><ηη (C )11,Q Q <>ηη (D )11,Q Q >>ηη (3分) 答案:B 5、一定量的理想气体,分别经历如图所示的abc 过程(图中虚线ac 为等温线)和 def 过程(图中虚线 df 为绝热线)。试判断这两种过程是吸热还是放热( ) (A )abc 过程吸热,def 过程放热。(C )abc 过程和 def 过程都吸热。 P P V

(B )abc 过程放热 def 过程吸热 (D )abc 过程和 def 过程都放热。 V V (3分) 答案:A 6、对于理想气体系统来说,在下列过程中,哪个过程系统所吸收的热量、内能的增量和对外做得功三者均为负值?( ) (A )等容降压过程。 (B) 等温膨胀过程。 (C) 绝热膨胀过程。 (D) 等压压缩过程。 (3分) 答案:D 7、关于可逆过程,下列说法正确的是( ) (A ) 可逆过程就是可以反向进行的过程。 (B ) 凡是可以反向进行的过程均为可逆过程。 (C ) 可逆过程一定是准静态过程。 (D ) 准静态过程一定是可逆过程。 (3分) 答案:C 8、下面正确的表述是( ) (A) 功可以全部转化为热,但热不能全部转化为功。 (B )热量能从高温物体传到低温物体,但不能从低温物体传到高温物体。 (C )开尔文表述指出热功转换的可逆性。 (D )克劳修斯表述指出了热传导的不可逆性。 (3分) 答案:D 9、一台工作于温度分别为327 ℃和27 ℃的高温热源与低温源之间的卡诺热机,每经历一个循环吸热2 000 J ,则对外作功( ) (A) 2 000J (B) 1 000J (C) 4 000J (D) 500J (3分) 答案:B 10、“理想气体和单一热源接触作等温臌胀时,吸收的热量全部用来对外作功。”对此说法,有如下几种评论,哪种是正确的( ) (A )不违反热力学第一定律,但违反热力学第二定律 (B )不违反热力学第二定律,但违反热力学第一定律 (C )不违反热力学第一定律,也不违反热力学第二定律 (D )违反热力学第二定律,也违反热力学第二定律 (3分)

大学物理学试卷3及答案汇编

—填空题(共32分) 1.(本题3分)(0282) 如果一个箱子与货车底板之间的静摩擦系数为μ,当这货车爬一与水平方向 成θ角的平缓山坡时,要不使箱子在车底板上滑动,车的最大加速度 a max=____________. 2.(本题3分)(0404) 地球的质量为m,太阳的质量为M地心与日心的距离为R,引力常量为G, 则地球绕太阳作圆周运动的轨道角动量为L=___________. 3。(本题3分)(4273) 一定量H2气(视为刚性分子的理想气体),若温度每升高1K,其内能增加41.6 J,则该H2气的质量为___________(普适气体常量R=8.31J·mol-1·k-1) 4.(本题3分)(0238) 处于平衡态A的一定量的理想气体,若经准静态等体过程变到平衡态B,将 从外界吸收热量416 J,若经准静态等压过程变到与平衡态B有相同温度的平衡 态C,将从外界吸收热量582J,所以,从平衡态A变到平衡态C的准静态等压 过程中气体对外界所作的功为______________________. 5.(本题4分)(4109) 一定量的某种理想气体在等压过程中对外作功为200J.若此种气体为单 原子分子气体,则该过程中需吸热__________J;若为双原子分子气体,则 需吸热_____________J. 6.(本题3分)(0260) 热力学第二定律的开尔文表述和克劳修斯表述是等价的,表明在自然界中与 热现象有关的实际宏观过程都是不可逆的,开尔文表述指出了__________________ ________的过程是不可逆的,而克劳修斯表述指出了__________________________ 的过程是不可逆的. 7.(本题3分)(1237) 两个电容器1和2,串联以后接上电动势恒定的电源充电.在电源保持联接 的情况下,若把电介质充入电容器2中,则电容器1上的电势差________________;电容器1极板上的电荷_______________________(填增大、减小、不变) 8.(本题3分)(2521) 一线圈中通过的电流I随时间t变化 的曲线如图所示.试定性画出自感电动 势?L随时间变化的曲线.(以I的正向作 为?的正向)

大学物理力学题库及答案

一、选择题:(每题3分) 1、某质点作直线运动的运动学方程为 x = 3t-5t 3 + 6 (SI),则该质点作 2、一质点沿x 轴作直线运动,其v t 曲 线如图所示,如t=0时,质点位于坐标原点, 则t=4.5 s 时,质点在x 轴上的位置为 (A) 5m . (B) 2m . (C) 0. (D) 2 m . (E) 5 m. [ b ] pc 的上端点,一质点从p 开始分 到达各弦的下端所用的时间相比 6、一运动质点在某瞬时位于矢径 r x, y 的端点处,其速度大小为 7、 质点沿半径为R 的圆周作匀速率运动,每 T 秒转一圈.在2T 时间间隔中, 其平均速度大小与平均速率大小分别为 (A) 2 R/T , 2 R/T . (B) 0,2 R/T (C) 0,0. (D) 2 R/T , 0. [ b ] 8 以下五种运动形式中,a 保持不变的运动是 4、 一质点作直线运动,某时刻的瞬时速度 v 2 m/s ,瞬时加速度a 2m/s , 则一秒钟后质点的速度 (B)等于 2 m/s . (D)不能确定. [ d ] (A)等于零. (C)等于 2 m/s . 5 、 一质点在平面上运动, 已知质点位置矢量的表示式为 r at i bt 2j (其中 a 、 b 为常量),则该质点作 (A)匀速直线运动. (B)变速直线运动. (C)抛物线运动. (D) 一般曲线运 动. [ b ] [d ] (A) 匀加速直线运动,加速度沿 x 轴正方向. (B) 匀加速直线运动,加速度沿 x 轴负方向. (C) 变加速直线运动,加速度沿 x 轴正方向. (D) 变加速直线运动,加速度沿 x 轴负方向. 3、图中p 是一圆的竖直直径 别沿不同的弦无摩擦下滑时, 较是 (A) 到a 用的时间最短. (B) 到b 用的时间最短. (C) 到c 用的时间最短. (D) 所用时间都一样. (A) d r dt (C) d r dt (B) (D) d r dt dx 2 .dt 2 d y dt [d ] a

(完整版)大学物理热学习题附答案

一、选择题 1.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值 (A) m kT x 32= v (B) m kT x 3312 =v (C) m kT x /32 =v (D) m kT x /2=v 2.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m 。根据理想气体分子模型和统计假设,分子速度在x 方向的分量的平均值 (A) m kT π8= x v (B) m kT π831= x v (C) m kT π38=x v (D) =x v 0 3.温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w 都相等 (B) ε相等,w 不相等 (C) w 相等,ε不相等 (D) ε和w 都不相等 4.在标准状态下,若氧气(视为刚性双原子分子的理想气体)和氦气的体积比V 1 / V 2=1 / 2 ,则其内能之比E 1 / E 2为: (A) 3 / 10 (B) 1 / 2 (C) 5 / 6 (D) 5 / 3 5.水蒸气分解成同温度的氢气和氧气,内能增加了百分之几(不计振动自由度和化学能)? (A) 66.7% (B) 50% (C) 25% (D) 0 6.两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量ρ,分别有如下关系: (A) n 不同,(E K /V )不同,ρ不同 (B) n 不同,(E K /V )不同,ρ相同 (C) n 相同,(E K /V )相同,ρ不同 (D) n 相同,(E K /V )相同,ρ相同 7.一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们 (A) 温度相同、压强相同 (B) 温度、压强都不相同 (C) 温度相同,但氦气的压强大于氮气的压强 (D) 温度相同,但氦气的压强小于氮气的压强 8.关于温度的意义,有下列几种说法:(1) 气体的温度是分子平均平动动能的量度;(2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义;(3) 温度的高低反映物质内部分子运动剧烈程度的不同;(4) 从微观上看,气体的温度表示每个气体分子的冷热程度。这些说法中正确的是 (A) (1)(2)(4);(B) (1)(2)(3);(C) (2)(3)(4);(D) (1)(3) (4); 9.设声波通过理想气体的速率正比于气体分子的热运动平均速率,则声波通过具有相同温度的氧气和氢气的速率之比2 2 H O /v v 为 (A) 1 (B) 1/2 (C) 1/3 (D) 1/4 10.设图示的两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线;令 ()2 O p v 和 ()2 H p v 分别

(完整版)大学物理热学习题附答案

、选择题 1.一定量的理想气体贮于某一容器中,温度为 T ,气体分子的质量为 m 。根据理想气体的分子模型和统 计假设,分子速度在 x 方向的分量平方的平均值 2.一定量的理想气体贮于某一容器中,温度为 T ,气体分子的质量为 m 。根据理想气体分子模型和统计 假设,分子速度在 x 方向的分量的平均值 都相等 (B) 相等, w 不相等 (C) w 相等, 不相等 4.在 标准状态下,若氧气 (视为刚性双原子分子的理想气体 比 E 1 / E 2 为: (A) 3 / 10 (B) 1 / 2 (C) 5 / 6 (D) 5 / 3 5.水蒸气分解成同温度的氢气和氧气,内能增加了百分之 几 (A) 66.7% (B) 50% (C) 25% (D) 0 6.两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数 n , 单位体积内的气体分子的总平动动能 (E K /V),单位体积内的气体质量 ,分别有如下关系: (A) n 不同, (E K /V)不同, 不同 (B) n 不同,(E K /V)不同, 相同 (C) n 相同, (E K /V)相同, 不同 (D) n 相同, (E K /V)相同, 相同 7.一瓶氦气和一瓶氮气密度相同,分子平均平动动能相同,而且它们都处于平衡状态,则它们 (A) 温度相同、压强相同 (B) 温度、压强都不相同 (C) 温度相同,但氦气的压强大于氮气的压强 (D) 温度相同,但氦气的压强小于氮气的压强 8.关于温度的意义,有下列几种说法: (1) 气体的温度是分子平均平动动能的量度; (2) 气体的温度是 大量气体分子热运动的集体表现,具有统计意义; (3) 温度的高低反映物质内部分子运动剧烈程度的不 同; (4) 从微观上看,气体的温度表示每个气体分子的冷热程度。这些说法中正确的是 (A) (1)(2)(4) ; (B) (1)(2)(3) ; (C) (2)(3)(4);(D) (1)(3) (4); 9.设声波通过理想气体的速率正比于气体分 子的热运动平均速率,则声波通过具有相同温度的氧气和 氢气的速率之比 vO 2 /v H 2 为 (A) 1 (B) 1/2 (C) 1/3 (D) 1/4 10.设图示的两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线;令 v p O 2 和 vp H 2 分别 (A) v x 3k m T 2 1 3kT v x 2 (B) 3 m (C) v x 3kT/m 2 (D) v x kT /m 1 8kT 8kT 8kT 1 8kT v x v x (A) m (B) 3 m (C) 3 m 3.温度、压强相同的氦气和氧气,它们分子的平均动v x (D) v x 0 和平均平动动能 w 有如下关系: (A) 和 w (D) 和w 都不相等 )和氦气的体积比 V 1 / V 2=1 / 2 ,则其内能之 (不计振动自由度和化学能 )?

大学物理电磁学题库及答案

一、选择题:(每题3分) 1、均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 (A) 2 r 2B . (B) r 2B . (C) 0. (D) 无法确定的量. [ B ] 2、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B 的夹角为 ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) r 2B . (B) 2 r 2B . (C) - r 2B sin . (D) - r 2B cos . [ D ] 3、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 (A) 0.90. (B) 1.00. (C) 1.11. (D) 1.22. [ C ] 4、如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度 (A) 方向垂直环形分路所在平面且指向纸内. (B) 方向垂直环形分路所在平面且指向纸外. (C) 方向在环形分路所在平面,且指向b . (D) 方向在环形分路所在平面内,且指向a . (E) 为零. [ E ] 5、通有电流I 的无限长直导线有如图三种形状, 则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P . [ D ] 6、边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方 形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为 (A) 01 B ,02 B . (B) 01 B ,l I B 0222 . (C) l I B 0122 ,02 B . a

大学物理热学试题题库及答案

大学物理热学试题题库及答案 一、选择题:(每题3分) 1、在一密闭容器中,储有A、B、C三种理想气体,处于平衡状态.A种气体的分子数密度为n1,它产生的压强为p1,B种气体的分子数密度为2n1,C种气体的分子数密度为3n1,则混合气体的压强p为 (A) 3 p1.(B) 4 p1. (C) 5 p1.(D) 6 p1.[] 2、若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,k为玻尔兹曼常量,R为普适气体常量,则该理想气体的分子数为: (A) pV / m.(B) pV / (kT). (C) pV / (RT).(D) pV / (mT).[] 3、有一截面均匀的封闭圆筒,中间被一光滑的活塞分隔成两边,如果其中的一边装有0.1 kg 某一温度的氢气,为了使活塞停留在圆筒的正中央,则另一边应装入同一温度的氧气的质量为: (A) (1/16) kg.(B) 0.8 kg. (C) 1.6 kg.(D) 3.2 kg.[] 4、在标准状态下,任何理想气体在1 m3中含有的分子数都等于 (A) 6.02×1023.(B)6.02×1021. (C) 2.69×1025(D)2.69×1023. (玻尔兹曼常量k=1.38×10-23 J·K-1 ) [] 5、一定量某理想气体按pV2=恒量的规律膨胀,则膨胀后理想气体的温度 (A) 将升高.(B) 将降低. (C) 不变.(D)升高还是降低,不能确定.[] 6、一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p1和p2,则两者的大小关系是: (A) p1> p2.(B) p1< p2. (C) p1=p2.(D)不确定的.[] 7、已知氢气与氧气的温度相同,请判断下列说法哪个正确? (A) 氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强. (B) 氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度. (C) 氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大. (D) 氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大.[] 8、已知氢气与氧气的温度相同,请判断下列说法哪个正确? (A) 氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强. (B) 氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度.

大学物理气体动理论热力学基础复习题集与答案解析详解

第12章 气体动理论 一、填空题: 1、一打足气的自行车内胎,若在7℃时轮胎中空气压强为4.0×5 10pa .则在温度变为37℃, 轮胎内空气的压强是 。(设内胎容积不变) 2、在湖面下50.0m 深处(温度为4.0℃),有一个体积为531.010m -?的空气泡升到水面上 来,若湖面的温度为17.0℃,则气泡到达湖面的体积是 。(取大气压强为50 1.01310p pa =?) 3、一容器内储有氧气,其压强为50 1.0110p pa =?,温度为27.0℃,则气体分子的数密度 为 ;氧气的密度为 ;分子的平均平动动能为 ; 分子间的平均距离为 。(设分子均匀等距排列) 4、星际空间温度可达2.7k ,则氢分子的平均速率为 ,方均根速率为 , 最概然速率为 。 5、在压强为5 1.0110pa ?下,氮气分子的平均自由程为66.010cm -?,当温度不变时,压强为 ,则其平均自由程为1.0mm 。 6、若氖气分子的有效直径为82.5910cm -?,则在温度为600k ,压强为2 1.3310pa ?时,氖分子1s 内的平均碰撞次数为 。 7、如图12-1所示两条曲线(1)和(2),分别定性的表示一定量的 某种理想气体不同温度下的速率分布曲线,对应温度高的曲线 是 .若图中两条曲线定性的表示相同温 度下的氢气和氧气的速率分布曲线,则表示氧气速率分布曲线的 是 . 图12-1

8、试说明下列各量的物理物理意义: (1) 12kT , (2)32 kT , (3)2i kT , (4)2 i RT , (5)32RT , (6)2M i RT Mmol 。 参考答案: 1、54.4310pa ? 2、536.1110m -? 3、2533 2192.4410 1.30 6.2110 3.4510m kg m J m ----???? 4、2121 121.6910 1.8310 1.5010m s m s m s ---?????? 5、6.06pa 6、613.8110s -? 7、(2) ,(2) 8、略 二、选择题: 教材习题12-1,12-2,12-3,12-4. (见课本p207~208) 参考答案:12-1~12-4 C, C, B, B. 第十三章热力学基础 一、选择题 1、有两个相同的容器,容积不变,一个盛有氦气,另一个盛有氢气(均可看成刚性分 子)它们的压强和温度都相等,现将 5 J 的热量传给氢气,使氢气温度升高,如果使氦气也 升高同样的温度,则应向氦气传递的热量是 ( ) (A ) 6 J (B ) 5 J (C ) 3 J (D ) 2 J 2、一定量理想气体,经历某过程后,它的温度升高了,则根据热力学定理可以断定: (1)该理想气体系统在此过程中作了功; (2)在此过程中外界对该理想气体系统作了正功;

大学物理考试试题与解答

西华大学课程考核半期试题卷 试卷编号 ( 2011__ 至 2012____ 学年 第__1__学期 ) 课程名称: 大学物理A(2) 考试时间: 80 分钟 课程代码: 7200019 试卷总分: 100 分 考试形式: 闭卷 学生自带普通计算器: 题号 一 二 三 四 五 六 七 八 九 十 十一 十二 总分 得分 评卷 教师 一.(10分)一电子绕一带均匀电荷的长直导线以2×104 m ·s -1 的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31 kg ,电子电量e =1.60×10-19 C) 解: 设均匀带电直线电荷密度为λ,在电子轨道处场强 r E 0π2ελ= 电子受力大小 r e eE F e 0π2ελ = = ∴ r v m r e 2 0π2=ελ 得 132 0105.12π2-?== e mv ελ1m C -? 二.(20分)如图所示,有一带电量为Q=8.85×10-4C, 半径为R=1.00m 的均匀带电细圆环水平放置。在 圆环中心轴线的上方离圆心R 处,有一质量为m=0.50kg 、带电量为q=3.14×10-7C 的小球。当小球从静止下落到圆心位置时,它的速率为多少m/s ?[重力加速度g=10m/s 2,ε0=8.85×10-12C 2/(N.m 2)] 序号: 年级专业: 教学班号: 学号: 姓名: 装 订 线

图11 解:设圆环处为重力势能零点,无穷远处为电势能零点。 初始状态系统的重力势能为mgR ,电势能为 R qQ 240πε 末状态系统的动能为22 1 mv ,电势能为R qQ 04πε 整个系统能量守恒,故 R qQ mv R qQ mgR 02042124πεπε+= + 解得: 4.13/v m s = = = 三.(20分)一根很长的同轴电缆,由一导体圆柱(半径为a )和一同轴的导体圆管(内、外半径分别为b ,c )构成,如图所示.使用时,电流I 从一导体流去,从另一导体流回.设电流都是均匀地分布在导体的横截面上,求:(1)导体圆柱内(r <a ),(2)两导体之间(a <r <b ),(3)导体圆筒内(b <r <c )以及(4)电缆外(r >c )各点处磁感应强度的大小. 解: ? ∑μ=?L I l B 0d (1)a r < 2202R Ir r B μπ= 2 02R Ir B πμ= (2) b r a << I r B 02μπ= r I B πμ20=

大学物理学 热学 各章节 练习题 复习题

温度 例题1:已知一个气球的体积为,充得温度的氢气。当温度升高到37 时,原有压强和体积维持不变,只是跑掉部分氢气,其质量减少了0.052Kg。试求气球内氢气在、压强为P下的密度是什么? 解: 由,气体在两种条件下满足 (1) (2) 将代入(1)、(2)两式,得 时, 例题2:一个抽气机转速为400转/分,每分钟能够抽出气体。设容器的容积 问经过多长时间后才能使容器的压强由降到 ?

解:将容器内的和抽出的气体看作一个系统,按等温过程处理。满足 其中 由于米/分,联立以上两式得 例题3:道尔顿提出一种温标:规定理想气体体积的相对增量正比于温度的增量,采用在标准大气压时,水的冰点温度为零度,沸点温度为100度,试用摄氏度t来表示道尔顿温标的温度。 解:设比例系数为,有 (1) 从(,)(,)积分得 (2) 另由等压条件,有 (3)将代入(2)、(3)得

于是 热力学第一定律 例题1:已知热力学系统在某一准静态过程中满足定值(其中为常数)。设压强由P1 到P2,体积由V1到V2。求过程中系统所作的功。 解: 例题2:已知系统进行某循环过程的过程曲线如图中ACBA所示,求此过程系统所作的功。 解:利用体积功的几何意义求 =

例题3:讨论下列三个过程的正负. (1)等容降温过程: (2)等温压缩过程: (3)从某绝热线上一点开始,在绝热线左侧,至上而下与同一绝热线相交于另一点的任一过程: 由 例题4:质量,压强,温度氮气。先等体增压至。然后等温膨胀压强降至。最后等压压缩体积压缩一半。求整个过程中和,(氮) 解:(1)求,与过程无关 (2)A与过程有关

相关文档
相关文档 最新文档