文档视界 最新最全的文档下载
当前位置:文档视界 › 公务员行测必备数学公式总结(全)汇总

公务员行测必备数学公式总结(全)汇总

公务员行测必备数学公式总结(全)汇总
公务员行测必备数学公式总结(全)汇总

1.1基础数列类型

①常数数列如7,7,7,7,7,7,7,7,……

②等差数列如11,14,17,20,23,26,……

③等比数列如16,24,36,54,81,……

④周期数列如2,5,3,2,5,3,2,5,3,……

⑤对称数列如2,5,3,0,3,5,2,……

⑥质数数列如2,3,5,7,11,13,17

⑦合数数列如4,6,8,9,10,12,14

注意:1既不是质数也不是合数

1.2 200以内质数表

2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199

1.3 整除判定

能被2整除的数,其末尾数字是2的倍数(即偶数)

能被3整除的数,各位数字之和是3的倍数

能被5整除的数,其末尾数字是5的倍数(即5、0)

能被4整除的数,其末两位数字是4的倍数

能被8整除的数,期末三位数字是8的倍数

能被9整除的数,各位数字之和是9的倍数

能被25整除的数,其末两位数字是25的倍数

能被125整除的数,其末三位数字125的倍数

1.4 经典分解

91=7×13 111=3×37 119=7×17

133=7×19 117=9×13 143=11×13

147=7×21 153=9×17 161=7×23

171=9×19 187=11×17 209=19×11

1.5常用平方数

数字平方

1 1

2 4

3 9

4 16

5 25

6 36

7 49

8 64

9 81

10 100

11 121

12 144

13 169

14 196

15 225

16 256

17 289

18 324

19 361

20 400

21 441

22 484

23 529

24 576

25 625

26 676

27 729

28 784

29 841

30 900

1.6常用立方数

数字立方

1 1

2 8

3 27

4 64

5 125

6 216

7 343

8 512

9 729

10 1000

1.7 典型幂次数

2 3 4 5 6

指数

1 2 3 4 5 6

2 4 9 16 25 36

3 8 27 6

4 12

5 216

4 16 81 256 62

5 1296

5 32 243 1024

6 64 729

7 128

8 256

9 512

10 1024

1.8常用阶乘数

数字阶乘

1 1

2 2

3 6

4 24

5 120

6 720

7 5040

8 40320

9 362880

10 36288000

2.1 浓度问题

1.混合后溶液的浓度,应介于混合前的两种溶液浓度之间。

2.浓度=溶质÷溶液

2.2 代入排除法

1 奇数+奇数=偶数

奇数-奇数=偶数

偶数+偶数=偶数

偶数-偶数=偶数

奇数+偶数=奇数

奇数-偶数=奇数

2.

①任意两个数的和如果是奇数,那么差也是奇数;如果和是偶数,那么差也是偶数。

②任意两个数的和或差是奇数,则两数奇偶相反;和或差事偶数,则两数奇偶相同。

3.余数特性

①一个数被2除得的余数,就是其末一位数字被2除得的余数

②一个数被5除得的余数,就是其末一位数字被5除得的余数

③一个数被4除得的余数,就是其末两位数字被4除得的余数

④一个数被8除得的余数,就是其末三位数字被8除得的余数

⑤一个数被25除得的余数,就是其末两位数字被25除得的余数

⑥一个数被125除得的余数,就是其末三位数字被125除得的余数

⑦一个数被3除得的余数,就是其各位数字相加后被3除得的余数

⑧一个数被9除得的余数,就是其个位数字相加后被9除得的余数

9.循环数

198198198=198×1001001

2134213421342134=2134×1000100010001

规律:有多少个循环数,就有多少个1,1之间0的个数是循环数位数减1

例如2134213421342134,中有“2134”四个,所以应该有4个1,同时2134为四位数,所以两个1之间应该有三个0,所以为1000100010001

10.乘方尾数口诀

底数留个位,指数除以4留余数(余数为0,则看做4)

例如19991998的末尾数字为:底数留个位,所以底数为9;指数除以4留余数,1998除以4的余数为2,所以最后为92=81,因此末尾数字为1

11.韦达定理

20

++=

ax bx c

其中x1和x2是这个方程的两个根,则:

x1+x2=b

a -

x1×x2=c

a

逆推理:

如果 a+b=m a ×b=n

则a 、b 是2

0x mx n -+=的两个根。

5.4 行程问题 1.路程=速度×时间

2.相向运动:速度取和;同向运动:速度取差 3促进运动:速度取和;阻碍运动,速度取差 5.5 工程问题

工作总量=工作效率×工作时间 5.6 几何问题 1.常用周长公式: 正方形周长4a C =正方形

长方形周长2a+b C =长方形()

圆形周长2C R π=圆形 2.常用面积公式

正方形面积2

a S =正方形

长方形面积ab S =长方形

圆形面积2

S R π=圆形

三角形面积

1

ah 2S =

三角形

平行四边形面积ah S =平行四边形

梯形面积1

a+b h

2S =梯形()

扇形面积

2n

360S R π=

扇形

3.常用表面积公式 正方体表面积2

6a =

长方体表面积222ab ac bc =++ 球表面积2

4R π=

圆柱体表面积2

22Rh R ππ=+ 4.常用体积公式 正方体体积

3

a V =正方体

长方体体积abc V =长方体

球的体积33

4136V R D ππ==球

圆柱体体积

2h

V R π=圆柱体

圆锥体体积21

h

3V R π=圆锥体

5.几何图形放缩性质

若将一个图形扩大至原来的N 倍,则:对应角度仍为原来的1倍;对应长度变为原来的N 倍;面积变为原来的N2倍;体积变为原来的

N3倍。

6.几何最值理论

1.平面图形中,若周长一定,越接近于圆,面积越大。

2.平面图形中,若面积一定,越接近于圆,周长越小。

3.立体图形中,若表面积一定,越接近于球体,体积越大。

4.立体图形中,若体积一定,越接近于球体,表面积越小。

7.三角形三边关系

三角形两边之和大于第三边,两边之差小于第三边。

题目中例8非常重要。

5.7 容斥原理

1.两集合标准型核心公式

满足条件Ⅰ的个数+满足条件Ⅱ的个数-两者都满足的个数=总个数-两者都不满足的个数

2.三集合标准核心公式

=++---+

||||||||||||||||

A B C A B C A B A C B C A B C

3.三集合整体重复型核心公式

假设满足三个条件的元素数量分别为A、B、C,而至少满足三个条件之一的总量为W。其中:满足一个条件的元素数量为x,满足两个条件的数量为y,满足三个条件的数量为z,从而有下面两个等式:W=x+y+z

A+B+C=x×1+y×2+z×3

5.8排列组合问题 1.排列公式:

!

(1)(2)

(1)

()!

m n n A n n n n m n m =

=?-?-?-+-

2.组合公式:

!(1)(2)(1)

()!!(1)(2)1m n n n n n n m C n m m m m m ?-?-?-+=

=

-??-?-??

3.“捆绑插空法”核心提示

相邻问题——捆绑法:先将相邻元素全排列,然后视其为一个整体与剩余元素全排列;

不邻问题——插空法:现将剩余元素全排列,然后将不邻元素有序插入所成间隙中。

4.对抗赛比赛场次基本公式

淘汰赛——①仅需决出冠亚军 比赛场次=N-1

②需决出1、2、3、4 比赛场次=N

循环赛——①单循环(任意两个队打一场比赛) 比赛场次=2

n C ②双循环赛(任意两个队打两场比赛) 比赛场次=2n P

5.9 概率问题

1.单独概率=满足条件的情况数÷总的情况数

2.某条件成立概率=1-该条件不成立的概率

3.总体概率=满足条件的各种情况概率之和

4.分布概率=满足条件的每个步骤概率之积

5.条件概率:“A 成立”时“B 成立的概率”=A 、B 同时成立的概率÷A 成立的概率

5.10 边端问题

1.段数公式:段数=总长÷株距

2.线性植树:单边植树:棵树=段数+1 双边植树:棵树=(段数+1)×2

3.楼间植树:单边植树 棵树=段数-1 双边植树 棵树=(段数-1)×2

4.环形植树:单边植树 棵树=段数 双边植树 棵树=段数×2

5.方阵问题核心法则:

人数公式:N 层实心方阵的人数=N2 外周公式:N 层方阵最外层人数=(N-1)*4 对于三角阵、五边阵的情况可以此类推 6.过河问题核心法则:

①M 个人过河,船上能载N 个人,由于需要一个人划船,共需往返

1

1M N --次(需要×2)

②“过一次河”指的是单程,“往返一次”指的是双程 ③载人过河的时候,最后一次不再需要返回。

5.12初等数学问题

1.同余问题

余同取余,和同加和,差同减差,公倍数作周期

例如:①一个数除以4余1,除以5余1,除以6余1,则取1,表示为60n+1

②一个数除以4余3,除以5与2,除以6余1,则取7,表示为60n+7

③一个数除以4余1,除以5余2,除以6余3,则取3,表示为60n-3

2.等差数列核心公式

求和公式:2?==?=?(首项+末项)项数和平均数项数中位数项数

项数公式:

1

-=

+末项首项

项数公差

级差公式:)N M N M -=

-?第项第项(公差 通项公式:1(1)n a a n =+-?公差 5.13 年龄问题 1.基本知识点

①每过N 年,每个人都长N 岁

②两个人的年龄差在任何时候都是固定不变的 ③两个人的年龄之间的倍数随着时间的推移而变小。 2.平均分段法

例如:甲对乙说:当我岁数是你现在岁数时,你才4岁。乙对甲说:当我的岁数是你现在岁数的时候,你是67岁,则现在甲乙各多少岁?

画出如下图:

67-------------------甲-------乙----------------------4

67-4=63,即相差了63

67-甲-乙-4,共有三段,所以每段为63÷3=21

所以乙=4+21=25岁

所以甲=25+21=46岁

5.14 统筹问题

1.“非闭合”货物集中问题

判断每条“路”的两侧的货物总重量,在在这条路上一定是从轻的一侧流向重的一侧。

特别提示:①本法则必须适用于“非闭合”的路径问题中

②本法则的应用,与各条路径的长短没有关系

③我们应该从中间开始分析,这样可以更快。

2.货物装卸为题

如果有M辆车和(N>M)个工厂,所需装卸工的总数就是需要装卸工人数最多的M各工厂所需的装卸工之和。(若M>=N,则需要把各个点上的人加起来即答案)

排列数公式:P m n=n(n-1)(n-2)…(n-m+1),(m≤n)

组合数公式:C m n=P m n÷P m m=(规定0n C=1)。

“装错信封”问题:D1=0,D2=1,D3=2,D4=9,D5=44,D6=265,

年龄问题:关键是年龄差不变;

几年后年龄=大小年龄差÷倍数差-小年龄

几年前年龄=小年龄-大小年龄差÷倍数差

日期问题:闰年是366天,平年是365天,其中:1、3、5、7、8、10、12月都是31天,4、6、9、11是30天,闰年时候2月份29天,平年2月份是28天。

植树问题

(1)线形植树:棵数=总长÷间隔+1

(2)环形植树:棵数=总长÷间隔

(3)楼间植树:棵数=总长÷间隔-1

(4)剪绳问题:对折N次,从中剪M刀,则被剪成了(2N ×M+1)段

鸡兔同笼问题:

鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)

(一般将“每”量视为“脚数”)

得失问题(鸡兔同笼问题的推广):

不合格品数=(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)

=总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)

例:“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合

格?”

解:(4×1000-3525)÷(4+15) =475÷19=25(个) 盈亏问题:

(1)一次盈,一次亏:(盈+亏)÷(两次每人分配数的差)=人数 (2)两次都有盈: (大盈-小盈)÷(两次每人分配数的差)=人数

(3)两次都是亏: (大亏-小亏)÷(两次每人分配数的差)=人数

(4)一次亏,一次刚好:亏÷(两次每人分配数的差)=人数 (5)一次盈,一次刚好:盈÷(两次每人分配数的差)=人数 例:“小朋友分桃子,每人10个少9个,每人8个多7个。问:有多少个小朋友和多少个桃子?”

解(7+9)÷(10-8)=16÷2=8(个)………………人数 10×8-9=80-9=71(个)………………桃子 钟表问题:

钟面上按“分针”分为60小格,时针的转速是分针的121

,分针每小时可追及1211

时针与分针一昼夜重合22次,垂直44次,成180o22次。

公务员考试常用数学公式汇总(完整打印版)

公务员考试常用数学公式汇总(完整版) 一、基础代数公式 1. 平方差公式:(a +b )3(a -b )=a 2-b 2 2. 完全平方公式:(a±b)2=a 2±2ab +b 2 完全立方公式:(a ±b )3=(a±b)(a 2 ab+b 2) 3. 同底数幂相乘: a m 3a n =a m +n (m 、n 为正整数,a≠0) 同底数幂相除:a m ÷a n =a m -n (m 、n 为正整数,a≠0) a 0=1(a≠0) a -p = p a 1 (a≠0,p 为正整数) 4. 等差数列: (1)s n = 2 )(1n a a n ?+=na 1+21 n(n-1)d ; (2)a n =a 1+(n -1)d ; (3)n = d a a n 1 -+1; (4)若a,A,b 成等差数列,则:2A =a+b ; (5)若m+n=k+i ,则:a m +a n =a k +a i ; (其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和) 5. 等比数列: (1)a n =a 1q -1; (2)s n =q q a n -11 ·1) -((q ≠1) (3)若a,G,b 成等比数列,则:G 2=ab ; (4)若m+n=k+i ,则:a m 2a n =a k 2a i ; (5)a m -a n =(m-n)d (6) n m a a =q (m-n) (其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和) 6.一元二次方程求根公式:ax 2+bx+c=a(x-x 1)(x-x 2) 其中:x 1=a ac b b 242-+-;x 2=a ac b b 242---(b 2-4a c ≥0) 根与系数的关系:x 1+x 2=-a b ,x 12x 2=a c 二、基础几何公式 1. 三角形:不在同一直线上的三点可以构成一个三角形;三角形内角和等于180°;三角形中任两 边之和大于第三边、任两边之差小于第三边; (1)角平分线:三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角的平分线。 (2)三角形的中线:连结三角形一个顶点和它对边中点的线段叫做三角形的中线。 (3)三角形的高:三角形一个顶点到它的对边所在直线的垂线段,叫做三角形的高。 (4)三角形的中位线:连结三角形两边中点的线段,叫做三角形的中位线。 (5)内心:角平分线的交点叫做内心;内心到三角形三边的距离相等。 重心:中线的交点叫做重心;重心到每边中点的距离等于这边中线的三分之一。 垂线:高线的交点叫做垂线;三角形的一个顶点与垂心连线必垂直于对边。 外心:三角形三边的垂直平分线的交点,叫做三角形的

公务员行测必备数学公式总结(全)汇总

1.1基础数列类型 ①常数数列如7,7,7,7,7,7,7,7,…… ②等差数列如11,14,17,20,23,26,…… ③等比数列如16,24,36,54,81,…… ④周期数列如2,5,3,2,5,3,2,5,3,…… ⑤对称数列如2,5,3,0,3,5,2,…… ⑥质数数列如2,3,5,7,11,13,17 ⑦合数数列如4,6,8,9,10,12,14 注意:1既不是质数也不是合数 1.2 200以内质数表 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199 1.3 整除判定 能被2整除的数,其末尾数字是2的倍数(即偶数) 能被3整除的数,各位数字之和是3的倍数 能被5整除的数,其末尾数字是5的倍数(即5、0) 能被4整除的数,其末两位数字是4的倍数 能被8整除的数,期末三位数字是8的倍数 能被9整除的数,各位数字之和是9的倍数 能被25整除的数,其末两位数字是25的倍数

能被125整除的数,其末三位数字125的倍数 1.4 经典分解 91=7×13 111=3×37 119=7×17 133=7×19 117=9×13 143=11×13 147=7×21 153=9×17 161=7×23 171=9×19 187=11×17 209=19×11 1.5常用平方数 数字平方 1 1 2 4 3 9 4 16 5 25 6 36 7 49 8 64 9 81 10 100 11 121 12 144 13 169 14 196 15 225 16 256 17 289 18 324 19 361 20 400 21 441 22 484 23 529 24 576 25 625

行测数学运算经典题型总结

一、容斥原理 容斥原理关键就两个公式: 1. 两个集合的容斥关系公式:A+B=A∪B+A∩B 2. 三个集合的容斥关系公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C 请看例题: 【例题1】某大学某班学生总数是32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没及格的有4人,那么两次考试都及格的人数是( ) A.22 B.18 C.28 D.26 【解析】设A=第一次考试中及格的人数(26人),B=第二次考试中及格的人数(24人),显然,A+B=26+24=50;A∪B=32-4=28,则根据A∩B=A+B-A∪B=50-28=22。答案为A。 【例题2】电视台向100人调查前一天收看电视的情况,有62人看过2频道,34人看过8频道,11人两个频道都看过。问两个频道都没看过的有多少人? 【解析】设A=看过2频道的人(62),B=看过8频道的人(34),显然,A+B=62+34=96; A∩B=两个频道都看过的人(11),则根据公式A∪B= A+B-A∩B=96-11=85,所以,两个频道都没看过的人数为100-85=15人。 二、作对或做错题问题 【例题】某次考试由30到判断题,每作对一道题得4分,做错一题倒扣2分,小周共得96分,问他做错了多少道题? A.12 B.4 C.2 D.5 【解析】 方法一 假设某人在做题时前面24道题都做对了,这时他应该得到96分,后面还有6道题,如果让这最后6道题的得分为0,即可满足题意.这6道题的得分怎么才能为0分呢?根据规则,只要作对2道题,做错4道题即可,据此我们可知做错的题为4道,作对的题为26道. 方法二 作对一道可得4分,如果每作对反而扣2分,这一正一负差距就变成了6分.30道题全做对可得120分,而现在只得到96分,意味着差距为24分,用24÷6=4即可得到做错的题,所以可知选择B

2017公务员考试常用数学公式汇总(精华版)

2017公务员考试常用数学公式汇总(精华版) 一、基础代数公式 1. 平方差公式:(a +b )×(a -b )=a 2-b 2 2. 完全平方公式:(a±b)2=a 2±2ab +b 2 完全立方公式:(a ±b )3=(a±b)(a 2μab+b 2) 3. 同底数幂相乘: a m ×a n =a m +n (m 、n 为正整数,a≠0) 同底数幂相除:a m ÷a n =a m -n (m 、n 为正整数,a≠0) a 0=1(a≠0) a -p = p a 1 (a≠0,p 为正整数) 4. 等差数列: (1)s n = 2)(1n a a n ?+=na 1+2 1 n(n-1)d ; (2)a n =a 1+(n -1)d ; (3)n = d a a n 1 -+1; (4)若a,A,b 成等差数列,则:2A =a+b ; (5)若m+n=k+i ,则:a m +a n =a k +a i ; (其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和) 5. 等比数列: (1)a n =a 1q -1; (2)s n =q q a n -11 ·1) -((q ≠1) (3)若a,G,b 成等比数列,则:G 2=ab ; (4)若m+n=k+i ,则:a m ·a n =a k ·a i ; (5)a m -a n =(m-n)d (6) m a a =q (m-n) 1. 三角形:不在同一直线上的三点可以构成一个三角形;三角形内角和等于180°;三角形中任两 边之和大于第三边、任两边之差小于第三边; (1)角平分线:三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角的平分线。 (2)三角形的中线:连结三角形一个顶点和它对边中点的线段叫做三角形的中线。 (3)三角形的高:三角形一个顶点到它的对边所在直线的垂线段,叫做三角形的高。

小学数学公式汇总91843

. 小学数学公式汇总 数量关系计算公式 1、单价×数量=总价 2、单产量×数量=总产量 3、速度×时间=路程 4、工效×时间=工作总量 5、加数+加数=和 6、一个加数=和-另一个加数 7、被减数-减数=差 8、减数=被减数-差 9、被减数=减数+差 10、因数×因数=积 11、一个因数=积÷另一个因数 12、被除数÷除数=商 13、除数=被除数÷商 14、被除数=商×除数 15、有余数的除法: 被除数=商×除数+余数 16、一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)17、每份数×份数=总数 18、总数÷每份数=份数 19、总数÷份数=每份数 20、1倍数×倍数=几倍数 21、几倍数÷1倍数=倍数 22、几倍数÷倍数=1倍数 23、换算单位 1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米 1吨=1000千克 1千克= 1000克= 1公斤= 2市斤1公顷=10000平方米。 1亩=666.666平方米。

. 1升=1立方分米=1000毫升 1毫升=1立方厘米 几何公式 1、正方形 正方形的周长=边长×4 公式:C=4a 正方形的面积=边长×边长 公式:S=a×a 正方体的体积=边长×边长×边长公式:V=a×a×a 2、长方形 长方形的周长=(长+宽)×2 公式:C=(a+b)×2 长方形的面积=长×宽 公式:S=a×b 长方体的体积=长×宽×高 公式:V=a×b×h 3、三角形 三角形的面积=底×高÷2。公式:S= a×h÷2 4、平行四边形 平行四边形的面积=底×高 公式:S= a×h 5、梯形 梯形的面积=(上底+下底)×高÷2 公式:S=(a+b)h÷2 6、圆 直径=半径×2 公式:d=2r 半径=直径÷2 公式:r= d÷2 圆的周长=圆周率×直径 公式:c=πd =2πr 圆的面积=半径×半径×π 公式:S=πrr 7、圆柱 圆柱的侧面积=底面的周长×高。 公式:S=ch=πdh=2πrh 圆柱的表面积=底面的周长×高+两头

2020最新公务员考试常用数学公式汇总(精华版)

2020最新公务员考试常用数学公式汇总(精华版) 1. 平方差公式:(a +b )·(a -b )=a 2 -b 2 2. 完全平方公式:(a ±b)2 =a 2 ±2ab +b 2 3. 完全立方公式:(a ±b)3=(a ±b )(a 2 ab+b 2 ) 4. 立方和差公式:a 3 +b 3 =(a ±b)(a 2 + ab+b 2 ) 5. a m ·a n =a m +n a m ÷a n =a m -n (a m )n =a mn (ab)n =a n ·b n (1)s n = 2 ) (1n a a n +?=na 1+21n(n-1)d ; (2)a n =a 1+(n -1)d ; (3)项数 n = d a a n 1 -+1; (4)若a,A,b 成等差数列,则:2A =a+b ; (5)若m+n=k+i ,则:a m +a n =a k +a i ; (6)前n 个奇数:1,3,5,7,9,…(2n —1)之和为n 2 (其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和) (1)a n =a 1q n -1 ;

(2)s n =q q a n -11 ·1) -((q ≠1) (3)若a,G,b 成等比数列,则:G 2 =ab ; (4)若m+n=k+i ,则:a m ·a n =a k ·a i ; (5)a m -a n =(m-n)d (6)n m a a =q (m-n) (其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和) (1)一元二次方程求根公式:ax 2 +bx+c=a(x-x 1)(x-x 2) 其中:x 1= a ac b b 242-+-;x 2= a ac b b 242---(b 2 -4ac ≥0) 根与系数的关系:x 1+x 2=-a b ,x 1·x 2=a c (2)ab b a 2 ≥+ ab b a ≥+2 )2 ( ab b a 222≥+ abc c b a ≥++3 )3 ( (3)abc c b a 3222≥++ abc c b a 33≥++ 推广:n n n x x x n x x x x ......21321≥++++ (4)一阶导为零法:连续可导函数,在其内部取得最大值或最小值时,其导数为零。 (5)两项分母列项公式: )(a m m b +=(m 1 — a m +1 )×a b 三项分母裂项公式: ) 2)((a m a m m b ++=[ ) (1a m m +—

公务员考试行测常用数学公式汇总

常用数学公式汇总 一、基础代数公式 1. 平方差公式:(a +b )×(a -b )=a 2-b 2 2. 完全平方公式:(a±b)2=a 2±2ab +b 2 完全立方公式:(a ±b )3=(a±b)(a 2μab+b 2) 3. 同底数幂相乘: a m ×a n =a m +n (m 、n 为正整数,a≠0) 同底数幂相除:a m ÷a n =a m -n (m 、n 为正整数,a≠0) a 0=1(a≠0) a -p =p a 1(a≠0,p 为正整数) 4. 等差数列: (1)s n =2)(1n a a n ?+=na 1+2 1n(n-1)d ; (2)a n =a 1+(n -1)d ; (3)n =d a a n 1-+1; (4)若a,A, b 成等差数列,则:2A =a+b ; (5)若m+n=k+i ,则:a m +a n =a k +a i ; (其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和) 5. 等比数列: (1)a n =a 1q -1; (2)s n =q q a n -11 ·1)-((q ≠1) (3)若a,G,b 成等比数列,则:G 2=ab ; (4)若m+n=k+i ,则:a m ·a n =a k ·a i ; (5)a m -a n =(m-n)d (6)n m a a =q (m-n) (其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和) 6.一元二次方程求根公式:ax 2+bx+c=a(x-x 1)(x-x 2) 其中:x 1=a ac b b 242-+-;x 2=a ac b b 242---(b 2-4ac ≥0) 根与系数的关系:x 1+x 2=-a b ,x 1·x 2=a c 二、基础几何公式 1. 三角形:不在同一直线上的三点可以构成一个三角形;三角形内角和等于180°;三角形中任两 边之和大于第三边、任两边之差小于第三边; (1)角平分线:三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角的平分线。 (2)三角形的中线:连结三角形一个顶点和它对边中点的线段叫做三角形的中线。 (3)三角形的高:三角形一个顶点到它的对边所在直线的垂线段,叫做三角形的高。 (4)三角形的中位线:连结三角形两边中点的线段,叫做三角形的中位线。 (5)内心:角平分线的交点叫做内心;内心到三角形三边的距离相等。 重心:中线的交点叫做重心;重心到每边中点的距离等于这边中线的三分之一。

(通用版)小学数学公式归纳整理大全

小学数学公式大全 一、小学数学几何形体周长面积体积计算公式 长方形的周长=(长+宽)×2 C=(a+b)×2 正方形的周长=边长×4 C=4a 长方形的面积=长×宽S=ab 正方形的面积=边长×边长S=a.a= a 三角形的面积=底×高÷2 S=ah÷2 平行四边形的面积=底×高S=ah 梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2 直径=半径×2 d=2r 半径=直径÷2 r= d÷2 圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr 圆的面积=圆周率×半径×半径 三角形的面积=底×高÷2。公式S= a×h÷2 正方形的面积=边长×边长公式S= a×a 长方形的面积=长×宽公式S= a×b 平行四边形的面积=底×高公式S= a×h 梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷2 内角和:三角形的内角和=180度。 长方体的体积=长×宽×高公式:V=abh 长方体(或正方体)的体积=底面积×高公式:V=abh 正方体的体积=棱长×棱长×棱长公式:V=aaa 圆的周长=直径×π 公式:L=πd=2πr 圆的面积=半径×半径×π 公式:S=πr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh =2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh 圆锥的体积=1/3底面×积高。公式:V=1/3Sh

分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 分数的乘法则:用分子的积做分子,用分母的积做分母。 分数的除法则:除以一个数等于乘以这个数的倒数。 二、单位换算 (1)1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米 (2)1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米 (3)1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米 (4)1吨=1000千克1千克= 1000克= 1公斤= 2市斤 (5)1公顷=10000平方米1亩=666.666平方米 (6)1升=1立方分米=1000毫升1毫升=1立方厘米 (7)1元=10角1角=10分1元=100分 (8)1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月 平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分 1分=60秒1时=3600秒 三、数量关系计算公式方面 1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数 2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、速度×时间=路程路程÷速度=时间路程÷时间=速度 4、单价×数量=总价总价÷单价=数量总价÷数量=单价 5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率 6、加数+加数=和和-一个加数=另一个加数 7、被减数-减数=差被减数-差=减数差+减数=被减数

公务员考试常用数学公式汇总(完整打印版)

公务员考试常用数学公式汇总(完整版) 一、基础代数公式 1. 平方差公式:(a+b)×(a-b )=a 2-b2 2. 完全平方公式:(a±b)2=a 2±2ab +b2 完全立方公式:(a ±b)3=(a±b)(a 2 ab+b 2) 3. 同底数幂相乘: a m ×an =a m+n (m 、n 为正整数,a≠0) 同底数幂相除:a m ÷an=am-n(m、n 为正整数,a≠0) a 0=1(a≠0) a -p = p a 1 (a≠0,p 为正整数) 4. 等差数列: (1)sn = 2)(1n a a n ?+=na1+2 1 n(n-1)d; (2)a n =a 1+(n -1)d; (3)n = d a a n 1 -+1; (4)若a,A,b 成等差数列,则:2A=a+b; (5)若m+n=k+i,则:a m +a n=a k +ai ; (其中:n为项数,a1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和) 5. 等比数列: (1)a n =a1q -1; (2)sn =q q a n -11 ·1) -((q ≠1) (3)若a,G,b 成等比数列,则:G 2=a b; (4)若m+n=k +i ,则:a m ·a n =a k ·a i ; (5)a m -a n =(m-n)d (6)n m a a =q (m-n) (其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n项的和) 6.一元二次方程求根公式:a x2+bx+c=a (x -x 1)(x-x2) 其中:x 1=a ac b b 242-+-;x2=a ac b b 242---(b 2-4a c ≥0) 根与系数的关系:x 1+x 2=-a b ,x 1·x2=a c 二、基础几何公式 1. 三角形:不在同一直线上的三点可以构成一个三角形;三角形内角和等于180°;三角形中任两 边之和大于第三边、任两边之差小于第三边; (1)角平分线:三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角的平分线。 (2)三角形的中线:连结三角形一个顶点和它对边中点的线段叫做三角形的中线。 (3)三角形的高:三角形一个顶点到它的对边所在直线的垂线段,叫做三角形的高。 (4)三角形的中位线:连结三角形两边中点的线段,叫做三角形的中位线。 (5)内心:角平分线的交点叫做内心;内心到三角形三边的距离相等。 重心:中线的交点叫做重心;重心到每边中点的距离等于这边中线的三分之一。 垂线:高线的交点叫做垂线;三角形的一个顶点与垂心连线必垂直于对边。 外心:三角形三边的垂直平分线的交点,叫做三角形的

2020公务员考试常用数学公式汇总(精华版)

精选工作总结类文档,如果您需要使用本文档,请点击下载! 祝同学们考得一个好成绩,心想事成 ,万事如意! 2020公务员考试常用数学公式汇总(精华版) 1. 平方差公式:(a +b )·(a -b )=a 2-b 2 2. 完全平方公式:(a ±b)2=a 2±2ab +b 2 3. 完全立方公式:(a ±b)3=(a ±b )(a 2 ab+b 2) 4. 立方和差公式:a 3+b 3=(a ±b)(a 2+ ab+b 2) 5. a m ·a n =a m +n a m ÷a n =a m -n (a m )n =a mn (ab)n =a n ·b n (1)s n = 2 )(1n a a n +?=na 1+21 n(n-1)d ; (2)a n =a 1+(n -1)d ; (3)项数n = d a a n 1 -+1; (4)若a,A,b 成等差数列,则:2A =a+b ; (5)若m+n=k+i ,则:a m +a n =a k +a i ; (6)前n 个奇数:1,3,5,7,9,…(2n —1)之和为n 2 (其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和) (1)a n =a 1q n -1;

(2)s n =q q a n -11 ·1) -((q ≠1) (3)若a,G,b 成等比数列,则:G 2=ab ; (4)若m+n=k+i ,则:a m ·a n =a k ·a i ; (5)a m -a n =(m-n)d (6) n m a a =q (m-n) (其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和) (1)一元二次方程求根公式:ax 2+bx+c=a(x-x 1)(x-x 2) 其中:x 1=a ac b b 242-+-;x 2=a ac b b 242---(b 2-4ac ≥0) 根与系数的关系:x 1+x 2=- a b ,x 1·x 2=a c (2)ab b a 2≥+ ab b a ≥+2)2( ab b a 222≥+ abc c b a ≥++3 )3 ( (3)abc c b a 3222≥++ abc c b a 33≥++ 推广:n n n x x x n x x x x ......21321≥++++ (4)一阶导为零法:连续可导函数,在其内部取得最大值或最小值时,其导数为零。 (5)两项分母列项公式: )(a m m b +=(m 1—a m +1)×a b 三项分母裂项公式:)2)((a m a m m b ++=[)(1a m m +—)2)((1 a m a m ++]×a b 2 1.勾股定理:a 2+b 2=c 2(其中:a 、b 为直角边,c 为斜边)

小学年级数学公式大全汇总

小学年级数学公式大全 汇总 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

小学1-6年级数学“公式大全”汇总!孩子不掌握吃透,6年白学了数学是一门非常实用的学科,不管在那个阶段的学习里,总是能够见到数学的踪影,学好数学不只是对往后的升学与学习有帮助,而且对生活更是受益匪浅。而小学阶段,是为孩子抓基础的最佳时期,所以在小学阶段的学习中,一定要将数学的基础知识牢牢掌握,才能更好的学习今后的知识。 数学是一门严谨的学科,需要孩子们具有一定的逻辑思维能力,才能更好的学习。小学数学本身需要掌握的知识点相对较少,难度也不算很大,只要能够吃透掌握运算法则和公式概念,想要在考试中取得好成绩是非常容易的。但小学的孩子能力都不强,逻辑思维能力也没有完全开发,掌握不好知识是常有的事。而且随着年级的不断升高,孩子落下的知识只会越来越多,到最后想追也追不上来。 其实,在我多年的教学过程中,总结出了非常多的和资料,想要提高孩子成绩的方法非常多,首先第一点就是要拥有一份好的学习资料,让孩子牢牢地掌握好基础知识。因为是数学的知识都木有连贯性和相关性,哪怕是一个地方没能掌握到位,也会导致这部分知识成为孩子日后学习中的薄弱环节。再一点就是在平时的学习中,让孩子逐渐养成自主学习的能力,能够大大的提高学习效率,提升吸收知识的速度,还可以激发出孩子对数学浓厚的学习兴趣。 所以,今天老师为各位家长分享一套小学1-6年级的数学公式大全汇总图,大家看完之后希望可以为孩子保存起来,拿回家去认真辅导孩子,巩固好学习过的重难知识,相信对成绩稍差的孩子来讲,这份资料是一份不错的学习资料,对提升成绩有很大的帮助。如果您的孩子有学习差,成绩提不高,学习方法不正确,严重偏科等这些问题都可以在问我,我都会免费给各位家长一一解答。

小学常用数学公式汇总

数量关系计算公式 1、单价×数量=总价 2、单产量×数量=总产量 3、速度×时间=路程 4、工效×时间=工作总量 5、加数+加数=和 6、一个加数=和-另一个加数 7、被减数-减数=差 8、减数=被减数-差 9、被减数=减数+差 10、因数×因数=积 11、一个因数=积÷另一个因数 12、被除数÷除数=商 13、除数=被除数÷商 14、被除数=商×除数 15、有余数的除法:被除数=商×除数+余数 一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6) 1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米

1平方米=100平方分米 1平方分米=100平方厘米 几何公式 1.正方形 正方形的周长=边长×4 公式:C=4a 正方形的面积=边长×边长公式:S=a×a 正方体的体积=边长×边长×边长公式:V=a×a×a 2.长方形 长方形的周长=(长+宽)×2 公式:C=(a+b)×2 长方形的面积=长×宽公式:S=a×b 长方体的体积=长×宽×高公式:V=a×b×h 3.三角形 三角形的面积=底×高÷2 公式:S= a×h÷2 4.平行四边形 平行四边形的面积=底×高公式:S= a×h 5.梯形 梯形的面积=(上底+下底)×高÷2 公式:S=(a+b)h÷2

6.圆 直径=半径×2 公式:d=2r 半径=直径÷2 公式:r= d÷2 圆的周长=圆周率×直径公式:c=πd =2πr 圆的面积=半径×半径×π 公式:S=πrr 7.圆柱 圆柱的侧面积=底面的周长×高公式:S=ch=πdh=2πrh 圆柱的表面积=底面的周长×高+两头的圆的面积公式:S=ch+2s=ch+2πr2圆柱的总体积=底面积×高公式:V=Sh 8.圆锥 圆锥的总体积=底面积×高×1/3 公式:V=1/3Sh 9.三角形内角和=180度

公务员考试行测数学公式大全

公务员考试行测数学公式大全

常见数学公式汇总 一、基础 代数公式 1. 平方差公式:(a+b)·(a-b)=a2-b2 2. 完全平方公式:(a±b)2=a2±2ab+b2 3. 完全立方公式:(a±b)3=(a±b)(a2μab+b2) 4. 立方和差公式:a3+b3=(a±b)(a2+μab+b2) 5. a m·a n=a m+n a m÷a n=a m-n (a m)n=a mn (ab)n=a n·b n 二、等差数 列 (1)s n = 2 ) ( 1n a a n+ ?=na 1 + 2 1n(n-1)d; (2)a n=a 1 +(n-1)d; (3)项数n = d a a n1 -+1; (4)若a,A,b成等差数列,则:2A=a+b;(5)若m+n=k+i,则:a m+a n=a k+a i ; (6)前n个奇数:1,3,5,7,9,…(2n—1)之和为n2 (其中:n为项数,a 1为首项,a n 为末项,d为 公差,s n 为等差数列前n项的和)三、等比数

列 (1)a n =a 1q n -1 ; (2)s n = q q a n -11 ·1)-((q ≠1) (3)若a,G,b 成等比数列,则:G 2=ab ; (4)若m+n=k+i ,则:a m ·a n =a k ·a i ; (5)a m -a n =(m-n)d (6)n m a a =q (m-n) (其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和) 四、不等式 (1)一元二次方程求根公式:ax 2 +bx+c=a(x-x 1)(x-x 2) 其中:x 1 = a ac b b 242-+-;x 2= a ac b b 242---(b 2 -4ac ≥0) 根与系数的关系:x 1+x 2=-a b ,x 1·x 2 =a c (2)ab b a 2 ≥+ ab b a ≥+2 )2 ( ab b a 222≥+ abc c b a ≥++3 )3 ( (3)abc c b a 3222 ≥++ abc c b a 3 3 ≥++ 推广:n n n x x x n x x x x (2132) 1 ≥++++

公务员考试常用数学公式汇总(完整打印版)

公务员考试常用数学公式汇总(完整版) 一、基础代数公式 1. 平方差公式:(a +b )×(a -b )=a 2-b 2 2. 完全平方公式:(a±b)2=a 2±2ab +b 2 完全立方公式:(a ±b )3=(a±b)(a 2 ab+b 2) 3. 同底数幂相乘: a m ×a n =a m +n (m 、n 为正整数,a≠0) 同底数幂相除:a m ÷a n =a m -n (m 、n 为正整数,a≠0) a 0=1(a≠0) a -p = p a 1 (a≠0,p 为正整数) 4. 等差数列: (1)s n = 2)(1n a a n ?+=na 1+21 n(n-1)d ; (2)a n =a 1+(n -1)d ; (3)n = d a a n 1 -+1; (4)若a,A,b 成等差数列,则:2A =a+b ; (5)若m+n=k+i ,则:a m +a n =a k +a i ; (其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和) 5. 等比数列: (1)a n =a 1q -1; (2)s n =q q a n -11 ·1) -((q ≠1) (3)若a,G,b 成等比数列,则:G 2=ab ; (4)若m+n=k+i ,则:a m ·a n =a k ·a i ; (5)a m -a n =(m-n)d (6)n m a a =q (m-n) (其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和) 6.一元二次方程求根公式:ax 2+bx+c=a(x-x 1)(x-x 2) 其中:x 1=a ac b b 242-+-;x 2=a ac b b 242---(b 2-4a c ≥0) 根与系数的关系:x 1+x 2=-a b ,x 1·x 2=a c 二、基础几何公式 1. 三角形:不在同一直线上的三点可以构成一个三角形;三角形内角和等于180°;三角形中任两 边之和大于第三边、任两边之差小于第三边; (1)角平分线:三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角的平分线。 (2)三角形的中线:连结三角形一个顶点和它对边中点的线段叫做三角形的中线。 (3)三角形的高:三角形一个顶点到它的对边所在直线的垂线段,叫做三角形的高。 (4)三角形的中位线:连结三角形两边中点的线段,叫做三角形的中位线。 (5)内心:角平分线的交点叫做内心;内心到三角形三边的距离相等。 重心:中线的交点叫做重心;重心到每边中点的距离等于这边中线的三分之一。 垂线:高线的交点叫做垂线;三角形的一个顶点与垂心连线必垂直于对边。 外心:三角形三边的垂直平分线的交点,叫做三角形的

小学数学公式汇总

1每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 2倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3速度×时间=路程 路程÷速度=时间 路程÷时间=速度 4单价×数量=总价 # 总价÷单价=数量 总价÷数量=单价 5工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6加数+加数=和 和-一个加数=另一个加数 7被减数-减数=差 被减数-差=减数 差+减数=被减数 | 8因数×因数=积 积÷一个因数=另一个因数 9被除数÷除数=商 被除数÷商=除数 商×除数=被除数 小学数学图形计算公式 1正方形 C周长S面积a边长 周长=边长×4 C=4a ` 面积=边长×边长 S=a×a 2正方体 V:体积a:棱长 表面积=棱长×棱长×6

S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3长方形 C周长S面积a边长 * 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4长方体 V:体积s:面积a:长b:宽h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh ) 5三角形 s面积a底h高 面积=底×高÷2 s=ah÷2 三角形高=面积×2÷底 三角形底=面积×2÷高 6平行四边形 s面积a底h高 面积=底×高 s=ah … 7梯形 s面积a上底b下底h高 面积=(上底+下底)×高÷2 s=(a+b)×h÷2 8圆形 S面积C周长∏d=直径r=半径 (1)周长=直径×∏=2×∏×半径 C=∏d=2∏r (2)面积=半径×半径×∏ 9圆柱体 @

常用数学公式大全

常用数学公式大全 1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数 2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、速度×时间=路程路程÷速度=时间路程÷时间=速度 4、单价×数量=总价总价÷单价=数量总价÷数量=单价 5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率 6、加数+加数=和和-一个加数=另一个加数 7、被减数-减数=差被减数-差=减数差+减数=被减数 8、因数×因数=积积÷一个因数=另一个因数 9、被除数÷除数=商被除数÷商=除数商×除数=被除数 小学数学图形计算公式 1、正方形C周长S面积a边长周长=边长×4C=4a面积=边长×边长S=a×a 2、正方体V:体积a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a 3、长方形 C周长S面积a边长 周长=(长+宽)×2C=2(a+b) 面积=长×宽S=ab 4、长方体 V:体积s:面积a:长b:宽h:高 (1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh) (2)体积=长×宽×高V=abh 5三角形 s面积a底h高 面积=底×高÷2s=ah÷2 三角形高=面积×2÷底 三角形底=面积×2÷高 6平行四边形 s面积a底h高 面积=底×高s=ah 7梯形 s面积a上底b下底h高 面积=(上底+下底)×高÷2s=(a+b)×h÷2 8圆形 S面积C周长∏d=直径r=半径 (1)周长=直径×∏=2×∏×半径C=∏d=2∏r (2)面积=半径×半径×∏ 9圆柱体 v:体积h:高s;底面积r:底面半径c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径

小学一至六年级数学公式大全.经典总结

小学一至六年级数学公式大全 周长公式 类型公式字母表示 长方形周长= (长+宽)×2 (a+b)×2 正方形周长 =边长×4 a×4=4a 圆的周长= 直径×π = 2×π×半径 c=π×d =2×π×r 面积公式 类型公式字母表示 长方形面积= 长×宽 s=a×b 正方形面积= 边长×边长 s=a×a 平行四边形面积= 底×高 s=a×h 梯形面积=(上底+下底)×高÷2 s=(a+b)×h÷2 三角形面积= 底×高÷2 s=a×h÷2 长方体表面积(长×宽+长×高+宽×高)×2 S=(a×b+a×h+b×h)×2 正方体表面积 =棱长×棱长×6 s= a×a×6 圆面积= π×半径的平方s=r2 圆柱体侧面积底面周长×高 π×直径×高 2×π×半径×高 c×h π×d×h 2×π×r×h 圆柱体表面积侧面积+2×底面积 底面周长×高+2×π×半径的平方 π×直径×高+2×π×半径的平方 2×π×半径×高+2×π×半径的平方 c×h+2×r2 π×d×h+2×r2 2×π×r×h +2×r2 体积公式 类型公式字母表示 长方形长×宽×高 a×b×h 正方体棱长×棱长×棱长 a×a×a 圆柱体底面积×高 π×半径的平方×高 s×h r2×h 圆锥体×底面积×高 ×π×半径的平方×高×s×h ×r2×h 补充说明: 长方体棱长和=(长+宽+高)×4 正方体棱长和=棱长×12 熟记下列正反比例关系: 正比例关系:

正方形的周长与边长成正比例关系 长方形的周长与(长+宽)成正比例关系 圆的周长与直径成正比例关系 圆的周长与半径成正比例关系 圆的面积与半径的平方成正比例关系 2.反比例关系 常用数量关系: 1.路程=速度×时间速度=路程÷时间时间=路程÷速度 工作总量=工作效率×工作时间工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率 总价=单价×数量单价=总价÷数量数量=总价÷单价 总产量=单产量×面积单产量=总产量÷面积面积=总产量÷单产量 单位换算: 长度单位: 一公里=1千米=1000米 1米=10分米1分米=10厘米 1厘米=10毫米 面积单位: 1平方千米=100公顷1公顷=100公亩1公亩=100平方米 1平方千米=1000000平方米1公顷=10000平方米1平方米=100平方分米 1平方分米=100平方厘米1平方厘米=100平方毫米 体积单位: 1立方千米=1000000000立方米1立方米=1000立方分米1立方分米=1000立方厘米 1立方厘米=1000立方毫米1立方分米=1升1立方厘米=1毫升 1升=1000毫升 重量单位: 1吨=1000千克 1千克=1000克 时间单位: 一世纪=100年一年=四季度一年=12月一年=365天(平年)一年=366天(闰年) 一季度=3个月一个月= 3旬(上、中、下)一个月=30天(小月)一个月=31天(大月)一星期=7天一天=24小时一小时=60分一分=60秒 一年中的大月:一月、三月、五月、七月、八月、十月、十二月(七个月) 一年中的小月:四月、六月、九月、十一月(四个月) 特殊分数值: =0.5=50% = 0.25 = 25% = 0.75 = 75% = 0.2 = 20% = 0.4 = 40% = 0.6 = 60% = 0.8 = 80% =0.125=12.5% = 0.375 = 37.5% = 0.625 = 62.5% = 0.875 = 8 1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数 2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、速度×时间=路程路程÷速度=时间路程÷时间=速度 4、单价×数量=总价总价÷单价=数量总价÷数量=单价 5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率 6、加数+加数=和和-一个加数=另一个加数 7、被减数-减数=差被减数-差=减数差+减数=被减数 8、因数×因数=积积÷一个因数=另一个因数 9、被除数÷除数=商被除数÷商=除数商×除数=被除数

行测数学公式汇总

行测数学公式汇总 目录 一、基础代数公式 (2) 二、等差数列 (3) 三、等比数列 (3) 四、不等式 (3) 五、基础几何公式 (4) 六、工程问题 (5) 七、几何边端问题 (5) 八、利润问题 (5) 九、排列组合 (6) 十、年龄问题 (6) 十一、植树问题 (6) 十二、行程问题 (7) 十三、钟表问题 (8) 十四、容斥原理 (8) 十五、牛吃草问题 (8)

十六、弃九推断 (9) 十七、乘方尾数 (9) 十八、除以“7”乘方余数核心口诀 (9) 十九、指数增长 (9) 二十、溶液问题 (10) 二十二、减半调和平均数 (10) 二十三、余数同余问题 (11) 二十四、星期日期问题 (11) 二十五、循环周期问题 (11) 二十六、典型数列前N项和 (11) 一、基础代数公式 1. 平方差公式:(a+b)·(a-b)=a2-b2 2. 完全平方公式:(a±b)2=a2±2ab+b2 3. 完全立方公式:(a±b)3=(a±b)(a2 ab+b2) 4. 立方和差公式:a3+b3=(a b)(a2+ ab+b2) 5. a m·a n=a m+n a m÷a n=a m-n (a m)n=a mn (ab)n=a n·b n

二、等差数列 (1)s n = 2)(1n a a n +?=na 1+2 1 n(n-1)d ; (2)a n =a 1+(n -1)d ; (3)项数n = d a a n 1 -+1; (4)若a,A,b 成等差数列,则:2A =a+b ; (5)若m+n=k+i ,则:a m +a n =a k +a i ; (6)前n 个奇数:1,3,5,7,9,…(2n —1)之和为n 2 (其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和) 三、等比数列 (1)a n =a 1q n -1 ; (2)s n =q q a n -11 ·1) -((q ≠1) (3)若a,G,b 成等比数列,则:G 2 =ab ; (4)若m+n=k+i ,则:a m ·a n =a k ·a i ; (5)a m -a n =(m-n)d (6) n m a a =q (m-n) (其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和) 四、不等式 (1)一元二次方程求根公式:ax 2 +bx+c=a(x-x 1)(x-x 2) 其中:x 1=a ac b b 242-+-;x 2=a ac b b 242---(b 2 -4ac ≥0)

相关文档
相关文档 最新文档