文档视界 最新最全的文档下载
当前位置:文档视界 › 工程力学公式总结

工程力学公式总结

工程力学公式总结
工程力学公式总结

刚体 力的三要素:大小、方向、作用点

静力学公理:1力的平行四边形法则2二力平衡条件3加减平衡力系原理(1)力的可传性原理(2)三力平衡汇交定理4作用与反作用定律

约束:柔索约束;光滑面约束;光滑圆柱(圆柱、固定铰链、向心轴承、辊轴支座);链杆约束(二力杆) 平面汇交力系平衡的必要和充分条件是:力系的合力等于零。 平面汇交力系平衡几何条件:力多边形自行封闭

合力投影定理合力在任一轴上的投影,等于各分力在同一轴上投影的代数和。它表明了合力与分力在同一坐标轴投影时投影量之间的关系。

平面汇交力系平衡条件:∑F ix =0;∑F iy =0。2个独立平衡方程 第三章 力矩 平面力偶系

力矩M 0(F)=±Fh(逆时针为正) 合力矩定理:平面汇交力系的合力对平面上任一点力矩,等于力系中各分力对与同一点力矩的代数和。

Mo(F )=Mo(F1)+Mo(F 2)+...+Mo(F n)=∑Mo(F )

力偶;由大小相等,方向相反,而作用线不重合的两个平行力组成的力系称为力偶 力偶矩M =±Fd(逆时针为正)

力偶的性质:性质1 力偶既无合力,也不能和一个力平衡,力偶只能用力偶来平衡。性质2 力偶对其作用面内任一点之矩恒为常数,且等于力偶矩,与矩心的位置无关。性质3 力偶可在其作用面内任意转移,而不改变它对刚体的作用效果。性质4 只要保持力偶矩的大小和转向不变,可以同时改变力偶中力的大小和力偶臂的长短, 而不改变其对刚体的作用效果。 平面力偶系平衡条件是合力偶矩等于零。 第四章 平面任意力系

力的平移定理:将力从物体上的一个作用点,移动到另外一点上,额外加上一个力偶矩,其大小等于这个力乘以2点距离,方向为移动后的力与移动前力的反向力形成的力偶的反方向

平面力向力系一点简化可得到一个作用在简化中心的主矢量和一个作用于原平面内的主矩,主矢量等于原力系中各力的矢量和,而主矩等于原力系中各力对点之矩的代数和。 平面任意力系平衡条件:∑F ix =0;∑F iy =0,∑M 0(Fi)=0。3个独立方程 平面平行力系平衡条件:∑F iy =0,∑M 0(Fi)=02个独立方程

摩擦,阻止两物体接触表面发生切向相互滑动或滚动的现象。静摩擦力,若两相互接触且相互挤压,而又相对静止的物体,在外力作用下如只具有相对滑动趋势,而又未发生相对滑动,则它们接触面之间出现的阻碍发生相对滑动的力,谓之“静摩擦力”。动摩擦力,两物体相对运动时的摩擦力。 重心是在重力场中,物体处于任何方位时所有各组成质点的重力的合力都通过的那一点。 第五章 空间力系

P53 空间力系平衡条件:6个方程。空间平行力系:3个方程 影响构件持久极限的主要因素:构件尺寸外形和表面质量。

质点的运动:点的速度dt

ds v =

,加速度:切向加速度dt

dv

a =

τ,速度大小变化;法向加速度ρ

2

v a n

=

速度方向变化,加速度2

2n

a a a +=τ

刚体的基本运动角速度dt

d ?ω=

,角加速度dt

d ωα=

,角速度n πω2=(n 是转速,r/s)

转动刚体内各点的速度ωR v =,加速度2ωατR a R a n ==,

质心运动定理:e F ma ∑=转动定理z z M J ∑=α,转动惯量:圆环2mR J z =;圆盘2/2

mR J z =:

细杆12/2ml J z

=。平行轴定理2`md J J z z +=

动能定理平动刚体动能2

2

m v T =

;转动刚体动能2

2

ωz J T =

弹性力的功

)(2

222

1δδ-=

c A 动能定理=-12T T 所有内力、外力的总功,对刚体来说内力作功为0。

材料力学的基本概念对变形固体所做的基本假设:连续性假设、均匀性假设、各向同性假设、小变形假设。 截面法、应力 P109杆件变形的基本形式:拉伸与压缩、剪切、扭转、弯曲 轴向拉伸与压缩正应力][σσ

≤=

A

F N 许用应力(强度条件),n o

/][σσ= 轴向拉压变形:线应变l l

?=

ε,胡克定律EA

l F l E N =?=或εσ,E 是材料拉压弹性模量,EA 是材料

抗拉压刚度,横向线应变μεε-=`,μ

是泊松比

剪切实用计算:切应力均匀分布][ττ

≤=

A

F S

许用切应力,o ττ=][ 挤压实用计算:挤压应力均匀分布][bs bs

bs

bs A F σσ≤=

许用挤压应力,对圆柱形挤压面dl A bs =,d 是

圆直径,l 是圆柱高度。 扭转传动轴扭转外力偶矩)(9550

m N n

p

M ?=,p 是功率,n 是转速(r/min ) 扭矩T ,从左端看,顺时针外力偶矩产生正扭矩T=M 0扭转切应力p

p W T

R I T ==

/max

σ,极惯性矩I p ,

抗扭截面系数W p :圆形

16

32

3

4

D W D I p p ππ=

=

,,空心圆轴

)(44

132

απ-=

D I p ,)(4

3

116απ-=

D W p α=d/D 扭转强度条件][max

max ττ≤=p W T

许用切应力扭转角p

GI Tl =?(弧度),

GI p :截面的抗扭刚度

支座形式:活动铰支座 固定铰 固定端 梁的典型形式 简支梁 悬臂梁 外伸梁 剪力F s 、弯矩M

剪力F s 、弯矩M 与均衡力q 的关系

中性层、材料在弯曲过程中,外层受拉伸,内层受挤压,在其断面上必然会有一个既不受拉,又不受压的过渡层,应力几乎等于零,这个过渡层称为材料的中性层。中性轴:在平面弯曲和斜弯曲情形下,横截面与应力平面的交线上各点的正应力值均为零,这条交线称为中性轴。 最大正应力Z

Z W M I My =

=max max

σ,I Z 是惯性矩,W Z 是抗弯截面系数:矩形6

122

3bh W bh I Z Z ==,:

圆形32

64

3

4

d W d I Z Z

ππ=

=

,;空心圆截面)1(32

)1(64

43

4

4

απαπ-=

-=

d W d I Z Z

弯曲正应力强度计算][max

σσ≤许用弯曲正应力

提高弯曲强度的措施:提高材料强度,增大梁的截面高度,宽度等,其中增大高度最有效 第十七章 弯曲变形

挠度v 、转角θ 叠加法求梁的变形 P176表17-1 (8)(9)

第十八章组合变形

弯曲+扭转:横向力使轴弯曲,弯矩是M ;转动力使轴扭转,扭矩是T 。 第三强度理论][1

223

σσ≤+=

T M W Z r ;

第四强度理论][75.01224

σσ≤+=

T M W Z

r

压杆的柔度i

l μλ=

,惯性半径A

I i =

,杆长为l ,μ是长度因数1细长杆p λλ

≤,欧拉公式

2

πσE cr =;2中长杆p S λλλ<<,

直线公式λσb a cr -=;3粗短杆S λλ≤,强度公式S cr σσ= 疲劳破坏,循环特征max

min

σσ=

r :r =-1,对称循环交变应力;r =0,脉动循环;r =1,静应力。

工程力学常用公式

公式: 1、轴向拉压杆件截面正应力 N F A σ= ,强度校核max []σσ≤ 2、轴向拉压杆件变形 Ni i i F l l EA ?=∑ 3、伸长率: 1100%l l l δ-= ?断面收缩率:1 100%A A A ψ-=? 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ= 5、扭转切应力表达式: T I ρρ τρ= ,最大切应力: max P P T T R I W τ= =, 4 4 (1) 32 P d I πα= -, 3 4 (1) 16 P d W πα= -,强度校核: max max []P T W ττ= ≤ 6、单位扭转角: P d T dx GI ?θ= =,刚度校核:max max []P T GI θθ=≤,长度为l 的一段 轴两截面之间的相对扭转角P Tl GI ?= ,扭转外力偶的计算公式:()(/min)9549KW r p Me n = 7、薄壁圆管的扭转切应力: 2 02T R τπδ= 8、平面应力状态下斜截面应力的一般公式: cos 2sin 22 2 x y x y x ασσσσσατα +-= + -, sin 2cos 22 x y x ασστατα -= + 9、平面应力状态三个主应力: '2 x y σσσ+= + ''2 x y σσσ+= '''0σ= 最大切应 力 max ''' 2 σστ-=± =,最大正应力方位 02tan 2x x y τασσ=- - 10 、第三和第四强度理论: 3r σ= , 4r σ=

11、平面弯曲杆件正应力: Z My I σ= ,截面上下对称时, Z M W σ= 矩形的惯性矩表达式:312Z bh I =圆形的惯性矩表达式:4 4(1) 64Z d I πα=- 矩形的抗扭截面系数:26Z bh W = ,圆形的抗扭截面系数:3 4(1)32Z d W πα=- 13、平面弯曲杆件横截面上的最大切应力: max max *S z S Z F S F K bI A τ= = 14、平面弯曲杆件的强度校核:(1)弯曲正应力max []t t σσ≤,max []c c σσ≤ (2)弯曲切应力max []ττ≤(3)第三类危险点:第三和第四强度理论 15、平面弯曲杆件刚度校核:叠加法max [] w w l l ≤,max []θθ≤ 16、(1)轴向载荷与横向载荷联合作用强度: max max min ()N Z F M A W σσ= ± (2)偏心拉伸(偏心压缩):max min ()N Z F F A W δ σσ= ± (3)弯扭变形杆件的强度计算: 3[]r Z σσ= = ≤4[] r Z σσ= = ≤

工程力学公式大全

工程力学公式: 1、轴向拉压杆件截面正应力N F A σ= ,强度校核max []σσ≤ 2、轴向拉压杆件变形Ni i i F l l EA ?=∑ 3、伸长率:1100%l l l δ-=?断面收缩率:1100%A A A ψ-=? 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ= 5、扭转切应力表达式:T I ρρ τρ=,最大切应力:max P P T T R I W τ==,44(1)32P d I πα=-,3 4(1)16P d W πα=-,强度校核:max max []P T W ττ=≤ 6、单位扭转角:P d T dx GI ?θ==,刚度校核:max max []P T GI θθ=≤,长度为l 的一段轴两截面之间的相对扭转角P Tl GI ?=,扭转外力偶的计算公式:()(/min) 9549KW r p Me n = 7、薄壁圆管的扭转切应力:202T R τπδ= 8、平面应力状态下斜截面应力的一般公式: cos 2sin 222x y x y x ασσσσσατα+-=+-,sin 2cos 22x y x ασστατα-=+ 9、平面应力状态三个主应力 : '2x y σσσ+= ,''2 x y σσσ+='''0σ= 最大切应力max ''' 2σστ-=±=最大正应力方位02tan 2x x y τασσ=-- 10、 第三和第四强度理论:3r σ= 4r σ=11、平面弯曲杆件正应力:Z My I σ=,截面上下对称时,Z M W σ=

矩形的惯性矩表达式: 3 12 Z bh I=圆形的惯性矩表达式: 4 4 (1) 64 Z d I π α =- 矩形的抗扭截面系数: 2 6 Z bh W=,圆形的抗扭截面系数: 3 4 (1) 32 Z d W π α =- 13、平面弯曲杆件横截面上的最大切应力:max max * S z S Z F S F K bI A τ== 14、平面弯曲杆件的强度校核:(1)弯曲正应力 max [] t t σσ ≤, max [] c c σσ ≤ (2)弯曲切应力 max [] ττ ≤(3)第三类危险点:第三和第四强度理论 15、平面弯曲杆件刚度校核:叠加法max[] w w l l ≤, max [] θθ ≤ 16、(1)轴向载荷与横向载荷联合作用强度:max max min ()N Z F M A W σσ=± (2)偏心拉伸(偏心压缩): max min ()N Z F F A W δ σσ=± (3)弯扭变形杆件的强度计算: 22222 3 11 [] r y z Z M T M M T W W σσ =+=++≤ 22222 4 11 0.750.75[] r y z Z M T M M T W W σσ =+=++≤

工程力学常用公式

公式: 1、轴向拉压杆件截面正应力N F A σ=,强度校核max []σσ≤ 2、轴向拉压杆件变形Ni i i F l l EA ?=∑ 3、伸长率:1100%l l l δ-=?断面收缩率:1100%A A A ψ-=? 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ= 5、扭转切应力表达式:T I ρρτρ=,最大切应力:max P P T T R I W τ==,44(1)32P d I πα=-,34(1)16P d W πα=-,强度校核:max max []P T W ττ= ≤ 6、单位扭转角:P d T dx GI ?θ= =,刚度校核:max max []P T GI θθ=≤,长度为l 的一段轴两截面之间的相对扭转角P Tl GI ?=,扭转外力偶的计算公式:()(/min)9549KW r p Me n = 7、薄壁圆管的扭转切应力:202T R τπδ= 8、平面应力状态下斜截面应力的一般公式: cos 2sin 222x y x y x ασσσσσατα+-=+-,sin 2cos 22x y x ασστατα-=+ 9、平面应力状态三个主应力: '2x y σσσ+= ,''2 x y σσσ+='''0σ= 最大切应力max ''' 2σστ-=±=02tan 2x x y τασσ=-- 10 、第三和第四强度理论:3r σ= 4r σ=11、平面弯曲杆件正应力:Z My I σ=,截面上下对称时,Z M W σ= 矩形的惯性矩表达式:312Z bh I =圆形的惯性矩表达式:4 4(1)64Z d I πα=-

工程力学知识点总结(良心出品必属精品)

工程力学知识点总结 第0章 1.力学:研究物体宏观机械运动的学科。机械运动:运动效应,变形效应。 2.工程力学任务:A.分析结构的受力状态。B.研究构件的失效或破坏规律。C.分研究物体运动的几何规律D.研究力与运动的关系。 3.失效:构件在外力作用下丧失正常功能的现象称为失效。三种失效模式:强度失效、刚度失效、稳定性失效。 第1章 1.静力学:研究作用于物体上的力及其平衡的一般规律。 2.力系:是指作用于物体上的一组力。 分类:共线力系,汇交力系,平行力系,任意力系。 等效力系:如果作用在物体上的两个力系作用效果相同,则互为等效力系。 3.投影:在直角坐标系中:投影的绝对值 = 分力的大小;分力的方向与坐标轴一致时投影 为正;反之,为负。 4.分力的方位角:力与x 轴所夹的锐角α: 方向:由 Fx 、Fy 符号定。 5.刚体:是指在力的作用下,其内部任意两点之间的距离始终保持不变。(刚体是理想化模型,实际不存在) 6.力矩:度量力使物体在平面内绕一点转动的效果。 方向: 力使物体绕矩心作逆时针转动时,力矩为正;反之,为负 力矩等于0的两种情况: (1) 力等于零。(2) 力作用线过矩心。 力沿作用线移动时,力矩不会发生改变。力可以对任意点取矩。 7.力偶:由大小相等、方向相反且不共线的两个平行力组成的力系,称为力偶。(例:不能单手握方向盘,不能单手攻丝) 特点: 1.力偶不能合成为一个合力,也不能用一个力来平衡,力偶只能有力偶来平衡。 2.力偶中两个力在任一坐标轴上的投影的代数和恒为零。 3.力偶对其作用面内任一点的矩恒等于力偶矩。即:力偶对物体转动效应与矩心无关。 三要素:大小,转向,作用面。 力偶的等效:同平面内的两个力偶,如果力偶矩相等,则两力偶彼此等效。 推论1:力偶可以在作用面内任意转动和移动,而不影响它对刚体的作用。(只能在作用面内而不能脱离。) 推论2:只要保持力偶矩的大小和转向不变的条件下,可以同时改变力偶中力 和力偶臂的大小,而不改变对刚体的作用。 8.静力学四大公理 A.力的平行四边形规则(矢量合成法则):适用范围:物体。 B.二力平衡公理:适用范围:刚体 (对刚体充分必要,对变形体不充分。) 注:二力构件受力方向:沿两受力点连线。 C.加减平衡力系公理:适用范围:刚体 D.作用和反作用公理:适用范围:物体 特点:同时存在,大小相等,方向相反。 注:作用力与反作用力分别作用在两个物体上,因此,不能相互平衡。(即:作用力反作用力不是平衡力) ()O M F Fd =±

工程力学公式复习大全

工程力学公式复习大全

工程力学公式复习大全 第一章静力学的基本概念和公理及受力图 P2 刚体力的三要素:大小、方向、作用点 静力学公理:1力的平行四边形法则2二力平衡条件3加减平衡力系原理(1)力的可传性原理(2)三力平衡汇交定理4作用与反作用定律 P7 约束:柔索约束;光滑面约束;光滑圆柱(圆柱、固定铰链、向心轴承、辊轴支座);链杆约束(二力杆) 第二章平面汇交力系 P16 平面汇交力系平衡几何条件:力多边形自行封闭 P19 合力投影定理 P20平面汇交力系平衡条件:∑F ix=0;∑F iy=0。2个独立平衡方程 第三章力矩平面力偶系 P24 力矩M0(F)=±Fh(逆时针为正) P25 合力矩定理 P26力偶;力偶矩M=±Fd(逆时针为正) P27力偶的性质:力偶只能用力偶平衡 P28 平面力偶系平衡条件 第四章平面任意力系 P33 力的平移定理P34 平面力向力系一点简化

P36 平面任意力系平衡条件:∑F ix =0;∑F iy =0,∑M 0(Fi)=0。3个独立方程 P38平面平行力系平衡条件:2个独立方程 P39 静定,超静定 P43 摩擦,静摩擦力,动摩擦力 第五章 空间力系 重心 P53 空间力系平衡条件:6个方程;空间汇交力系:3个方程;空间平行力系:3个方程 第六章 点的运动 P64 质点 P65 点的速度dt ds v =, 加速度:切向加速度dt dv a =τ,速度大小变化;法向加速度ρ2v a n =,速度方向变化,加速度22n a a a +=τ 第七章 刚体的基本运动 P73 平动 P74转动,角速度dt d ?ω=,角加速度dt d ωα=,角速度n πω2=(n 是转速,r/s) P76 转动刚体内各点的速度ωR v =,加速度2ωατR a R a n ==, 第九章 刚体动力学基础 P87 质心运动定理:e F ma ∑= P88转动定理z z M J ∑=α,转动惯量:圆环2mR J z =;圆盘2/2mR J z =;细杆

工程力学试题及答案-(1)汇总

工程力学试题及答案 一、填空题 1.物体的平衡是指物体相对于地面__________或作________运动的状态 2.平面汇交力系平衡的必要与充分条件是:_____。该力系中各力构成的力多边形____ 3.一物块重600N,放在不光滑的平面上,摩擦系数f=0.3, 在左侧有一推力150N,物块有向右滑动的趋势 F max=__________,所以此物块处于静止状态,而其 F=__________。 4.刚体在作平动过程中,其上各点的__________相同,每一 瞬时,各点具有__________的速度和加速度。 5.AB杆质量为m,长为L,曲柄O1A、O2B质量不计,且 O1A=O2B=R,O1O2=L,当φ=60°时,O1A杆绕O1轴转 动,角速度ω为常量,则该瞬时AB杆应加的惯性力大 小为__________,方向为__________ 6.使材料丧失正常工作能力的应力称为极限应力。工程上一 般把__________作为塑性材料的极限应力;对于脆性材 料,则把________作为极限应力。 7.__________面称为主平面。主平面上的正应力称为______________。 8.当圆环匀速转动时,环内的动应力只与材料的密度ρ和_____________有关,而与 __________无关。 二、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在 题干的括号内。每小题3分,共18分) 1.某简支梁AB受载荷如图所示,现分别用R A、R B表示支座A、B处的约束反力,则它们的 关系为( )。 A.R AR B C.R A=R B D.无法比较 2.材料不同的两物块A和B叠放在水平面上,已知物块A重0.5kN,物块B重0.2kN,物块 A、B间的摩擦系数f1=0.25,物块B与地面间的摩擦系数f2=0.2,拉动B物块所需要的最 小力为( ) A.0.14kN B.0.265kN C.0.213kN D.0.237kN 3.在无阻共振曲线中,当激振力频率等于系统的固有频率时,振幅B趋近于( )。 A.零 B.静变形 C.无穷大 D.一个定值 4.虎克定律应用的条件是( )。 A.只适用于塑性材料 B.只适用于轴向拉伸 C.应力不超过比例极限 D.应力不超过屈服极限 5.梁的截面为T字型,Z轴通过横截面的形心,弯矩图如图所示,则有( )。 A.最大拉应力和最大压应力位于同一截面C

2020年整理工程力学公式大全.doc

工程力学公式: 1、轴向拉压杆件截面正应力N F A σ=,强度校核max []σσ≤ 2、轴向拉压杆件变形Ni i i F l l EA ?= ∑ 3、伸长率:1100%l l l δ-= ?断面收缩率:1 100%A A A ψ-=? 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ= 5、扭转切应力表达式:T I ρρτρ=,最大切应力:max P P T T R I W τ==,44(1)32 P d I πα=-,3 4(1)16 P d W πα= -,强度校核:max max []P T W ττ= ≤ 6、单位扭转角:P d T dx GI ?θ= =,刚度校核:max max []P T GI θθ=≤,长度为l 的一段轴两截面之间的相对扭转角P Tl GI ?= ,扭转外力偶的计算公式:()(/min) 9549KW r p Me n = 7、薄壁圆管的扭转切应力:202T R τπδ = 8、平面应力状态下斜截面应力的一般公式: cos 2sin 22 2 x y x y x ασσσσσατα+-= + -,sin 2cos 22 x y x ασστατα-= + 9、平面应力状态三个主应力: '2 x y σσσ+= ,''2x y σσσ+='''0σ= 最大切应力max ''' 2 σστ-=± =最大正应力方位02tan 2x x y τασσ=- - 10、 第三和第四强度理论:3r σ= 4r σ= 11、平面弯曲杆件正应力:Z My I σ= ,截面上下对称时,Z M W σ=

矩形的惯性矩表达式: 3 12 Z bh I=圆形的惯性矩表达式: 4 4 (1) 64 Z d I π α =- 矩形的抗扭截面系数: 2 6 Z bh W=,圆形的抗扭截面系数: 3 4 (1) 32 Z d W π α =- 13、平面弯曲杆件横截面上的最大切应力:max max * S z S Z F S F K bI A τ== 14、平面弯曲杆件的强度校核:(1)弯曲正应力 max [] t t σσ ≤, max [] c c σσ ≤ (2)弯曲切应力 max [] ττ ≤(3)第三类危险点:第三和第四强度理论 15、平面弯曲杆件刚度校核:叠加法max[] w w l l ≤, max [] θθ ≤ 16、(1)轴向载荷与横向载荷联合作用强度:max max min ()N Z F M A W σσ=± (2)偏心拉伸(偏心压缩): max min ()N Z F F A W δ σσ=± (3)弯扭变形杆件的强度计算: 22222 3 11 [] r y z Z M T M M T W W σσ =+=++≤ 22222 4 11 0.750.75[] r y z Z M T M M T W W σσ =+=++≤

工程力学材料力学_知识点_及典型例题

作出图中AB杆的受力图。 A处固定铰支座 B处可动铰支座 作出图中AB、AC杆及整体的受力图。 B、C光滑面约束 A处铰链约束 DE柔性约束 作图示物系中各物体及整体的受力图。 AB杆:二力杆 E处固定端 C处铰链约束

(1)运动效应:力使物体的机械运动状态发生变化的效应。 (2)变形效应:力使物体的形状发生和尺寸改变的效应。 3、力的三要素:力的大小、方向、作用点。 4、力的表示方法: (1)力是矢量,在图示力时,常用一带箭头的线段来表示力;(注意表明力的方向和力的作用点!) (2)在书写力时,力矢量用加黑的字母或大写字母上打一横线表示,如F、G、F1等等。 5、约束的概念:对物体的运动起限制作用的装置。 6、约束力(约束反力):约束作用于被约束物体上的力。 约束力的方向总是与约束所能限制的运动方向相反。 约束力的作用点,在约束与被约束物体的接处 7、主动力:使物体产生运动或运动趋势的力。作用于被约束物体上的除约束力以外的其它力。 8、柔性约束:如绳索、链条、胶带等。 (1)约束的特点:只能限制物体原柔索伸长方向的运动。 (2)约束反力的特点:约束反力沿柔索的中心线作用,离开被约束物体。() 9、光滑接触面:物体放置在光滑的地面或搁置在光滑的槽体内。 (1)约束的特点:两物体的接触表面上的摩擦力忽略不计,视为光滑接触面约束。被约束的物体可以沿接触面滑动,但不能沿接触面的公法线方向压入接触面。 (2)约束反力的特点:光滑接触面的约束反力沿接触面的公法线,通过接触点,指向被约束物体。() 10、铰链约束:两个带有圆孔的物体,用光滑的圆柱型销钉相连接。 约束反力的特点:是方向未定的一个力;一般用一对正交的力来表示,指向假定。()11、固定铰支座 (1)约束的构造特点:把中间铰约束中的某一个构件换成支座,并与基础固定在一起,则构成了固定铰支座约束。

工程力学公式

轴向拉伸与压缩 正应力ζ=F N/A 正应变ε=Δl/l (无量纲) l/EA EA为抗拉(压)刚度 胡克定律Δl=F N ζ=Eε E为弹性模量 泊松比ν=【ε’/ε】横向比纵向 刚度条件:Δl=F l/EA <=[Δl] 或δ<=[δ] N 先计算每段的轴力,每段的Δl加起来即为总的Δl 注意节点是位移 P151 拉压超静定: 1按照约束的性质画出杆件或节点的受力图 2根据静力平衡列出所有独立的方程 3画出杆件或杆系节点的变形-位移图 4根据变形几何关系图建立变形几何关系方程,建立补充方程 5将胡可定律带入变形几何方程,/得到解题需要的补充方程 6独立方程与补充方程联立,求的所有的约束力 剪切 1剪切胡克定律η=GγG~MPa为剪切弹性模量,γ为切应变(无量纲)2 G=E/2(1+ν)ν泊松比 3剪切与挤压实例 校核铆钉的剪切强度 单剪(两层板)η=Fs/As =F/A F为一个方向的拉力 双剪(三层板)η=Fs/As =F/nA n整块板上所有的铆钉 校核铆钉的挤压强度 挤压ζc=Fc/Ac ζc=Fc/nAc=F/ntd n为对称轴一侧的铆钉数 校核板(主板、盖板)的抗拉强度 ζ=F/A=F/t(b-nd)<<[ζ] n 为危险截面上的铆钉数

1外力偶矩:T=9550 N k / n ( N k~kw,n~r/min) 2扭矩Mn = T (Mn~N*m) 判断方向,右手螺旋定则,向外为正,内为负3扭矩图 4切应变、剪切角γ= θ*ρ(θ为单位扭转角) 5切应力:η ρ=G*γρ=Gρθ 扭转角公式:dψ=Mdx/GIp 6θ=Mn/G*Ip 刚度校核公式 Ip~mm4 极惯性矩, 与截面形状有关,GIp 抗扭刚度,θ~rad/m 7ηmax=Mn/Wp=Mnρ/Ip 强度校核公式 Wp~mm3抗扭截面模量,与截面形状有关 8 Ip 和Wp 的计算: 实心圆截面: Wp = ПD3/16 Ip = ПD4/32 空心圆截面:Wp = ПD3(1-α4)/16 Ip = ПD4(1-α4)/32 薄壁圆截面:Wp = 2Пr 02t r =D /2=D/2 Ip = 2Пr 3t 9 扭转角θ= Mn*l/G*Ip (l为杆长)θ~rad/m 10 自由扭转 截面周边的切应力方向与周边平行,角点出切应力为0 ηmax=Mn/αhb2 长边中点处 θ=Mn/βGhb3 b为短边,h为长边,αβ为相关系数 无论是扭转强度,还是扭转刚度,圆形截面比正方形截面要好。 狭长矩形:ηmax=3Mn/hb2 θ=3Mn/hGb3 θ=3Mnl/hGb3 闭口薄壁杆ηmax=3Mn/2ΩδΩ为-截面中心线所围截面积δ为壁厚Φ=Mnls/4GΩ2δ s为截面中线的长度 θ=MnS/4GΩ2δ 等厚度开口薄壁杆η=3Mn/hδ 2 θ=3Mnl/Ghδ 3 (计算时展开成矩形)在抗扭性能方面,闭口薄壁杆远比开口薄壁杆好

工程力学公式大全(河北工程大学)

工程力学资料 工程力学公式: 1、轴向拉压杆件截面正应力N F A σ=,强度校核max []σ σ≤ 2、轴向拉压杆件变形N i i i F l l EA ?=∑ 3、伸长率:1100% l l l δ -=?断面收缩率:1 100% A A A ψ-=? 4、胡克定律:E σ ε =,泊松比:'ευε=-,剪切胡克定律:G τ γ= 5、扭转切应力表达式:T I ρ ρ τρ =,最大切应力:m ax P P T T R I W τ = = , 4 4 (1) 32 P d I πα= -,3 4 (1)16 P d W πα= -,强度校核:m ax m ax []P T W ττ= ≤ 6、单位扭转角:P d T dx G I ?θ = = ,刚度校核:m ax m ax []P T G I θ θ= ≤,长度为 l 的一段轴两截面之间的相对扭转角P Tl G I ?= ,扭转外力偶的计 算公式:()(/m in) 9549 K W r p M e n = 7、薄壁圆管的扭转切应力:2 02T R τπδ = 8、平面应力状态下斜截面应力的一般公式: cos 2sin 22 2 x y x y x ασσσσσατα +-= + -,sin 2cos 22 x y x α σστατα -= + 9、平面应力状态三个主应力: 22 '( )2 2 x y x y x σσσσ στ+-= ++,22 ''( )2 2 x y x y x σσσσ στ+-= -+,'''0σ=

最大切应力22 m ax ''' ( )2 2 x y x σσ σστ τ--=± =±+,最大正应力方位 02tan 2x x y τασσ=- - 10、第三和第四强度理论:22 3 4r σστ =+,22 4 3r σ στ =+ 11、平面弯曲杆件正应力:Z M y I σ= ,截面上下对称时,Z M W σ = 矩形的惯性矩表达式: 3 12 Z bh I = 圆形的惯性矩表达式: 4 4 (1)64 Z d I πα= - 矩形的抗扭截面系数:2 6 Z bh W = ,圆形的抗扭截面系数: 3 4 (1)32 Z d W πα= - 13、平面弯曲杆件横截面上的最大切应力:max max *S z S Z F S F K bI A τ = = 14、平面弯曲杆件的强度校核:(1)弯曲正应力m ax [] t t σ σ≤, m ax []c c σσ≤ (2)弯曲切应力max []ττ≤(3)第三类危险点:第三和第四强度 理论 15、平面弯曲杆件刚度校核:叠加法 m ax [ ]w w l l ≤,m ax []θθ≤ 16、(1)轴向载荷与横向载荷联合作用强度: max max min ()N Z F M A W σσ=± (2)偏心拉伸(偏心压缩):m ax m in ()N Z F F A W δσ σ=± (3)弯扭变形杆件的强度计算:

工程力学重点知识总结

工程力学 第一章 在该刚体内前后任意移动, 而不改 变它对该刚体的作用。 I 白比味 在空间的位移不受任何限 H 曰*的制的物体称为自由体。 2. 非自由体:位移受到限制的物体称为非自由体。 3?约束 由周围物体所构成的、限制非自由体位移的釦生 、、亠" 注意: 物体向约束所限制的方向有运动趋势时,就会有约束力? 另外,有约束,不一定有约束力 4:讨论约束主要是分析,有哪些约束力?约束力的方向是?最终要确定约 束力的大小和方向。 5:柔性约束,约束力的数目为 1方向离开约束物体。光滑接触面约束,约 束数目1。 注意:□接触面为两个面时,约束力为分布的同向平行力系, 可用其合理表示。②若一物体以尖点与另一个物体接触,可将尖点是为小圆 弧。再者,一般考虑物体的自重,忽略杆的自重,除非题目要求考虑。 光滑圆柱铰链约束:01固定铰支座(直杆是被约束物体),约束力数目为2; 推论 (力在刚体上的可传性) 作用于刚体的力, 其作用点可以沿作用线 或对非自曲体的某些位移起限制作用

Q中间铰约束按合力讨论,有一个约束力,方向未知:安分力讨论,有 两个约束力,方向可以假设(正交) 注意:销钉和杆直接接触传递力,杆 和杆之间不直接传递力。O3可动铰支座仅限制物体在垂直与接触面方向的移动。约束力数目为1 向心推力轴承,约束力数目为2;止推轴承有三个约束力 强调:无约束的方向一定没有约束力! 平面约束: (1)柔性约束:有一个约束力,离开物体; (2)光滑接触面(线、点)约束: 有一个约束力,指向物体; (3)光滑BI柱较链约束 扎固定餃支座约束:有两个正交约束力, 方向可以假设; B.中间较约束:有两个正交约束力,方向可以假设; G可动较支座或辗轴约束: 有一个约束力,方向可以假设; 空间约束: (1)空间球较约束:有三个正交约束力, 方向可以假设; (2)向心轴承约束:有两个正交约束力, 方向可以假设; (3)向心推力轴承约束:有三个正交约束力, 方向可以假设; 第二章 矢量表达式:R = F i+F2+F. + F4= ^Y i i-↑结论:力在某轴上的投影,等于力的模乘以力与该轴正向间夹角

工程力学公式

工程力学公式大全 第一章: 力矩 用符号MO (F )表示。即 力矩矢量 描述力的转动效应 力矩矢量的模描述转动效应的大小,它等于力的大小与矩心到力作用线的垂直距离(力臂)的乘积,即 q 为矢径r 与力F 之间的夹角。 平面力系的合力对平面上任一点之矩等于力系中所有的力对同一点之矩的代数和 或者简写成 ()ABO h F M O ?±=?±=2F ()F r F ?=O M ()θsin F Fr Fh M O ==n O O O O 21R ()()()()n O O O O M M M M F F F F 21R +???++===n i i O O M M 1 R F F ()()∑==n i i O O M M 1R F F

力偶矩 第二章: 一主矢: 有任意多个力所组成的力系 (F1,F2…Fn),的矢量和: 二主矩: 力系中所有的力对同一点O 之矩的矢量和 用表示: 空间任意汇交系在oxyz 坐标中投影表达式: ()()Fh M M M O O ='+=F F ∑==n i Fi F 1)(10 0Fi n i M M ∑==∑==n i ix x F F 1 ∑==n i iy y F F 1 ∑==n i iz z F F 1

对于空间任意力系 主矩的分量表达式为 第三章 静力学平衡问题 平面一般力系的平衡方程: 00 ()0 x y o F F M F ===∑∑∑ 1n Ox O i i x M ==()1n Ox O i i x M =?? ???∑=M F 1 n Oy O i i y =()1n Oy O i i y M =?? ? ??∑=M F 1n Oz O i i z =???F ()1n Oz O i i z M =?? ???∑=M F

工程力学常用公式

工程力学常用公式 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

工程力学常用公式 1、轴向拉压杆件截面正应力N F A σ=,强度校核max []σσ≤ 2、轴向拉压杆件变形Ni i i F l l EA ?=∑ 3、伸长率:1100%l l l δ-= ?断面收缩率:1 100%A A A ψ-=? 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ= 5、扭转切应力表达式:T I ρρτρ= ,最大切应力:max P P T T R I W τ==,4 4 (1)32 P d I πα= -,3 4(1)16 P d W πα= -,强度校核:max max []P T W ττ= ≤ 6、单位扭转角:P d T dx GI ?θ==,刚度校核:max max []P T GI θθ=≤,长度为l 的一段轴两截面之间的相对扭转角P Tl GI ?= ,扭转外力偶的计算公式:()(/min) 9549 KW r p Me n = 7、薄壁圆管的扭转切应力:202T R τπδ = 8、平面应力状态下斜截面应力的一般公式: cos 2sin 22 2 x y x y x ασσσσσατα+-= + -,sin 2cos 22 x y x ασστατα-= + 9、平面应力状态三个主应力: '2 x y σσσ+= + ''2 x y σσσ+='''0σ=

最大切应力max ''' 2 σστ-=± =02tan 2x x y τασσ=- - 10 、第三和第四强度理论:3r σ= 4r σ=11、平面弯曲杆件正应力:Z My I σ= ,截面上下对称时,Z M W σ= 矩形的惯性矩表达式:3 12Z bh I =圆形的惯性矩表达式: 4 4(1)64 Z d I πα= - 矩形的抗扭截面系数:2 6Z bh W =,圆形的抗扭截面系数: 3 4(1)32 Z d W πα= - 13、平面弯曲杆件横截面上的最大切应力:max max *S z S Z F S F K bI A τ= = 14、平面弯曲杆件的强度校核:(1)弯曲正应力max []t t σσ≤, max []c c σσ≤ (2)弯曲切应力max []ττ≤(3)第三类危险点:第三和第四强度理论 15、平面弯曲杆件刚度校核:叠加法 max []w w l l ≤,max []θθ≤ 16、(1)轴向载荷与横向载荷联合作用强度: max max min ()N Z F M A W σσ=± (2)偏心拉伸(偏心压缩):max min ()N Z F F A W δ σσ=± (3)弯扭变形杆件的强度计算: 工程力学常用公式

工程力学公式总结

刚体 力的三要素:大小、方向、作用点 静力学公理:1力的平行四边形法则2二力平衡条件3加减平衡力系原理(1)力的可传性原理(2)三力平衡汇交定理4作用与反作用定律 约束:柔索约束;光滑面约束;光滑圆柱(圆柱、固定铰链、向心轴承、辊轴支座);链杆约束(二力杆) 平面汇交力系平衡的必要和充分条件是:力系的合力等于零。 平面汇交力系平衡几何条件:力多边形自行封闭 合力投影定理合力在任一轴上的投影,等于各分力在同一轴上投影的代数和。它表明了合力与分力在同一坐标轴投影时投影量之间的关系。 平面汇交力系平衡条件:∑F ix =0;∑F iy =0。2个独立平衡方程 第三章 力矩 平面力偶系 力矩M 0(F)=±Fh(逆时针为正) 合力矩定理:平面汇交力系的合力对平面上任一点力矩,等于力系中各分力对与同一点力矩的代数和。 Mo(F )=Mo(F1)+Mo(F 2)+...+Mo(F n)=∑Mo(F ) 力偶;由大小相等,方向相反,而作用线不重合的两个平行力组成的力系称为力偶 力偶矩M =±Fd(逆时针为正) 力偶的性质:性质1 力偶既无合力,也不能和一个力平衡,力偶只能用力偶来平衡。性质2 力偶对其作用面内任一点之矩恒为常数,且等于力偶矩,与矩心的位置无关。性质3 力偶可在其作用面内任意转移,而不改变它对刚体的作用效果。性质4 只要保持力偶矩的大小和转向不变,可以同时改变力偶中力的大小和力偶臂的长短, 而不改变其对刚体的作用效果。 平面力偶系平衡条件是合力偶矩等于零。 第四章 平面任意力系 力的平移定理:将力从物体上的一个作用点,移动到另外一点上,额外加上一个力偶矩,其大小等于这个力乘以2点距离,方向为移动后的力与移动前力的反向力形成的力偶的反方向 平面力向力系一点简化可得到一个作用在简化中心的主矢量和一个作用于原平面内的主矩,主矢量等于原力系中各力的矢量和,而主矩等于原力系中各力对点之矩的代数和。 平面任意力系平衡条件:∑F ix =0;∑F iy =0,∑M 0(Fi)=0。3个独立方程 平面平行力系平衡条件:∑F iy =0,∑M 0(Fi)=02个独立方程 摩擦,阻止两物体接触表面发生切向相互滑动或滚动的现象。静摩擦力,若两相互接触且相互挤压,而又相对静止的物体,在外力作用下如只具有相对滑动趋势,而又未发生相对滑动,则它们接触面之间出现的阻碍发生相对滑动的力,谓之“静摩擦力”。动摩擦力,两物体相对运动时的摩擦力。 重心是在重力场中,物体处于任何方位时所有各组成质点的重力的合力都通过的那一点。 第五章 空间力系 P53 空间力系平衡条件:6个方程。空间平行力系:3个方程 影响构件持久极限的主要因素:构件尺寸外形和表面质量。 质点的运动:点的速度dt ds v = ,加速度:切向加速度dt dv a = τ,速度大小变化;法向加速度ρ 2 v a n = , 速度方向变化,加速度2 2n a a a +=τ 刚体的基本运动角速度dt d ?ω= ,角加速度dt d ωα= ,角速度n πω2=(n 是转速,r/s) 转动刚体内各点的速度ωR v =,加速度2ωατR a R a n ==, 质心运动定理:e F ma ∑= 转动定理z z M J ∑=α,转动惯量:圆环2mR J z =;圆盘2/2 mR J z =:

工程力学公式大全修订版

工程力学公式大全修订 版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

工程力学公式: 1、轴向拉压杆件截面正应力N F A σ= ,强度校核max []σσ≤ 2、轴向拉压杆件变形Ni i i F l l EA ?=∑ 3、伸长率:1100%l l l δ-=?断面收缩率:1100%A A A ψ-=? 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ= 5、扭转切应力表达式:T I ρρ τρ=,最大切应力:max P P T T R I W τ==,44(1)32P d I πα=-,3 4(1)16P d W πα=-,强度校核:max max []P T W ττ=≤ 6、单位扭转角:P d T dx GI ?θ==,刚度校核:max max []P T GI θθ=≤,长度为l 的一段轴两截面之间的相对扭转角P Tl GI ?=,扭转外力偶的计算公式:()(/min) 9549KW r p Me n = 7、薄壁圆管的扭转切应力:202T R τπδ= 8、平面应力状态下斜截面应力的一般公式: cos 2sin 222x y x y x ασσσσσατα+-=+-,sin 2cos 22x y x ασστατα-=+ 9、平面应力状态三个主应力:

'2x y σσσ+= ,''2x y σσσ+='''0σ= 最大切应力max ''' 2σστ-=±=最大正应力方位02tan 2x x y τασσ=-- 10、 第三和第四强度理论:3r σ= 4r σ= 11、平面弯曲杆件正应力:Z My I σ=,截面上下对称时,Z M W σ= 矩形的惯性矩表达式:312Z bh I =圆形的惯性矩表达式:4 4(1)64 Z d I πα=- 矩形的抗扭截面系数:26Z bh W =,圆形的抗扭截面系数:3 4(1)32 Z d W πα=- 13、平面弯曲杆件横截面上的最大切应力:max max *S z S Z F S F K bI A τ= = 14、平面弯曲杆件的强度校核:(1)弯曲正应力max []t t σσ≤,max []c c σσ≤ (2)弯曲切应力max []ττ≤(3)第三类危险点:第三和第四强度理论 15、平面弯曲杆件刚度校核:叠加法max []w w l l ≤,max []θθ≤ 16、(1)轴向载荷与横向载荷联合作用强度: max max min ()N Z F M A W σσ= ± (2)偏心拉伸(偏心压缩):max min ()N Z F F A W δσσ=± (3)弯扭变形杆件的强度计算:

工程力学常用公式

工程力学常用公式 3、伸长率:* 1。。%断面收缩率: 字100% 5 、扭转切应力表达式: ^,最大切应力:max TP R W p , d 4 4 I P ”(1 ) , W P d '(1 4 ),强度校核: 16 max T max W P [] 6、单位扭转角: d —,刚度校核:max T max [], 长度为1 dx Gl p GI P 的一段轴两截面之间的相对扭转角 證,扭转外力偶的计算公 式: Me 9549P (KWL n (r/m in ) 8平面应力状态下斜截面应力的一般公式: 最大切应力max - '' - ( x y )2 2 ,最大正应力方位 2 Y 2 1、轴向拉压杆件截面正应力 牛,强度校核 max 2、轴向拉压杆件变形I Fi Ni l i 4、胡克定律: E ,泊松比: ,剪切胡克定律: G 7、薄壁圆管的扭转切应力: T 2 R 2 9、 x y x y cos2 2 2 x sin 2 -sin 2 x cos2 平面应力状态三个主应力: II 「( x 2 y )2 X , ''' 0

1、 100% tan2 0 2 x x y 10、第三和第四强度理论: r3 X 2 4 2 , r4 2 11、平面弯曲杆件正应力: M ,截面上下对称时, M W Z 矩形的惯性矩表达式:I Z 兽圆形的惯性矩表达式: I Z V(1 64 4 ) 矩形的抗扭截面系数:W Z £圆形的抗扭截面系数: W Z 4 ) 13、平面弯曲杆件横截面上的最大切应力: F s S max * zmax bi z 14、平面弯曲杆件的强度校核:(1)弯曲正应力 tmax [ t ] , cmax c ] (2)弯曲切应力 max [](3)第三类危险点:第三和第四强度理论 16、( 1)轴向载荷与横向载荷联合作用强度: ()F N M max max ( min 丿 15、平面弯曲杆件刚度校核:叠加法 严 [f], max [] (2)偏心拉伸(偏心压缩): max ( min ) A (3)弯扭变形杆件的强度计算: 工程力学常用公式 伸长率: F N ; A ; FA ;泊松比 E 2(1 ), l b I 0 l 0 100%,断面收缩率: A o A b A 0

工程力学公式大全

工程力学公式大全 The pony was revised in January 2021

工程力学公式: 1、轴向拉压杆件截面正应力N F A σ= ,强度校核max []σσ≤ 2、轴向拉压杆件变形Ni i i F l l EA ?=∑ 3、伸长率:1100%l l l δ-=?断面收缩率:1100%A A A ψ-=? 4、胡克定律:E σε=,泊松比:'ευε=-,剪切胡克定律:G τγ= 5、扭转切应力表达式:T I ρρ τρ=,最大切应力:max P P T T R I W τ==,44(1)32P d I πα=-,3 4(1)16P d W πα=-,强度校核:max max []P T W ττ=≤ 6、单位扭转角:P d T dx GI ?θ==,刚度校核:max max []P T GI θθ=≤,长度为l 的一段轴两截面之间的相对扭转角P Tl GI ?=,扭转外力偶的计算公式:()(/min) 9549KW r p Me n = 7、薄壁圆管的扭转切应力:202T R τπδ= 8、平面应力状态下斜截面应力的一般公式: cos 2sin 222x y x y x ασσσσσατα+-=+-,sin 2cos 22x y x ασστατα-=+ 9、平面应力状态三个主应力:

'2x y σσσ+= ,''2x y σσσ+='''0σ= 最大切应力max ''' 2σστ-=±=最大正应力方位02tan 2x x y τασσ=-- 10、 第三和第四强度理论:3r σ= 4r σ= 11、平面弯曲杆件正应力:Z My I σ=,截面上下对称时,Z M W σ= 矩形的惯性矩表达式:312Z bh I =圆形的惯性矩表达式:4 4(1)64 Z d I πα=- 矩形的抗扭截面系数:26Z bh W =,圆形的抗扭截面系数:3 4(1)32 Z d W πα=- 13、平面弯曲杆件横截面上的最大切应力:max max *S z S Z F S F K bI A τ= = 14、平面弯曲杆件的强度校核:(1)弯曲正应力max []t t σσ≤,max []c c σσ≤ (2)弯曲切应力max []ττ≤(3)第三类危险点:第三和第四强度理论 15、平面弯曲杆件刚度校核:叠加法max []w w l l ≤,max []θθ≤ 16、(1)轴向载荷与横向载荷联合作用强度: max max min ()N Z F M A W σσ= ± (2)偏心拉伸(偏心压缩):max min ()N Z F F A W δσσ=± (3)弯扭变形杆件的强度计算:

相关文档