文档视界 最新最全的文档下载
当前位置:文档视界 › 燃气锅炉排烟余热分析

燃气锅炉排烟余热分析

燃气锅炉排烟余热分析
燃气锅炉排烟余热分析

以煤炭作为主要燃料的工业锅炉仍占据着主导地位。随着天然气工业的迅速发展,以此种清洁能源为燃料的锅炉将会逐渐增多。与燃煤相比,燃烧天然气虽然排放的二氧化硫及氮氧化物的含量很少,减轻了对环境的压力,但燃烧后产生的大量水蒸气随高温烟气排放到环境中,造成了能量的严重浪费。而采用冷凝式锅炉将高温烟气中的显热和潜热予以回收,可以达到充分利用能源降低运行成本的效果。

引言

冷凝式换热器就是增设在天然气锅炉尾部的余热回收装置,当烟气在通道内通过传热面,温度降至露点温度以下,从而使排烟中的水蒸气凝结释放潜热传递给回收工质,可以将排烟中大量的能量加以回收利用,从而达到节能环保的效果。随着制造工业的不断发展,各种新型高效的冷凝换热装置层出不穷,不论从结构还是实际余热回收效果来看都有了非常大的改进。

1 烟气的特性分析

天然气成分绝大部分为烃,燃气锅炉排烟中水蒸气的含量较高,分析表明,排烟中可利用的热能中,水蒸气的汽化潜热所占的份额相当大。每1m3天然气燃烧后可以产生1. 55 kg水蒸气,具有可观的汽化潜热,大约为3 700 kJ/Nm3,占天然气的低位发热量的10%以上。传统锅炉中,排烟温度一般在160~250℃,烟气中的水蒸气仍处于过热状态,不可能凝结成液态的水而放出汽化潜热。因此传统的天然气锅炉理论热效率一般只能达到95%左右,利用冷凝式换热器只要把

烟气温度降到烟气露点温度以下,就可回收烟气中的显热和水蒸气的凝结潜热,按低位发热量为基准计算,天然气锅炉热效率可达到和超过110%。本文以纯天然气为例对烟气的露点温度以及锅炉理论热效率进行计算分析,表1为纯天然气的成分。

1.1露点计算

在水蒸气分压力不变的情况下,使空气冷却至饱和湿蒸汽状态时,将有水滴析出,此时的温度即为露点温度。天然气燃烧特性分析(以1 m3天然气计算)烟气中水蒸气的体积分数达17˙4%,若燃烧在大气压力下进行,当空气过量系数α为1.1时(本文中的计算均以此作为计算依据),其相应的烟气露点温度是57℃。露点温度随过量空气系数的变化曲线见图1。

通过观察可知,烟气露点温度随过量空气系数的变化而变化。因为根据道尔顿分压定律,露点温度的高低与烟道中水蒸气的分压量(即水蒸气的含量)成正比,随着过量空气系数的增加,烟道中水蒸气的相对体积减小,水蒸气的容积份额会有所下降,其露点温度也随之降低。实际上,虽然各地方天然气中成分含量有所不同,但由于其主要成分均为甲烷且占绝大部分,其他成分影响很小,经计算的露点温度误差不超过0.3%(符合实际要求的范围),并且由于实际燃烧的影响因素较多,也使得计算不可能达到很精确,通常是在理论值附近的一个范围内波动,在实际应用中还需根据不同情况进行修正分析。

1.2热效率分析

烟气中的热量以显热和潜热2种形式存在,因此锅炉的热损失也由烟气的显热损失和潜热损失组成。而显热损失取决于烟气的温度和烟气组分的热容量;潜热损失则取决于烟气中以水蒸气形态存在的水量的多少。当水蒸气冷凝时,烟气中存在复杂的现象:由于水蒸气分压力较低,并且在冷凝液膜附近主要是不凝气体,如N2、CO2、O2等,烟气中水蒸气需要穿过不凝气体层才能达到液膜表面发生冷凝。烟气中水蒸气冷凝率等于由单位体积天然气燃烧生成烟气所产生的凝结

水量与燃烧所生产的水蒸气量的比值,其中,燃烧所产生的水蒸气包括天然气燃烧生成的水蒸气及空气和燃气所带入的水蒸气。

仅烟气中的潜热就对锅炉的热效率影响如此巨大,倘若能将排烟温度降低到露点以下对潜热加以回收利用,对以低位发热量为基准进行计算的热效率至少可提高到10%以上。并且随着排烟温度的降低,烟气的显热损失也会相对减小,那么热效率的提高将更为明显,进一步证明降低排烟温度对锅炉效率提高的重要意义。

进一步计算可以得出在不同排烟温度下锅炉实际热效率的变化

趋势。锅炉效率随着排烟温度的变化分为2个比较明显的区域:在60~180℃变化缓慢,而在20~60℃变化较大。这主要是因为排烟损失中水蒸气潜热损失占的比例大于烟气显热的结果。当锅炉排烟温度降到20℃时,锅炉效率理论上可达107.4%。

排烟中的水蒸气潜热在57℃以下才能得以回收,能够回收的热量依赖于所要求的利用温度和利用率。如果利用温度接近排烟的露点温

度,仅能回收较少的热量。利用温度越低,回收的热量越多。因此,低温下余热冷水可获得高的回收率,而在较高的温度下输出热能会降至可以回收的能量数量。

2余热回收其它影响因素

2.1 余热回收器受热面的磨损问题

将余热回收器管排设计成膜式管排(或 H 型管排),这种结构迫使烟气流动趋于层流,管排间没有烟气扰动,在同样烟速下,与螺旋肋片式和光管式相比较是最不易磨损的受热面布置形式。而且由于每个烟道的边界管排与烟气的磨擦,而形成中间流速高,两边流速低的分布方式。因此,管壁附近烟气流速低于平均值,烟气扰动比较弱,缓解了飞灰对省煤器的磨损。另外,烟气流速对受热面的磨损影响最大,布置受热面时烟气流速不宜过大,设计时通过调整管排横向截距,来改变受热面的烟速,可有效避免余热回收器管排的磨损问题。

2.2 烟道阻力问题

锅炉整个烟道阻力主要由引风机和烟囱自拔力来克服,其中引风机是主要因素。安装余热回收器后锅炉整体烟气阻力必然增加。以某电厂 3 号炉热力计算结果为例,烟道阻力增加约 70 Pa 左右。在加装余热回收器的同时是否对引风机进行改造,进一步提高出力,确保安装余热回收器后锅炉本体的正常运行,视现场情况确定。

燃气蒸汽锅炉计算方案

燃气蒸汽锅炉计算方案 XX热能设备有限公司 (锅炉有限公司) 燃气蒸汽锅炉计算方案 一、贵公司要求基本条件为: 1、煤气出口温度 出口温度500-600℃ 2、含尘量 煤气为粗煤气,未经提苯、脱焦油加工。 二、锅炉参数 1、工作压力p=1.25MPa 2、对应的饱和蒸汽温度t = 194 ℃。 3、1.25MPa、过热蒸汽温度t1 = 194℃时的过热蒸汽焓r’’= 2793.2 KJ/Kg(查表) 4、锅炉的热效率η= 88% 5、20℃、1.25MPa时的饱和水焓r/ =84.8KJ/Kg(查表) 三、计算20吨燃气锅炉所需的燃气量 1、20T蒸汽所能携带的总热量 Q Z=20×1000×2793.2 = KJ 2、所需输入的热量为 Q= Q Z÷η =.18 KJ/h

3、煤气的热值Q d = 5300 KJ/ m3(实际测验值) 4、所需煤气量为 G= Q÷Q d = 11977.7 m3 四、直径3600煤气发生炉的产气量 1、水煤气产量G=12000m3/h 2、单位时间产生的煤气完全燃烧所能提供的热量 Q R = G×Qd =12000×5300 = KJ/h 比较: Q R>Q 所以直径3600煤气发生炉的产气量能够满足型号为SZS20-1.25-Q的锅炉所需燃气要求 五、SZS20-1.25-Q型燃气锅炉结构简介及使用说明 (一)、结构简介 SZS型燃油气快装蒸汽锅炉采用典型的锅筒纵置式“D”型布置结构形式,燃烧方式采用微正压燃烧。它由上下锅筒、膜式水冷壁、对流管束、过热器(仅过热蒸汽炉有)及省煤器组成,燃烧器布置在前墙,燃料在炉膛内燃烧后,烟气经过过热器、对流管束及省煤器排入烟囱。 (二)、性能特点 该系列锅炉有如下特点: ⑴采用双锅筒“D”型布置,结构紧凑,占地面积小,火焰充满度好。 ⑵锅炉采用下支承方式,能自由向上膨胀。 ⑶炉膛水冷壁及对流烟道均采用膜式壁结构,气密性好,适于正压运行,并有效降低耐火材料的使用及维修工作量。 ⑷外包装护板采用压制护板,外形美观。 ⑸炉膛设有检查孔,为使用、维修提供了极大方便。炉顶设有防爆门。 ⑹采用快装形式,能有效缩短安装周期。

燃气-蒸汽联合循环余热锅炉吹管方法及标准比较分析

燃气-蒸汽联合循环余热锅炉吹管方法及标准比较分析 发表时间:2019-06-04T11:17:14.777Z 来源:《电力设备》2019年第2期作者:郭勇何宽[导读] 摘要:介绍了单元制和母管制联合循环机组吹管概况,对国内外余热锅炉冲管的方式、流程、参数及标准要求进行说明.分析了冲管过程中燃机负荷及锅炉关参数的控制,总结说明余热锅炉吹管的方法及标准,提出了联合循环机组三压及两压余热锅炉吹管中采取的一些技术措施及要求,以此为国内外不同项目中同类型机组的调试和运行提供参考。 (中国能源建设集团西北电力试验研究院有限公司陕西省西安市 710000) 摘要:介绍了单元制和母管制联合循环机组吹管概况,对国内外余热锅炉冲管的方式、流程、参数及标准要求进行说明.分析了冲管过程中燃机负荷及锅炉关参数的控制,总结说明余热锅炉吹管的方法及标准,提出了联合循环机组三压及两压余热锅炉吹管中采取的一些技术措施及要求,以此为国内外不同项目中同类型机组的调试和运行提供参考。关键词:燃气-蒸汽联合循环机组;余热锅炉;蒸汽吹洗; 0引言 随着电力市场的发展及环境要求的提高,越来越多的清洁能源被应用到电力市场发展当中,尤其对于城市环境的要求,采用天然气燃烧技术供暖已经逐渐开始取代传统燃煤供热电厂,燃气联合循环机组将被更多的投入到城市供暖工程当中,另外国外尤其中东地区由于资源丰富,随着经济的发展,越来越多的燃气联合循环机组投入建设,余热锅炉是燃气联合循环机组的重要部分,而锅炉吹管作为机组调试期间的重要试运项目,对后期机组的稳定运行有着重要的意义。目前我国《2013火力发电建设工程机组蒸汽吹管导则》中对余热锅炉吹管方式进行了简单描述,并未具体进行说明,本文中重点对约旦萨玛瑞四期燃气联合循环机组余热锅炉吹管进行说明,并总结国内吹管经验,对燃气联合循环机组余热锅炉吹管方式,流程,注意事项及不同标准要求进行详细说明,为国内外不同项目中同类型机组的调试和运行提供参考依据。 1.设备概况 约旦萨玛瑞四期联合循环项目为 70MW 燃气机组联合循环部分扩建项目,机组采用一拖一形式,现有单循环部分为 Alstom GT13 型号燃机;联合循环扩建部分余热锅炉、汽轮机、空冷岛及部分 BOP 系统。余热锅炉为1台Nooter/Eriksen 三压再热、无补燃、整体式除氧器、卧式、自然循环余热锅炉。在燃机燃气模式下锅炉最大负荷相关参数如下:高压蒸汽参数:压力11.62MPa,温度509.3℃,流量43.9kg/s;中压蒸汽参数:压力3.11MPa,温度323.4℃,流量12.42kg/s;再热蒸汽参数:压力2.96MPa,温度509℃,流量52.566kg/s;低压蒸汽参数:压力0.45MPa,温度266.4℃,流量10.52kg/s; 2.吹管标准 《2013火力发电建设工程机组蒸汽吹管导则》中要求,过热器再热器的吹系数应大于1.0;过热器出口和再热器出口应分别装设靶板;靶板宽度应为靶板安装处管道内径的8%且不小于25mm,厚度不小于5mm,长度纵贯管道内径,靶板表面粗超度应达到Ra100;选用铝制材质靶板,应连续两次更换靶板检查,无0.8mm以上的瘢痕,且0.2mm~0.8mm范围的瘢痕不多于8点,采用钢、铜或其它材质的靶板,验收标准应参照制造厂的要求执行。德国《VGB-S-513e》标准要求,余热锅炉吹管需采用稳压的连续吹洗,打靶时必须有效打靶10~20min,靶板验收要求打靶时靶板处蒸汽流速达到200m/s,吹管系数大于1.2,靶板一般选用碳钢板(St 37),要求室温下硬度应为140~140HB之间,靶板宽度为40mm,长度为0.85倍的管道内径,厚度为6mm,每40×40mm的区域内,无大于1mm以上的瘢痕,大于0.5mm的少于4个,大于0.2mm的少于10个,若选用其它材质作靶板时,其硬度按照VGB标准的相关要求执行。 3.吹管方法 国家能源局发布的2013版《火力发电建设工程机组蒸汽吹管导则》中,锅炉蒸汽吹管按照能量形式分为降压吹管和稳压吹管,按照系统吹洗步序可分为一段吹管和两段吹管,其中一段吹管将过热器、主蒸汽管道和再热器冷段管道、再热器、再热器热段管道串联吹扫,一步完成吹扫方式;两段吹管指先吹扫过热器及主蒸汽管道,再将过热器、主蒸汽管道与再热器冷段管道、再热器、再热蒸汽管道串联,分两步完成的蒸汽吹扫方式。目前国内锅炉吹管一般都采用一段吹管方式;直流锅炉宜采用稳压吹管,稳压吹管时应采用一段吹管方式;采用一段吹管时应在再热器前加装集粒器,而采用两段吹管时,应在主蒸汽系统吹扫靶板检验合格后,方可进行第二阶段再热蒸汽系统吹扫。 VGB中锅炉吹洗按照吹洗介质可分为两种方法,分为压缩空气可蒸汽进行吹洗,对于没有补燃的余热锅炉吹管,应该采用连续吹洗的方式,将启动和停止次数减少到最小,对于有补燃的余热锅炉,尽量减少燃机的启动和停止次数;连续吹洗的时间主要取决于除盐水的储存和供应流量,连续吹洗时的最小蒸汽流量应当至少满足吹洗系数的要求,VGB中要求吹管系数1.2

配联合循环的余热锅炉性能特点

补充 2004年5月4日,摘自焦树建《燃气-蒸汽联合循环》 1.余热锅炉设计时节点温差和接近点温差的选择 节点温差的选择关系到余热功率的效率和投资费用,要加以权衡。 减小节点温差,锅炉效率提高,可以更多的回收热量。但是,投资费用增加,并且锅炉换热面积的增加还会使燃气轮机排气阻力增加,减少燃气轮机的功率,这就会导致联合循环效率有下降的趋势。因此,必须从整个联合循环的效率和经济性两方面加以全面考虑。 当进入余热锅炉的燃气温度随燃气轮机负荷的减少而降低时,接近点温差将随之减少。如果在设计时接近点温差取得过小或未加考虑,则在部分负荷工况下,省煤器内就会发生部分水的汽化,这将导致省煤器管壁过热和故障。另外,接近点温差的选择也关系到省煤器和蒸发器换热面积的设计。这样,必然存在合理的选择接近点温差的问题。 图12.4和12.5给出了当接近点温差选定后,随着节点温差的变化,余热锅炉相对总换热面积、相对排气温度、相对蒸汽产量、相对总投资和相对单位热回收费用的变化规律。这些相对值都是以节点温差选为10℃时的数值作为比较标准。 图12.6给出了余热锅炉的相对总换热面积随接近点温差的变化关系。 图12.7给出了“单压的汽水发生系统”的余热锅炉的当量热效率与节点温差以及相对总换热面积之间的变化关系。 图12.4 的关系 图12.5 相对总投资费用和相对单位 热回收费用随节点温差的变化关系 不言而喻,倘若有意识地增大余热锅炉内燃气侧的流动速度,必然可以因换热效应的强化而使总换热面积有所减小,但是,这个措施却会导致燃气侧流阻损失的增大。图12.8中给出了相对燃气流阻与相对总换热面积之间的变化关系。 通过对上述图12.4至图12.8的分析,我们可以得到以下一些有益的结论: (1)由图12.4可知:当节点温差减小时,余热锅炉的排气温度会下降,燃气的放热量将加大,蒸汽产量会增加,而总的换热面积要增大。计算表明:传热系数基本上是不变的, 但省煤器与蒸发器的对数平均温差将大幅度地减小,致使余热锅炉的总换热面积会增大。余() x s g t f G T A ?=,,5

燃气蒸汽锅炉操作规程完整

燃气蒸汽锅炉日常操作规程及注意事项 为了确保锅炉安全经济运行,保障人身安全,锅炉操作人员必须严格执行《锅炉安全技术监察规程》的有关规定和本规程。燃气锅炉正常运行要做到:天然气正常稳定;保持锅炉的整洁,做好交接班的工作;加强对各机械设备和仪表的监察,防止事故发生;司炉工应定期总结操作经验,不断提高操作运行水平。 一、启动前的检查 1、检查所有电机是否干净、干燥可用。 2、检查锅炉压力表、三通旋阀、安全阀、水位计阀门是否打开、排污阀、放空阀、主蒸汽阀是否关闭、管道阀门仪表开启是否灵活可靠。 3、检查天然气管道压力是否满足使用,管道电磁阀启闭是否正常。 4、检查燃烧器点火程序和熄火保护装置,是否灵敏可靠。 5、检查补水箱液位是否正常。 6、检查软化水设备是否正常工作,树脂罐与盐罐(盐即工业用大粒盐)原料是否缺少。 7、检查防爆门的螺丝是否松动,防爆门是否处于关闭状态。 8、检查室内燃气报警器报警是否可靠。 9、其它检查:锅炉进水前,必须查明锅筒上的所有手孔盖均已完全严密关闭;各操作部位都要有良好的照明;操作平台、扶梯、设备应清洁,其上无杂物和垃圾堆放;给水设备、管路及其附件、支吊架等完好,所有水泵试运转10—20分钟正常;汽水管道、阀门都应连

接齐全,管道支吊架应完整牢固;主蒸汽管、给水管道及排污管等法兰连接处应无堵板(盲板);所有阀门和旋塞都应开启灵活,关闭严密。 10、检查锅炉房内的强制通风设施启动并可靠运行。 11、检查锅炉房内的防爆照明设施投入运行,非防爆照明及电气设备全部不得送电或运行。 12、每隔1小时,对燃气管道上的接口处进行一次检查,确认其有无漏气,一旦发现漏气要立即关闭调压柜输出处的总阀。 二、点炉操作规程 1、点火前,先把主电源开关开启,确保控制系统稳定电压 2、锅炉上方的副汽阀打开,主汽阀关闭,水泵系统阀门打开,将锅炉内注水,观察水位计水位控制妥当。 3、燃烧器风机自动开启(此时燃气阀组上的所有阀门都是处于关闭状态)吹扫炉膛内的氧气及上次停炉前残留的天然气,吹扫30秒。吹扫30秒回燃烧器自动捡漏,捡漏通过后开始准备点火。(若连续捡漏3次未通过应及时联系专业技术人员排除故障) 4、吹扫30秒后,燃烧器自动点火,起步时火焰为小火,没有达到锅炉设定压力时自动转为大火燃烧工作指令,燃烧器自动进入正常的工作状态。例如锅炉停炉压力1.0MPa,启炉压力0.7MPa,目标压力0.9MPa,锅炉压力低于0.7MPa时燃烧器自动启动,燃烧器燃烧锅炉升压达到0.9MPa时,燃烧器转换为小火燃烧,锅炉继续升压达到1.0MPa时,燃烧器自动停止工作。

锅炉作业岗位安全操作规程及危险源辨识

锅炉作业岗位安全操作规程及危险源辨识 1适用范围 本标准适用于构成特种设备的承压锅炉作业人员的安全操作,包括燃气、燃油和燃煤作业安全要求,包括司炉、水质化验岗位作业的安全要求,不包括煤场起重机械作业岗位的安全要求。 2 锅炉设备和安全装置 3 岗位安全作业职责 ●负责本岗位日常事故隐患自我排查治理,包括班前、班中、班后的检查处置等; ●负责本岗位设备操作或其他作业,在作业和故障排除过程中,严格按照规定安全操作, 正确佩戴和使用劳动防护用品;

●负责本岗位设备设施及其安全装置的日常保养,保养过程按规定安全作业,确保本岗位 使用的设备设施及其安全装置完好有效,本岗位不能解决的问题,及时报修; ●负责本岗位事故和紧急情况的报告和现场处置。 4 锅炉作业共性安全要求 4.1外部取证要求 4.1.1锅炉操作人员应获得质检部门颁发的锅炉特种设备作业人员证书; 4.1.2锅炉水质化验人员应取得质检部门颁发的锅炉水质处理特种设备作业人员证书; 4.1.3 煤场构成特种设备的起重机械作业人员应取得质检部门颁发的起重机械特种设备作业人员证书。 4.2运行记录和交接班要求 4.2.1做好本班运行记录,发生异常情况及时正确处置,并在运行记录内登记。 4.2.2 当班作业人员接班时,向前一班作业人员了解设备运行情况等,并认真查阅交接班记录,发现设备异常情况,应立即察看、报告,并采取措施。 4.2.3 锅炉运行时,锅炉房人员应两人当班。 4.3劳防用品通用要求 4.4.1作业人员应穿戴工作服、工作帽,长发应盘在工作帽内,袖口及衣服角应系扣。 4.4.2 进入噪声区域应佩戴耳塞; 4.4.3 接触高温设备管道、阀门时,作业人员应佩戴帆布手套。 4.4禁止性要求 4.4.1进入生产区域不得吸烟; 4.4.2 禁止无关人员进入锅炉现场;参观、检查等外来人员有企业人员陪同时,登记后方可进入现场。 4.5其他 4.5.1操作机组的人员必须取得该岗位操作证后方能上岗操作;取得实习操作证的人员必须在带教老师的指导下方能上岗操作; 4.5.2 不准随意打开、拆卸、桥接和损坏锅炉安全连锁装置;锅炉运行时,禁止擅自调整锅炉上各种仪表的数据和阀门的位置; 4.5.3 严禁将手、工具和抹布伸入机器运转部位、高温部位; 4.5.4 人员离开岗位时,应与同机组其它人员联系,严禁设备在无人看管状态下运转。 5 各岗位危险源和安全操作要求

燃气锅炉选型方案

燃气蒸汽锅炉计算方案 中国河南 太康XXXXXX锅炉有限公司

燃气蒸汽锅炉计算方案 一、贵公司要求基本条件为: 1、煤气出口温度 出口温度500-600℃ 2、含尘量 煤气为粗煤气,未经提苯、脱焦油加工。 二、锅炉参数 1、工作压力p=1.25MPa 2、对应的饱和蒸汽温度t = 194 ℃。 3、1.25MPa、过热蒸汽温度t1 = 194℃时的过热蒸汽焓r’’= 2793.2 KJ/Kg(查表) 4、锅炉的热效率η= 88% 5、20℃、1.25MPa时的饱和水焓r/ =84.8KJ/Kg(查表) 三、计算20吨燃气锅炉所需的燃气量 1、20T蒸汽所能携带的总热量 Q Z=20×1000×2793.2 =55864000 KJ 2、所需输入的热量为 Q= Q Z÷η =63481818.18 KJ/h 3、煤气的热值Q d = 5300 KJ/ m3(实际测验值) 4、所需煤气量为 G= Q÷Q d = 11977.7 m3

四、直径3600煤气发生炉的产气量 1、水煤气产量G=12000m3/h 2、单位时间产生的煤气完全燃烧所能提供的热量 Q R = G×Qd =12000×5300 =63600000 KJ/h 比较: Q R>Q 所以直径3600煤气发生炉的产气量能够满足型号为SZS20-1.25-Q的锅炉所需燃气要求 五、SZS20-1.25-Q型燃气锅炉结构简介及使用说明 (一)、结构简介 SZS型燃油气快装蒸汽锅炉采用典型的锅筒纵置式“D”型布置结构形式,燃烧方式采用微正压燃烧。它由上下锅筒、膜式水冷壁、对流管束、过热器(仅过热蒸汽炉有)及省煤器组成,燃烧器布置在前墙,燃料在炉膛内燃烧后,烟气经过过热器、对流管束及省煤器排入烟囱。 (二)、性能特点 该系列锅炉有如下特点: ⑴采用双锅筒“D”型布置,结构紧凑,占地面积小,火焰充满度好。 ⑵锅炉采用下支承方式,能自由向上膨胀。 ⑶炉膛水冷壁及对流烟道均采用膜式壁结构,气密性好,适于正压运行,并有效降低耐火材料的使用及维修工作量。 ⑷外包装护板采用压制护板,外形美观。 ⑸炉膛设有检查孔,为使用、维修提供了极大方便。炉顶设有防爆门。 ⑹采用快装形式,能有效缩短安装周期。 ⑺采用高热阻材料作为绝热层,保温性能良好。 ⑻带有尾部受热面(省煤器),能有效控制排烟温度,锅炉热效率高。 ⑼整台锅炉座在钢性很强的底座上,安装运输方便。 ⑽采用全自动比例调节燃烧器,燃烧效率高并具有点火程序控制及超压、

燃气蒸汽联合循环余热锅炉使用说明

燃气、蒸汽联合循环 余热锅炉 使用说明 南京南锅动力设备有限公司

目录 前言 (2) 1锅炉设备安装总论 (3) 2安装程序 (3) 3模块钢架和平台扶梯等钢构件的安装 (4) 4锅筒和管道的安装 (5) 5水压试验 (7) 6热工仪表及附属设备的安装 (8) 7保温 (9) 8烘炉 (9) 9煮炉和蒸汽试验 (10)

前言 锅炉是把热能传递给水,使水变成一定参数下的高品位能量的水或蒸汽的一种动力设备。它是由锅和炉以及附属设备组成,其结构庞大,笨重和复杂,锅炉又是承受高温的受压容器,所以锅炉的安装和使用都有一定的技术要求和规定,以保证锅炉的长期安全稳妥运行。安装和使用上的不当,都会降低效率,影响性能,甚至造成严重后果。 本手册是为燃机余热锅炉及其辅助设备的一个安装操作指导。它不包含设备中的所有可能变化和使用中出现的特殊问题。建议所有的工作人员都能认真阅读本手册,以便能及时掌握信息,熟练操作锅炉及其辅助设备。 本手册不能代替经验和判断能力。对于锅炉的操作须严格按照国家法规。辅助设备及控制若不是由本公司提供的,则产生的责任由使用方承担。 使用单位应根据本手册及有关规程和技术文件,在锅炉安装和使用时制定现场操作规程并严格执行。 本手册详细说明了安装和使用上的技术要求和操作规定,供用户参考。 1.本手册如与国家颁布的有关规程相抵触,或低于有关规程的要求时,以国家规程为准。 2.对未定购辅机及部件的安装和使用由用户自行处理(可参阅本说明)。 3.工业锅炉产品执行标准: ●《热水锅炉安全技术监察规程》或《蒸汽锅炉安全技术监察规程》 ●JB/T10094《工业锅炉通用技术条件》 ●GB50273《工业锅炉安装工程施工及验收规范》 ●GB1576《工业锅炉水质标准》 4.发电锅炉产品执行标准: ●《蒸汽锅炉安全技术监察规程》 ●JB/T6696《电站锅炉技术条件》 ●DL/T5047《电力建设施工及验收规范[锅炉机组篇]》 ●GB12145《火力发电机组及蒸汽动力设备水汽质量标准》 5.本手册如有更改恕不另行通知。

生活垃圾焚烧锅炉 、燃气-蒸汽联合循环电站余热锅炉

附录A 生活垃圾焚烧锅炉 A.1一般规定 A.1.1本附录适用于机械炉排焚烧电站锅炉的施工。 A.1.2本附录中未涉及热解焚烧和旋转窑焚烧设备,施工参照厂家、设计技术文件或接近的验收标准。 A.1.3本附录中编制了生活垃圾焚烧电站锅炉安装中特有的施工内容,其他部分的施工应按本部分相关章节执行。 A.2生活垃圾焚烧锅炉 A.2.1链条炉排安装应符合下列要求: 1 链条炉排安装前的检查允许偏差应符合表A.2.1-1的规定(图A.2.1-1和图A.2.1-2)。 表A.2.1-1链条炉排安装前的检查允许偏差(mm) 检验项目允许偏差 L≤5m ±2 型钢构件的长度 L>5m ±4 直线度 1/1000,全长≤5 型钢构件 旁弯度 挠度 各链轮与轴线中点间的距离a、N±2 横梁式 2 同一轴上的任意两链轮,其 齿尖前后错位鳞片式 4 图A.2.1-1 链轮与轴线中间点间的距离 1—链轮;2—轴线中心点;3—主动轴

图A.2.1-2 链轮的齿尖错位 2 链条炉排安装允许偏差应符合表A.2.1-2的规定。 表A.2.1-2 链条炉排安装允许偏差(mm ) 检 验 项 目 允 许 偏 差 炉排中心位置 2 左右支架墙板对应点高度差 ±5 墙板的垂直度,全高 3 跨距≤5m +3 0 墙板间的距离 跨距>5m +5 0 ≤5m 4 墙板间对角线的长度之差 >5m 8 墙板框的纵向位置 5 墙板顶面的纵向水平度 长度的1/1000,且不大于5 两墙板的顶面应在同一平面上,其相对高度差 5 前轴、后轴的水平度 长度的1/1000,且不大于5 各道轨应在同一平面上,其平面度 5 相邻两道轨间的距离 ±2 相邻 2 任意 两导轨间上表面相对高度差 3 鳞片式炉排 相邻导轨间距 ±2 链带式炉排支架上摩擦板工作面应在同一平面上,其平面度 3 前、后、中间梁之间高度 ≤2 横梁式炉排 上下导轨中心线位置 ≤1 注:墙板的检测点宜选在靠近前后轴或其他易测部位的相应墙板顶部,打冲眼测量。 3 对鳞片或横梁式链条炉排在拉紧状态下测量,各链条的相对长度差不得大于8mm 。 4 炉排片组装不可过紧或过松,装好后应用手扳动,转动宜灵活。 5 边部炉条与墙板之间,应有膨胀间隙。 A.2.2往复炉排安装允许偏差应符合表A.2.2的规定。 表A.2.2 往复炉排安装允许偏差(mm ) 项 目 允 许 偏 差 两侧板的相对标高 3

燃气轮机余热锅炉技术

燃气轮机余热锅炉技术 燃气轮机余热锅炉技术 燃气一蒸汽联合循环发电是当今世界上发展极为迅速的一种高效、低污染发电技术,它己成为发达国家新建热力发电厂的首选系统。 经过近三十年的研究和不断改进,联合循环发电不仅在效率上超过蒸汽发电效率(后者 <=42%),而且在众多方面均体现出明显的优势。它己成为全世界公认的具有发电效率高,调峰能力强,单位功率投资少,建设周期短。占地面积小,污染程度低的新一代发电设备。 1.1原理及应用 燃气一蒸汽联合循环发电系统是由燃气轮机发电系统和锅炉蒸汽轮机发电系统所组成。众所周知,锅炉一蒸汽轮机发电是利用高中压过热蒸汽(通常参数为3.82~16.7MPa, 450~550℃)在汽轮机中作功转换成机械能,完成朗肯循环过程;燃气轮机发电系统是燃气在燃气涡轮机中经绝热膨胀作功的过程,这种热力循环又称布雷顿循环,它是由压气机将空气加压进入燃烧室,燃料燃烧后燃气在透平中膨胀作功,燃机将高温高压燃气的能量(通常参数约0.5~1Mpa 1000~1300℃)转换成机械能。在烟气温度降至500℃左右时排放,人们充分利用这两种热力循环的特点,把它们结合在一起,组成“联合循环”,使其具有较高的吸热平均温度和较低的放热平均温度,为提高电站热效率开辟了一条新途径,这是人类发电事业上继发明蒸汽轮机发电后技术上的又一突破。 目前燃气轮机发电在世界上已广为应用,其发电容量占世界总发电容量的11%。近些年来,世界上发达国家常规联合循环发电得到快速发展;每年新增的联合循环机组总装机容量约占火电总新增容量的的40%~50%。据报道,1981~1990年,世界各燃机制造公司共售出1661台燃机,总容量为54900MW,其中用于联合循环的占37.9%,1992年,这个比例上升为44.7%。美国在1992~1996年中,新增火力发电厂总装机容量的38.5%是采用燃机联合循环的。当今世界上单台燃机最大功率己达250MM,联合循环总功率达350MW。能生产300MW等级联合循环厂家有GE、SIEMENS、ABB和ALSTOM等著名公司,联合循环电站效率高达58%以上。现在燃气轮机正向着大功率、高燃烧温度发展。联合循环采用三压再热循环机组,具有更高的机组效率和可*性。燃气一蒸汽联合循环已经成为世界上火电建设的重要组成部分。 我国早在六十年代就己开始关注这项技术的发展,由于工业技术、经济能力及能源政策等诸多因素的影响,这种高难度的大型设备在我国一直停留在研究状态。近些年来,特别是改革开放以来,随着国民经济的发展和电力供应的需要。燃气轮机发电机组在我国己开始

锅炉热效率计算

1兆帕(MPa)=10巴(bar)=9.8大气压(atm)约等于十个大气压,1标准大气压=76cm汞柱=1.01325×10^5Pa=10.336m水柱约等于十米水柱,所以1MPa大约等于100米水柱,一公斤相当于10米水柱 水的汽化热为40.8千焦/摩尔,相当于2260千焦/千克.一般地:使水在其沸点蒸发所需要的热量五倍于把等量水从一摄氏度加热到一百摄氏度所需要的热量. 一吨水=1000千克每千克水2260千焦 1000千克就是2260 000千焦 1吨蒸汽相当于60万千卡/1吨蒸汽相当于64锅炉马力/1锅炉马力相当于8440千卡热。 用量是70万大卡/H 相当于1.17吨的锅炉 以表压力为零的蒸汽为例,每小时产一吨蒸汽所具有的热能,在锅内是分两步吸热获得的,第一步是把20度的一吨给水加热到100度的饱和水所吸收的热能,通常这部分热能为显热,其热能即为1000×(100-20)=8万/千卡时。 第二步则是将已处于饱和状态的热水一吨加热成饱和蒸汽所需要吸收的热能,这部分热为潜热,其热能即为1000×539=53.9万/千卡时。 把显热和潜热加起来,即是一吨蒸汽(其表压力为零时)在锅内所获得的热能, 即:53.9+8=61.9万/千卡时。这就是我们通常所说的蒸汽锅炉每小时一吨蒸发量所具有的热能,相当于热水锅炉每小时60万/大卡的容量。 天然气热值 天燃气每立方燃烧热值为8000大卡至8500大卡,1千卡/1大卡/1000卡路里(kcal)=4.1868千焦(kJ),所以每立方米燃烧热值为33494.4—35587.8KJ 产地、成分不同热值不同,大致在36000~40000kJ/Nm3,即每一标准立方米天然气热值约为36000至40000千焦耳,即36~40百万焦耳。 天燃气每立方燃烧热值为8000大卡至8500大卡,1千卡/1大卡/1000卡路里(kcal)=4.1868千焦(kJ),所以每立方米燃烧热值为33494.4—35587.8KJ。而1度=1kW*h=3.6*10^6J=3.6*10^3KJ。即每立方燃烧热值相当于9.3—9.88度电产生的热能, 3.83<1.07*9.3 OR 9.88 天然气价格: 天然气的主要成分是甲烷,分子式是CH4,分子量是12+4*1=16. 在1标准大气压下,1mol气体的体积是22.4升,1立方米的气体有

危险源分析及预防措施

危险源分析及预防措施 1概述 1.1锅炉的基本知识 1.1.1锅炉的定义 锅炉是能量转换设备,是把燃料燃烧(氧化反应),是燃料的化学能转换为热能的统一体。 1.1.2锅炉的工作过程 锅炉的工作过程包括三个部分: (1)燃料不断剧烈氧化的燃烧过程, (2)火焰和高温烟气不断把热量传递给锅内水的传热过程, (3)水在锅内不断流动循环,吸热、升温和汽化(热水锅炉达不到沸腾汽化温度)的过程。这三个过程在锅炉内不断进行,通过锅炉燃烧设备、附属设备及仪表附件三个工作系统来实行。 1.2锅炉行业概况 我国的工业锅炉制造业随着国民经济的蓬勃发展,取得了很大的进步,到目前为止,全国持有各级锅炉制造许可证的企业超过一千家,生产各种不同压力等级和容量的锅炉。 从八十年代起,我国开始对锅炉制造企业的管理实行许可证制度,许可证分为A、B、C、D、E(包括E1、E2)级。2000年国家对锅炉制造许可证等级的划分作了调整,同时对常压热水锅炉也采用了制造许可证制度,调整后新的许可证分为A、B、C、D四级。新的A级相当于原来的A、B级;B级相当于原来的C、D 级;C级相当于原来的E1级;D级相当于原来的E2级。级别调整前后企业的构成情况见表1-1。 表1-1

1.3锅炉制造业的发展特征 1)中国锅炉制造企业实行许可证制度。自锅炉制造企业实行许可证以来,锅炉制造业得到了规范并壮大,生产能力不断提高,但行业发展极不平衡,生产集中度不高,大而全、小而全的现象普遍存在。近十多年来,全国工业锅炉年产量一直在710万蒸吨间徘徊。行业规模却由1987年的551家企业增加到2001年的969家,扩大将近一倍,可见厂点太多,大多没有形成规模生产,而且所增加的企业绝大多数是规模很小的C、D 两级企业,锅炉年产量平均不过50万蒸吨左右。 2)1991-2001 年工业锅炉产品发展情况经过五十多年来的发展,中国工业锅炉行业已形成比较完整的产品体系,但近十年来,随着国民经济的蓬勃发展和人民生活的不断改善,同时受国家能源结构变化和日益严格的环境保护政策的制约,工业锅炉锄品发展出现了新的变化。无论从锅炉容量、参数、炉型还是从燃烧方式、燃料种类来看,中大容量锅炉所占比例显著上升( ≥10t/h 的锅炉由1991年的25 %增至2001年的54 %) ,热水锅炉产量的比例有所增长,水火管锅炉所占比例显著下降(在容量上由1991年的45%降至2001年的21%) ,流化床锅炉快速发展(在锅炉总容量中所占比例由1991 年的3 %增至2001 年的10 %以上) ,燃油气锅炉所占比例增加(由1991 年的不足6 %增高至2001 年的15 %以上) 。另外,电热锅炉及垃圾锅炉等特种锅炉开始出现,但所占比例不高1.4锅炉发生事故的原因 1.4.1锅炉本身有先天性缺陷 (1)结构不合理。如主要受压部件采用不合理的角焊连接形成,水循环不良,锅炉某些部位不能自由膨胀等。 (2)金属材料不符合要求,质量不合格。 (3)制造质量不好。如几何形状严重超差,焊接质量不合格等。 (4)受压元件强度不够。 (5)安装不合理。如最低安全水位低于最高火界,不能自由膨胀,该绝缘处未绝缘等。

燃机余热锅炉基本原理

1 燃机余热锅炉基本原理介绍 燃机余热锅炉,英文简写为HRSG (Heat Recovery Steam Generator ),是燃气-蒸汽联合循环的重要组成部分。其主要工作原理是通过布置大量的换热管(通常采用螺旋鳍片管)来吸收燃机排气的余热,产生蒸汽供汽机发电或作为供热及其它工艺用汽。 燃机余热锅炉发展至今,形成了各种结构形式和布置方法,简单介绍如下。 燃机余热锅炉按照其循环方式主要分为两种形式:即受热面水平布置的强制循环余热锅炉和受热面垂直布置的自然循环余热锅炉,两者的主要区别是强制循环锅炉需配置循环泵依靠循环泵的压头实现蒸发器内的水循环,而自然循环则主要靠下降管和受热的蒸发管束中工质的密度差来实现循环。强制循环就国外而言主要在欧洲使用较多,国内主要用于燃机燃用重油等含灰较多燃料、受热面需吹灰和清洗的情况,如我厂提供深圳南山电厂、月亮湾等电厂的9E 级燃机余热锅炉及浙江金华、广州明珠等6B 级燃机余热锅炉。自然循环就国外而言主要用于美国,国内主要用于燃机燃用天然气、轻油等清洁燃料的燃机余热锅炉,如我厂提供的深圳金岗、天津滨海等的6B ,江苏无锡、海南南山的FT-8及海南洋浦V94.2燃机余热锅炉。 强制循环和自然循环余热锅炉的结构形式见附图1和附图2 。 附图1强制循环余热锅炉

2 附图2自然循环余热锅炉 燃机余热锅炉按照是否补燃分为补燃型余热锅炉和非补燃型余热锅炉,除非是用于热电联产或其它特殊工艺要求,一般应选用非补燃型余热锅炉,因为补燃会降低余热锅炉的效率。 一般补燃采用烟道式燃烧器,布置在进口烟道中,仅利用燃机排气中的氧气而不掺入补燃空气,补燃后烟气温度控制在750℃以下。 烟道式补燃燃烧器的布置位置见附图3,其结构见附图4 。

燃气蒸汽联合循环简介

燃气—蒸汽联合循环在世界范围内,使用化学燃料通过热力动力机械发电的火力发电量仍然占据最高的比例。从节约资源和保护环境等各方面来说,作为一种重要的发电装置,火力发电机组首先要求有高的热效率。在大型热力发电设备中,目前技术水平比较成熟的,能够经济地大规模应用的只有燃气轮机和蒸汽轮机。但是它们的热效率都不高,一般都在38—42%左右,即使最先进的燃气轮机热效率也只能达到42—44%,最先进的超临界参数蒸汽轮机热效率也只能达到43—45%。对这两种热力机械所使用的热力循环进行分析。燃气轮机燃气初温很高,目前的技术水平一般能达到1350—1430℃,因此燃气轮机中的热力循环平均吸热温度高,但是它的排气温度也就是循环低温也高,一般要达到450—630℃,所以燃气轮机热力循环的卡诺效率不高。蒸汽轮机虽然循环低温较低,也就是蒸汽的冷凝温度可以降低到30—33℃,但是由于受到材料上的限制,它的蒸汽初温不高,在目前的技术水平下一般难以达到600℃,即使采用再热之后,平均吸热温度也不会太高,所以蒸汽轮机热力循环的卡诺效率也不高。进一步分析可以发现,蒸汽轮机蒸汽初温一般在535—565℃以下,所以实际上只要有570—610℃的热源就可以让蒸汽轮机工作,而燃气轮机的排气温度就很高,在排气中蕴含着大量的热能,能够给蒸汽轮机提供所需要的热能。因此如果使用燃气轮机排气作为蒸汽轮机的热源,蒸汽轮机就可以不额外消耗燃料了。也就是说,蒸汽轮机可以回收燃气轮机的排气热量,额外发出一些有用功,这样就相当于增加了燃气轮机的热效率。如前所述,目前先进的燃气轮机和蒸汽轮机的热效率基本相当,都在38—42%左右,

那么,此时这个相当于增加了燃气轮机热效率的系统,热效率必然比单纯的燃气轮机和蒸汽轮机都高。实际上,如果把上述由燃气轮机和蒸汽轮机组成的系统看成一个整体,那么在它的热力循环中,循环高温就是燃气轮机的循环高温,而循环低温则是蒸汽轮机的冷凝温度。显而易见,这个系统热力循环的卡诺效率远远高于燃气轮机或蒸汽轮机热力循环的卡诺效率。由燃气轮机和蒸汽轮机组成的发电系统可以有多种组合形式,它们的共同点就是由燃气轮机完成热力循环的高温部分,而由蒸汽轮机完成热力循环的低温部分,从而获得具有较高卡诺效率的热力循环,这样的热力循环称为燃气—蒸汽联合循环。目前有所应用的燃气—蒸汽联合循环主要包括余热锅炉型、平行双工质型,增压锅炉型三种基本型式。不过,按照目前的燃气轮机技术特点和燃气初温水平,余热锅炉型联合循环的热效率比另两种联合循环的高,因此近些年来得到了快速的发展。而另两种联合循环除了热效率低以外,各自还有另外的缺点,使它们的应用和发展受到了限制。余热锅炉型燃气—蒸汽联合循环系统的组成和各部件特点按照前面的分析,最基本的燃气—蒸汽联合循环动力装置就是采用一种专门设计的锅炉,利用燃气轮机的高温排气作为锅炉的工作热源,产生蒸汽在蒸汽轮机中做功的系统。因为在这样的系统中,锅炉本身不消耗燃料,仅仅利用燃气轮机排气余热工作,所以叫做余热锅炉,因此上述系统也就称为余热锅炉型燃气—蒸汽联合循环系统,简称为HRSG-Repowering。在余热锅炉型联合循环基础上还发展出了多种衍生型式,包括补燃锅炉型联合循环、平行混合型联合循环、给水预热型联合循环等。不过这几种衍生型式多数用于对现有发电站进行

锅炉安全系统风险评估

锅炉安全风险评估 一、事故预想:锅炉缺水干锅和满水 1、风险评估:人员伤亡、环境污染。 2、评估原因: 2.1 锅炉的缺水干锅和满水是干锅的前奏,干锅是缺水的发展,锅炉满水则是同锅炉缺水相反的事故。 2.2 运行人员脱岗违反劳动纪律,疏忽大意,负荷突增。 2.3 运行人员误判断,误操作。 2.4 水位表汽水联管堵塞,水位表柱堵塞或结构不合理造成假水位。 2.5 水位报警器失灵,无声无信号,照明不良,观察水位不清。 2.6 双色水位计失灵,给水自动调节器失灵。 2.7 给水系统阀门故障,排污阀关不严,漏失严重。 2.8 集中给水系统供水不均,调节不好,给水泵及给水系统故障,给水压力下降。 2.9 受热而破裂,大量失水。 2.10 软水系统故障,水源停水。 3、应急措施: 3.1 一旦发现锅炉停水立即停炉,然后再做处理。 3.2 锅炉发生严重缺水时严禁上水。

3.3 发现锅炉满水,应立即停炉,关闭给水和主汽阀门。 3.4 有省煤器的再打开循环阀。 3.5 开排污阀,但应严格监视水位,到正常水位立即关排污阀。 3.6 检查给水系统是否正常,有异常立即处理。 3.7 正常后不必恢复启动。 二、事故预想:锅炉超温、超压 1、评估原因: 1.1 司炉工责任心不强,失职或误操作。 1.2 安全阀失灵或失调,压力表指示不正常,超压报警系统失灵,主汽门未开或开度小。 1.3 燃料品质变化,使汽温升高,送风量增加,过剩空气增加,火焰中心移高。 1.4 对流受热面污染,吸热量少,使炉膛出口烟量较高。 1.5 负荷变化导致温度升高。 1.6 燃料输送量增加,造成温度升高。 2、应急措施: 2.1 保持正常水位,减灭火焰,人工抬启安全阀或锅炉放空阀,使锅炉降压但不很过快。进行汽水和排污降低温度。 2.2 查超压原因,再定是否运行,安排锅炉全面检查。 2.3 改变送风量调节汽温,改变燃烧器投用只数和燃烧器投用的位置,改变汽温。 2.4 调节原则应以减温器为主,调风为辅。

燃气蒸汽锅炉技术协议

合同编号:附技术协议 燃气蒸汽锅炉及辅助设备技术协议 甲方: 有限公司 乙方: 有限公司 有限公司(以下简称甲方)和有限公司(以下简称乙方)就甲方燃气蒸汽锅炉及配套辅助设备的供货和安装事宜进行友好协商,本着互惠互利、友好合作的原则达成以下技术协议。 一、燃气蒸汽锅炉系统设计参数、安装技术条件 1、锅炉装置概况 燃气蒸汽锅炉(WNS1-1.25-Q)及配套的辅助设备(交钥匙工程) 2、电源 电压等级: 380V±5%、220V±5%、频率:50Hz±0.5 3、锅炉禁止安装的区域: 储油罐、大型车辆密集行驶区域为锅炉禁止安装区域; 4、燃气蒸汽锅炉参数 二、锅炉各部分制造及材料材质标准

构件代码构件名称材质化学排号或型号备注 1 燃烧器利雅路RS 70 意大利品牌 2 内部通火烟管无缝管(20#)GB/T8163直径38、壁厚3mm 锅炉专用管 3 前烟箱Q235B 内部填充硅酸铝纤维保温材料,烟箱采用两级密封 4 前后管板锅炉板,又名抗硫化氢腐蚀 钢板;成分要求熔炼分析P ≤0.025、S≤0.01; Q245R 符合国标 GB/T713 厚度不低于14mm 5 汽水分离器Q235B 6 安全阀碳钢DN50、A48H-16C 全启式 7 副汽阀碳钢DN50、Z41H-16 8 操作检修平台碳钢Q235B 50x50x5角钢做骨架,3mm防滑板铺 设 9 内炉胆 锅炉板,又名抗硫化氢腐蚀 钢板;成分要求熔炼分析P Q245R 符合国标 GB/T713 厚度12mm

三、其他辅助设备性能参数 四、自动控制系统及锅炉运行流程描叙: 1、控制系统功能: 操控柜上,配置彩色触摸屏和手动操控按钮,触摸屏能通过热力系统模拟图实时反映锅炉机组的热力状态参数和介质过程参数,锅炉的操控系统能根据用户实时的热负荷需求比例调节燃

大型天然气联合循环发电技术

大型天然气联合循环发电技术 Power Generation T echnology of Large-Scale Natural Gas –Fired Combined Cycle 浙江省电力设计院何语平 摘要:为配合“西气东输”和液化天然气(LNG)的输入,我国东部地区正在建设一批大型联合循环电厂。为了使建成后的电厂单位投资省、热效率高、投产后具有较好的效益,对大型天然气联合循环发电技术进行全面而系统的研究和优化至关重要。本文对影响大型天然气联合循环电厂效率的各种因素进行了研究,对联合循环系统的优化、燃气轮机选型、蒸汽系统的优化、参数选择、余热锅炉和汽轮机选型、机组轴系配置、动力岛布置等方面进行了深入的分析研究,并提出了明确的优化途径和结论。 关键词:天然气;联合循环发电 0 前言 我国东部地区经济发达,但一次能源匮乏。目前火力发电厂以煤炭消费为主,环境污染日趋严重。为了减少SO2排放并控制酸雨的危害,许多已投运的机组纷纷补上尾部烟气脱硫装置(FGD)。 为了优化能源结构、改善环境,国家决定利用西气东输,东海油气和进口液化天然气(LNG)等清洁能源,建设一批大型天然气联合循环电厂。 天然气是高效清洁能源,燃气-蒸汽联合循环机组燃用天然气将极大地改善环境污染问题。燃用天然气没有粉尘、没有灰渣。天然气几乎不含硫,因而几乎没有SO2排放。由于采用低NO x燃烧器,NO x 的排放也降到极低的程度。又由于天然气成分中主要是CH4,烟气中CO2的排放也大大减少。 近几年由于燃气轮机的单机功率和热效率有了很大程度的提高,特别是联合循环的理论研究、产品开发和电厂运行实践更趋成熟,目前大型燃气轮机的单机功率已超过250MW,热效率已超过36%;所组成的联合循环的功率已达到390MW,热效率也已达到56.7%~58.5%。其热效率之高,不仅远远超过现有燃煤蒸汽轮机电厂,甚至比超超临界参数的燃煤蒸汽轮机电厂还要优越。世界上的联合循环电厂正向大型化和高效化发展。 在电厂投资方面,根据华东地区西气东输的大型单轴联合循环机组(江苏戚墅堰、望亭、张家港、杭州半山,均为老厂扩建)的可行性研究统计,投资估算为3104元/kW~3356元/kW,比带脱硫装置的300MW燃煤蒸汽轮机电厂的造价低19.6%~25.7%。 我国天然气价格相对较高,为使建成后的电厂单位投资最省、热效率最高、投产后具有较好的效益,对大型天然气联合循环发电技术进行全面而系统的研究和优化至关重要。 1 联合循环系统优化 1.1提高联合循环效率的途径 图1 燃气循环 图2 蒸汽循环 图3 燃气-蒸汽联合循环

燃气蒸汽锅炉操作规程完整

10t/h燃气锅炉操作规程 编制:王世锋 校对: 审核: 东营奥星石油化工有限公司 二零一七年十二月

目录 第一部分锅炉简介 ........................................................ 一、WNS型系列蒸汽锅炉的型号意义 (1) 二、锅炉结构和技术特点 (1) 三、锅炉及除氧器结构介绍 (2) 四、煮炉 (4) 第二部分锅炉使用说明 .................................................... 一、燃气锅炉的运行 (5) 二、锅炉的升火及升温 (6) 三、锅炉的停炉 (7) 四、锅炉的排污 (8) 五、水位计的冲洗 (8) 六、锅炉水质分析方法 (9) 七、正常运行与管理 (10) 八、锅炉运行中常见事故处理 (11) 九、锅炉辅助设备表 (14) 十、附表:锅炉控制器使用说明 (15)

第一部分锅炉简介 一、WNS型系列蒸汽锅炉的型号意义 以WNS10-1.25-Y(Q)为例:表示卧式内燃锅炉,额定蒸发量为10t/h,额定蒸汽压力1.25MPa,蒸汽温度为饱和温度,燃用油(气)的蒸汽锅炉。 二、锅炉结构和技术特点 1、WNS 系列全自动燃油(气)蒸汽锅炉,采用快装卧式内燃双回程湿背烟火管锅炉型式。锅炉本体采用下置式波形炉胆,回燃室和波形炉胆、螺纹烟管相连接。高温烟气火焰在炉胆内进行辐射放热后,经回燃室折向螺纹烟管进行对流传热后,进入前烟箱;高温烟气向后进入节能冷凝器,经充分换热后,最后通过烟囱排入大气。 2、WNS 系列全自动蒸汽锅炉,采用快装卧式内燃三回程湿背烟火管锅炉型式,其中1t/h的锅炉为中心回焰燃烧结构,其余的为顺流燃烧结构。锅炉本体采用下置式波形炉胆,烟气分三个回程,燃料在炉胆内正压燃烧,经过回烟室进入对流螺纹烟管,再从前烟箱折回对流烟管,再进入节能器进行对流传热,最后通过烟囱排入大气。烟气三回程在炉内的停留时间长,利于降低排烟温底,提高锅炉效率。 3、锅炉前烟箱装有活动烟箱盖,拆、装检修方便。锅炉配有整体式燃烧器,具有启动快,效率高,高度自动化等特点,适用于各种需要提供生活、民用及工业用蒸汽的地方。 4、锅炉具有超气压保护、水位自动调节、缺水保护、意外熄火停炉保护、程序启动等完善功能。 5、锅炉燃料适用于天然气、城市煤气或液化石油气等多种油、气燃料。

相关文档
相关文档 最新文档