文档视界 最新最全的文档下载
当前位置:文档视界 › 抛物线知识点与性质大全

抛物线知识点与性质大全

抛物线知识点与性质大全
抛物线知识点与性质大全

抛物线与方程

【知识讲解】 1、定义

平面内,到定点的距离与到定直线距离相等的点的轨迹(定点不在定直线上).其中定点称为抛物线的焦点,定直线称为抛物线的准线.

【注】若定点在直线上,则轨迹为过该点垂直于直线的一条直线.

2、抛物线的方程及其简单性质

3、通径

过抛物线的焦点F 作直线⊥l x 轴,交抛物线22y px =于,A B 两点,弦长2=AB p ,此时的弦长称为通径,此为所有的焦点弦中最短的弦.

4、焦点弦的性质

(1)过抛物线()220y px p =>的焦点F 的直线交抛物线于()()1122,,,A x y B x y 两点,则

①12p AF x =+,22p BF x =+;②12x x ?=定值2

4

p ,12y y ?=定值2

p -;

11||||FA FB +=定值2p ;④()1221122

p x y x y y y +=-+. (2)过抛物线()220y px p =>的焦点F 作倾斜角为θ(斜率为k )的直线交抛物线于,A B (A 在B 上方)两点,则 ①1cos p A F θ=

-上;②1cos p B F θ=+下;③22

22s 1i 1n p k AB p θ?

?+ =???

=. (3)过抛物线()220y px p =>的焦点F 作直线1l 交抛物线于,A B 两点,分别过,A B 作准线

l 的垂线,垂足分别为,P Q ,设AB 中点为M ,过M 作准线的垂线,垂足为N ,则

①AN BN ⊥;②PF QF ⊥;③NF AB ⊥;

④PF AN ⊥;⑤QF BN ⊥;

⑥以AB 为直径的圆与准线相切,切点即为N ; ⑦以()AF BF 为直径的圆与y 轴相切;

⑧2

4PQ AF BF =; 2

4PQF APF BQF S S S ???=?;

⑨2

32sin ABQP

p S θ

=四边形. (4)过抛物线()220y px p =>的焦点F 作直线1l 交抛物线于,A B 两点,分别过,A B 作准线

l 的垂线,垂足分别为,P Q ,准线l 与x 轴交于H 点,O

①AHF BHF ∠=∠; ②,,A O Q 三点共线; ③,,B O P 三点共线;

(5)过抛物线()220y px p =>的焦点F 作直线1l 交抛物 线于,A B 两点,线段AB 的垂直平分线交x 轴于E 点,则

1

2

EF AB =

. (6)过抛物线()220y px p =>的焦点F 作直线1l 交抛物线于,A B 两点,G 为准线上的一动点,且直线GA 、GF 、GB 的斜率均存在,则直线GA 、GF 、GB 的斜率成等差数列,即2GA GB GF k k k +=.

5、过点()(),00M m m >的直线交抛物线()220y px p =>于()()1122,,,A x y B x y 两点,则 ①12x x ?=定值2m ;②12y y ?=定值2pm -; ③2OA OB m p ⊥?=u u u r u u u r

;④m p =时,

22

11

||||MA MB +=

定值21p . 6、设点是抛物线()220y px p =>的焦点,12,,,n P P P L 是抛物线上的

n 个不同的点,若120n FP FP FP +++=u u u r u u u r u u u r r

L ,则12

n FP FP FP np +++=u u u r u u u r u u u r L .

【典型例题】

例1、已知动点M 的坐标满足方程3412x y +-,则动点M 的轨迹是( ) A .椭圆 B. 双曲线 C. 抛物线 D. 圆

【变式】已知动点M 的坐标满足方程3412x y =+-,则动点M 的轨迹是

( ) A .椭圆 B. 双曲线 C. 抛物线 D. 直线

例2、点P 与点()20F ,

的距离比它到直线40x +=的距离小2,则P 的轨迹方程为_______.

【变式】动圆M 与定直线2y =相切且与定圆C :2

2

(3)1x y ++=相外切,则动圆圆心M 的轨迹方程为_______.

【变式2】到y 轴的距离比到点()2,0F 的距离小2的动点P 的轨迹方程为_______.

例3、抛物线24y x =的焦点坐标为_______.

【变式】1【2014上海】若抛物线2

2y px =的焦点与椭圆22

195

x y +=的右焦点重合,则该抛

物线的准线方程为_______.

【变式2】抛物线C 恒过定点()0,2A ,C 的准线为轴,则C 的顶点M 的轨迹方程为_______.

例4、在抛物线24y x =上一点P ,使它到定点()2,2M 和焦点F 的距离之和最小,并求出距离之和的最小值.

【变式1】设P 是抛物线28y x =上的一个动点,则点P 到直线4360x y -+=与点P 到y 轴的距离之和的最小值为________.

【变式2】设P 是抛物线24y x =上的一个动点.

(1)求点P 到点()1,1A -的距离与点P 到直线1x =-的距离之和的最小值; (2)求点P 到直线220x y ++=的距离d 与点P 到抛物线焦点F 距离之和的最小值.

【变式3】已知FAB ?,点F 的坐标为(1,0),点A 、B 分别在图中抛物线24y x =及圆

22(1)4x y -+=的实线部分上运动,且AB 总是平行于x 轴,那么FAB ?的周长的取值范围

为 .

例5、已知抛物线2

6y x =上存在三点,,A B C ,且ABC ?的重心为抛物线的焦点为F ,则

=FA FB FC ++u u u r u u u r u u u r

_______.

【变式】已知抛物线2

6y x =的焦点为F ,若该抛物线上存在四点123P P P 、、、4P ,满足

1234=0FP FP FP FP +++u u u r u u u r u u u r u u u r r ,则1234=FP FP FP FP +++u u u r u u u r u u u r u u u r _______.

例6、直线l 过()1,2A ,且与抛物线2

12y x =交于,M N 两点,且MA AN =u u u r u u u r

,则直线l 的方程

为_________;MN =_______.

例7、抛物线24y x =的焦点为F ,若过F 点的直线与抛物线相交于,M N 两点,若

4FM FN =-u u u u r u u u r

,则直线MN 的斜率为_______.

【变式】【2014新课标】已知抛物线2:8C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =u u u r u u u r

, 则QF =_______.

例8、过抛物线x y 82

=的焦点作弦AB ,点()11,A x y 、()22,B x y ,且1021=+x x ,

则=AB _____.

【变式1】已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点()02,M y ,若点

M 到该抛物线焦点的距离为3,则OM =_____.

【变式2】过抛物线x y 82

=的焦点作弦AB ,点()11,A x y 、()22,B x y ,且10AB =,

则ABO ?重心的横坐标为_____.

【变式3】过抛物线x y 82

=的焦点作弦AB ,点()11,A x y 、()22,B x y ,且128y y +=,

则=AB _____.

例9、抛物线()220y px p =>的动弦AB 长为()2a a p ≥,求弦中点M 到y 轴的最短距离.

【变式】抛物线()220y px p =>的动弦AB 长为()02a a p <<,求弦中点M 到y 轴的最短距离.

例10、若抛物线2:1C y ax =-上存在关于直线20x y -=对称两点A 和B ,求实数a 的取值范围.

例11、【2014四川】已知F 是抛物线2

y x =的焦点,点A ,B 在该抛物线上且位于x 轴的

两侧,2OA OB ?=u u u r u u u r

(其中O 为坐标原点),则ABO ?与AFO ?面积之和的最小值是____.

例12、已知抛物线()220y px p =>,过定点(),0p 作两条互相垂直的直线12l l 、,1l 与抛物线交于,P Q 两点,2l 与抛物线交于,M N 两点,设1l 的斜率为k ,若已知弦PQ 的中垂线在y 轴上的截距为

32p p

k k

+,则弦MN 的中垂线在y 轴上的截距为__________.

例13、设M 为抛物线2:4(0)C x py p =>准线上的任意一点,过点M 作曲线C 的两条切线,设切点为,A B .直线AB 是否过定点?如果是,求出该定点,如果不是,请说明理由.

例14、过抛物线()220y px p =>的焦点F 作相互垂直的两条直线12,l l ,抛物线与1l 交于点

12,,P P 与2l 交于点12,Q Q .证明:无论如何取直线12,l l ,都有

1212

11

PP Q Q +

为一常数.

例15、抛物线()2

:20C y px p =>的焦点恰是椭圆

22143

x y +=的一个焦点,过点,02p F ??

???

的直线与抛物线C 交于点,A B . (1)求抛物线C 的方程;

(2)O 是坐标原点,求AOB ?的面积的最小值;

(3)O 是坐标原点,证明:OA OB ?u u u r u u u r

为定值.

【变式1】已知定点(2,0)F ,直线:2l x =-,点P 为坐标平面上的动点,过点P 作直线l 的

垂线,垂足为点Q ,且FQ u u u r PF PQ ⊥+u u u r u u u r

().设动点P 的轨迹为曲线C .

(1)求曲线C 的方程;

(2)过点F 的直线1l 与曲线C 有两个不同的交点A 、B ,求证:

111

||||2

AF BF +=; (3)记OA u u u r 与OB u u u r

的夹角为θ(O 为坐标原点,A 、B 为(2)中的两点),求cos θ的取值

范围.

11()22,B x y ,且OA OB ⊥u u u r u u u r .

(1)证明21y y ?和12x x ?均为定值; (2)证明直线l 恒过定点P ; (3)求AB 的中点M 的轨迹方程;

(4)过原点作AB 的垂线,垂足为N ,求N 的轨迹方程.

(5)对于C 上除原点外的任意一定点()00,Q x y ,若仍有PA PB ⊥u u u r u u u r

,请问是否还有直线l 恒过定点,若是,请求出定点'P ;若否,请说明理由.

【变式3】设抛物线2

:2(0)C y px p =>的焦点为F ,经过点F 的动直线交抛物线C 于点

11(,)A x y ,22(,)B x y 且124y y =-.

(1)求抛物线C 的方程;

(2)若()

2OE OA OB =+u u u r u u u r u u u r

(O 为坐标原点),且点E 在抛物线C 上,求直线倾斜角.

(3)若点M 是抛物线C 的准线上的一点,直线,,MF MA MB 的斜率分别为012,,k k k .求证: 当0k 为定值时,12k k +也为定值.

例16、在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,记点M 的轨迹为C .

(1)求轨迹为C 的方程

(2)设斜率为k 的直线过定点()2,1P -,求直线与轨迹C 恰好有一个公共点,两个公共点,三个公共点时k 的相应取值范围.

11(1)当直线过点(),0M p 时,证明21y y ?为定值;

(2)如果直线过点(),0M p ,过点M 再作一条与直线垂直的直线l '交抛物线C 于两个不同点D 、E .设线段AB 的中点为P ,线段DE 的中点为Q ,记线段PQ 的中点为N .问是否存在一条直线和一个定点,使得点N 到它们的距离相等?若存在,求出这条直线和这个定点;若不存在,请说明理由.

例18、动圆C 过定点F ,02p ??

???

,且与直线2p x =-相切,其中0p >.设圆心C 的轨迹Γ的

程为()0,=y x F (1)求()0,=y x F ;

(2)曲线Γ上的一定点()00,y x P (0y ≠0) ,方向向量()p y -=,0的直线(不过P 点)与曲线Γ交与A 、B 两点,设直线PA 与PB 的斜率分别为PA k ,PB k ,计算PB PA k k +;

(3)曲线Γ上的两个定点()000,y x P 、??

? ?

?'

'000,y x Q ,分别过点00,Q P 作倾斜角互补的两条

直线N Q M P 00,分别与曲线Γ交于N M ,两点,求证直线MN 的斜率为定值.

例19、已知抛物线()2:20C y px p =>和:M e 228120x y x +-+=,过抛物线C 上一点()()000,0P x y y ≥作两条直线与M e 相切与,A B 两点,圆心M 到抛物线准线的距离为

92

. (1)求抛物线C 的方程;

(2)当P 点坐标为()2,2时,求直线AB 的方程;

(3)设切线PA 与PB 的斜率分别为12,k k ,且1212

k k ?=,求点()00,P x y 的坐标.

例20、过抛物线()220y px p =>的对称轴上一点()(),00A a a >的直线与抛物线交于,M N 两点,自,M N 向直线:l x a =-作垂线,垂足分别为1M 、1N . (1)当2

p

a =

时,求证:11AM AN ⊥; (2)记1AMM ?、11AM N ?、1ANN ?的面积分别为123,,S S S ,是否存在实数λ,使得对任意的,都有2213S S S λ=成立,若存在,求出λ的值;若不存在,说明理由.

(整理)抛物线的概念性质几何意义

抛物线的概念、性质、几何意义 【教学内容】 抛物线的概念、性质、几何意义及其直线与抛物线的位置关系、抛物线的应用等。 【教学目标】 1、掌握抛物线的定义,动点到定点的距离等于动点到定直线的距离,则动点的轨迹是抛物线。熟练掌握顶点在原点,对称轴为坐标轴的抛物线的四种标准形式:y 2=2px 、y 2=-2px 、x 2=2py 、x 2=-2py (p >0)及其它们的焦点坐标、对称轴方程。 2、焦参数p (p >0)的几何意义为抛物线的焦点到其准线的距离。若已知了抛物线顶点在顶点,焦点在x 轴上,则可设抛物线的方程为y 2=2ax (a ≠0);若抛物线的顶点在原点,焦点在y 轴上,则可设抛物线的方程为x 2=2ay (a ≠0),再由另外一个条件就可以求出抛物线标准方程了。若顶点在原点,焦点在坐标上,则就要分焦点在x 轴上和焦点在y 轴上两种情况来设抛物线的方程。 3、抛物线标准方程中,判别焦点在哪个轴上的方法是看方程的一次项,若一次项的变量为x ,则焦点在x 轴上;若一次项的变量为y ,则焦点在y 轴 上。另外,对于抛物线y 2=2ax (a ≠0),焦点坐标为(2a ,0),准线方程为2a x -=; 对于抛物线x 2=2ay (a ≠0)焦点坐标为(0,2a ),准线方程为2 a y -=。这一 结论对a >0及a <0均成立。 4、在抛物线中,抛物线上的动点到焦点的距离我们常常转化为动点到准线的距离来处理,这一思想方法在抛物线中有着广泛的应用。我们在学习时要引起重视。 【知识讲解】 例1、求经过定点A (-3,2)的抛物线的坐标准方程。 解:抛物线过第二象限内的点A (-3,2),应考虑开口向上及向左两种情形。 (1)若开口向左,设抛物线方程为y 2=-2px ,因为抛物线过点A (-3, 2),∴22=-2p(-3)即342=p ,则抛物线方程为x y 3 4 2-=。 (2)若开口向上,设其方程为x 2=2py ,因为抛物线过点A (-3,2), ∴22)3(2?=-p ,即292=p 综上所述,抛物线的方程为x y 342-=

抛物线的简单几何性质教案 (1)

抛物线的简单几何性质; ●教学目标 1.掌握抛物线的几何性质; 2.能根据几何性质确定抛物线的标准方程; 3.能利用工具作出抛物线的图形. ●教学重点 抛物线的几何性质 ●教学难点 几何性质的应用 ●教学方法 学导式 ●教具准备 三角板 ●教学过程 Ⅰ.复习回顾 简要回顾抛物线定义及标准方程的四种形式(要求学生回答) 师:这一节,我们根据抛物线的标准方程)0(22 p px y = ①来研究它的几何性质 Ⅱ.讲授新课 1. 范围 当x 的值增大时,y 也增大,这说明抛物线向右上方和右下方无限延伸.(但应让学生注意与双曲线一支 的区别,无渐近线). 2.对称性 抛物线关于x 轴对称. 我们把抛物线的对称轴叫抛物线的轴. 3.顶点 抛物线和它的轴的交点叫抛物线的顶点.即坐标原点. 4.离心率 抛物线上的点M 与焦点的距离和它到准线的距离的比,叫抛物线的离心率,用e 表示.由抛物线定义可知,e =1. 说明:对于其余三种形式的抛物线方程,要求自己得出它们的几何性质,这样,有助于学生掌握抛物线四种标准方程. 师:下面,大家通过问题来进一步熟悉抛物线的几何性质. 例1.已知抛物线关于x 轴对称,它的顶点在原点,并且经过点M (2,-22),求它的标准方程,并用描点法画出图形. 师:由已知条件求抛物线的标准方程时,首先要根据已知条件确定抛物线标准方程的类型,再求出方程中的参数P . 解:因为抛物线关于x 轴对称,它的顶点在原点,并且经过点M (2,-22),所以可设它的标准方程为: )0(22 p px y =

因为点M 在抛物线上,所以22)22(2?=-p ,即2=p 因此所求方程是.42x y = 下面列表、描点、作图: 说明:①利用抛物线的对称性可以简化作图步骤; ②抛物线没有渐近线; ③抛物线的标准方程)0(22 p px y =中p 2的几何意义:抛物线的通 径,即连结通过焦点而垂直于x 轴直线与抛物线两交点的线段. 师:下面我们通过练习进一步熟悉并掌握抛物线的标准方程. Ⅲ.课堂练习 课本P 122练习1,2. ●课堂小结 师:通过本节学习,要求大家掌握抛物线的几何性质,并在具体应用时注意区分抛物线标准方程的四种形式. ●课后作业 习题8.6 1,2,5. ●板书设计 ●教学后记

抛物线及其性质知识点大全

抛物线及其性质 1 .抛物线定义:平面内到一定点F和一条定直线l的距离相等的点的轨迹称为抛物线. 2.抛物线四种标准方程的几何性质: 3 ?抛物线寸 2 px( p 0)的几何性质: (1)范围:因为p>0,由方程可知x> 0,所以抛物线在y轴的右侧,当x的值增大时,|y|也增大,

说明抛物线向右上方和右下方无限延伸.

y kx b y 2 2px k 2x 2 2(kb p)x b 2 (2)对称性:对称轴要看一次项,符号决定开口方向. ⑶顶点(0,0),离心率: e 1,焦点F(E,0),准线x —,焦准距p. 2 2 2 ⑷ 焦点弦:抛物线 y 2px(p 0)的焦点弦 AB , A(x i , yj , B(X 2,y 2),则 | AB | X i X 2 p . 弦长|AB|=x 1+X 2+P ,当X i =X 2时,通径最短为 2p 。 4.焦点弦的相关性质: 焦点弦AB , A(x i ,y i ), B(x 2,y 2),焦点F(-,0) 2 2 (1)若AB 是抛物线y 2 2pXp 0)的焦点弦(过焦点的弦),且A^,%) , B(x 2, y 2),则:xp 2 —, 4 2 yy 2 p 。 焦点弦中通径最短长为 2p 。通径:过焦点垂直于焦点所在的轴的焦点弦叫做通径. (5)两个相切:①以抛物线焦点弦为直径的圆与准线相切 ?②过抛物线焦点弦的两端点向准线作垂线, 以两 垂足为直径端点的圆与焦点弦相切。 5 ?弦长公式:A(x 1, y 1) , B( x 2, y 2)是抛物线上两点,则 AB .(X 1 X 2)2 (y 1 y 2)2 、1 k 2 |x 1 X 2 | . 1 1 I y 1 y 2 I 6. 直线与抛物线的位置关系 直线」-,抛物线? 丫 一:", 厂 y -kx¥b ,消 y 得.E +2礙宀 0 (1) 当k=0时,直线I 与抛物线的对称轴平行,有一个交点; (2) 当k 工0时, △ > 0,直线I 与抛物线相交,两个不同交点; △ =0,直线l 与抛物线相切,一个切点; △ v 0,直线l 与抛物线相离,无公共点。 (3) 若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) 7. 关于直线与抛物线的位置关系问题常用处理方法 直线 l : y kx b 抛物线- / , (p 0) ①联立方程法: 若AB 是抛物线 寸 2p"p 0)的焦点弦,且直线 AB 的倾斜角为a,贝U AB 已知直线AB 是过抛物线y 2 2px(p 0)焦点F ,丄 AF 1 BF AF BF AF ?BF 2 P (aM 0)。 sin 2 AB 2 AF ?BF p

高中数学抛物线的简单几何性质教案

《抛物线的简单几何性质》教案 《抛物线的简单几何性质》教案及教材分析 教材:《全日制高级中学课本(必修)数学》第二册(上) 一. 教学理念 “数学教师不能充当数学知识的施舍者,没有人能教会学生,数学素质是学生在数学活动中自己获得的。”因此,教师的责任关键在于在教学过程中创设一个”数学活动”环境,让学生通过这个环境的相互作用,利用自身的知识和经验构建自己的理解,获得知识,从而培养自己的数学素质,培养自己的能力。 数学源于生活,高于生活,学习数学的最终目的是应用于生活(回归生活),通过平时教学,注意这方面的渗透,培养学生解决实际问题的能力。 二. 教材分析 1、本节教材的地位 本节通过类比椭圆、双曲线的几何性质,结合抛物线的标准方程讨论研究抛物线的几 何性质,让学生再一次体会用曲线的方程研究曲线性质的方法,学生不难掌握抛物线的范围、对称性、顶点、离心率等性质,对于抛物线几何性质的应用是学生学习的难点,教学中应强调几何模型与数学问题的转换。例1的设计,在于让学生通过作图感知p 的大小对抛物线开口的影响,引出通径的定义。例2的设计旨在利用抛物线的几何性质数学地解决实际问题即作抛物线的草图。 本节是第一课时,在数学思想和方法上可与椭圆、双曲线的性质对比进行,着重指出它 们的联系和区别,从而培养学生分析、归纳、推理等能力。 2、教学目标 (1) 知识目标: ⅰ 抛物线的几何性质、范围、对称性、定点、离心率。. ⅱ 抛物线的通径及画法。 (2) 能力目标:. ⅰ 使学生掌握抛物线的几何性质,根据给出条件求抛物线的标准方程。 ⅱ 掌握抛物线的画法。 (3) 情感目标: ⅰ 培养学生数形结合及方程的思想。 ) 0(22>=p px y

抛物线及其性质知识点大全

抛物线及其性质知识点大全

抛物线及其性质 1.抛物线定义:平面内到一定点F和一条定直线l的距离相等的点的轨迹称为抛物线. 2.抛物线四种标准方程的几何性质: 图形 参数p几何意义参数p表示焦点到准线的距离,p越大,开 口越阔. 开口方 向 右左上下 标准方 程 22(0) y px p =>22(0) y px p =->22(0) x py p =>22(0) x py p =-> 焦点位 置 X正X负Y正Y负 焦点坐 标(,0) 2 p (,0) 2 p -(0,) 2 p (0,) 2 p - 准线方 程 2 p x=- 2 p x= 2 p y=- 2 p y= 范围0, x y R ≥∈0, x y R ≤∈0, y x R ≥∈0, y x R ≤∈对称轴X轴X轴Y轴Y轴顶点坐(0,0)

3.抛物线) 0(22 >=p px y 的几何性质: (1)范围:因为p>0,由方程可知x ≥0,所以抛物线在y 轴的右侧, 当x 的值增大时,|y |也增大,说明抛物线向右上方和右下方无限延伸. (2)对称性:对称轴要看一次项,符号决定开口方向. (3)顶点(0,0),离心率:1=e ,焦点(,0)2p F ,准线2p x -=,焦准距p . (4) 焦点弦:抛物线) 0(22 >=p px y 的焦点弦AB , ) ,(11y x A ,),(2 2 y x B ,则p x x AB ++=21 ||. 弦长|AB|=x 1+x 2+p,当x 1=x 2时,通径最短为2p 。

4.焦点弦的相关性质:焦点弦AB ,),(1 1 y x A ,),(2 2 y x B ,焦点(,0)2 p F (1) 若AB 是抛物线2 2(0) y px p =>的焦点弦(过焦点的弦), 且1 1 (,)A x y ,2 2 (,)B x y ,则: 2 124 p x x = ,2 12 y y p =-。 (2) 若AB 是抛物线2 2(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则22sin P AB α =(α≠0)。 (3) 已知直线AB 是过抛物线 22(0) y px p =>焦点 F ,112AF BF AB AF BF AF BF AF BF p ++===?? (4) 焦点弦中通径最短长为2p 。通径:过焦点垂直于焦点所在的轴的焦点弦叫做通径. (5) 两个相切:○1以抛物线焦点弦为直径的圆与准线相切.○2过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。 5.弦长公式:),(1 1 y x A ,),(2 2 y x B 是抛物线上两点,则 221212()()AB x x y y =-+-||1 1||12 12 2 12 y y k x x k -+=-+= 6.直线与抛物线的位置关系 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) 7.关于直线与抛物线的位置关系问题常用处理方法

3.3.2 抛物线的简单几何性质

3.3.2抛物线的简单几何性质 基础过关练 题组一抛物线的几何性质及其运用 1.已知抛物线x2=2py(p>0)的准线经过点(-1,-1),则抛物线的焦点坐标为() A.(-1,0) B.(0,-1) C.(1,0) D.(0,1) 2.已知点P(6,y)在抛物线y2=2px(p>0)上,若点P到抛物线焦点F的距离等于8,则焦点F到抛物线准线的距离等于() A.2 B.1 C.4 D.8 3.已知抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,则p的值为() B.1 C.2 D.4 A.1 2 4.已知点A是抛物线y2=2px(p>0)上一点,F为抛物线的焦点,O为坐标原点,当 |AF|=4时,∠OFA=120°,则抛物线的准线方程是() A.x=-1 B.y=-1 C.x=-2 D.y=-2 5.抛物线y2=4x的焦点为F,点P为抛物线上的动点,点M为其准线上的动点,当 △FPM为等边三角形时,其面积为() A.2√3 B.4 C.6 D.4√3 6.一条光线从抛物线y2=2px(p>0)的焦点F射出,经抛物线上一点B反射后,反射光线经过点A(5,4),若|AB|+|FB|=6,则抛物线的标准方程为.

题组二直线与抛物线的位置关系 7.已知直线l:y=x-1与抛物线C:y2=4x相交于A、B两点,则|AB|为() A.5 B.6 C.7 D.8 8.已知直线y=kx-k及抛物线y2=2px(p>0),则() A.直线与抛物线有一个公共点 B.直线与抛物线有两个公共点 C.直线与抛物线有一个或两个公共点 D.直线与抛物线可能没有公共点 9.过点(0,1)且与抛物线y2=4x只有一个公共点的直线有() A.1条 B.2条 C.3条 D.0条 10.(2020山东菏泽高二上期末)已知斜率为k的直线l与抛物线C:y2=4x交于A、B 两点,线段AB的中点为M(2,1),则直线l的方程为() A.2x-y-3=0 B.2x-y-5=0 C.x-2y=0 D.x-y-1=0 11.已知抛物线C:y2=4x的焦点为F,直线l:y=x-2与抛物线C交于A,B两点. (1)求弦AB的长; (2)求△FAB的面积.

抛物线的性质

?抛物线的性质(见下表): 抛物线的焦点弦的性质:

?关于抛物线的几个重要结论: (1)弦长公式同椭圆. (2)对于抛物线y2=2px(p>0),我们有P(x0,y0)在抛物线内部P(x0,y0)在抛物线 外部 (3)抛物线y2=2px上的点P(x1,y1)的切线方程是 抛物线y2=2px(p>0)的斜率为k的切线方程是y=kx+ (4)抛物线y2=2px外一点P(x0,y0)的切点弦方程是 (5)过抛物线y2=2px上两点的两条切线交于点M(x0,y0),则 (6)自抛物线外一点P作两条切线,切点为A,B,若焦点为 F,又若切线PA⊥PB,则AB必过抛物线焦点F. 利用抛物线的几何性质解题的方法:

根据抛物线定义得出抛物线一个非常重要的几何性质:抛物线上的点到焦点的距离等于到准线的距离.利用抛物线的几何性质,可以进行求值、图形的判断及有关证明. 抛物线中定点问题的解决方法: 在高考中一般以填空题或选择题的形式考查抛物线的定义、标准方程以及几何性质等基础知识,在解答题中常常将解析几何中的方法、技巧与思想集于一身,与其他圆锥曲线或其他章节的内容相结合,考查综合分析问题的能力,而与抛物线有关的定值及最值问题是一个很好的切人点,充分利用点在抛物线上及抛物线方程的特点是解决此类题型的关键,在求最值时经常运用基本不等式、判别式以及转化为函数最值等方法。 利用焦点弦求值: 利用抛物线及焦半径的定义,结合焦点弦的表示,进行有关的计算或求值。 抛物线中的几何证明方法: 利用抛物线的定义及几何性质、焦点弦等进行有关的几何证明是抛物线中的一种常见题型,证明时注意利用好图形,并做好转化代换。

抛物线的简单几何性质练习题

课时作业(十三) [学业水平层次] 一、选择题 1.已知点P (6,y )在抛物线y 2=2px (p >0)上,若点P 到抛物线焦点F 的距离等于8,则焦点F 到抛物线准线的距离等于( ) A .2 B .1 C .4 D .8 【解析】 抛物线y 2=2px (p >0)的准线为x =-p 2,因为P (6,y ) 为抛物线上的点,所以点P 到焦点F 的距离等于它到准线的距离,所 以6+p 2=8,所以p =4,即焦点F 到抛物线的距离等于4,故选C. 【答案】 C 2.(2014·成都高二检测)抛物线y 2=4x 的焦点为F ,点P 为抛物线上的动点,点M 为其准线上的动点,当△FPM 为等边三角形时,其面积为( ) A .2 3 B .4 C .6 D .43 【解析】 据题意知,△FPM 为等边三角形,|PF |=|PM |=|FM |, ∴PM ⊥抛物线的准线.设P ? ?? ??m 24,m ,则M (-1,m ),等边三角形边长为1+m 24,又由F (1,0),|PM |=|FM |,得1+m 24=1+12+m 2,得m =23,∴等边三角形的边长为4,其面积为43,故选D. 【答案】 D 3.已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准

线方程为( ) A .x =1 B .x =-1 C .x =2 D .x =-2 【解析】 设A (x 1,y 1),B (x 2,y 2),代入抛物线方程得:????? y 21=2px 1, ①y 22=2px 2, ② ①-②得, (y 1+y 2)(y 1-y 2)=2p (x 1-x 2). 又∵y 1+y 2=4,∴y 1-y 2x 1-x 2=2p 4=p 2 =k =1,∴p =2. ∴所求抛物线的准线方程为x =-1. 【答案】 B 4.(2014·课标Ⅱ)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB |=( ) B .6 C .12 D .73 【解析】 焦点F 的坐标为? ?? ??34,0,直线AB 的斜率为33,所以直线AB 的方程为y =33? ?? ??x -34, 即y =33x -34,代入y 2=3x , 得13x 2-72x +316=0,

(完整版)抛物线及其性质知识点大全

抛物线及其性质 1.抛物线定义:平面内到一定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线. 2.抛物线四种标准方程的几何性质: 图形 参数p 几何意义 参数p 表示焦点到准线的距离,p 越大,开口越阔. 开口方向 右 左 上 下 标 准方 程 22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =-> 焦 点位 置 X 正 X 负 Y 正 Y 负 焦 点坐 标 (,0)2 p (,0)2p - (0,)2p (0,)2p - 准 线方 程 2 p x =- 2p x = 2 p y =- 2 p y = 范 围 0,x y R ≥∈ 0,x y R ≤∈ 0,y x R ≥∈ 0,y x R ≤∈ 对 称轴 X 轴 X 轴 Y 轴 Y 轴 顶 点坐 标 (0,0) 离心率 1e = 通 径 2p 焦半径11(,)A x y 12 p AF x =+ 12 p AF x =-+ 12 p AF y =+ 12 p AF y =-+ 焦点弦长AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++ 焦点弦长AB 的补充 11(,)A x y 22(,)B x y 以AB 为直径的圆必与准线l 相切 若AB 的倾斜角为α,2 2sin p AB α = 若AB 的倾斜角为α,则22cos p AB α = 2 124 p x x = 212y y p =- 112AF BF AB AF BF AF BF AF BF p ++===?? 3.抛物线)0(22>=p px y 的几何性质: (1)范围:因为p>0,由方程可知x ≥0,所以抛物线在y 轴的右侧, 当x 的值增大时,|y |也增大,说明抛物线向右上方和右下方无限延伸.

抛物线的几何性质

抛 物 线 一、抛物线22(0)y px p =>的简单几何性质 1、范围:因为0p >,由方程22y px =可知,这条抛物线上任意一点M 的坐标(),x y 满足不等式0x ≥,所以这条抛物线在y 轴的右侧;当x 的值增大时,y 也增大,这说明抛物线向上方和右下方无限延伸,它的开口向右. 2、对称性:以y -代y ,方程22(0)y px p =>不变,因此这条抛物线是以x 轴为对称轴的轴对称图形.抛物线的对称轴叫作抛物线的轴 3、顶点:抛物线和它的轴的焦点叫作抛物线的顶点.在方程22(0)y px p =>中,当 0y =时,0x =,因此这条抛物线的顶点就是坐标原点. 4、离心率:抛物线上的点到焦点的距离与到准线的距离的比,叫作抛物线的离心率,用e 表示.按照抛物线的定义,1e = 知识剖析:抛物线的通径:过焦点且与焦点所在的轴垂直的直线与抛物线交于点12,M M ,线段12M M 叫作抛物线的通径,将02 p x =代入22y px =得y p =±,故抛物线22y px =的通径长为2p 例1、已知点(),M x y 在抛物线28y x =上,则()22,129f x y x y x =-++的取值范围? 分析:本题的实质是将(),f x y 转化为关于x 的二次函数,求二次函数在区间[)0,+∞上的最值. ()()2 2,812925f x y x x x x =-++=++,又[)0,x ∈+∞,所以当0x =时,(),f x y 取得最小值9, 当[)0,x ∈+∞时,()()2 ,25f x y x =++,无最大值.故()22,129f x y x y x =-++的取值范围为 [)9,+∞ 答案:[)9,+∞

抛物线的性质

抛物线的性质(见下表): 抛物线的焦点弦的性质:

关于抛物线的几个重要结论: (1)弦长公式同椭圆. (2)对于抛物线y2=2px(p>0),我们有P(x0,y0)在抛物线内部P(x0,y0)在抛 物线外部 (3)抛物线y2=2px上的点P(x1,y1)的切线方程是 抛物线y2=2px(p>0)的斜率为k的切线方程是y=kx+ (4)抛物线y2=2px外一点P(x0,y0)的切点弦方程是 (5)过抛物线y2=2px上两点的两条切线交于点M(x0,y0), 则 (6)自抛物线外一点P作两条切线,切点为A,B,若焦点为F,

又若切线PA⊥PB,则AB必过抛物线焦点F. 利用抛物线的几何性质解题的方法: 根据抛物线定义得出抛物线一个非常重要的几何性质:抛物线上的点到焦点的距离等于到准线的距离.利用抛物线的几何性质,可以进行求值、图形的判断及有关证明. 抛物线中定点问题的解决方法: 在高考中一般以填空题或选择题的形式考查抛物线的定义、标准方程以及几何性质等基础知识,在解答题中常常将解析几何中的方法、技巧与思想集于一身,与其他圆锥曲线或其他章节的内容相结合,考查综合分析问题的能力,而与抛物线有关的定值及最值问题是一个很好的切人点,充分利用点在抛物线上及抛物线方程的特点是解决此类题型的关键,在求最值时经常运用基本不等式、判别式以及转化为函数最值等方法。 利用焦点弦求值: 利用抛物线及焦半径的定义,结合焦点弦的表示,进行有关的计算或求值。 抛物线中的几何证明方法:

利用抛物线的定义及几何性质、焦点弦等进行有关的几何证明是抛物线中的一种常见题型,证明时注意利用好图形,并做好转化代换。

抛物线常用性质总结

结论一:若AB 是抛物线22(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y , 22(,)B x y ,则:2 124 p x x =,212y y p =-。 结论二:已知直线AB 是过抛物线22(0)y px p =>焦点F ,求证:1 12=AF BF p + 。 结论三:(1)若AB 是抛物线22(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则22sin P AB α=(α≠0)。(2)焦点弦中通径(过焦点且垂直 于抛物线对称轴的弦)最短。 结论四:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。 (2)过抛物线焦点弦的两端点向准线作垂线,以两垂足为直

径端点的圆与焦点弦相切。 证明结论二: 例:已知直线AB 是过抛物线22(0)y px p =>焦点F ,求证:11AF BF +为定值。 证明:设11(,)A x y ,22(,)B x y ,由抛物线的定义知:12p AF x =+,22 p BF x =+,又AF +BF =AB ,所以1x +2x =AB -p ,且由结论一知:2 124 p x x =。 则:212121211()()()2224AF BF AB AB p p AF BF AF BF x x x x x x ++===?+++++ =222()424 AB p p p p AB p = +-+(常数

证明:结论四: 已知AB 是抛物线22(0)y px p =>的过焦点F 的弦,求证:(1)以AB 为直径的圆与抛物线的准线相切。 (2)分别过A 、B 做准线的垂线,垂足为M 、N 径的圆与直线AB 相切。 证明:(1)设 AB 的中点为Q,过A 、Q 、B 向准线l 垂足分别为M 、P 、N ,连结AP 、BP 。 由抛物线定义:AM AF =,BN BF =, ∴111()()222QP AM BN AF BF AB =+=+= , ∴以AB 为直径为圆与准线l 相切 (2)作图如(1),取MN 中点P ,连结PF 、MF 、∵AM AF =,AM ∥OF ,∴∠AMF=∠AFM ,∠AMF=∴∠AFM=∠MFO 。同理,∠BFN=∠NFO , ∴∠MFN=12(∠AFM+∠MFO+∠BFN+∠NFO )=90°, ∴12MP NP FP MN ===,

抛物线的简单几何性质教学设计

第 二 章圆锥曲线与方程 第 2.4.2 抛物线的简单几何性质(4课时) 主备教师 陈本川 一、内容及其解析 学的内容是抛物线的一些基本性质,其核心内容是抛物线的离心率及准线,理解它关键是先让学生认识抛物线的图形,从中概括出抛物线的性质。 学生已经学过抛物线线概念和标准形式,本节课的内容抛物线的基本性质就是在其基础上的发展。由于它还与椭圆、双曲线等圆锥曲线有密切的联系,并有参照对比的作用。是抛物线的核心内容。教学重点是抛物线的性质及范围,解决重点的关键是引导学生动手、动脑,从图形的直观得到抛物线性质的准确刻画。 二、目标及其解析 1、目标定位 (1)了解抛物线的基本性质及基本线段的概念。 (2)能够根据抛物线的标准方程及性质进行简单的运算。 2、目标解析 (1)是指:抛物线的基本线段范围及概念,对称性,离心率,准线表示。 (2)是指:能够根据抛物线中准线与焦点之间的关系能求出抛物线的标准方程。 三、问题诊断分析 在本节抛物线性质的教学中,学生可能遇到的问题是抛物线的一些基本概念会与其它圆锥曲线的概念产生混淆,产生这一问题的原因是学生对各种曲线的概念把握不清。要解决这一问题,就要类比着其它圆锥曲线的概念及性质学习,其中关键是借助图形直观类比。 四、教学支持条件分析 在本节课双曲线的性质教学中,准备使用多媒体辅助教学。因为使用多媒体辅助教学有利于学生对抛物线性质从直观到具体的把握。 五、教学设计过程 问题一:抛物线性质有哪些?观察抛物线的标准方程)0(22>=p px y 的形状, 设计意图:推导、识记抛物线的性质,并能够熟练的应用 问题1你能从图中看出它的范围吗? 问题2它具有怎样的对称性?

2.4.2抛物线的简单几何性质(1) (2)

§2.4.2 抛物线的简单几何性质(1) 学习目标 1.掌握抛物线的几何性质; 2.根据几何性质确定抛物线的标准方程. 学习过程 一、课前准备 6870,文P 60~ P 61找出疑惑之处) 复习1: 准线方程为x=2的抛物线的标准方程是 . 复习2:双曲线22 1169 x y -=有哪些几何性质? 二、新课导学 ※ 学习探究 探究1:类比椭圆、双曲线的几何性质,抛物线又会有怎样的几何性质? 新知:抛物线的几何性质 图形 标准方 程 焦点 (0,)2p - 准线 2p y =- 顶点 (0,0)(0,0) 对称轴 x 轴 离心率 试试:画出抛物线28y x =的图形, 顶点坐标( )、焦点坐标( )、 准线方程 、对称轴 、 离心率 .

※ 典型例题 例1已知抛物线关于x 轴对称,它的顶点在坐标原点,并且经过点(2,M -,求它的标准方程. 变式:顶点在坐标原点,对称轴是坐标轴,并且经过点(2,M -的抛物线有几条?求出它们的标准方程. 小结:一般,过一点的抛物线会有两条,根据其开口方向,用待定系数法求解. 例2斜率为1的直线l 经过抛物线24y x =的焦点F ,且与抛物线相交于A ,B 两点,求线段AB 的长 . 变式:过点(2,0)M 作斜率为1的直线l ,交抛物线24y x =于A ,B 两点,求AB .

小结:求过抛物线焦点的弦长:可用弦长公式,也可利用抛物线的定义求解. ※动手试试 练1. 求适合下列条件的抛物线的标准方程: ⑴顶点在原点,关于x轴对称,并且经过点 (5 M,4) -; ⑵顶点在原点,焦点是(0,5) F; ⑶焦点是(0,8) F-,准线是8 y=. 三、总结提升 ※学习小结 1.抛物线的几何性质; 2.求过一点的抛物线方程; 3.求抛物线的弦长. ※知识拓展 抛物线的通径:过抛物线的焦点且与对称轴垂直的直线,与抛物线相交所得的弦叫抛物线的通径. 其长为2p. ※自我评价你完成本节导学案的情况为(). A. 很好 B. 较好 C. 一般 D. 较差 ※当堂检测(时量:5分钟满分:10分)计分: 1.下列抛物线中,开口最大的是(). A.21 2 y x =B.2y x =

抛物线的简单几何性质(参赛教案)

抛物线的简单几何性质(参赛教案)

2.4.2 抛物线的简单几何性质 一、本节课内容分析与学情分析 1、教材的内容和地位 本节课是人教版普通高中课程标准实验教科书A版《数学》选修2—1第二章第四节的内容。它是在学习了抛物线的定义及其标准方程的基础上,系统地按照抛物线方程来研究抛物线的简单几何性质,是高中数学的重要内容。本节内容的学习,是对前面所学知识的深化、拓展和总结,可使学生对圆锥曲线形成一个系统的认识,同时也是一个培养学生数学思维和让学生体会数学思想的良好机会。 2、学生情况分析 在此内容之前,学生已经比较熟练的掌握了椭圆、双曲线的标准方程和简单几何性质,以及研究问题的基本方法。本节课,学生有能力通过类比椭圆、双曲线的几何性质,结合抛物线的标准方程去探索抛物线的几何性质。可培养学生的自主学习能力和创新能力。 二、教学目标 1、知识与技能: (1)理解并掌握抛物线的几何性质。 (2)能够运用抛物线的方程探索抛物线的几何性质。 2、过程和方法: 注重对研究方法的思想渗透,掌握研究曲线性质的一般方法;培养运用数形结合思想解决问题的能力。 3、情感态度价值观: 通过对几何性质的探索活动,亲历知识的构建过程,使学生领悟其中所蕴含的数学思想,数学方法,体会新知识探索过程中带来的快乐和成就感。让学生养成自主学习,合作探究的习惯。 三、重难点分析

教学重点:探索和掌握抛物线的简单几何性质。 教学难点:抛物线的几何性质在各种条件下的灵活运用。 四、教法、学法分析 教法:本节课以启发式教学为主,综合运用演示法、讲授法、讨论法等教学方法。“以学生的活动为主线,将问题抛给学生,用问题启发学生思考和探索,让学生在参与问题的提出、讨论和解决过程中,达到掌握知识、提高能力的目的。 学法:结合我校学生的特点,本节课主要采用“类比——探索——应用——思考——再探索”的探究式学习方法,使学生在掌握知识,形成技能的同时,培养学生的理性思维能力,增强学生学习的自信心。 五、教学过程 *情景引入 前面我们已经学习了椭圆与双曲线,根据他们的标准方程,得到了它们的简单几何性质。上一节课,我们学习了抛物线的定义和标准方程,本节课,我们根据抛物线的标准方程来探索它的几何性质。 师生活动 【教师】开门见山点明本节要学内容。 【学生】思考前面如何由椭圆双曲线得到它们的相应的几何性质。 设计意图:通过类比前面所学的椭圆和双曲线,来得到抛物线的性质,来激发学生的学习兴趣,使学生快速进入课堂。 复习回顾抛物线的定义和标准方程。 师生活动 【教师】利用多媒体投影,引导学生回顾抛物线的定义和标准方程。 【学生】复习巩固抛物线的定义的标准方程,一名学生回答定义和标准方程。 设计意图:为后期的探索奠定基础,使学生坚定用方程探索性质的信念。 *新课讲授 类比椭圆和双曲线,以22(0)px p =>y 为例探索抛物线的简单几何性质,它的主要性质如下: (1)范围:0,x y R ≥∈ (2)对称性:关于x 轴对称

知识讲解_抛物线的简单性质_基础

抛物线的简单性质 编稿:张林娟 责编:孙永钊 【学习目标】 1.知识与技能: 掌握抛物线的范围、对称性、定点、焦点、准线、离心率、顶点、通径,理解2p 和e 的几何意义,初步学习利用方程研究 曲线性质的方法. 2.过程与方法: 通过曲线的方程来研究曲线性质的方法,让学生体会数形结合的思想、方程思想及转化的思想在研究和解决问题中的应用. 3.情感态度与价值观: 通过自主探究、交流合作使学生亲身体验研究的艰辛,感受知识的发生发展过程,力求使学生获得符合时代要求的“双基” 【要点梳理】 要点一:抛物线标准方程2(0)2y =px p >的几何性质 1. 对称性 观察图象,不难发现,抛物线y 2=2px (p >0)关于..x .轴对称...,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴....... . 2. 范围 抛物线y 2=2px (p >0)在y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标(x ,y )的横坐标满足不等式x .≥0..;当x 的值增大时,|y |也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线. 3. 顶点 抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点....(0,0). 4. 离心率 抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率.用e 表示,e .=1... 5. 通径 通过抛物线的焦点且垂直于对称轴的直线被抛物线所截得的线段叫做抛物线的通径. 因为通过抛物线y 2=2px (p >0)的焦点而垂直于x 轴的直线与抛物线两交点的坐标分别为,2p p ?? ???, ,2p p ??- ??? ,所以抛物线的通径长为....2.p ..这就是抛物线标准方程中2p 的一种几何意义.另一方面,由通径的定义我们还可以看出,p 刻画了抛物线开口的大小,p 值越大,开口越宽;p 值越小,开口越窄.

抛物线的简单几何性质习题一(附答案)

一、选择题 2.抛物线y 2=10x 的焦点到准线的距离是( ) A.2.5 B.5 C.7.5 D.10 3.已知原点为顶点,x 轴为对称轴的抛物线的焦点在直线2x-4y+11=0上,则此抛物线的方程是( ) A.y 2=11x B.y 2=-11x C.y 2=22x D.y 2=-22x 5.以抛物线y 2=2px(p >0)的焦半径|PF |为直径的圆与y 轴位置关系为( ) A.相交 B.相离 C.相切 D.不确定 二、填空题 6.圆心在抛物线y 2=2x 上,且与x 轴和该抛物线的准线都相切的圆的方程 是 . 7.若以曲线252x +16 2 y =1的中心为顶点,左准线为准线的抛物线与已知曲线右准线交于A 、B 两点,则|AB |= . 8.若顶点在原点,焦点在x 轴上的抛物线截直线y=2x+1所得的弦长为15,则此抛物线的方程是 . 一、选择题 1.经过抛物线y 2=2px(p >0)的所有焦点弦中,弦长的最小值为( ) A.p B.2p C.4p D.不确定 2.直线y=kx-2交抛物线y 2=8x 于A 、B 两点,若AB 的中点横坐标为2,则|AB |为( ) A.15 B.415 C.215 D.42 3.曲线2x 2-5xy+2y 2=1( ) A.关于x 轴对称 B.关于y 轴对称 C.关于原点对称,但不关于y=x 对称 D.关于直线y=x 对称也关于直线y=-x 对称 4.若抛物线y 2=2px(p >0)的弦PQ 的中点为(x 0,y 0)(y ≠0),则弦PQ 的斜率为( ) A.-0x p B.0y p C.px - D.-px 0 5.已知抛物线y 2=2px(p >0)的焦点弦AB 的两端点坐标分别为A(x 1,y 1),B(x 2,y 2),则 2 121x x y y 的值一定等于( ) A.4 B.-4 C.p 2 D.-p 2 二、填空题 6.抛物线y 2=4x 的弦AB 垂直于x 轴,若AB 的长为43,则焦点到AB 的距离

抛物线及其性质知识点大全和经典例题及解析

抛物线及其性质知识点大全和经典例题及解析

抛物线及其性质 【考纲说明】 1、掌握抛物线的简单几何性质,能运用性质解决与抛物线有关问题。 2、通过类比,找出抛物线与椭圆,双曲线的性质之间的区别与联系。 【知识梳理】 1.抛物线定义:平面内到一定点F和一条定直线l的距离相等的点的轨迹称为抛物线. 2.抛物线四种标准方程的几何性质: 图形 参数p几何意义参数p表示焦点到准线的距离,p越大,开 口越阔. 开口方 向 右左上下 标准方 程 22(0) y px p =>22(0) y px p =->22(0) x py p =>22(0) x py p =->

点的圆与焦点弦相切。 5.弦长公式:),(1 1 y x A ,),(2 2 y x B 是抛物线上两点,则 AB =||1 1||12 12 2 12 y y k x x k -+=-+= 【经典例题】 (1)抛物线——二次曲线的和谐线 椭圆与双曲线都有两种定义方法,可抛物线只有一种:到一个定点和一条定直线的距离相等的所有点的集合.其离心率e=1,这使它既与椭圆、双曲线相依相伴,又鼎立在圆锥曲线之中.由于这个美好的1,既使它享尽和谐之美,又生出多少华丽的篇章. 【例1】P 为抛物线px y 22 =上任一点,F 为焦点,则以PF 为直径的圆与y 轴( ) . A 相交 . B 相切 . C 相离 . D 位置由P 确定 ,02 p F ?? ?? ? ,【解析】如图,抛物线的焦 准线是 :2 p l x =- .作PH ⊥l 于H ,交y 轴于Q ,那么 PF PH =, l

且2p QH OF ==.作MN ⊥y 轴于N 则MN 是梯形PQOF 的 中位线,()111222 MN OF PQ PH PF =+==.故以 PF 为直径的圆与y 轴相切,选B. 【评注】相似的问题对于椭圆和双曲线来说,其结论则 分别是相离或相交的. (2)焦点弦——常考常新的亮点弦 有关抛物线的试题,许多都与它的焦点弦有关.理解并掌握这个焦点弦的性质,对破解这些试题是大有帮助的. 【例2】 过抛物线() 022 p px y =的焦点F 作直线交抛物线于 ()() 1122,,,A x y B x y 两点,求证: (1)1 2AB x x p =++ (2)p BF AF 2 11 =+ 【证明】(1)如图设抛物线的 准线为 l ,作 1AA l ⊥11111,2 p A B B l B AA x ⊥==+ 于,则AF , 122 p BF BB x ==+ .两式相加即得: 12AB x x p =++ (2)当AB ⊥x 轴时,有 AF BF p ==, 112AF BF p ∴+=成立; X Y F A(x,y)11 B(x,y) 22 A 1 B 1l

高二数学教案8.6抛物线的简单几何性质(一)

课题:8.6抛物线的简单几何性质(一)教学目的: 1.掌握抛物线的范围、对称性、顶点、离心率等几何性质; 2.能根据抛物线的几何性质对抛物线方程进行讨论,在此基础上列表、描点、画抛物线图形; 3.在对抛物线几何性质的讨论中,注意数与形的结合与转化 教学重点:抛物线的几何性质及其运用 教学难点:抛物线几何性质的运用 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 内容分析: “抛物线的简单几何性质”是课本第八章最后一节,它在全章占 本节知识在生产、生活和科学技术中经常用到,也是大纲规定的必须掌握的内容,还是将来大学学习的基础知识之一

对于训练学生用坐标法解题,本节一如前面各节一样起着相当重要 研究抛物线的几何性质和研究椭圆、双曲线的几何性质一样,按范围、对称性、顶点、离心率顺序来研究,完全可以独立探索得出结已知抛物线的标准方程,求它的焦点坐标和准线方程时,首先要判断抛物线的对称轴和开口方向,一次项的变量如果为x(或y),则x轴(或y轴)是抛物线的对称轴,一次项的符号决定开口方向,由已知条件求抛物线的标准方程时,首先要根据已知条件确定抛物线标准方程的类型,再求出方程中的参数p 本节分两课时进行教学第一课时内容主要讲抛物线的四个几何性质、抛物线的画图、例1、例2、及其它例题;第二课时主要内容焦半径公式、通径、例3 教学过程: 一、复习引入: 1.抛物线定义:

平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做定点F叫做抛物线的焦点,定直线l叫做抛物线的准线2.抛物线的标准方程: 相同点:(1)抛物线都过原点;(2)对称轴为坐标轴;(3)准线都与对称轴垂直,垂足与焦点在对称轴上关于原点对称它们到原点的

(完整版)抛物线——简单几何性质

抛物线的简单几何性质 一、要点精讲 抛物线的的简单几何性质 二、课前热身 1.抛物线x y 102 =的焦点到准线的距离是( ) (A)2.5 (B)5 (C)7.5 (D) 10 2.抛物线px y 22 =()0>P 上一点为()0,6y Q ,且Q 点到抛物线焦点F 的距离为10,则F 到准线l 的距 离为 (A)4 (B)8 (C) 12 (D)16 3.(15陕西)若抛物线2 2(0)y px p =>的准线经过双曲线2 2 1x y -=的一个焦点,则 p= . 4、(2016新课标Ⅱ) 设F 为抛物线C :y 2=4x 的焦点,曲线y =k x (k >0)与C 交于点P ,PF ⊥x 轴,则k = (A ) 12 (B )1 (C )3 2 (D )2 标准方程 px y 22 =()0>P px y 22 -=()0>P py x 22 =()0>P py x 22 -=()0>P 图 形 性 质 范围 0≥x ,R y ∈ 0≤x ,R y ∈ R x ∈,0≥y R x ∈,0≤y 焦半径 2 0p x PF += 2 0p x PF +-= 2 0p y PF += 2 0p y PF +-= 对称轴 x 轴 y 轴 顶点 ()0,0O 离心率 1=e 通径 过焦点且与对称轴垂直的弦AB , p AB 2=

5.通过直线x y =与圆0622=++x y x 的交点, 且对称轴是坐标轴的抛物线方程是 . 6.已知抛物线的顶点在原点,焦点在x 轴的正半轴上,通径为线段AB ,且4=?AOB S (O 为坐标原点),求抛物线方程. 三、典例精析 类型一:求抛物线的方程 1、求顶点在原点,以x 轴为对称轴,且通径的长为8的抛物线的标准方程,并指出它的焦点坐标和准线方程. 2. 如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为( ) A .y 2=9x B .y 2=6x C .y 2=3x D .y 2=3x 解:如图,分别过A ,B 作AA 1⊥l 于A 1, BB 1⊥l 于B 1,由抛物线的定义知,|AF |=|AA 1|, |BF |=|BB 1|,∵|BC |=2|BF |,∴|BC |=2|BB 1|, ∴∠BCB 1=30°,∴∠AFx =60°.连接A 1F ,则△AA 1F 为等边三角形,过F 作FF 1⊥AA 1于F 1,则F 1为AA 1 的中点,设l 交x 轴于K ,则|KF |=|A 1F 1|=12|AA 1|=12|AF |,即p =3 2,∴抛物线方程为y 2=3x ,故选C. 3、已知圆0922=-+x y x ,与顶点在原点O ,焦点在x 轴上的抛物线交于A,B 两点,△OAB 的垂心恰为抛物线的焦点,求抛物线的方程. 4、已知抛物线的顶点在坐标原点,对称轴为x 轴,且与圆42 2=+y x 相交的公共弦长等于32,求这个 抛物线的方程.

相关文档
相关文档 最新文档