文档视界 最新最全的文档下载
当前位置:文档视界 › 高中物理电磁感应综合问题讲课教案

高中物理电磁感应综合问题讲课教案

高中物理电磁感应综合问题讲课教案
高中物理电磁感应综合问题讲课教案

电磁感应综合问题

电磁感应综合问题,涉及力学知识(如牛顿运动定律、功、动能定理、动量和能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、直流电路知识、磁场知识等)等多个知识点,其具体应用可分为以下两个方面:

(1)受力情况、运动情况的动态分析。思考方向是:导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→感应电动势变化

→……,周而复始,循环结束时,加速度等于零,导体达到稳定运动状态。要画好受力图,

抓住 a =0时,速度v 达最大值的特点。

(2)功能分析,电磁感应过程往往涉及多种能量形势的转化。例如:如图所示中的金属棒ab 沿导轨由静止下滑时,重力势能减小,一部分用来克服安培力做功转化为感应电流的电能,最终在R 上转转化为焦耳热,另一部分转化为金属棒的动能.若导轨足够长,棒最终达到稳定状态为匀速运动时,重力势能用来克服安培力做功转化为感应电流的电能,因此,从功和能的观点人手,分析清楚电磁感应过程中能量转化的关系,往往是解决电磁感应问题的重要途径.

【例1】 如图1所示,矩形裸导线框长边的长度为2l ,短边的长度为l ,在两个短边上均接有电阻R ,其余部分电阻不计,导线框一长边与x 轴重合,左边的坐标x=0,线框内有一垂直于线框平面的磁场,磁场的感应强度满足关系)sin(

l

x

B B 20π=。一光滑导体棒AB 与短边平行且与长边接触良好,电

阻也是R ,开始时导体棒处于x=0处,从t=0时刻起,导体棒AB 在沿x 方向的力F 作用下做速度为v 的匀速运动,求:

(1)导体棒AB 从x=0到x=2l 的过程中力F 随时间t 变化的规律; (2)导体棒AB 从x=0到x=2l 的过程中回路产生的热量。

答案:(1))()

(

sin v

l t R

l vt

v l B F 203222220≤≤=

π

(2)R

v

l B Q 32320=

【例2】 如图2所示,两条互相平行的光滑金属导轨位于水平面内,它们之间的距离为l =0.2m ,在导轨的一端接有阻值为R=0.5Ω的电阻,在x ≥0处有一与水平面垂直的均匀磁场,磁感强度B=0.5T 。一质量为m=01kg 的金属杆垂直放置在导轨上,并以v 0=2m/s

的初速度进入磁场,

在安培力和一垂直于杆的水平外力F 的共同作用下作匀变速直线运动,加速度大小为a=2m/s 2

,方向与初速度方向相反,设导轨和金属杆的电阻都可以忽略,且接触良好。求:

(1)电流为零时金属杆所处的位置;

(2)电流为最大值的一半时施加在金属杆上外力F 的大小和方向;

(3)保持其他条件不变,而初速度v 0取不同值,求开始时F 的方向与初速度v 0取值的关系。

答案:(1)m a

v x 1220

== (2)向运动时=0.18N 向左运动时=0.22N (3)当;x 0102

20轴相反方向与时,,/>=<

F s m l

B maR

v 当;x 0102

20轴相同方向与时,,/<=>

F s m l

B maR

v 【例3】 如图5所示,在水平面上有一个固定的两根光滑金属杆制成的37°角的导轨AO 和BO ,在导轨上放置一根和OB 垂直的金属杆CD ,导轨和金属杆是用同种材料制成的,单位长度的电阻值均为0.1Ω/m ,整个装置位于垂直红面向里的匀强磁场中,匀强磁场的磁感应强度随

时间的变化关系为B=0.2tT ,现给棒CD 一个水平向右的外力,使CD 棒从t=0时刻从O 点处开始向右做匀加速直线运动,运动中CD 棒始终垂直于

OB ,加速度大小为0.1m/s 2

,求(1)t=4s 时,回路中的电流大小;(2)t=4s 时,CD 棒上安培力的功率是多少? 答案:(1)1A (2)0.192W 。

【例4】如图6所示,光滑且足够长的平行金属导轨MN 、PQ 电阻不计,

固定在同一水平面上,两导轨相距m 40.=l ,导轨的两个端M 与P 处用导线连接一个R=0.4Ω的电阻。理想电压表并联在R 两端,导轨上停放一质量m=01kg 、电阻r=0.1Ω的金属杆,整个装置处于磁感应强度B=0.5T 的匀强磁场中,磁场方向垂直导轨平面向下,现用一水平向右的恒定外力F=1.0N 拉杆,使之由静止开始运动,由电压表读数U 随时间t 变化关系的图象可能的是:

【例5】如图8所示,两根相距为d 的足够长的光滑平行金属导轨位于竖直的xOy 平面内,导轨与竖直轴yO 平行,其一端接有阻值为R 的电阻。在y>0的一侧整个平面内存在着与xOy 平面垂直的非均匀磁场,磁感应强度B 随y 的增大而增大,B=ky ,式中的k 是一常量。一质量为m 的金属直杆MN 与金属导轨垂直,可在导轨上滑动,当t=0时金属杆MN 位于y=0处,速度为v 0,方向沿y 轴的正方向。在MN 向上运动的过程中,有一平行于y 轴的拉力F 人选用于金属杆MN 上,以保持其加速度方向竖直向下,大小为重力加速度g 。设除电阻R 外,所有其他电阻都可以忽略。问: (1)当金属杆的速度大小为

2

v 时,回路中的感应电动势多大? (2)金属杆在向上运动的过程中拉力F 与时间t 的关系如何? 答案:

(1)g

d

kv E 163301=

(2))()

(g

v R gt t v k F 02

202t 21≤-

=

式中

【例6】(2004北京理综)如图所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L ,M 、P 两点间接有阻值为R 的电阻。一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直。整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略。让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦。

(1)由b 向a 方向看到的装置如图2所示,请在此图中画出ab 杆下滑过程中某时刻的受

力示意图;

(2)在加速下滑过程中,当ab 杆的速度大小为v 时,求此时ab 杆中的电流及其加速度的大小;

(3)求在下滑过程中,ab 杆可以达到的速度最大值。 解析:(18分)(1)如图所示:重力mg ,竖直向下;

支撑力N ,垂直斜面向上; 安培力F ,沿斜面向上

(2)当ab 杆速度为v 时,感应电动势E =BLv ,此 时电路电流 R

BLv R E I =

=

ab 杆受到安培力R

v

L B BIL F 22==

根据牛顿运动定律,有R v L B mg F mg ma 22sin sin -=-=θθ 解得 mR

v L B g a 2

2sin -=θ

(3)当

θsin 22mg R v

L B =时,ab 杆达到最大速度v m 2

2sin L

B mgR v m θ= 【例7】(2004上海)水平面上两根足够长的金属导轨平行固定放置,问距为L ,一端通过导线与阻值为R 的电阻连接;导轨上放一质量为m 的金属杆(见右上图),金属杆与导轨的电阻忽略不计;均匀磁场竖直向下。用与导轨平行的恒定拉力F 作用在金属杆上,杆最终将做匀速运动。当改变拉力的大小时,相对应的匀速运动速度v 也会变化,v 与F 的关系如右下图。(取重力加速度g =10m/s 2

(1)金属杆在匀速运动之前做什么运动?

(2)若m =0.5kg ,L =0.5m ,R =0.5Ω;磁感应强度B 为多大? (3)由v —F 图线的截距可求得什么物理量?其值为多少? 解析:(1)变速运动(或变加速运动、加速度减小的加速运动,加速运动)。

(2)感应电动势vBL =ε ① 感应电流R

I ε

=

安培力R

L vB IBL F M 2

2== ③

由图线可知金属杆受拉力、安增力和阻力作用,匀速时合力为零。

f R L vB F +=2

2 ④

)(2

2

f F L

B R

v -=

由图线可以得到直线的斜率k=2,

12

==

∴kL R

B (T ) ⑥ (3)由直线的截距可以求得金属杆受到的阻力f ,f =2(N ) ⑦ 若金属杆受到的阻力仅为动摩擦力,由截距可求得动摩擦因数4.0=μ ⑧

【例8】如图所示,两根相距为L 的足够长的平行金属导轨,位于水平的xy 平面内,一端接有阻值为R 的电阻。在0>x 的一侧存在沿竖直方向的均匀磁场,磁感应强度B 随x 的增大而增大,B=kx ,式中的k 是一常量。一金属杆与金属导轨垂直,可在导轨上滑动。当t=0时金属杆位于x =0处,速度为0v ,方向沿x 轴的正方向。在运动过程中,有一大小可调节的外力F 作用于金属杆以保持金属杆的加速度恒定,大小为a ,方向沿x 轴正方向。除电阻R 以外其余电阻都可以忽略不计。求:

(1)当金属杆的速度大小为v 时,回路中的感应电动势有多大?

(2)若金属杆的质量为m ,施加于金属杆上的外力与时间的关系如何?

解析: (1)根据速度和位移的关系式ax v v 22

02=-

α

22

02v v x -=

由题意可知,磁感应强度为 α2)

(2

02v v k kx B -==

感应电动势为 α

2)(2

02Lv

v v BLv E -==

(2)金属杆在运动过程中,安培力方向向左,因此,外力方向向右。由牛顿第二定律得 F -BIL=ma

R

ma R

v L B F +=22

因为at v v at t v k kx B +=+==02

0),21(

所以ma R

at v at t v L k F +++=)

()21

(022022 【例9】如图所示,abcd 为质量M=2kg 的导轨,放在光滑绝缘的水平面上,另有一根质量m=0.6kg 的金属棒PQ 平行bc 放在水平导轨上,PQ 棒左边靠着绝缘固定的竖直立柱e 、f ,导轨处于匀强磁场中,磁场以OO ′为界,左侧的磁场方向竖直向上,右侧的磁场方向水平向右,磁感应强度均为B=0.8T.导轨的bc 段长m l 5.0=,其电阻Ω=4.0r ,金属棒的电阻R=0.2Ω,其余电阻均可不计,金属棒与导轨间的动摩擦因数.2.0=μ 若在导轨上作用一个方向向左、大小为F=2N 的水平拉力,设导轨足够长,g 取10m/s 2

,试求: (1)导轨运动的最大加速度; (2)流过导轨的最大电流; (3)拉力F 的最大功率. 解析:(1)导轨向左运动时,导轨受到向左的拉力F ,向右的安培力F 1和向右的摩擦力f 。

根据牛顿第二定律:Ma f F F =--1

F 1=BI l (1分) f =μ(mg —BI l ) M

BIl

mg F a )1(:μμ---=

整理得

当I=0时,即刚拉动时,a 最大. 2max /4.0s m M

mg

F a =-=

μ (2)随着导轨速度增大,感应电流增大,加速度减小.

当a =0时,I 最大 即0)1(max =---l BI mg F μμ

A Bl

mg

F I 5.2)1(max =--=

μμ

(3)当a =0时,I 最大,导轨速度最大.r

R Blv I +=

max

max

s m Bl

r R I v /75.3)

(max max =+=

W v F P 5.7max max =?=∴

a

O`

【例10】相距为L 的足够长光滑平行金属导轨水平放置,处于磁感应强度为B ,方向竖直向上的匀强磁场中。导轨一端连接一阻值为R 的电阻,导轨本身的电阻不计,一质量为m ,电阻为r 的金属棒ab 横跨在导轨上,如图所示。现对金属棒施一恒力F ,使其从静止开始运动。求: (1)运动中金属棒的最大加速度和最大速度分别为多大?

(2)计算下列两个状态下电阻R 上消耗电功率的大小: ①金属棒的加速度为最大加速度的一半时; ②金属棒的速度为最大速度的四分之一时。 解析:(1)开始运动时金属棒加速度最大m

F

a m =

当金属棒由于切割磁感线而受安培力作用,安培力与所受恒力F 相等时速度达到最大,即 E=BLv

r

R E

I +=

BIL F =安

F=F 安

由以上四式可解得:2

2)

(L

B r R F v m +=

(2)当金属棒加速度为最大加速度的一半时,安培力应等于恒定拉力的一半,即:

2

1F L BI =

此时电阻R 上消耗的电功率为:

P 1=I 12

R

由以上两式解得:2

2214L

B R

F P = 当金属棒的速度为最大速度的四分之一时:

4

2m

v BL

E = r

R E I +=

2

2 P 2=I 22

R

由以上三式解得:P 2=2

2216L B R

F

【例11】一个“II ”形导轨PONQ ,其质量为M=2.0kg ,放在光滑绝缘的水平面上,处于匀强磁场中,另有一根质量为m=0.60kg 的金属棒CD 跨放在导轨上,CD 与导轨的动摩擦因数是0.20,CD 棒与ON 边平行,左边靠着光滑的固定立柱a 、b 匀强磁场以ab 为界,左侧的磁场方向竖直向上(图中表示为垂直于纸面向外),右侧磁场方向水平向右,磁感应强度的大小都是0.80T ,如图所示。已知导轨ON 段长为0.50m ,电阻是0.40Ω,金属棒CD 的电阻是0.2Ω,其余电阻

不计。导轨在水平拉力作用下由静止开始以0.2m/s 2

的加速度做匀加速直线运动,一直到CD 中的电流达到4A 时,导轨改做匀速直线运动。设导轨

足够长,取g=10m/s 2

。求:

(1)导轨运动起来后,C 、D 两点哪点电势较高?

(2)导轨做匀速运动时,水平拉力F 的大小是多

少?

(3)导轨做匀加速运动的过程中,水平拉力F 的最

小值是多少?

(4)CD 上消耗的电功率为P=0.8W 时,水平拉力F

做功的功率是多大? 解析:(1)C 点电势较高。

(2)导轨匀速运动时,CD 棒受安培力 F 1=BIL=1.6N ,方向向上。 导轨受摩擦力 88.0)(1=-=F mg f μN ,方向向右。

导轨受安培力F 2=1.6N ,方向向右。

水平拉力 F=F 2+f =2.48N 。

(3)导轨以加速度a 做匀加速运动,速度为v 时,有

Ma r

R v

L B mg r R v L B F =+--+-)(2222μ ①

当速度0=v 时,水平力F 最小,F m =1.6N 。

(4)CD 上消耗电功率P=0.8W 时,电路中的电流为A R

P I 24==。

此刻,由r

R BLv I +=

4

4 解得导轨的运动速度 s m v /34=。 由①式可得F 4=2.24N 。 力F 做功的功率P 4=F 4v 4=6.72W

【例12】如图甲所示,空间存在着一个范围足够大的竖直向下的匀强磁场区域,磁场的磁感应强度大小为B 。边长为L 的正方形金属abcd (下简称方框)放在光滑的水平面上,其外侧套着一个与方框边长相同的U 型金属框架MNPQ (下简称U 型框),U 型框与方框之间接触良好且无摩擦。两个金属框每条边的质量均为m ,每条边的电阻均为r 。

(1)将方框固定不动,用力拉动U 型框使它以速度v 0垂直NP 边向右匀速运动,当U 型框的MQ 端滑

至方框的最右侧(如图所示)时,方框上的bc 两端的电势差为多大?此时方框的热功率为多大?

(2)若方框不固定,给U 型框垂直NP 边向右的初速度v 0,如果U 型框恰好不能与方框分离,则在

C a P

Q

这一过程中两框架上产生的总热量为多少?

(3)若方框不固定,给U 型框垂直NP 边向右的初速度v(v>v 0),U 型框最终将与方框分离。如果从

U 型框和方框不再接触开始,经过时间t 方框最右侧和U 型框最左侧距离为s 。求两金属框分离时的速度各为多大? 解析:(1)当方框固定不动,U 型框以v 0滑至方框最右侧时,感应电动势为E ,有:E=BLV 0 (1)

bc 间并联电阻 R 并=r ×3r r +3r =3

4

r (2) bc 两端的电势差 U bc =E

R 并+2r +r R 并 (3)

由(1)(2)(3)得U bc =15

BLV 。 (4)

此时方框的热功率P=(E R 并+2r +r

)2

R 并 (5)

由(1)(2)(5)得:222

0475B l v p r = (6)

(2)若方框不固定,当U 型框恰好不与方框分离时速度设为v ,由动量守恒可知

03(34)mv m m v =+ (7)

由能的转化和守恒可知总热量Q 为

Q=12 3m v 02 - 12 (3m +4m )v 2 (8) 由(7)(8)可知,Q=67

mv 02 (9) (3)若方框不固定,设U 型框与方框分离时速度分别为v 1、v 2

由动量守恒可知:3mv =3mv 1+4mv 2 (10) 在t 时间内相距S 可知:s =(v 1-v 2)t (11)

由(10)(11)可知 v 1=17 (3v +4s t ) v 2=37 (v - s

t

) (12

【例13】 两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为l ,导轨

上面横放着两根导体棒ab 和cd ,构成矩形回路,如图1所示,两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B ,设两导体棒均可沿导轨无摩擦地滑行,开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0,若两导体棒在运动中始终不接触,求:

(1)在运动中产生的焦耳热量最多是多少? 答案:(2

04

1mv ) (2)当ab 棒的速度变为初速度的

4

3

时,cd 棒的加速度是多少? 答案:(mR

v l B m F a 40

22==)

c

a b

M d N Q P N

P

b Q M a

c d

高中物理电磁感应综合问题

电磁感应综合问题 电磁感应综合问题,涉及力学知识(如牛顿运动定律、功、动能定 理、动量和能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、 直流电路知识、磁场知识等)等多个知识点,其具体应用可分为以下 两个方面: (1)受力情况、运动情况的动态分析。思考方向是:导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,周而复始,循环结束时,加速度等于零,导体达到稳定运动状态。要画好受力图,抓住a=0时,速度v达最大值的特点。 (2)功能分析,电磁感应过程往往涉及多种能量形势的转化。例 如:如图所示中的金属棒ab沿导轨由静止下滑时,重力势能减小,一 部分用来克服安培力做功转化为感应电流的电能,最终在 R上转转化为焦耳热,另一部分转化为金属棒的动能.若 导轨足够长,棒最终达到稳定状态为匀速运动时,重力势 能用来克服安培力做功转化为感应电流的电能,因此,从 功和能的观点人手,分析清楚电磁感应过程中能量转化的关系,往往 是解决电磁感应问题的重要途径. 【例1】如图1所示,矩形裸导线框长边的长度为2l,短边的长度 为l,在两个短边上均接有电阻R,其余部分电阻不计,导线框一长边

及x 轴重合,左边的坐标x=0,线框内有一垂直于线框平面的磁场,磁场的感应强度满足关系)sin(l x B B 20π=。一光滑导体棒AB 及短边平行且 及长边接触良好,电阻也是R ,开始时导体棒处于x=0处,从t=0时刻起,导体棒AB 在沿x 方向的力F 作用下做速度为v 的匀速运动,求: (1)导体棒AB 从x=0到x=2l 的过程中力F 随时间t 变化的规律; (2)导体棒AB 从x=0到x=2l 的过程中回路产生的热量。 答案:(1))()(sin v l t R l vt v l B F 203222220≤≤=π (2)R v l B Q 32320= 【例2】 如图2所示,两条互相平行的光滑金属导 轨位于水平面内,它们之间的距离为l =0.2m ,在导轨的一端接有阻值为R=0.5Ω的电阻,在x ≥0处有一及水平面垂直的均匀磁场,磁感强度B=0.5T 。一质量为m=01kg 的金属杆垂直放置在导轨上,并以v 0=2m/s 的初速度进入磁场,在安培力和一垂直于杆的水平外力F 的共同作用下作匀变速直线运动,加速度大小为a=2m/s 2,方向及初速度方向相反,设导轨和金属杆的电阻都可以忽略,且接触良好。求: (1)电流为零时金属杆所处的位置; (2)电流为最大值的一半时施加在金属杆上外力F 的大小和方向; (3)保持其他条件不变,而初速度v 0取不同值,求开始时F 的方

高中物理_感应电动势与电磁感应定律教学设计学情分析教材分析课后反思

《感应电动势与电磁感应定律》教学设计 授课人:授课时间:2015年3 月 课题感应电动势与电磁感应定律课型新课第1课时 教学目标 (三维)1.通过实验演示经历探究感应电动势的存在来理解电磁感应现象里感应电动势,并能判断其方向。 2.通过对 t? ?Φ ?Φ Φ、 、的区别来体会这三个物理量的本质含义。 3.在实验的基础上掌握法拉第电磁感应定律,并使学生体会在发现和认识物理规律中物理实验的重要作用,培养学生在物理实验中仔细观察和认真思考的能力。 4.经历由 t? ?Φ = ε推导θ εsin BLv =的过程,让学生再次体会感应电动势的产生 条件,从而加深学生对感应电动势物理本质的理解 教学重点与难点重点:法拉第电磁感应定律的建立和理解 难点: 1、如何设计探究实验定性研究感应电动势与磁通量的变化率之间的关系2. t n E ? ?Φ =和E=BLv sinθ的区别和联系 教学方法 分组实验探究法小组合作探究法归纳总结法,讲授法教学器材 演示用:大型示教电流计;线圈;导线 学生用:灵敏电流计;线圈;条形磁铁;导线。 教学构想 法拉第电磁感应定律是电磁学的核心内容。前面几节是从感应电流的角度来认识电磁感应现象的,这节课以感应电流的产生条件为新课导入,在此进一步深入到感应电动势来理解电磁感应现象,所以,在引课时一个演示实验让学生认识到有电流就得有电动势,从而引入感应电动势的概念。然后采用让学生自己设计方案,自己动手做实验,思考讨论,教师引导找出规律的方法,使学生能够深刻理解法拉第 电磁感应定律的建立过程。对于公式,让学生自己根据法拉第电磁感应定律,动手推导,使学生深刻理解。 教学流程1.感应电动势:创设问题情景→设计问题→迁移类比→回答问题→定义概念2.法拉第电磁感应定律:创设问题情景→提出问题→设计实验→进行实验→分析与论证→交流与评估→总结规律→规律应用

高中物理-电磁感应知识点汇总

电磁感应 1.★电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.★楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割

磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。 ③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。 ④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化; ②阻碍物体间的相对运动; ③阻碍原电流的变化(自感)。 ★★★★4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=nΔΦ/Δt 当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ。当B、L、v三者两两垂直时,感应电动势E=BLv。 (1)两个公式的选用方法E=nΔΦ/Δt计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势。E=BLvsinθ中的v 若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势。

高二物理电磁学综合试题

高二物理电磁学综合试题 第Ⅰ卷选择题 一.选择题:(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,有的小题只有一个 选项正确,有的小题有多个选项正确,全对得3分,漏选得1分,错选、不选得0分) 1、下列说法不符合 ...物理史事的是() A、赫兹首先发现电流能够产生磁场,证实了电和磁存在着相互联系 B、安培提出的分子电流假说,揭示了磁现象的电本质 C、法拉第在前人的启发下,经过十年不懈的努力,终于发现电磁感应现象 D、19世纪60年代,麦克斯韦建立了完整的电磁场理论,并预言了电磁波的存在 2、图1中带箭头的直线是某电场中的一条电场线,在这条直线上有a、b两点,若用 E a、E b表示a、b两点的场强大小,则() A、a、b两点的场强方向相同 B、电场线是从a指向b,所以有E a>E b C、若一负电荷从b点逆电场线方向移到a点,则电场力对该电荷做负功 D、若此电场是由一负点电荷所产生的,则有E a<E b 3、质量均为m、带电量均为+q的A、B小球,用等长的绝缘细线悬在天花板上的同一点,平衡后两线张角为2θ,如图2所示,若A、B小球可视为点电荷,则A小球所在处的场强大小等于() A、mgsinθ/q B、mgcosθ/q C、mgtgθ/q D、mgctgθ/q 4、如图3所示为某一LC振荡电路在某时刻的振荡情况,则由此可知,此刻()A、电容器正在充电 B、线圈中的磁场能正在增加 C、线圈中的电流正在增加 D、线圈中自感电动势正在阻碍电流增大 是() A、它的频率是50H Z B、电压的有效值为311V C、电压的周期是 002s D、电压的瞬时表达式是u=311 sin314t v 图3 -311 311 u/v 0 1 2 t/10-2s 图4 ab 图1 B 图2 A θθ q q

高中物理《电磁感应》知识点总结

高中物理《电磁感应》知识点总结 【知识构建】 【新知归纳】 ●电流的磁效应: 把一根导线平行地放在磁场上方,给导线通电时,磁针发生了偏转,就好像磁针受到磁铁的作用一样。这说明不仅磁铁能产生磁场,电流也能产生磁场,这个现象称为电流的磁效应。 ●电流磁效应现象: 磁铁对通电导线的作用,磁铁会对通电导线产生力的作用,使导体棒偏转。电流和电流间的相互作用,有相互平行而且距离较近的两条导线,当导线中分别通以方向相同和方向相反的电流时,观察到发生的现象是:同向电流相吸,异向电流相斥。 ●电磁感应发现的意义: ①电磁感应的发现使人们对电与磁内在联系的认识更加完善,宣告了电磁学作为一门统一学科的诞生。 ②电磁感应的发现使人们找到了磁生电的条件,开辟了人类的电器化时代。 ③电磁感应现象的发现,推动了经济和社会的发展,也体现了自然规律的和谐的对称美。

●对电磁感应的理解: 页 1 第 电和磁之间有着必然的联系,电能生磁,磁也一定能够生电,但磁生电是有条件的,只有变化的磁场或相对位置的变化才能产生感应电流,磁生电表现为磁场的“变化”和“运动”。 引起电流的原因概括为五类: ①变化的电流。 ②变化的磁场。 ③运动的恒定电流。 ④运动的磁场。 ⑤在磁场中运动的导体。 ●磁通量: 闭合电路的面积与垂直穿过它的磁感应强度的乘积叫磁通量,即Φ,θ为磁感线与线圈平面的夹角。 对磁通量Φ的说明: 虽然闭合电路的面积与垂直穿过它的磁感应强度的乘积叫磁通量,但是当磁场与闭合电路的面积不垂直时,磁感应强度也有垂直闭合电路的分量磁感应强度垂直闭合电路面积的分量。 ●产生感应电流的条件: 一是电路闭合。

高二物理之电磁感应综合题练习(附答案)

电磁感应三十道新题(附答案) 一.解答题(共30小题) 1.如图所示,MN和PQ是平行、光滑、间距L=0.1m、足够长且不计电阻的两根竖直固定金属杆,其最上端通过电阻R相连接,R=0.5Ω.R两端通过导线与平行板电容器连接,电容器上下两板距离d=lm.在R下方一定距离有方向相反、无缝对接的两个沿水平方向的匀强磁场区域I和Ⅱ,磁感应强度均为B=2T,其中区域I的高度差h1=3m,区域Ⅱ的高度差h2=lm.现将一阻值r=0.5Ω、长l=0.lm的金属棒a紧贴MN和PQ,从距离区域I上边缘h=5m处由静止释放;a进入区域I后即刻做匀速直线运动,在a进入区域I的同时,从紧贴电容器下板中心处由静止释放 一带正电微粒A.微粒的比荷=20C/kg,重力加速度g=10m/s2.求 (1)金属棒a的质量M; (2)在a穿越磁场的整个过程中,微粒发生的位移大小x; (不考虑电容器充、放电对电路的影响及充、放电时间) 2.如图(甲)所示,MN、PQ为水平放置的足够长的平行光滑导轨,导轨间距L为0.5m,导轨左端连接一个阻值为2Ω的定值电阻R,将一根质量为0.2kg的金属棒cd垂直放置在导轨上,且与导轨接触良好,金属棒cd的电阻r=2Ω,导轨电阻不计,整个装置处于垂直导轨平面向下的匀强磁场中,磁感应强度B=2T.若棒以1m/s的初速度向右运动,同时对棒施加水平向右的拉力F作用,并保持拉力的功率恒为4W,从此时开始计时,经过2s金属棒的速度稳定不变,图(乙)为安培力与时间的关系图象.试求: (1)金属棒的最大速度; (2)金属棒的速度为3m/s时的加速度; (3)求从开始计时起2s内电阻R上产生的电热.

高中物理电磁学和光学知识点公式总结大全

高中物理电磁学知识点公式总结大全 来源:网络作者:佚名点击:1524次 高中物理电磁学知识点公式总结大全 一、静电学 1.库仑定律,描述空间中两点电荷之间的电力 ,, 由库仑定律经过演算可推出电场的高斯定律。 2.点电荷或均匀带电球体在空间中形成之电场 , 导体表面电场方向与表面垂直。电力线的切线方向为电场方向,电力线越密集电场强度越大。 平行板间的电场 3.点电荷或均匀带电球体间之电位能。本式以以无限远为零位面。 4.点电荷或均匀带电球体在空间中形成之电位。 导体内部为等电位。接地之导体电位恒为零。 电位为零之处,电场未必等于零。电场为零之处,电位未必等于零。 均匀电场内,相距d之两点电位差。故平行板间的电位差。 5.电容,为储存电荷的组件,C越大,则固定电位差下可储存的电荷量就越大。电容本身为电中性,两极上各储存了+q与-q的电荷。电容同时储存电能,。 a.球状导体的电容,本电容之另一极在无限远,带有电荷-q。 b.平行板电容。故欲加大电容之值,必须增大极板面积A,减少板间距离d,或改变板间的介电质使k变小。 二、感应电动势与电磁波 1.法拉地定律:感应电动势。注意此处并非计算封闭曲面上之磁通量。 感应电动势造成的感应电流之方向,会使得线圈受到的磁力与外力方向相反。 2.长度的导线以速度v前进切割磁力线时,导线两端两端的感应电动势。若v、B、互相垂直,则 3.法拉地定律提供将机械能转换成电能的方法,也就是发电机的基本原理。以频率f 转动的发电机输出的电动势,最大感应电动势。 变压器,用来改变交流电之电压,通以直流电时输出端无电位差。 ,又理想变压器不会消耗能量,由能量守恒,故 4.十九世纪中马克士威整理电磁学,得到四大公式,分别为 a.电场的高斯定律 b.法拉地定律 c.磁场的高斯定律 d.安培定律 马克士威由法拉地定律中变动磁场会产生电场的概念,修正了安培定律,使得变动的电场会产生磁场。e.马克士威修正后的安培定律为 a.、 b.、 c.和修正后的e.称为马克士威方程式,为电磁学的基本方程式。由马克士威方程式,预测了电磁波的存在,且其传播速度。 。十九世纪末,由赫兹发现了电磁波的存在。 劳仑兹力。 右手定则:右手平展,使大拇指与其余四指垂直,并且都跟手掌在一个平面内。把右手放入磁场中,若磁力线垂直进入手心(当磁感线为直线时,相当于手心面向N极),大拇指指向导线运动方向,则四指所指方向

人教版高中物理-电磁感应图像专题

《电磁感应图像题》练习题 1、如图,一个矩形线圈匀速地从无磁场的空间先进入磁感应 强度为B1的匀强磁场,然后再进入磁感应强度为B2的匀强磁场,最后进入没有磁场的右边空间,若B1=2B2,方向均始终与线圈 平面垂直,则在下列图示中能定性表示线圈中感应电流 i随 时间t 变化关系的是(电流以逆时针方向为正) () 2.如图所示,在竖直方向的磁感应强度为B的匀强磁场中,金属框架ABC固定在水平面内,AB与BC间夹角为θ,光滑导体棒DE在框架上从B点开始在外力作用下以速度v向右匀速运动,导体棒与框架足够长且构成等腰三角形电路.若框架与导体棒单位长度的电阻均为R,导体棒在滑动过程中始终保持与导轨良好接触,下列关于电路中电流大小I与时间t,消耗的电功率P与水平移动的距离x变化规律的图象中正确的是(AD ) 3.如图甲所示,光滑导轨水平放置在与水平方向夹角为60°斜向下的匀强磁场中,匀强磁场的磁感应强度B随时间的变化规律如图乙所示(规定斜向下为正方向),导体棒ab垂直导轨放置,除电阻R的阻值外,其余电阻不计,导 体棒ab在水平外力作用下始终处于静止状态,规 定a→b的方向为电流的正方向,水平向右的方向 为外力的正方向,则在0~t时间内,能正确反映 流过导体棒ab的电流i和导体棒ab所受水平外 力F随时间t变化的图象是 ( ) 4.如图等腰三角形内分布有垂直于纸面向外的匀强磁场,它的顶点在x轴上且底边长为4L,高为L,底边与x轴平行。纸面内一边长为L的正方形导线框以恒定速度沿x轴正方向穿过磁场区域。t=0时刻导线框恰好位于图中所示的位置。以顺时针方向为导线框中电流的

正方向,在下面四幅图中能够正确表示电流-位移(i-x)关系的是( A ) 5.如图所示,等腰直角三角形OPQ内存在垂直纸面向里的匀强磁场,它的OP边在x轴上且长为L,纸面内一边长为L的正方形导线框的一条边也在x轴上,且线框沿x轴正方向以恒定的速度v穿过磁场区域,在t=0时该线框恰 好位于图中的所示位置,规定顺时针方向为导线框 中电流的正方向,则在线框穿越磁场区域的过程中, 感应电流i随时间t变化的图线是( D ) 6.如图甲所示,匀强磁场垂直纸面向里,磁感应强度的大小为B,磁场在y轴方向足够宽,在x 轴方向宽度为a。一直角三角形导线框ABC(BC边的长度为a) 从图示位置向右匀速穿过磁场区域,以逆时针方向为电流的 正方向,在图乙中感应电流i、BC两端的电压U BC与线框移 动的距离x的关系图像正确的是( D )

(完整版)高中物理电磁感应习题及答案解析

高中物理总复习 —电磁感应 本卷共150分,一卷40分,二卷110分,限时120分钟。请各位同学认真答题,本卷后附答案及解析。 一、不定项选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不答的不得分. 1.图12-2,甲、乙两图为与匀强磁场垂直放置的两个金属框架,乙图除了一个电阻为零、自感系数为L的线圈外,其他部分与甲图都相同,导体AB以相同的加速度向右做匀加速直线运动。若位移相同,则() A.甲图中外力做功多B.两图中外力做功相同 C.乙图中外力做功多D.无法判断 2.图12-1,平行导轨间距为d,一端跨接一电阻为R,匀强磁场磁感强度为B,方向与导轨所在平面垂直。一根足够长的金属棒与导轨成θ角放置,金属棒与导轨的电阻不计。当金属棒沿垂直于棒的方向以速度v滑行时,通过电阻R的电流强度是() A. Bdv R B.sin Bdv R θ C.cos Bdv R θ D. sin Bdv Rθ 3.图12-3,在光滑水平面上的直线MN左侧有垂直于纸面向里的匀强磁场,右侧是无磁场空间。将两个大小相同的铜质矩形闭合线框由图示位置以同样的速度v向右完全拉出匀强磁场。已知制作这两只线框的铜质导线的横截面积之比是1:2.则拉出过程中下列说法中正确的是()A.所用拉力大小之比为2:1 R v a b θ d 图12-1 M v B

B .通过导线某一横截面的电荷量之比是1:1 C .拉力做功之比是1:4 D .线框中产生的电热之比为1:2 4. 图12-5,条形磁铁用细线悬挂在O 点。O 点正下方固定一个水平放置的铝线圈。让磁铁在竖直面内摆动,下列说法中正确的是 ( ) A .在磁铁摆动一个周期内,线圈内感应电流的方向改变2次 B .磁铁始终受到感应电流磁铁的斥力作用 C .磁铁所受到的感应电流对它的作用力始终是阻力 D .磁铁所受到的感应电流对它的作用力有时是阻力有时是动力 5. 两相同的白炽灯L 1和L 2,接到如图12-4的电路中,灯L 1与电容器串联,灯L 2与电感线圈串联,当a 、b 处接电压最大值为U m 、频率为f 的正弦交流电源时,两灯都发光,且亮度相同。更换一个新的正弦交流电源后,灯L 1的亮度大于大于灯L 2的亮度。新电源的电压最大值和频率可能是 ( ) A .最大值仍为U m ,而频率大于f B .最大值仍为U m ,而频率小于f C .最大值大于U m ,而频率仍为f D .最大值小于U m ,而频率仍为f 6.一飞机,在北京上空做飞行表演.当它沿西向东方向做飞行表演时(图12-6),飞行员左右两机翼端点哪一点电势高( ) A .飞行员右侧机翼电势低,左侧高 B .飞行员右侧机翼电势高,左侧电势低 C .两机翼电势一样高 D .条件不具备,无法判断 7.图12-7,设套在条形磁铁上的弹性金属导线圈Ⅰ突然缩小为线圈Ⅱ,则关于线圈的感应电流及其方向(从上往下看)应是( ) A .有顺时针方向的感应电流 B .有逆时针方向的感应电流 C .有先逆时针后顺时针方向的感应电流 D .无感应电流 8.图12-8,a 、b 是同种材料的等长导体棒,静止于水平面内的足够长的光滑平行导轨上,b 棒的质量是a 棒的两倍。匀强磁场竖直向下。若给a 棒以4.5J 的初动能,使之向左运动,不 L 1 L 2 图12-4 v 0 a b 图12-8 图12-6 S N O 图12-5 图12-7

高二物理电磁感应教案

高二物理电磁感应教案 (一)教学目的 1.知道电磁感应现象及其产生的条件。 2.知道感应电流的方向与哪些因素有关。 3.培养学生观察实验的能力和从实验事实中归纳、概括物理概念与规律的能力。 (二)教具 蹄形磁铁4~6块,漆包线,演示用电流计,导线若干,开关一只。 (三)教学过程 1.由实验引入新课 重做奥斯特实验,请同学们观察后回答: 此实验称为什么实验?它揭示了一个什么现象? (奥斯特实验。说明电流周围能产生磁场) 进一步启发引入新课: 奥斯特实验揭示了电和磁之间的联系,说明电可以生磁,那么,我们可不可以反过来进行逆向思索:磁能否生电呢?怎样才能使磁生电呢?下面我们就沿着这个猜想来设计实验,进行探索研究。 2.进行新课 (1)通过实验研究电磁感应现象 板书:〈一、实验目的:探索磁能否生电,怎样使磁生电。〉

提问:根据实验目的,本实验应选择哪些实验器材?为什么? 师生讨论认同:根据研究的对象,需要有磁体和导线;检验电路中是否有电流需要有电流表;控制电路必须有开关。 教师展示以上实验器材,注意让学生弄清蹄形磁铁的N、S极和磁感线的方向,然后按课本图12—1的装置安装好(直导线先不要放在磁场内)。 进一步提问:如何做实验?其步骤又怎样呢? 我们先做如下设想:电能生磁,反过来,我们可以把导体放在磁场里观察是否产生电流。那么导体应怎样放在磁场中呢?是平放?竖放?斜放?导体在磁场中是静止?还是运动?怎样运动?磁场的强弱对实验有没有影响?下面我们依次对这几种情况逐一进行实验,探索在什么条件下导体在磁场中产生电流。 用小黑板或幻灯出示观察演示实验的记录表格。 教师按实验步骤进行演示,学生仔细观察,每完成一个实验步骤后,请学生将观察结果填写在上面表格里。 实验完毕,提出下列问题让学生思考: 上述实验说明磁能生电吗?(能) 在什么条件下才能产生磁生电现象?(当闭合电路的一部分导体在磁场中左右或斜着运动时) 为什么导体在磁场中左右、斜着运动时能产生感应电流呢? (师生讨论分析:左右、斜着运动时切割磁感线。上下运动或静止时不切割磁感线,所以不产生感应电流。) 通过此实验可以得出什么结论? 学生归纳、概括后,教师板书:

高二物理电磁感应测试题及答案

高二物理同步测试(5)—电磁感应 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试用时60分钟. 第Ⅰ卷(选择题,共40分) 一、选择题(每小题4分,共40分。在每小题给出的四个选项中,至少有一个选项是正确 的,全部选对得4分,对而不全得2分。) 1.在电磁感应现象中,下列说法正确的是 () A.感应电流的磁场总是跟原来的磁场方向相反 B.闭合线框放在变化的磁场中一定能产生感应电流 C.闭合线框放在匀强磁场中做切割磁感线运动,一定产生感应电流 D.感应电流的磁场总是阻碍原磁通量的变化 2. 为了利用海洋资源,海洋工作者有时根据水流切割地磁场所产生的感应电动势来测量 海水的流速.假设海洋某处的地磁场竖直分量为B=×10-4T,水流是南北流向,如图将两个电极竖直插入此处海水中,且保持两电极的连线垂直水流方向.若 两极相距L=10m,与两电极相连的灵敏电压表的读数为U=2mV,则海水 的流速大小为() A.40 m/s B.4 m/s C. m/s D.4×10-3m/s 3.日光灯电路主要由镇流器、起动器和灯管组成,在日光灯正常工作的情况下,下列说法正确的是() A.灯管点燃后,起动器中两个触片是分离的 B.灯管点燃后,镇流器起降压和限流作用 C.镇流器在日光灯开始点燃时,为灯管提供瞬间高压 D.镇流器的作用是将交变电流变成直流电使用 4.如图所示,磁带录音机既可用作录音,也可用作放音,其主要部件为

可匀速行进的磁带a 和绕有线圈的磁头b ,不论是录音或放音过程,磁带或磁隙软铁会存在磁化现象,下面对于它们在录音、放音过程中主要工作原理的说法,正确的是 ( ) A .放音的主要原理是电磁感应,录音的主要原理是电流的磁效应 B .录音的主要原理是电磁感应,放音的主要原理是电流的磁效应 C .放音和录音的主要原理都是磁场对电流的作用 D .放音和录音的主要原理都是电磁感应 5.两圆环A 、B 置于同一水平面上,其中A 为均匀带电绝缘环,B 为导 体环,当A 以如图所示的方向绕中心转动的角速度发生变化时,B 中产生如图所示方向的感应电流。则( ) A .A 可能带正电且转速减小 B .A 可能带正电且转速增大 C .A 可能带负电且转速减小 D .A 可能带负电且转速增大 6.为了测出自感线圈的直流电阻,可采用如图所示的电路。在测量完毕后将电路解体时应该( ) A .首先断开开关S 1 B .首先断开开关S 2 C .首先拆除电源 D .首先拆除安培表 7.如图所示,圆形线圈垂直放在匀强磁场里,第1秒内磁场方向指向纸里,如图(b ).若磁感应强度大小随时间变化的关系如图(a ),那么,下面关于线圈中感应电流的说法正确的是 ( ) A .在第1秒内感应电流增大,电流方向为逆时针 B .在第2秒内感应电流大小不变,电流方向为顺时针 C .在第3秒内感应电流减小,电流方向为顺时针 D .在第4秒内感应电流大小不变,电流方向为顺时针 8.如图所示,xoy 坐标系第一象限有垂直纸面向外的匀强磁 场,第 x y o a b

高中物理电磁学经典例题

高中物理典型例题集锦 (电磁学部分) 25、如图22-1所示,A、B为平行金属板,两板相距为d,分别与电源两极相连,两板 的中央各有小孔M、N。今有一带电质点,自A板上方相距为d的P点由静止自由下落(P、M、N三点在同一竖直线上),空气阻力不计,到达N点时速度恰好 为零,然后按原路径返回。若保持两板间的电压不变,则: A.若把A板向上平移一小段距离,质点自P点下落仍能返回。 B.若把B板向下平移一小段距离,质点自P点下落仍能返回。 C.若把A板向上平移一小段距离,质点自P点下落后将穿过 N孔继续下落。 图22-1 D.若把B板向下平移一小段距离,质点自P点下落后将穿过N 孔继续下落。 分析与解:当开关S一直闭合时,A、B两板间的电压保持不变,当带电质点从M向N 运动时,要克服电场力做功,W=qU AB,由题设条件知:带电质点由P到N的运动过程中,重力做的功与质点克服电场力做的功相等,即:mg2d=qU AB 若把A板向上平移一小段距离,因U AB保持不变,上述等式仍成立,故沿原路返回, 应选A。 若把B板下移一小段距离,因U AB保持不变,质点克服电场力做功不变,而重力做功 增加,所以它将一直下落,应选D。 由上述分析可知:选项A和D是正确的。 想一想:在上题中若断开开关S后,再移动金属板,则问题又如何(选A、B)。 26、两平行金属板相距为d,加上如图23-1(b)所示的方波形电压,电压的最大值为U0,周期为T。现有一离子束,其中每个 离子的质量为m,电量为q,从与两板 等距处沿着与板平行的方向连续地射 入两板间的电场中。设离子通过平行 板所需的时间恰为T(与电压变化周图23-1 图23-1(b)

高考物理二轮复习 交变电流和电磁感应专题训练

高考物理二轮复习 交变电流和电磁感应专题训练 一.单项选择题 1.路上使用—种电磁装置向控制中心传输信号以确定火车的位置和速度, 安放在火车首节车厢下面的磁铁能产生匀强磁场,如图 (俯视图).当它经过安放在两铁轨间的线圈时,便会产 一电信号,被控制中心接收.当火车以恒定速度通过线时, 表示线圈两端的电压U ab 随时间变化关系的图像是:( ) 2.如图3所示,电源的电动势为E ,内阻r 不能忽略。A 、B 是两个相同的小灯泡,L 是一个自感系数相当大的线圈。关于这个电路的以下说法正确的是 ( ) A .开关闭合到电路中电流稳定的时间内,A 灯立刻亮,而后逐渐变暗,最后亮度稳定 B .开关闭合到电路中电流稳定的时间内,B 灯立刻亮,而后逐渐变/暗,最后亮度稳定 C .开关由闭合到断开瞬间,A 灯闪亮一下再熄灭 D .开关由闭合到断开瞬间,电流自左向右通过A 灯 3.如图所示,垂直纸面向里的匀强磁场的区域宽度为2a ,磁感应强度的大小为B 。一边长为a 、电阻为4R 的正方形均匀导线框ABCD 从图示位置沿水平向右方向以速度v 匀速穿过两磁场区域,在下图中线框A 、B 两端电压U AB 与线框移动距离x 的关系图象正确的是( ) 4.如图11所示,一光滑平行金属轨道平面与水平面成θ角,两导轨上端用一电阻R 相连,该装置处于匀强磁场中,磁场方向垂直轨道平面向上。质量为m 的金属杆ab ,以初速度v 0从轨道底端向上滑行,滑行到某一高度h 后又返回到底端。若运动过程中,金属杆保持与导轨垂直且接触良好,并不计金属杆ab 的电阻及空气阻力,则( ) A .上滑过程中安培力的冲量比下滑过程大 B .上滑过程通过电阻R 的电量比下滑过程多 到控制中心 图3 S 甲 A -34 B 3a a 2a x C x 3a a 2a 乙 图8 U AB 3a a 2a O x Bav/ 3Bav/ U AB U AB Bav/ U AB 3a a 2a O x Bav/ 3Bav/ Bav D h a b R v 0

苏州市蓝缨学校高二物理《电磁感应定律应用》教案

【基本概念与基本规律】 5.比较感生电动势与动生电动势 感生电动势 动生电动势 含 义 由于磁场发生变化而在回路 中产生的感应电动势 表示长为l 的导体(无论闭合与否)做切割磁感线运动时产生的感应电动势 大 小 t n E ??Φ= BLv E = 非静电力 感应电场力 洛仑兹力 方 向 只能用楞次定律判别 可以用右手定则,也可用楞次定律判别 6.注意区别:磁通量Φ、磁通量的变化?Φ、磁通量的变化率t ??Φ。 ⑴Φ是状态量,是闭合回路在某时刻(某位置)穿过回路的磁感线的条数,当磁场与回路平面垂直时,BS =Φ。 ⑵?Φ是过程量,是表示回路从某一时刻变化到另一时刻磁通量的增量,即12Φ-Φ=?Φ。 ⑶ t ??Φ表示磁通量的变化快慢,即单位时间内磁通量的变化,称磁通量的变化率。 ⑷上述三个物理量的大小没有直接关系,这一点与运动学中v 、v ?, t v ??三者相似。 【例1】(2006天津)在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,规定线圈中感应电流的正方向如图 1所示,当磁场的磁感应强度 B 随时间 t 图 图

如图 2变化时,图 3中正确表示线圈中感应电动势 E 变化的是( ) 【例2】如图所示,一边长为L 的正方形金属框,质量为m ,电阻为R ,用细线把它悬挂在一个有界的磁场边缘,金属框的上半部处于磁场内,下半部处于磁场外,磁场随时间均匀变化且满足B =kt 规律.已知细线所能承受的最大拉力T =2mg ,求从t =0时刻起,经多长时间细线会被拉断. 二、导体切割磁感线产生感应电动势计算 1.导体切割磁感线产生感应电动势的大小:θsin Blv E = ⑴上式适用导体平动,l 垂直v 、B 。 ⑵公式中L 是导体切割磁感线的有效长度。θ是v 与B 的方向夹角,若θ=90°(v ⊥B )时,则E=BLv ;若θ=0°(v ∥B )时,则E=0。 2.切割运动的若干图景: ① 部分导体在匀强磁场中的相对平动切割 ②部分导体在匀强磁场中的匀速转动切割 图

(完整版)高中物理电磁感应习题及答案解析

高中物理总复习—电磁感应 本卷共150分,一卷40分,二卷110分,限时120分钟。请各位同学认真答题,本卷后附答案及解析。 一、不定项选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不答的不得分. 1.图12-2,甲、乙两图为与匀强磁场垂直放置的两个金属框架,乙图除了一个电阻为零、自感系数为L的线圈外,其他部分与甲图都相同,导体AB以相同的加速度向右做匀加速直线运动。若位移相同,则() A.甲图中外力做功多B.两图中外力做功相同 C.乙图中外力做功多D.无法判断 2.图12-1,平行导轨间距为d,一端跨接一电阻为R,匀强磁场磁感强度为B,方向与导轨所在平面垂直。一根足够长的金属棒与导轨成θ角放置,金属棒与导轨的电阻不计。当金属棒沿垂直于棒的方向以速度v滑行时,通过电阻R的电流强度是() A. Bdv R B.sin Bdv R θ C.cos Bdv R θ D. sin Bdv Rθ 3.图12-3,在光滑水平面上的直线MN左侧有垂直于纸面向里的匀强磁场,右侧是无磁场空间。将两个大小相同的铜质矩形闭合线框由图示位置以同样的速度v向右完全拉出匀强磁场。已知制作这两只线框的铜质导线的横截面积之比是1:2.则拉出过程中下列说法中正确的是()A.所用拉力大小之比为2:1 B.通过导线某一横截面的电荷量之比是1:1 C.拉力做功之比是1:4 D.线框中产生的电热之比为1:2 4.图12-5,条形磁铁用细线悬挂在O点。O点正下方固定一 个水平放置的铝线圈。让磁铁在竖直面内摆动,下列说法中正确的 是() R v a b θ d 图12-1 M N v B 图12-3

高三物理电磁感应知识点

届高三物理电磁感应知识点 物理二字出现在中文中,是取格物致理四字的简称,即考察事物的形态和变化,总结研究它们的规律的意思。小编准备了高三物理电磁感应知识点,具体请看以下内容。 1.电磁感应现象 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过

该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍 原电流的变化(自感)。 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=n/t

高中物理人教版(电磁感应)教案与典型例题解析

高中物理人教版(电磁感应)教案与典型例题解析 4.1 划时代的发现 教学目标 (一)知识与技能 1.知道与电流磁效应和电磁感应现象的发现相关的物理学史。 2.知道电磁感应、感应电流的定义。 (二)过程与方法 领悟科学探究中提出问题、观察实验、分析论证、归纳总结等要素在研究物理问题时的重要性。 (三)情感、态度与价值观 1.领会科学家对自然现象、自然规律的某些猜想在科学发现中的重要性。 2.以科学家不怕失败、勇敢面对挫折的坚强意志激励自己。 教学重点、难点 教学重点 知道与电流磁效应和电磁感应现象的发现相关的物理学史。领悟科学探究的方法和艰难历程。培养不怕失败、勇敢面对挫折的坚强意志。 教学难点 领悟科学探究的方法和艰难历程。培养不怕失败、勇敢面对挫折的坚强意志。 教学方法 教师启发、引导,学生自主阅读、思考,讨论、交流学习成果。 教学手段 计算机、投影仪、录像片 教学过程 一、奥斯特梦圆“电生磁”------电流的磁效应 引导学生阅读教材有关奥斯特发现电流磁效应的内容。提出以下问题,引导学生思考并回答: (1)是什么信念激励奥斯特寻找电与磁的联系的?在这之前,科学研究领域存在怎样的历史背景? (2)奥斯特的研究是一帆风顺的吗?奥斯特面对失败是怎样做的? (3)奥斯特发现电流磁效应的过程是怎样的?用学过的知识如何解释? (4)电流磁效应的发现有何意义?谈谈自己的感受。 学生活动:结合思考题,认真阅读教材,分成小组讨论,发表自己的见解。 二、法拉第心系“磁生电”------电磁感应现象 教师活动:引导学生阅读教材有关法拉第发现电磁感应的内容。提出以下问题,引导学生思考并回答: (1)奥斯特发现电流磁效应引发了怎样的哲学思考?法拉第持怎样的观点? (2)法拉第的研究是一帆风顺的吗?法拉第面对失败是怎样做的? (3)法拉第做了大量实验都是以失败告终,失败的原因是什么? (4)法拉第经历了多次失败后,终于发现了电磁感应现象,他发 1

(完整版)高二物理电磁感应知识点

一、电磁感应现象 1、产生感应电流的条件 感应电流产生的条件是:穿过闭合电路的磁通量发生变化。 以上表述是充分必要条件。不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。 2、感应电动势产生的条件。 感应电动势产生的条件是:穿过电路的磁通量发生变化。 这里不要求闭合。无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。这好比一个电源:不论外电路是否闭合,电动势总是存在的。但只有当外电路闭合时,电路中才会有电流。 3、关于磁通量变化 在匀强磁场中,磁通量Φ=B?S?sinα(α是B与S的夹角),磁通量的变化ΔΦ=Φ2-Φ1有多种形式,主要有: ①S、α不变,B改变,这时ΔΦ=ΔB S sinα ②B、α不变,S改变,这时ΔΦ=ΔS B sinα ③B、S不变,α改变,这时ΔΦ=BS(sinα2-sinα1) 二、楞次定律 1、内容:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化. 在应用楞次定律时一定要注意:“阻碍”不等于“反向”;“阻碍”不是“阻止”。 A、从“阻碍磁通量变化”的角度来看,无论什么原因,只要使穿过电路的磁通量发生了变化,就一定有感应电动势产生。 B、从“阻碍相对运动”的角度来看,楞次定律的这个结论可以用能量守恒来解释:既然有感应电流产生,就有其它能转化为电能。又由于感应电流是由相对运动引起的,所以只能是机械能转化为电能,因此机械能减少。磁场力对物体做负功,是阻力,表现出的现象就是“阻碍”相对运动。 C、从“阻碍自身电流变化”的角度来看,就是自感现象。自感现象中产生的自感电动势总是阻碍自身电流的变化。 2、实质:能量的转化与守恒. 3、应用:对阻碍的理解:(1)顺口溜“你增我反,你减我同”(2)顺口溜“你退我进,你进我退”即阻碍相对运动的意思。“你增我反”的意思是如果磁通量增加,则感应电流的磁场方向与原来的磁场方向相反。“你减我同”的意思是如果磁通量减小,则感应电流的磁场方向与原来的磁场方向相同。 用以判断感应电流的方向,其步骤如下: 1)确定穿过闭合电路的原磁场方向; 2)确定穿过闭合电路的磁通量是如何变化的(增大还是减小); 3)根据楞次定律,确定闭合回路中感应电流的磁场方向; 4)应用安培定则,确定感应电流的方向. 三、法拉第电磁感应定律 1、定律内容:感应电动势大小决定于磁通量的变化率的大小,与穿过这一电路

(完整版)高中物理电磁学知识点

二、电磁学 (一)电场 1、库仑力:2 2 1r q q k F = (适用条件:真空中点电荷) k = 9.0×109 N ·m 2/ c 2 静电力恒量 电场力:F = E q (F 与电场强度的方向可以相同,也可以相反) 2、电场强度: 电场强度是表示电场强弱的物理量。 定义式: q F E = 单位: N / C 点电荷电场场强 r Q k E = 匀强电场场强 d U E = 3、电势,电势能: q E A 电=?,A q E ?=电 顺着电场线方向,电势越来越低。 4、电势差U ,又称电压 q W U = U AB = φA -φB 5、电场力做功和电势差的关系: W AB = q U AB 6、粒子通过加速电场: 22 1mv qU = 7、粒子通过偏转电场的偏转量: 2 02 2022212121V L md qU V L m qE at y = == 粒子通过偏转电场的偏转角 20 mdv qUL v v tg x y = = θ 8、电容器的电容: c Q U = 电容器的带电量: Q=cU 平行板电容器的电容: kd S c πε4= 电压不变 电量不变

(二)直流电路 1、电流强度的定义:I = 微观式:I=nevs (n 是单位体积电子个数,) 2、电阻定律: 电阻率ρ:只与导体材料性质和温度有关,与导体横截面积和长度无关。 单位:Ω·m 3、串联电路总电阻: R=R 1+R 2+R 3 电压分配 2 12 1R R U U =,U R R R U 2 11 1 += 功率分配 2 12 1R R P P =,P R R R P 2 11 1+= 4、并联电路总电阻: 3 2 1 1111R R R R ++= (并联的总电阻比任何一个分电阻小) 两个电阻并联 2 121R R R R R += 并联电路电流分配 122 1 I R I R =,I 1= I R R R 2 12 + 并联电路功率分配 1 22 1R R P P =,P R R R P 2 12 1+= 5、欧姆定律:(1)部分电路欧姆定律: 变形:U=IR (2)闭合电路欧姆定律:I = r R E + Ir U E += E r 路端电压:U = E -I r= IR 输出功率: = IE -I r = (R = r 输出功率最大) R 电源热功率: 电源效率: =E U = R R+r 6、电功和电功率: 电功:W=IUt 焦耳定律(电热)Q= 电功率 P=IU 纯电阻电路:W=IUt= P=IU 非纯电阻电路:W=IUt > P=IU > S l R ρ=

相关文档
相关文档 最新文档