文档视界 最新最全的文档下载
当前位置:文档视界 › 经典液相色谱法练习题(附答案)

经典液相色谱法练习题(附答案)

经典液相色谱法练习题(附答案)
经典液相色谱法练习题(附答案)

填空题

1.硅胶具有微酸性,适用于分离____酸性或中性______物质的分离。

2.以聚酰胺为吸附剂时,通常用__极性溶剂_______作流动相。

3.在一定范围内离子交换树脂的交联度越大,则交换容量_小__,组分的保留时间__短__。

4.吸附剂的含水量越高,则吸附性能越__弱__。

选择题

1.以硅胶为吸附剂的柱色谱分离极性较弱的物质时,宜选用(B )

A.极性较强的流动相

B.活性较高的吸附剂和极性较弱的流动相

C.活性较低的吸附剂和极性较弱的流动相

D.活性较高的吸附剂和极性较高的流动相

2.离子交换树脂的交联度越大则(B)

A.形成网状结构紧密、网眼大、选择性好

B.形成网状结构紧密、网眼小、选择性好

C.交换容量越小

D.组分保留时间越短

3.样品中各组分的流出柱的顺序与流动相性质无关的是(D)

A.离子交换色谱

B.聚酰胺色谱

C.吸附色谱

D.凝胶色谱

4.在反相色谱法中,若以甲醇-水为流动相,增加甲醇的比例时,组分的容量因子k与保留时间t R,将如何变化(B)

A.k与t R增大

B.k与t R减小

C.k增大,t R减小

D.t R增大,k减小

5.色谱用氧化铝(A)

A.活性的强弱用活度级I~V表示,活度V级吸附力最弱

B.活性的强弱用活度级I~V表示,活度V级吸附力最强

C.中性氧化铝适于分离非极性物质

D.活性与含水量无关

6.液相色谱中,固定相极性大于流动相极性属于(B)

A.键合相色谱

B.正相色谱

C.反相色谱

D.离子交换色谱

7.凝胶色谱中,分子量较大的组分比分子量较小的组分(A)

A.先流出色谱柱

B.后流出色谱柱

C.几乎同时流出

D.在色谱柱一样

8.色谱所用的氧化铝(C)

A.有碱性和酸性二种,其中碱性使用最多

B.有碱性和酸性二种,其中酸性使用最多

C.有碱性、中性和酸性三种,而中性氧化铝使用最多

D.有碱性、中性和酸性三种,而碱性氧化铝使用最多

E.有碱性、中性和酸性三种,而酸性氧化铝使用最多

简答题

1.用硅胶柱色谱分离极性较强的物质时,吸附剂与流动相的选择原则是什么?

为什么?

答:选择弱吸附剂,与极性强的流动相

原因:略

2.根据分离机制不同将液相柱色谱法分类。

3.简述经典柱色谱的操作步骤。

1.薄层色谱法中,流动相中适当加入少量酸或碱的目的是防止斑点拖尾。

2.薄层色谱定性的依据是相同组分在相同条件下展开得到的R f值相

同。

选择题

1.关于Rf值,下列说法正确的是(D)

A.Rf =L0/Lx

B.Rf越大的物质的分配系数越大

C.物质的Rf值与色谱条件无关

D.物质的Rf值在一定色谱条件下为一定值

E.Rf可以小于1,可也大于1

2.用薄层色谱分离生物碱时,有拖尾现象,为减少拖尾,可加入少量的(A)A.二乙胺

B.甲酸

C.石油醚

D.正己烷

3.硅胶GF254表示硅胶中(C)

A.不含粘合剂

B.不含荧光剂

C.含有荧光剂,在254nm紫外光下呈荧光背景

D.含有荧光剂,在254nm紫外光下呈暗色背景

4.纸层析的分离原理及固定相分别是(B)

A.吸附层析,固定相是纸纤维

B.分配层析,固定相是纸上吸附的水

C.分配层析,固定相是纸

D.吸附层析,固定相是纸上吸附的水

简答题

1.简述薄层色谱的操作步骤。

2.简述薄层色谱中,影响R f值的因素。

吸附剂的活性,展开剂的极性,实验条件(温度,湿度等)

3.什么是边缘效应?如何克服?

4.简述薄层色谱定性的依据与方法。

5.薄层色谱的显色方法有哪些?

讨论题

在液相柱色谱中,如何根据待分离的样品选择固定相和流动相。

第十八章高效液相色谱法

第十八章高效液相色谱法 15.外标法测定黄芩颗粒剂中黄芩苷含量:色谱柱为 Zirchrom C8柱(20cm X 4.6mn , 5um );流动相为乙腈-甲醇-水(含0.5%三乙胺,磷酸调pH3.0)(28: 18: 54);以黄芩苷 对 照品配成浓度范围为10.3?144.2ug/ml 的对照品溶液。进样,测得黄芩苷峰面积,以峰 面积和对照品浓度求得回归方程为: A=1.168 X 105C -1.574 X 103 , r=0.9998.精密称取黄芩 颗粒0.1255g ,置于50ml 量瓶中,用70%甲醇溶解并定容至刻度,摇匀,精密量取 1ml 于 10ml 量瓶中,30%甲醇定容到刻度,摇匀即得供试品溶液。平行测定供试品溶液和对照品溶 液 (61.8ug/ml ),得峰面积分别为 4250701,5997670. 16 .校正因子法测定复方炔诺酮片中炔雌醇的含量: ODS 色谱柱;甲醇-水(60:40)流动相;检测器UV280nm 对硝基甲苯为内标物。 (1)校正因子的测定:取对硝基甲苯(内标物) 、炔诺酮和炔雌醇对照品适量,用甲醇制成 10ml 溶液,进 样10ul ,记录色谱图。重复三次。测得含 0.0733mg/ml 内标物、0.600mg/ml 炔诺酮和0.035mg/ml 炔雌醇的对照 品溶液平均峰面积列于表 18-6。 (2)试样测定:取本品 20片,精密称定,求出平均片重(60.3mg/片)。研细后称取732.8mg (约相当于炔 诺酮7.2mg ),用甲醇配制成10ml 供试品溶液(含内标物 0.0733mg/ml )。测得峰面积列于表 18-6。 表18-6复方炔诺酮片中各成分及内标物平均峰面积( u v ? s ) 炔诺酮 炔雌醇 内标物 对照品溶液 1.981 X 106 5 1.043 X 10 5 6.587 X 10 供试品溶液 6 2.442 X 10 1.387 X 10 6.841 X 10 m 醇 /A 醇 0.035 10/(1.043 105 ) 302 m s /A s 0.0733 10/(6.587 105 ) 试样含炔雌醇的量: r A 醇 c cc " 1.387 105 c 八 c/ \ m 醇 f 醇 m s 3.02 0.0733 10 0.449(mg) A s 6.841 105 每片含炔雌醇的量: 0 449 , 0.449 60.3 (0.0369mg/ 片) 17.测定生物碱试样中黄连碱和小檗碱的含量,称取内标物、黄连碱和小檗碱对照品 解: c 样 /10 4250701 61.8 5997670 w% 50c 样 10 6 100% 17.4% 0.1255 A 样

经典液相色谱法习题

第10章经典液相色谱法习题 (一)选择题 单选题 1.组分在固定相中的质量为m A(g),在流动相中的质量为m B(g),而该组分在固定相中的浓度为c A(g/mL),在流动相中的浓度为C B(g/mL),则此组分的分配系数是( )。 A m A/m B B m B/m A C m A/(m A +m B) D C A/C B 2.在柱色谱法中,可以用分配系数为零的物质来测定色谱柱中的( )。 A 流动相的体积(相当于死体积) B 填料的体积 C 填料孔隙的体积 D 总体积 3.在以硅胶为固定相的吸附柱色谱中,正确的说法是( )。 A 组分的极性越强.被固定相吸附的作用越强 B 物质的相对分子质量越大,越有利于吸附 C 流动相的极性越强,组分越容易被固定相所吸附 D 吸附剂的活度级数越小,对组分的吸附力越大 4.纸色谱法与薄层色谱法常用正丁醇-乙酸-水(4:1:5,体积比)作为展开剂,正确的操作方法是( )。 A 三种溶剂混合后直接用作展开剂 B 三种溶剂混合、静置分层后,取上层作展开剂 C 三种溶剂混合,静置分层后,取下层作展开剂 D 依次用三种溶剂作展开剂 5.离子交换色谱法中,对选择性无影响的因素是( ). A 树脂的交联度 B 树脂的再生过程 C 样品离子的电荷 D 样品离子的水合半径 6.下列说法错误的是( )。 A 用纸色谱分离时,样品中极性小的组分R f值大 B 用反相分配薄层时,样品中极性小的组分R f值小 C 用凝胶色谱法分离,样品中相对分子质量小的组分先被洗脱下来 D 用离子交换色谱时,样品中高价离子后被洗脱下来 7.在一硅胶薄板上用不同的溶剂系统分离咖啡碱和氯原酸,结果如下,从中选出最好的溶剂系统是( )。 A 氯仿-丙酮(8:2):咖啡碱的R f为0.1,氯原酸的R f为0.0 B 氯仿-丙酮-甲醇-乙酸(7:2:1.5:0.5):咖啡碱的R f为0.48,氯原酸的R f为O.05

高效液相色谱法简介

高效液相色谱法简介 “色谱”一词是由俄国科学家斯威特提出的。色谱法是基于补充物质在相对运动物的两相之间分布时,物理或物理化学性质的微小的差异而使混合物相互分离的一类分离或分析方法。发展与上世纪初,飞速发展于五十年代,有超过30位科学家家因为它而获得诺贝尔奖,其有自己的理论和研究方法,同时也有众多的应用领域。 色谱法常见的方法有:柱色谱法、薄层色谱法、气相色谱法、高效液相色谱法等。 柱色谱:柱色谱法是最原始的色谱方法,这种方法将固定相注入下端塞有棉花或滤纸的玻璃管中,将被样品饱和的固定相粉末摊铺在玻璃管顶端,以流动相洗脱。常见的洗脱方式有两种,一种是自上而下依靠溶剂本身的重力洗脱,一种是自下而上依靠毛细作用洗脱。收集分离后的纯净组分也有两种不同的方法,一种方法是在柱尾直接接受流出的溶液,另一种方法是烘干固定相后用机械方法分开各个色带,以合适的溶剂浸泡固定相提取组分分子。柱色谱法被广泛应用于混合物的分离,包括对有机合成产物、天然提取物以及生物大分子的分离。 薄层色谱:薄层色谱法是应用非常广泛的色谱方法,这种色谱方法将固定相图布在金属或玻璃薄板上形成薄层,用毛细管、钢笔或者其他工具将样品点染于薄板一端,之后将点样端浸入流动相中,依靠毛细作用令流动相溶剂沿薄板上行展开样品。薄层色谱法成本低廉操作简单,被用于对样品的粗测、对有机合成反应进程的检测等用途。

气相色谱:GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离。待分析样品在汽化室汽化后被惰性气体(即载气,也叫流动相)带入色谱柱,柱内含有液体或固体流动相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。但由于载气是流动的,这种平衡实际上很难建立起来。也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解吸附,结果是在载气中浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。当组分流出色谱柱后,立即进入检测器。检测器能够将样品组分的与否转变为电信号,而电信号的大小与被测组分的量或浓度成正比。当将这些信号放大并记录下来时,就是气相色谱图了。气相色谱被广泛应用于小分子量复杂组分物质的定量分析。 高效液相色谱:高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9-107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。高效液相色谱(HPLC)是目前应用最多的色谱分析方法,高效液相色谱系统由流动相储液体瓶、输液泵、进样器、色谱柱、检测器和记录器组成,其整体组成类似于气相色谱,但是针对其流动相为液体的特点作出很多调整。HPLC的输液泵要求输液量恒定平稳;进样系统要求进样便利切换严密;由于液体流动相粘度远远高于气体,为了减低柱压高效

第16章高效液相色谱法

第16章高效液相色谱法 【16-1】从分类原理、仪器构造及应用范围,简述气相色谱及液相色谱的异同点。 答:二者都是根据样品组分与流动相和固定相相互作用力的差别进行分离的。 从仪器构造上看,液相色谱需要增加高压泵以提高流动相的流动速度,克服阻力。同时液相色谱所采用的固定相种类要比气相色谱丰富的多,分离方式也比较多样。气相色谱的检测器主要采用热导检测器、氢焰检测器和火焰光度检测器等。而液相色谱则多使用紫外检测器、荧光检测器及电化学检测器等。但是二者均可与MS等联用。 二者均具分离能力高、灵敏度高、分析速度快,操作方便等优点,但沸点太高的物质或热稳定性差的物质难以用气相色谱进行分析。而只要试样能够制成溶液,既可用于HPLC分析,而不受沸点高、热稳定性差、相对分子量大的限制。 【16-2】高效液相色谱仪由几大部分构成?各部分的主要功能是什么? 答:高效液相色谱仪由高压输液系统,进样系统,分离系统,检测系统和记录系统五大部分组成。高压输液系统:主要是通过高压输液泵将溶剂储存器中的流动相以高压形式连续不断地送入液路系统,使试样在色谱柱中完成分离过程。 进样系统:把分析试样有效地送入色谱柱中进行分离。 分离系统:将试样各组分分离开来。 检测系统:对被分离组分的物理或物化特性有响应;对试样和洗脱液总的物理或化学性质有响应。记录系统:记录被分离组分随时间变化的信号。 【16-3】液相色谱中影响色谱峰展宽的因素有哪些? 与气相色谱相比其主要区别何在? 答:液相色谱中引起色谱峰扩展的主要因素为涡流扩散、流动的流动相传质、滞留的流动相传质以及柱外效应。在气相色谱中径向扩散往往比较显著,而液相色谱中径向扩散的影响较弱,往往可以忽略。另外,在液相色谱中还存在比较显著的滞留流动相传质及柱外效应。 【16-4】何谓化学键合相色谱、正相色谱和反相色谱? 答:化学键合相色谱是指在化学键合固定相上进行物质分离的一种液相色谱法。 正相色谱是采用极性键和固定相流的相用比键合相极性小的非极性或弱极性有机溶剂。 反相色谱采用非极性键和固定相流的相为强极性的溶剂。 【16-5】何谓化学键合固定相?它的突出优点是什么? 答:利用化学反应将固定液的官能团键合在载体表面形成的固定相称为化学键合固定相。 优点: 固定相表面没有液坑,比一般液体固定相传质快的多;无固定相流失,增加了色谱柱的稳定性

(推荐)高效液相色谱法的分类及原理

高效液相色谱法的分类及其分离原理 高效液相色谱法分为:液-固色谱法、液-液色谱法、离子交换色谱法、凝胶色谱法。 1.液-固色谱法(液-固吸附色谱法) 固定相是固体吸附剂,它是根据物质在固定相上的吸附作用不同来进行分配的。 ①液-固色谱法的作用机制 吸附剂:一些多孔的固体颗粒物质,其表面常存在分散的吸附中心点。 流动相中的溶质分子X(液相)被流动相S带入色谱柱后,在随载液流动的过程中,发生如下交换反应: X(液相)+nS(吸附)<==>X(吸附)+nS(液相) 其作用机制是溶质分子X(液相)和溶剂分子S(液相)对吸附剂活性表面的竞争吸附。 吸附反应的平衡常数K为: K值较小:溶剂分子吸附力很强,被吸附的溶质分子很少,先流出色谱柱。 K值较大:表示该组分分子的吸附能力较强,后流出色谱柱。 发生在吸附剂表面上的吸附-解吸平衡,就是液-固色谱分离的基础。 ②液-固色谱法的吸附剂和流动相 常用的液-固色谱吸附剂:薄膜型硅胶、全多孔型硅胶、薄膜型氧化铝、全多孔型氧化铝、分子筛、聚酰胺等。 一般规律:对于固定相而言,非极性分子与极性吸附剂(如硅胶、氧化铜)之间的作用力很弱,分配比k较小,保留时间较短;但极性分子与极性吸附剂之间的作用力很强,分配比k大,保留时间长。 对流动相的基本要求: 试样要能够溶于流动相中 流动相粘度较小 流动相不能影响试样的检测 常用的流动相:甲醇、乙醚、苯、乙腈、乙酸乙酯、吡啶等。 ③液-固色谱法的应用 常用于分离极性不同的化合物、含有不同类型或不;数量官能团的有机化合物,以及有机化合物的不同的异构体;但液-固色谱法不宜用于分离同系物,因为液-固色谱对不同相对分子质量的同系物选择性不高。 2.液-液色谱法(液-液分配色谱法) 将液体固定液涂渍在担体上作为固定相。 ①液-液色谱法的作用机制 溶质在两相间进行分配时,在固定液中溶解度较小的组分较难进入固定液,在色谱柱中向前迁移速度较快;在固定液中溶解度较大的组分容易进入固定液,在色谱柱中向前迁移速度较慢,从而达到分离的目的。 液-液色谱法与液-液萃取法的基本原理相同,均服从分配定律:K=C固/C液 K值大的组分,保留时间长,后流出色谱柱。 ②正相色谱和反相色谱 正相分配色谱用极性物质作固定相,非极性溶剂(如苯、正己烷等)作流动相。 反相分配色谱用非极性物质作固定相,极性溶剂(如水、甲醇、己腈等)作流动相。

第十八章高效液相色谱法

第十八章高效液相色谱 法 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

第十八章 高效液相色谱法 15.外标法测定黄芩颗粒剂中黄芩苷含量:色谱柱为Zirchrom C8柱(20cm ×,5um );流动相为乙腈-甲醇-水(含%三乙胺,磷酸调)(28:18:54);以黄芩苷对照品配成浓度范围为~ml 的对照品溶液。进样,测得黄芩苷峰面积,以峰面积和对照品浓度求得回归方程为:A=××103,r=.精密称取黄芩颗粒,置于50ml 量瓶中,用70%甲醇溶解并定容至刻度,摇匀,精密量取1ml 于10ml 量瓶中,30%甲醇定容到刻度,摇匀即得供试品溶液。平行测定供试品溶液和对照品溶液(ml ),得峰面积分别为4250701,5997670. 解:标样标样 A A c =c 599767042507018.6110 /=样c %4.17%1001255.01050%6=??=-样c w 16.校正因子法测定复方炔诺酮片中炔雌醇的含量:ODS 色谱柱;甲醇-水(60:40)流动相;检测器UV280nm ;对硝基甲苯为内标物。 (1)校正因子的测定:取对硝基甲苯(内标物)、炔诺酮和炔雌醇对照品适量,用甲醇制成10ml 溶液,进样10ul ,记录色谱图。重复三次。测得含ml 内标物、ml 炔诺酮和ml 炔雌醇的对照品溶液平均峰面积列于表18-6。 (2)试样测定:取本品20片,精密称定,求出平均片重(片)。研细后称取(约相当于炔诺酮),用甲醇配制成10ml 供试品溶液(含内标物ml )。测得峰面积列于表18-6。 表18-6 复方炔诺酮片中各成分及内标物平均峰面积(u v ·s ) 解:02.3) 10587.6/(100733.0)10043.1/(10035.0A /m A /m f 55s s =????==醇 醇醇 试样含炔雌醇的量:)mg (449.010841.610387.1100733.002.3A A m f m 55s s =?????=? ?=醇 醇醇 每片含炔雌醇的量:)/mg 0369.0(3.608 .732449.0片=? 17.测定生物碱试样中黄连碱和小檗碱的含量,称取内标物、黄连碱和小檗碱对照品各 0.2000g 配成混合溶液。测得峰面积分别为, 和4.04cm 2。称取0.2400g 内标物和试样0.8560g 同法配制成溶液后,在相同色谱条件下测得峰面积为, 和4.54cm 2。计算试样中黄连碱和小檗碱的含量。

经典液相色谱法习题教学教材

经典液相色谱法习题

第10章经典液相色谱法习题(一)选择题 单选题 1.组分在固定相中的质量为m A (g),在流动相中的质量为m B (g),而该组分在固 定相中的浓度为c A(g/mL),在流动相中的浓度为C B(g/mL),则此组分的分配系数是( )。 A m A /m B B m B /m A C m A /(m A +m B ) D C A /C B 2.在柱色谱法中,可以用分配系数为零的物质来测定色谱柱中的 ( )。 A 流动相的体积(相当于死体积) B 填料的体积 C 填料孔隙的体积 D 总体积3.在以硅胶为固定相的吸附柱色谱中,正确的说法是( )。 A 组分的极性越强.被固定相吸附的作用越强 B 物质的相对分子质量越大,越有利于吸附 C 流动相的极性越强,组分越容易被固定相所吸附 D 吸附剂的活度级数越小,对组分的吸附力越大 4.纸色谱法与薄层色谱法常用正丁醇-乙酸-水(4:1:5,体积比)作为展开剂,正确的操作方法是( )。 A 三种溶剂混合后直接用作展开剂 B 三种溶剂混合、静置分层后,取上层作展开剂 C 三种溶剂混合,静置分层后,取下层作展开剂 D 依次用三种溶剂作展开剂 5.离子交换色谱法中,对选择性无影响的因素是( ). A 树脂的交联度 B 树脂的再生过程

C 样品离子的电荷 D 样品离子的水合半径 6.下列说法错误的是( )。 A 用纸色谱分离时,样品中极性小的组分R f 值大 B 用反相分配薄层时,样品中极性小的组分R f 值小 C 用凝胶色谱法分离,样品中相对分子质量小的组分先被洗脱下来 D 用离子交换色谱时,样品中高价离子后被洗脱下来 7.在一硅胶薄板上用不同的溶剂系统分离咖啡碱和氯原酸,结果如下,从中选出最好的溶剂系统是( )。 A 氯仿-丙酮(8:2):咖啡碱的R f 为0.1,氯原酸的R f 为0.0 B 氯仿-丙酮-甲醇-乙酸(7:2:1.5:0.5):咖啡碱的R f 为0.48,氯原酸的R f 为 O.05 C 正丁醇-乙酸-水(4:1:1):咖啡碱的R f 为0.68,氯原酸的R f 为0.42 D 正丁醇-乙酸-甲醇(4:1:2):咖啡碱的R f 为0.43,氯原酸的R f 为0.40 8.假如一个溶质的容量因子为0.1,则它在色谱柱的流动相中的百分率是( ) A 9.1% B 10% C 9 0% D 91% 9. 在液相色谱中,某组分的保留值大小实际反映了哪些部分的分子间作用力( ) A 组分与流动相 B 组分与固定相 C 组分与流动相和固定相 D 组分与组分 10. 在液相色谱中梯度洗脱最宜于分离( ) A 几何异构体 B 沸点相近、官能团相同的试样 C 沸点相差大的试样 D 容量因子(分配比)变化范围宽的试样 11. 指出哪个参数的改变会引起容量因子的增大( )

经典液相色谱法习题.docx

第 10 章 经典液相色谱法习题 一)选择题 单选题 1.组分在固定相中的质量为 m A (g) ,在流动相中的质量为 m B (g) ,而该组分在固定相中的浓 度为C A (g /mL),在流动相中的浓度为 Q(g /mL),则此组分的分配系数是( ) 。 A m A /m B B m B / m A C m A /(m A +m B ) D C A / C B 2.在柱色谱法中,可以用分配系数为零的物质来测定色谱柱中的 ( )。 A 流动相的体积 (相当于死体积 ) B 填料的体积 C 填料孔隙的体积 D 总体积 3.在以硅胶为固定相的吸附柱色谱中,正确的说法是 ( )。 A 组分的极性越强.被固定相吸附的作用越强 B 物质的相对分子质量越大,越有利于吸附 C 流动相的极性越强,组分越容易被固定相所吸附 D 吸附剂的活度级数越小,对组分的吸附力越大 4.纸色谱法与薄层色谱法常用正丁醇 -乙酸-水(4:1:5 ,体积比)作为展开剂, 正确的操作方 法是 ( ) 。 A 三种溶剂混合后直接用作展开剂 作展开剂 C 三种溶剂混合, 静置分层后, 取下层作展开剂 剂 5.离子交换色谱法中,对选择性无影响的因素是 A 树脂的交联度 C 样品离子的电荷 6.下列说法错误的是 ( )。 A 用纸色谱分离时,样品中极性小的组分 R f 值大 B 用反相分配薄层时,样品中极性小的组分 R f 值小 C 用凝胶色谱法分离,样品中相对分子质量小的组分先被洗脱下来 D 用离子交换色谱时,样品中高价离子后被洗脱下来 7.在一硅胶薄板上用不同的溶剂系统分离咖啡碱和氯原酸,结果如下,从中选出最好的溶 剂系统是 ( )。 A 氯仿 - 丙酮 (8:2) :咖啡碱的 R f 为 0.1 ,氯原酸的 R f 为 0.0 B 氯仿-丙酮-甲醇-乙酸(721.5:0.5):咖啡碱的R f 为0.48 ,氯原酸的R 为0.05 B 三种溶剂混合、静置分层后,取上层 D 依次用三种溶剂作展开 ( ). B 树脂的再生过程 D 样品离子的水合半径

实用高效液相色谱法的建立破解版

液相色谱方法开发(实例讲解) 2010? 未经许可,不得复制。转载请注明出处。 色谱分离与在线检测技术已经成为当今分析化学的一门重要学科,而因其衍生出的相关产品也日益丰富。对色谱工作者来说,在面对具体方法开发中如何获得适当的分离度则成为关注的焦点。本文仅从网络上的资源收集简要介绍反相液相色谱法的建立思路。 一、 基本术语基本术语 读者可跳过本部分内容,直接阅读实例讲解部分 在评价色谱分离的品质时,通常用以下相关术语来反映色谱特征(如图1.): 图1. 典型色谱图 1. 保留因子(k): t t t k R ?= (1) 用于反映化合物的色谱保留性质,跟化合物性质有密切关系。如图1,设t R1 =3.65min, t 0 =1.20min, 则峰1的保留因子为:(3.65-1.20)/1.20=2.04 2. 拖尾因子(T f )

液相色谱方法开发(实例讲解) 2010? 未经许可,不得复制。转载请注明出处。 a b a f W W W T 2+= (2) 图2. 典型拖尾峰 在理想情况下,色谱峰为高斯型对称峰,其拖尾因子为1.0,但在实际情况中,由于化合物的二次保留等其他因素,色谱峰大多会呈现一定程度的拖尾。如图2中,该色谱峰的拖尾因子可计算得:{(41.5-37.0)+(37.0-35.0)}/{2*(37.0-35.0)}=1.63. 3. 理论塔板数(N )

液相色谱方法开发(实例讲解) 2010? 未经许可,不得复制。转载请注明出处。 图3. 峰高与峰宽的关系 2(16W t N R = (3) 或 2( 54.55 .0W t N R = (4) 注意:在上式中W 为图3中的W b ,为基线峰宽(4σ),W 0.5 为峰高一半处的峰宽W h (2.335σ), 并非峰宽的一半(2σ)。 设图1中峰1的基线峰宽为0.25min, 则塔板数为:16*(3.65/0.25)^2=3410 4. 分离因子(α) 10 212t t t t k k R R ??= =α (5) 又称两个色谱峰的相对保留值。只有当α>1时,两个色谱峰才有分离的可能性。 设在图1中峰2的保留时间为6.50min, 则分离因子为: (6.50-1.20)/(3.65-1.20)=2.16

高效液相色谱法习题答案

第二十章高效液相色谱法 思考题和习题 1.简述高效液相色谱法和气相色谱法的主要异同点。 相同点:均为高效、高速、高选择性的色谱方法,兼具分离和分析功能,均可以在线检测 不同点: 2.何谓化学键合相?常用的化学键合相有哪几种类型?分别用于哪些液相色谱法中? 采用化学反应的方法将固定液键合在载体表面上,所形成的填料称为化学键合相。优点是使用过程不流失,化学性能稳定,热稳定性好,适于作梯度淋洗。 目前常用的Si-O-Si-C型键合相,按极性分为非极性,中等极性与极性三类。①非极性键合相:常见如ODS键合相,既有分配又有吸附作用,用途非常广泛,用于分析非极性或弱极性化合物;②中等圾性键合相:常见的有醚基键合相,这种键合相可作正相或反相色谱的固定相,视流动相的极性而定:③极性键合相:常用氨基、氰基键合相,用作正相色谱的固定相,氨基键合相还是分离糖类最常用的固定相。 3.什么叫正相色谱?什么叫反相色谱?各适用于分离哪些化合物? 正相色谱法:流动相极性小于固定相极性的色谱法。用于分离溶于有机溶剂的极性及中等极性的分子型物质,用于含有不同官能团物质的分离。 反相色谱法:流动相极性大于固定相极性的色谱法。用于分离非极性至中等极性的分子型化合物。 4.简述反相键合相色谱法的分离机制。 典型的反相键合色谱法是用非极性固定相和极性流动相组成的色谱体系。固定相,常用十八烷基(ODS或C18)键合相;流动相常用甲醇-水或乙腈-水。非典型反相色谱系统,用弱极性或中等极性的键合相和极性大于固定相的流动相组成。 反相键合相表面具有非极性烷基官能团,及未被取代的硅醇基。硅醇基具有吸附性能,剩余硅醇基的多寡,视覆盖率而定。对于反相色谱的分离机制 目前,保留机制还没有一致的看法,大致有两种观点,一种认为属于分配色谱,另一种认为属于吸附色谱。分配色谱的作用机制是假设混合溶剂(水十有机溶剂)中极性弱的有机溶剂吸附于非极性烷基配合基表面,组分分子在流动相中与被非极性烷基配合基所吸附的液相中进行分配。吸附色谱的作用机制可用疏溶剂理论来解释。这种理论把非极性的烷基键合相,看作是在硅胶表面上覆盖了一层键合的十八烷基的"分子毛",这种"分子毛'有强的疏水特性。当用水与有机溶剂所组成的极性溶剂为流动相来分离有机化合物时,一方面,非极性组分分子或组分分子的非极性部分,由于疏溶剂作用,将会从水中被"挤"出来,与固定相上的疏水烷基之间产生缔合作用,其结果使组分分子在固定相得到保留。另一方面,被分离物的极性部分受到极性流动相的作用,使它离开固定相,减小保留值,此即解缔过程,显然,这两种作用力之差,决定了分子在色谱中的保留行为。一般说来,固定相上的烷基配合基或被分离分子中非极性部分的表面积越

分析化学答案第18章 经典液相色谱法

第18章 经典液相色谱法 思考题 3. 已知某混合物试样A 、B 、C 三组分的分配系数分别为440、480、520,三组分在薄层色谱上R f 值的大小顺序如何? 解: ∵m s f V V K R +=11 ,Vs 、Vm 一定,K 越大,R f 越小。 ∴ R fA > R fB > R Fc 习题 1. 假如一个溶质的分配比为0.2,求它在色谱流动相中的百分率是多少。 解:∵ 2.0==m s W W k %3.83%1002 .011%100=?+=?+=s m m W W W A 2. 一根色谱柱长10cm,流动相流速为0.01cm/s ,组分A 的洗脱时间为40min ,A 在流动相 中消耗多少时间? 解:min 7.1660 01.0100=?==u L t 即A 在流动相中消耗的时间为16.7min. 3. 已知A 与B 物质在同一薄层板上的相对比移值为1.5。展开后,B 物质色斑距原点9cm , 此时溶剂前沿到原点的距离为18cm, 求A 物质的展距和R f 。 解:5.19 )() (====A B A B f A f t l l l R R R l a = 9×1.5 = 13.5 cm 75.018 5.130===l l R A fA 4. 今有两种性质相似的组分A 和B ,共存于同一溶液中。用纸色谱分离时,它们的比移值 R f 分别为0.45和0.63。欲使分离后两斑点中心间的距离为2cm ,滤纸条应取用多长? 解:设A 组分的展距为l A , 则B 组分的展距为l A +2 , 45.00== l l R A fA 63.020=+=l l R A fB cm l 1.1145 .063.020=-=

高效液相色谱法(HPLC)的概述

此帖与GC版的对应,是为了让大家更好的学习和了解LC 主要内容包括: 1.高效液相色谱法(HPLC)的概述 2. 高效液相色谱基础知识介绍(1——13楼) 3. 高压液相色谱HPLC发展概况、特点与分类 4. 液相色谱的适用性 5.应用 高效液相色谱法(HPLC)的概述 以高压液体为流动相的液相色谱分析法称高效液相色谱法(HPLC)。其基本方法是用高压泵将具有一定极性的单一溶剂或不同比例的混合溶剂泵入装有填充剂的色谱柱,经进样阀注入的样品被流动相带入色谱柱内进行分离后依次进入检测器,由记录仪、积分仪或数据处理系统记录色信号或进行数据处理而得到分析结果。 由于高效液相色谱法具有分离效能高、选择性好、灵敏度高、分析速度快、适用范围广(样品不需气化,只需制成溶液即可)、色谱柱可反复使用的特点,在《中国药典》中有5 0种中成药的定量分析采用该法,已成为中药制剂含量测定最常用的分析方法。 高效液相色谱法按固定相不同可分为液-液色谱法和液-固色谱法;按色谱原理不同可分为分配色谱法(液-液色谱)和吸附色谱法(液-固色谱)等。 目前,化学键合相色谱应用最为广泛,它是在液-液色谱法的基础上发展起来的。将固定液的官能团键合在载体上,形成的固定相称为化学键合相,不易流失是其特点,一般认为有分配与吸附两种功能,常以分配作用为主。C18(ODS)为最常使用的化学键合相。 根据固定相与流动相极性的不同,液-液色谱法又可分为正相色谱法和反相色谱法,当流动相的极性小于固定相的极性时称正相色谱法,主要用于极性物质的分离分析;当流动相

的极性大于固定相的极性时称反相色谱法,主要用于非极性物质或中等极性物质的分离分析。 在中药制剂分析中,大多采用反相键合相色谱法。 系统组成: (一)高压输液系统 由贮液罐、脱气装置、高压输液泵、过滤器、梯度洗脱装置等组成。 1.贮液罐 由玻璃、不锈钢或氟塑料等耐腐蚀材料制成。贮液罐的放置位置要高于泵体,以保持输液静压差,使用过程应密闭,以防止因蒸发引起流动相组成改变,还可防止气体进入。2.流动相 流动相常用甲醇-水或乙腈-水为底剂的溶剂系统。 流动相在使用前必须脱气,否则很易在系统的低压部分逸出气泡,气泡的出现不仅影响柱分离效率,还会影响检测器的灵敏度甚至不能正常工作。脱气的方法有加热回流法、抽真空脱气法、超声脱气法和在线真空脱气法等。 3.高压输液泵 是高效液相色谱仪的关键部件之一,用以完成流动相的输送任务。对泵的要求是:耐腐蚀、耐高压、无脉冲、输出流量范围宽、流速恒定,且泵体易于清洗和维修。高压输液泵可分为恒压泵和恒流泵两类,常使用恒流泵(其压力随系统阻力改变而流量不变)。 (二)进样系统 常用六通阀进样器进样,进样量由定量环确定。操作时先将进样器手柄置于采样位置(L OAD),此时进样口只与定量环接通,处于常压状态,用微量注射器(体积应大于定量环体积)注入样品溶液,样品停留在定量环中。然后转动手柄至进样位置(INJECT),使定量环接入输液管路,样品由高压流动相带入色谱柱中。 (三)色谱柱 由柱管和填充剂组成。柱管多用不锈钢制成。柱内填充剂有硅胶和化学键合固定相。在化学键合固定相中有十八烷基硅烷键合硅胶(又称ODS柱或C18柱)、辛烷基硅烷键合硅

高效液相色谱仪简介

高效液相色谱仪简介 系统组成、工作原理 高效液相色谱仪的系统由储液器、泵、进样器、色谱柱、检测器、记录仪等几部分组成。储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相) 内, 由于样品溶液中的各组分在两相中具有不同的分配系数, 在两相中作相对运动时, 经过反复多次的吸附- 解吸的分配过程, 各组分在移动速度上产生较大的差别, 被分离成单个组分依次从柱内流出, 通过检测器时, 样品浓度被转换成电信号传送到记录仪,数据以图谱形式打印出来。 高效液相色谱 (high performance liquid chromatography, HPLC)也叫高压液相色谱(high pressure liquid chromatography)、高速液相色谱(high speed liquid chromatography)、高分离度液相色谱(high resolution liquid chromatography)等。是在经典液相色谱法的基础上,于60年代后期引入了气相色谱理论而迅速发展起来的。它与经典液相色谱法的区别是填料颗粒小而均匀,小颗粒具有高柱效,但会引起高阻力,需用高压输送流动相,故又称高压液相色谱。又因分析速度快而称为高速液相色谱。 高效液相色谱是目前应用最多的色谱分析方法,高效液相色谱系统由流动相储液体瓶、输液泵、进样器、色谱柱、检测器和记录器组成,其整体组成类似于气相色谱,但是针对其流动相为液体的特点作出很多调整。HPLC的输液泵要求输液量恒定平稳;进样系统要求进样便利切换严密;由于液体流动相粘度远远高于气体,为了减低柱压高效液相色谱的色谱柱一般比较粗,长度也远小于气相色谱柱。HPLC应用非常广泛,几乎遍及定量定性分析的各个领域。 使用高效液相色谱时,液体待检测物被注入色谱柱,通过压力在固定相中移动,由于被测物种不同物质与固定相的相互作用不同,不同的物质顺序离开色谱柱,通过检测器得到不同的峰信号,最后通过分析比对这些信号来判断待侧物所含有的物质。高效液相色谱作为一种重要的分析方法,广泛的应用于化学和生化分析中。高效液相色谱从原理上与经典的液相色谱没有本质的差别,它的特点是采用了高压输液泵、高灵敏度检测器和高效微粒固定相,适于分析高沸点不易挥发、分子量大、不同极性的有机化合物。 发展历史

经典液相色谱法习题图文稿

经典液相色谱法习题集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

第10章 经典液相色谱法习题 (一)选择题 单选题 1.组分在固定相中的质量为m A (g),在流动相中的质量为m B (g),而该组 分在固定相中的浓度为c A (g /mL),在流动相中的浓度为C B (g /mL),则 此组分的分配系数是( )。 A m A /m B B m B /m A C m A /(m A +m B ) D C A /C B 2.在柱色谱法中,可以用分配系数为零的物质来测定色谱柱中的( )。 A 流动相的体积(相当于死体积) B 填料的体积 C 填料孔隙的体积 D 总体积 3.在以硅胶为固定相的吸附柱色谱中,正确的说法是( )。 A 组分的极性越强.被固定相吸附的作用越强 B 物质的相对分子质量越大,越有利于吸附 C 流动相的极性越强,组分越容易被固定相所吸附 D 吸附剂的活度级数越小,对组分的吸附力越大 4.纸色谱法与薄层色谱法常用正丁醇-乙酸-水(4:1:5,体积比)作为展开剂,正确的操作方法是( )。 A 三种溶剂混合后直接用作展开剂 B 三种溶剂混合、静置分层后,取上层作展开剂 C 三种溶剂混合,静置分层后,取下层作展开剂 D 依次用三种溶剂作展开剂 5.离子交换色谱法中,对选择性无影响的因素是( ). A 树脂的交联度 B 树脂的再生过程 C 样品离子的电荷 D 样品离子的水合半径 6.下列说法错误的是( )。 A 用纸色谱分离时,样品中极性小的组分R f 值大 B 用反相分配薄层时,样品中极性小的组分R f 值小

高效液相色谱法

高效液相色谱法Newly compiled on November 23, 2020

第十八章 高效液相色谱法 15.外标法测定黄芩颗粒剂中黄芩苷含量:色谱柱为Zirchrom C8柱(20c m ×, 5um );流动相为乙腈-甲醇-水(含%三乙胺,磷酸调)(28:18:54);以黄芩苷对照品配成浓度范围为~ml 的对照品溶液。进样,测得黄芩苷峰面积,以峰面积和对照品浓度求得回归方程为:A=××103,r=.精密称取黄芩颗粒,置于50ml 量瓶中,用70%甲醇溶解并定容至刻度,摇匀,精密量取1ml 于10ml 量瓶中,30%甲醇定容到刻度,摇匀即得供试品溶液。平行测定供试品溶液和对照品溶液(ml ),得峰面积分别为4250701,5997670. 解:标样标样 A A c =c 599767042507018.6110 /=样c %4.17%1001255.01050%6=??=-样c w 16.校正因子法测定复方炔诺酮片中炔雌醇的含量:ODS 色谱柱;甲醇-水(60:40)流动相;检测器UV280nm ;对硝基甲苯为内标物。 (1)校正因子的测定:取对硝基甲苯(内标物)、炔诺酮和炔雌醇对照品适量,用甲醇制成10ml 溶液,进样10ul ,记录色谱图。重复三次。测得含ml 内标物、ml 炔诺酮和ml 炔雌醇的对照品溶液平均峰面积列于表18-6。 (2)试样测定:取本品20片,精密称定,求出平均片重(片)。研细后称取(约相当于炔诺酮),用甲醇配制成10ml 供试品溶液(含内标物ml )。测得峰面积列于表18-6。 表18-6 复方炔诺酮片中各成分及内标物平均峰面积(u v ·s ) 解:02.3)10587.6/(100733.0)10043.1/(10035.0A /m A /m f 55s s =????==醇 醇醇 试样含炔雌醇的量: )mg (449.010841.610387.1100733.002.3A A m f m 55s s =?????=??=醇 醇醇

高效液相色谱法习题

第12章高效液相色谱法习题 (一)选择题 单选题 1. 在高效液相色谱中影响柱效的主要因素是( ) A 涡流扩散 B 分子扩散 C 传质阻力 D 输液压力 2. 在高效液相色谱中,提高柱效能的有效途径是( ) A 提高流动相流速 B 采用小颗粒固定相 C 提高柱温 D 采用更灵敏的检测器 3. 高效液相色谱法的分离效果比经典液相色谱法高,主要原因是( ) A 流动相种类多 B 操作仪器化 C 采用高效固定相 D 采用高灵敏检测器 4. 在高效液相色谱中,通用型检测器是( ) A 紫外检测器 B 荧光检测器 C 示差折光检测器 D 电导检测器 5. HPLC与GC的比较,可忽略纵向扩散项,这主要是因为( ) A 柱前压力高 B 流速比GC的快 C 流动相黏度较小 D 柱温低 6.液相色谱定量分析时,要求混合物中每一个组分都出峰的是( ) A 外标标准曲线法 B 内标法 C 面积归一化法 D 外标法 7.下述四种方法中最适宜分离异构体的是是( ) A 吸附色谱 B 反离子对色谱 C 亲和色谱 D 空间排阻色谱 8.在液相色谱中,梯度洗脱适用于分离( ) A 异构体 B 沸点相近,官能团相同的化合物 C 沸点相差大的试样 D 极性变化范围宽的试样 9.在HPLC中,范氏方程中对柱效影响可以忽略不计的因素是( ) A 涡流扩散 B 纵向扩散 C 固定相传质阻力 D 流动相传质阻力 10.当用硅胶为基质的填料作固定相时,流动相的pH范围应为( ) A 在中性区域 B 5一8 C 1一14 D 2一8

11.高效液相色谱法中,常用的流动相有水、乙腈、甲醇、正己烷,其极性大小顺序为( ) A 乙腈>水>甲醇>正己烷 B 乙腈>甲醇 >水>正己烷 C 水> 乙腈>甲醇>正己烷 D 水>甲醇> 乙腈>正己烷 12.高效液相色谱法中,使用高压泵主要是由于( ) A 可加快流速,缩短分析时间 B 高压可使分离效率显著提高 C 采用了细粒度固定相所致 D 采用了填充毛细管柱 13.液相色谱的H-u曲线()。 A 与气相色谱的一样,存在着H min B H随流动相的流速增加而下降 C H随流动相的流速增加而上升 D H受u影响很小 14. 与气相色谱相比,在液相色谱中()。 A 分子扩散项很小,可忽略不计,速率方程式由两项构成 B 涡流扩散项很小,可忽略不计,速率方程式由两项构成 C 传质阻力项很小,可忽略不计,速率方程式由两项构成 D 速率方程式同样由三项构成,两者相同 15.液相色谱中不影响色谱峰扩展的因素是()。 A 涡流扩散项 B 分子扩散项 C 传质扩散项 D 柱压效应 16.在液相色谱中,常用作固定相又可用作键合相基体的物质是()。 A 分子筛 B 硅胶 C 氧化铝 D 活性炭 17.样品中各组分的出柱顺序与流动相的性质无关的色谱是()。 A 离子交换色谱 B 环糊精色谱 C 亲和色谱 D 凝胶色谱18.高效液相色谱法中,对于极性成分,当增大流动相的极性,可使其保留值()。 A 不变 B 增大 C 减小 D 不一定 19.在反相色谱法中,若以甲醇-水为流动相,增加甲醇的比例时,组分的容量因子k与保留时间t R的变化为()。 A k与t R增大 B k与t R减小 C k与t R不变 D k增大,t R减小 多选题 20.下列检测器中,不属于高效液相色谱中的检测器是() A 紫外检测器 B 氢火焰离子化检测器 C 荧光检测器 D 氮磷检测器 E 示差折光检测器 21.化学键合固定相具备下列何种特点() A 固定液不易流失 B 选择性好 C 不适用于梯度洗脱 D 柱效高 E 易和组分形成氢键吸附

高效液相色谱法及其在药物分析中的应用

高效液相色谱法及其在药物分析中的应用 以液体为流动相的色谱法称为液相色谱法。用常压输送流动相的方法为经典液相色谱法,这种色谱法的柱效能低、分离周期长。高效液相色谱法(highperformanceliquidchromatography,简称HPLC)是在经典液相色谱的基础上发展起来的一种色谱方法。与经典的液相色谱法相比,高效液相色谱法具有下列主要优点:①应用了颗粒极细(一般为10µm以下)、规则均匀的固定相,传质阻抗小,柱效高,分离效率高;②采用高压输液泵输送流动相,流速快,一般试样的分析需数分钟,复杂试样分析在数十分钟内即可完成;③广泛使用了高灵敏检测器,大大提高了灵敏度。目前,已经发展了多种不同的固定相,有多种不同的分离模式,使高效液相色谱法的应用范围不断扩大。下面介绍高效液相色谱法的有关知识,新的方法和技术以及在药物分析中的应用。 一、分类 高效液相色谱法按分离机理的不同可分为以下几类: (一)吸附色谱法(adsorptionchromatography) 以吸附剂为固定相的色谱方法称为吸附色谱法。使用最多的吸附色谱固定相是硅胶,流动相一般使用一种或多种有机溶剂的混合溶剂。在吸附色谱中,不同的组分因和固定相吸附力的不同而被分离。组分的极性越大、固定相的吸附力越强,则保留时间越长。流动相的极性越大,洗脱力越强,则组分的保留时间越短。 (二)液-液分配色谱法(liquid-liquidchromatography) 液-液分配色谱的固定相和流动相是互不相溶的两种溶剂,分离时,组分溶入两相,不同的组分因分配系数(K)的不同而被分离。目前广泛使用的化学键合固定相是将固定液的官能团键合在载体上而制成的,使用化学键合固定相的色谱方法(简称键合相色谱法)可以用分配色谱的原理加以解释。键合相色谱法在HPLC中占有极其重要的地位,是应用最广的色谱法。 按照固定相和流动相极性的不同,分配色谱法又可分为正相色谱法和反相色谱法两类。 1.正相色谱法(normalphasechromatography) 固定相极性大于流动相极性的分配色谱法称为正相分配色谱法,简称为正相色谱法。氰基键合硅胶、氨基键合硅胶等极性的化学键合固定相是正相色谱常用的固定相,正相色谱的流动相一般为极性较小的有机溶剂。在正相色谱中,极性小的组分由于K值较小先流出,极性较大的组分后流出。正相色谱法用于溶于有机溶剂的极性及中等极性的分子型物质的分离。 2.反相色谱法(reversedphasechromatography) 流动相极性大于固定相极性的分配色谱法称为反相分配色谱法,简称为反相色谱法。反相色谱法使用非极性固定相,最常用的非极性固定相是十八烷基硅烷键合硅胶,还有辛烷基硅烷键合硅胶等。流动相常用水与甲醇、乙腈或四氢呋喃的混合溶剂。在反相色谱中极大的组分因K值较小先流出色谱柱,极性较小的组分后流出。流动相中有机溶剂的比例增加,流动相极性减小,洗脱力增强。反相色谱法是目前应用最广的高效液相色谱法。 (三)离子交换色谱法(ionexchangechromatography) 离子对交换色谱法是以离子交换剂为固定相的色谱方法,组分因和离子交换剂亲和力的不同而被分离。柱填料含有极性可离子化的基团,如羧酸、磺酸或季铵离子,在合适的PH值下,这些基团将解离,吸引相反电荷的物质。由于离子型物质能与柱填料反应,所以可被分离。样品中不同的组分因离子交换平衡常数的不同而分离。离子交换色谱的流动相一般为一定PH值的缓冲溶液,有时也加入少量的有机溶剂,如乙醇、四氢呋喃、乙腈等,以增大组分在流动相中的溶解度。流动相的PH值影响离子交换剂的交换容量。对弱酸或弱碱性的被分离组分,流动相的PH值还会影响其电离状况,流动相的PH值必须使待分离组分处于离解

相关文档
相关文档 最新文档