文档视界 最新最全的文档下载
当前位置:文档视界 › 概率论复习提纲

概率论复习提纲

概率论复习提纲
概率论复习提纲

概率论复习提纲

第一章随机事件和概率

(11)减法公式P(A-B)=P(A)-P(AB)

当B A时,P(A-B)=P(A)-P(B) 当A=Ω时,P( )=1- P(B)

第二章随机变量及其分布

(5)八大分布0-1

P(X=1)=p, P(X=0)=q

在重贝努里试验中,设事件发生的概率为。事件发生的次数是随机变量,设为,则可能取值为。

,其中,

则称随机变量服从参数为,的二项分布。记为。

当时,,,这就是(0-1)分布,所以(0-1)分布是二项分布的特例。

设随机变量的分布律为

,,,

则称随机变量服从参数为的泊松分布,记为或者P( )。

泊松分布为二项分布的极限分布(np=λ,n→∞)。

随机变量X服从参数为n,N,M的超几何分布,记为H(n,N,M)。

,其中p≥0,q=1-p。

随机变量X服从参数为p的几何分布,记为G(p)。

设随机变量的值只落在[a,b]内,其密度函数在[a,b]上为常数,即

a≤x≤b

其他,

则称随机变量在[a,b]上服从均匀分布,记为X~U(a,b)。分布函数为

a≤x≤b

0,x

1,x>b。

当a≤x1

指数分布,

0, ,

其中,则称随机变量X服从参数为的指数分布。X的分布函数为

,

x<0。

记住积分公式:

正态分布设随机变量的密度函数为

,,

其中、为常数,则称随机变量服从参数为、的正态分布或高斯(Gauss)分布,记为。具有如下性质:

1° 的图形是关于对称的;

2° 当时,为最大值;

若,则的分布函数为

。。

参数、时的正态分布称为标准正态分布,记为,其密度函数记为

,,

分布函数为

是不可求积函数,其函数值,已编制成表可供查用。

Φ(-x)=1-Φ(x)且Φ(0)=。

如果~ ,则~ 。

第三章二维随机变量及其分布

(2)期望的性质(1)E(C)=C

(2)E(CX)=CE(X)

(3)E(X+Y)=E(X)+E(Y),

(4)E(XY)=E(X) E(Y),充分条件:X和Y独立;充要条件:X和Y不相关。

(3)方差的性质(1)D(C)=0;E(C)=C

(2)D(aX)=a2D(X);E(aX)=aE(X)

(3)D(aX+b)= a2D(X);E(aX+b)=aE(X)+b

(4)D(X)=E(X2)-E2(X)

(5)D(X±Y)=D(X)+D(Y),充分条件:X和Y独立;

充要条件:X和Y不相关。

D(X±Y)=D(X)+D(Y) ±2E[(X-E(X))(Y-E(Y))],无条件成立。

而E(X+Y)=E(X)+E(Y),无条件成立。

协方差对于随机变量X与Y,称它们的二阶混合中心矩为X与Y的协方差

或相关矩,记为,即

与记号相对应,X与Y的方差D(X)与D(Y)也可分别记为与。相关系数对于随机变量X与Y,如果D(X)>0, D(Y)>0,则称

为X与Y的相关系数,记作(有时可简记为)。

| |≤1,当| |=1时,称X与Y完全相关:

完全相关

而当时,称X与Y不相关。

以下五个命题是等价的:

①;

②cov(X,Y)=0;

③E(XY)=E(X)E(Y);

④D(X+Y)=D(X)+D(Y);

⑤D(X-Y)=D(X)+D(Y).

协方差矩阵

混合矩对于随机变量X与Y,如果有存在,则称之为X与Y的k+l阶混合

原点矩,记为;k+l阶混合中心矩记为:

(6)协方差的性质(i) cov (X, Y)=cov (Y, X);

(ii) cov(aX,bY)=ab cov(X,Y);

(iii) cov(X1+X2, Y)=cov(X1,Y)+cov(X2,Y); (iv) cov(X,Y)=E(XY)-E(X)E(Y).

(7)独立和不相关(i)若随机变量X与Y相互独立,则;反之不真。(ii)若(X,Y)~N(),

则X与Y相互独立的充要条件是X和Y不相关。

第五章大数定律和中心极限定理

(1)大数定律切比雪夫

大数定律设随机变量X1,X2,…相互独立,均具有有限方差,且被同一常数C所界:D(Xi)

特殊情形:若X1,X2,…具有相同的数学期望E(XI)=μ,则上式成为

伯努利大数定律设μ是n次独立试验中事件A发生的次数,p是事件A在每次试验中发生的概率,则对于任意的正数ε,有

伯努利大数定律说明,当试验次数n很大时,事件A发生的频率与概率有较大判别的可能性很小,即

这就以严格的数学形式描述了频率的稳定性。

辛钦大数定律设X1,X2,…,Xn,…是相互独立同分布的随机变量序列,且E(Xn)=μ,则对于任意的正数ε有

(2)中心极限定理列维-林

德伯格定

理设随机变量X1,X2,…相互独立,服从同一分布,且具有相同的数学期望和方差:,则随机变量

的分布函数Fn(x)对任意的实数x,有

此定理也称为独立同分布的中心极限定理。

棣莫弗-

拉普拉斯

定理

设随机变量为具有参数n, p(0

(1)数理统计的基本概念总体在数理统计中,常把被考察对象的某一个(或多个)指标的全体称为总体

(或母体)。我们总是把总体看成一个具有分布的随机变量(或随机向量)。个体总体中的每一个单元称为样品(或个体)。

样本我们把从总体中抽取的部分样品称为样本。样本中所含的样品数称为样

本容量,一般用n表示。在一般情况下,总是把样本看成是n个相互独立

的且与总体有相同分布的随机变量,这样的样本称为简单随机样本。在泛

指任一次抽取的结果时,表示n个随机变量(样本);在具体的一次抽

取之后,表示n个具体的数值(样本值)。我们称之为样本的两重性。

第七章参数估计

(1)点估计矩估计设总体X的分布中包含有未知数,则其分布函数可以表成它的k阶原点矩中也包含了未知参数,即。又设为总体X的n个样本值,其样本的k阶原点矩为

这样,我们按照“当参数等于其估计量时,总体矩等于相应的样本矩”的原则建立方

程,即有

由上面的m个方程中,解出的m个未知参数即为参数()的矩估计量。

若为的矩估计,为连续函数,则为的矩估计。

极大似然估

当总体X为连续型随机变量时,设其分布密度为,其中为未知参数。又设为总

体的一个样本,称

为样本的似然函数,简记为Ln.

当总体X为离型随机变量时,设其分布律为,则称

为样本的似然函数。

若似然函数在处取到最大值,则称分别为的最大似然估计值,相应的统计量称

为最大似然估计量。

若为的极大似然估计,为单调函数,则为的极大似然估计。

(2)估计量的评选标准无偏性设为未知参数的估计量。若E ()= ,则称为的无偏估计量。

E()=E(X),E(S2)=D(X)

有效性设和是未知参数的两个无偏估计量。若,则称有效。

一致性设是的一串估计量,如果对于任意的正数,都有

则称为的一致估计量(或相合估计量)。

若为的无偏估计,且则为的一致估计。

只要总体的E(X)和D(X)存在,一切样本矩和样本矩的连续函数都是相应总体的一

致估计量。

(3)区间估计置信区间和

置信度

设总体X含有一个待估的未知参数。如果我们从样本出发,找出两个统计量与,

使得区间以的概率包含这个待估参数,即

那么称区间为的置信区间,为该区间的置信度(或置信水平)。

单正态总体

的期望和方

差的区间估

设为总体的一个样本,在置信度为下,我们来确定的置信区间。具体步骤如

下:

(i)选择样本函数;

(ii)由置信度,查表找分位数;

(iii)导出置信区间。

已知方差,估计均值(i)选择样本函数

(ii) 查表找分位数

(iii)导出置信区间

未知方差,估计均值(i)选择样本函数

(ii)查表找分位数

(iii)导出置信区间

方差的区间估计(i)选择样本函数

(ii)查表找分位数

(iii)导出的置信区间

第八章假设检验

基本思想假设检验的统计思想是,概率很小的事件在一次试验中可以认为基本上是不会发生的,即小概率原理。

为了检验一个假设H0是否成立。我们先假定H0是成立的。如果根据这个假定导致了一个

不合理的事件发生,那就表明原来的假定H0是不正确的,我们拒绝接受H0;如果由此没

有导出不合理的现象,则不能拒绝接受H0,我们称H0是相容的。与H0相对的假设称为备

择假设,用H1表示。

这里所说的小概率事件就是事件,其概率就是检验水平α,通常我们取α=0.05,有时也取

0.01或0.10。

基本步骤假设检验的基本步骤如下:

(i) 提出零假设H0;

(ii) 选择统计量K;

(iii) 对于检验水平α查表找分位数λ;

(iv) 由样本值计算统计量之值K;

将进行比较,作出判断:当时否定H0,否则认为H0相容。

两类错误第一类错误当H0为真时,而样本值却落入了否定域,按照我们规定的检验法则,

应当否定H0。这时,我们把客观上H0成立判为H0为不成立(即否

定了真实的假设),称这种错误为“以真当假”的错误或第一类错误,

记为犯此类错误的概率,即

P{否定H0|H0为真}= ;

此处的α恰好为检验水平。

第二类错误当H1为真时,而样本值却落入了相容域,按照我们规定的检验法则,

应当接受H0。这时,我们把客观上H0。不成立判为H0成立(即接受

了不真实的假设),称这种错误为“以假当真”的错误或第二类错误,

记为犯此类错误的概率,即

P{接受H0|H1为真}= 。

两类错误的关系人们当然希望犯两类错误的概率同时都很小。但是,当容量n一定时,

变小,则变大;相反地,变小,则变大。取定要想使变小,则必

须增加样本容量。

在实际使用时,通常人们只能控制犯第一类错误的概率,即给定显著

性水平α。α大小的选取应根据实际情况而定。当我们宁可“以假为真”、

而不愿“以真当假”时,则应把α取得很小,如0.01,甚至0.001。反

之,则应把α取得大些。

第一章讲随机事件及其概率的一些相关公式和运用。很多高中就有涉及,如果你真理不清其中的关系,我建议可以先画韦恩图取得一个感性的认识,再去推导记忆公式。我把公式分为两类:基本公式,条件概率公式。当然基本概念是必须搞清楚的,这一章大多数基本概念大家都比较熟悉,除了条件概率相对陌生。我相信大家都不会存在概念上的问题。

基本公式就是一些定律和性质公式,已经很熟悉的公式跳过,相对陌生的重点记忆一下,会用就行了。目测比较陌生的也就是德·摩根率的两个公式和任意n个事件的并集概率公式。

条件概率那一节主要是理解记忆全概率公式和贝叶斯公式,课后相关习题会做就达到要求了。独立事件这一部分记得它的条件就够了,做题需要用的时候能用上就可以了。这儿强调一下,注意区别一下相互独立事件和互斥事件、对立事件的关系,尤其注意一下各个随机事件概

率之间的数量关系。

第二、三、四章都是讲随机变量的相关计算,首先注意分清离散型随机变量和连续性随机变量的相关表示方法和称谓。比如f(x)和P(X=xi),相同含义,离散型叫做概率分布律,而连续性称谓概率密度函数,类似的还有许多。

掌握两类函数中各自的基本函数。离散型:0-1分布(x~B(1,p)),二项分布(x~B(n,p)),几何分布,泊松分布(x~π(λ)这个比较陌生,重点看看);连续性:均匀分布(x~U(a,b)),正态分布(x~N(μ,σ2)),指数分布(这个也相对陌生,重点看看)。熟记这些基本分布的表达式、均值和方差。

掌握表征随机变量的一些量,诸如概率密度函数(概率分布律),概率分布函数(第二章);联合分布律,联合概率分布函数,边缘分布律(边缘概率密度),边缘分布函数(第三章);均值,方差,协方差,相关系数(第四章)等,注意各自表征的含义,区别一维和二维,

特别留意均值和方差的相关性质。

理想的效果:会灵活地实现边缘概率密度、边缘分布函数和联合概率密度、联合分布函数

之间转换计算,计算方差、均值、协方差、相关系数,掌握切皮雪夫不等式和中心极限定

理的应用,另外还有涉及条件分布,和的分布,max,min,Y=g(x)等分布的计算,其实都有现成公式来辅助计算。

概率论所学的知识也就是上面这些,数理统计部分学得很少,我归纳了一下,掌握一下这些就行:

1.样本统计量。均值、方差、K阶原点矩和中心矩。

2.卡方分布,t分布,F分布

3.样本矩估计法,极大似然估计法。

概率论复习资料

1、一袋中有十个质地、形状相同且编号分别为1、 2、…、10的球.今从袋中任意取出三个球并记录球上的号码,求(1)最小号码为5的概率,(2)最大号码为5的概率,(3)一个号码为5,另外两个号码一个大于5,一个小于5的概率。 2、在1500个产品中有400个次品,1100个正品.任取200个,求(1)恰好有90个次品的概率;(2)至少有两个次品的概率。 3、将一枚骰子重复掷n 次,试求掷出的最大点数为5的概率。 4、若A ,B 互不相容,则()0)();()(=+=B A P B P A P B A P ; 5、设A 、B 为两个事件,P(B)=0.5,P(A-B)=0.3。求() B A P .

6、设A ,B 是两个事件,6 1 )|(,31)()(===B A P B P A P ,求)|(B A P 7、A 、B 为两个事件且P(A)=1/2,P(B)=1/2,证明P(AB)= ()B A P 。 8、有甲、乙、丙三门火炮同时独立地向某目标射击,命中率分别为0.2,0.3,0.5,求(1)至少有一门火炮命中目标的概率;(2)恰有一门火炮命中目标的概率。 9、射手对目标独立射击5发,单发命中概率为0.6,求(1)恰好命中两发的概率;(2)至少命中一发的概率. 10、设连续型随机变量X 的分布函数为? ??≤>+=-000 )(x x Be A x F x λ,其中0 >λ 是常数。求 (1)参数A ,B ,(2)}3{},2{>≤X P X P (3)X 的概率密度

11、已知X的概率密度为? ??<<+=其它01 0)21()(x x A x f , 求:(1) 求常数A; (2)}5.0{>X P ;(3)求F(x) 12、设X ~N(0,1).求b 使:(1)P{|X|b}=0.05. (3)P{X

概率论与数量统计作业本_全

第1次作业 一、填空题 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: ⑴ A 发生,B 与C 不发生为 ABC ; ⑵ A 与B 都发生,而C 不发生为 ABC ; ⑶ A 、B 、C 中至少有一个发生为 A B C U U ; ⑷ A 、B 、C 都发生为 ABC ; ⑸ A 、B 、C 都不发生为 ABC ; ⑹ A 、B 、C 中不多于一个发生为 AB AC BC U U ; ⑺ A 、B 、C 中不多于两个发生为 A B C U U ; ⑻ A 、B 、C 中至少有两个发生为 AB AC BC U U 。 2.设{}1,2,3,4,5,6Ω=,{}2,3,4A =,{}3,5B =,{}4,6C =,那么A B =U {1,2,3,4,6} ,A B = {1,6} ,()A BC = Φ 。 二、选择题 1.设A 、B 为两个事件,则A B +=( C )。 A. A B + B. A B - C. AB D. AB 2.设A 、B 为两个事件,若A B ?,则下列结论中( C )恒成立。 A. A 、B 互斥 B. A 、B 互斥 C. A 、B 互斥 D. A 、B 互斥 3.用A 表示“甲产品畅销,乙产品滞销”,则A 表示( C )。 A. “甲产品滞销,乙产品畅销”; B. “甲、乙产品都畅销”; C. “甲产品滞销或乙产品畅销”; D. “甲、乙产品都滞销”。 三、计算题 1.写出下列随机试验的样本空间: ⑴ 记录一个小班一次数学考试的平均分数(设以百分制记分); 0,1,,100i S i n n ?? ==? ??? L ,其中n 为小班人数; ⑵ 生产产品直到有10件正品为止,记录生产产品的总件数; {}10,11,S =L ;

2016~2017_一_概率统计试卷(理工类)B卷答案

1.设随机变量X 与Y 相互独立,且 21,16~B X ,Y 服从于参数为9的泊松分布,则 )12(Y X D ______40_______。 2.设随机变量 Y X ,相互独立,且 )2,1(~),2,1(~ N Y N X , }0){( Y X P =___1-)1( ________。 3. 3人独立破译一密码,他们能独立译出的概率分别是4 1 3151,,,则此密码被译出的概率是_____。3/5 4.设相互独立的随机变量Y X ,服从同一分布,且 5.05.010,5.05.010P Y P X ,则随机变量),(Y X Max Z 的分布律为_____________。 75 .025.01 P Z 5.设随机变量X 的密度函数 其他, 010,4)(3x x x f ,则当_________ a 4 1 )21(时, 有)()(a X P a X P 。 (二)选择题(每题4分,共5题,全部是单选题) 1.设A ,B 是两个随机事件,且A B ,则下列式子正确的是:(A ) (A ))()(A P B A P (B ))()(A P AB P (C ))()|(B P A B P (D ) )()()(A P B P A B P 2.设n X X X ,,,21 是总体)1,0(~N X 的样本,S X ,分别为样本的均值和样本标准差,则有( C ) (A ))1,0(~N X n ; (B ))1,0(~N X ; (C ) )(~21 2 n X n i i ; (D ))1(~/ n t S X

3.已知随机变量X 服从二项分布,且4 4.1,4.2 DX EX ,则二项分布的参数p n ,的值为( B ) (A)6.0,4 p n ; (B)4.0,6 p n ; (C)3.0,8 p n ; (D)1.0,24 p n 。 4.在假设检验中,记1H 为备择假设,则犯第一类错误的是指( D ) (A)1H 真,接受1H ; (B)1H 假,拒绝1H ; (C)1H 真,拒绝1H ; (D)1H 假,接受1H 。 5.设F(x)和f(x)分别为某随机变量的分布函数和概率密度,则必有( C ) (A ) f(x)单调不减 (B ) ()1F x dx (C ) 0)( F (D ) ()()F x f x dx 计算题 (三)(12)从学校到火车站的路上有3个交通岗,假设各个交通岗遇到红灯的事件是相互独立的,并且概率均为2/5,假设X 为路上遇到的红灯数。求:(1)X 的分布律;(2)X 的分布函数;(3)最多遇到1个红灯的概率? 解:二项分布B(3,0.4) (1) k k k k k k C p p C k X P 33335 3 ()52()1()(,k=0,1,2,3 (2) 3 , 132,12511721, 12581 10125270,0)(X X X X X x F (3)125 81 )1()0()1( X P X p X p . (四)(8)某商店出售某种贵重商品. 根据经验,该商品每周销售量服从参数为1 的泊松分布. 假定各周的销售量是相互独立的. 用中心极限定理计算该商店一年内(52周)售出该商品件数在50件到70件之间的概率。(计算到可查表形式) 解:

概率论与数理统计发展史

概率论与数理统计发展简史 姓名:苗壮学号:1110810513 班级:1108105 指导教师:曹莉 摘要:在这里,我们将简略地回顾一下概率论与数理统计的发展史,包括发展过程中所经历的一些大事,以及对这门学科的创立和发展有特别重大影响的那些学者的贡献. 关键词:概率论、数理统计、发展史 正文: 1.概率论的发展 17世纪,正当研究必然性事件的数理关系获得较大发展的时候,一个研究偶然事件数量关系的数学分支开始出现,这就是概率论. 早在16世纪,赌博中的偶然现象就开始引起人们的注意.数学家卡丹诺(Cardano)首先觉察到,赌博输赢虽然是偶然的,但较大的赌博次数会呈现一定的规律性, 卡丹诺为此还写了一本《论赌博》的小册子,书中计算了掷两颗骰子或三颗骰子时,在一切可能的方法中有多少方法得到某一点数.据说,曾与卡丹诺在三次方程发明权上发生争论的塔尔塔里亚,也曾做过类似的实验. 促使概率论产生的强大动力来自社会实践.首先是保险事业.文艺复兴后,随着航海事业的发展,意大利开始出现海上保险业务.16世纪末,在欧洲不少国家已把保险业务扩大到其它工商业上,保险的对象都是偶然性事件.为了保证保险公司赢利,又使参加保险的人愿意参加保险,就需要根据对大量偶然现象规律性的分析,去创立保险的一般理论.于是,一种专门适用于分析偶然现象的数学工具也就成为十分必要了. 不过,作为数学科学之一的概率论,其基础并不是在上述实际问题的材料上形成的.因为这些问题的大量随机现象,常被许多错综复杂的因素所干扰,它使难以呈“自然的随机状态”.因此必须从简单的材料来研究随机现象的规律性,这种材料就是所谓的“随机博弈”.在近代概率论创立之前,人们正是通过对这种随机博弈现象的分析,注意到了它的一些特性, 比如“多次实验中的频率稳定性”等,然后经加工提炼而形成了概率论. 荷兰数学家、物理学家惠更斯(Huygens)于1657年发表了关于概率论的早期著作《论赌博中的计算》.在此期间,法国的费尔马(Fermat)与帕斯卡(Pascal)也在相互通信中探讨了随机博弈现象中所出现的概率论的基本定理和法则.惠更斯等人的工作建立了概率和数学期望等主要概念,找出了它们的基本性质和演算方法,从而塑造了概率论的雏形.18世纪是概率论的正式形成和发展时期.1713年,贝努利(Bernoulli)的名著《推想的艺术》发表.在这部著作中,贝努利明确指出了概率论最重要的定律之一――“大数定律”,并且给出了证明,这使以往建立在经验之上的频率稳定性推测理论化了,从此概率论从对特殊问题的求解,发展到了一般的理论概括. 继贝努利之后,法国数学家棣谟佛(Abraham de Moiver)于1781年发表了《机遇原理》.书中提出了概率乘法法则,以及“正态分”和“正态分布律”的概念,为概率论的“中心极限定理”的建立奠定了基础. 1706年法国数学家蒲丰(Comte de Buffon)的《偶然性的算术试验》完成,他把概率和几何结合起来,开始了几何概率的研究,他提出的“蒲丰问题”就是采取概率的方法来求圆周率π的尝试.

大学概率论与数理统计复习资料

第一章 随机事件及其概率 知识点:概率的性质 事件运算 古典概率 事件的独立性 条件概率 全概率与贝叶斯公式 常用公式 ) ()()()()()2(加法定理AB P B P A P B A P -+= ) ,,() ()(211 1 有限可加性两两互斥设n n i i n i i A A A A P A P ∑===) ,(0 )()()()()(互不相容时独立时与B A AB P B A B P A P AB P ==) ()()()()5(AB P A P B A P B A P -==-) () ()()()(时当A B B P A P B A P B A P ?-==-))0(,,()()/()()()6(211 >Ω=∑=i n n i i i A P A A A A B P A P B P 且的一个划分为其中全概率公式 ) ,,()] (1[1)(211 1 相互独立时n n i i n i i A A A A P A P ∏==--=) /()()/()()()4(B A P B P A B P A P AB P ==) (/)()/()3(A P AB P A B P =) () /()() /()()/()7(1 逆概率公式∑== n i i i i i i A B P A P A B P A P B A P )(/)()(/)()1(S L A L A P n r A P ==

应用举例 1、已知事件,A B 满足)()(B A P AB P =,且6.0)(=A P ,则=)(B P ( )。 2、已知事件,A B 相互独立,,)(k A P =6.0)(,2.0)(==B A P B P ,则=k ( )。 3、已知事件,A B 互不相容,,3.0)(=A P ==)(,5.0)(B A P B P 则( )。 4、若,3.0)(=A P ===)(,5.0)(,4.0)(B A B P B A P B P ( )。 5、,,A B C 是三个随机事件,C B ?,事件()A C B - 与A 的关系是( )。 6、5张数字卡片上分别写着1,2,3,4,5,从中任取3张,排成3位数,则排成3位奇数的概率是( )。 某日他抛一枚硬币决定乘地铁还是乘汽车。 (1)试求他在5:40~5:50到家的概率; (2)结果他是5:47到家的。试求他是乘地铁回家的概率。 解(1)设1A ={他是乘地铁回家的},2A ={他是乘汽车回家的}, i B ={第i 段时间到家的},4,3,2,1=i 分别对应时间段5:30~5:40,5:40~5:50,5:50~6:00,6:00以后 则由全概率公式有 )|()()|()()(2221212A B P A P A B P A P B P += 由上表可知4.0)|(12=A B P ,3.0)|(22=A B P ,5.0)()(21==A P A P 35.05.03.04.05.0)(2=?+?=B P (2)由贝叶斯公式 7 4 35.04.05.0)()()|(22121=?== B P B A P B A P 8、盒中12个新乒乓球,每次比赛从中任取3个来用,比赛 后仍放回盒中,求:第三次比赛时取到3个新球的概率。 看作业习题1: 4, 9, 11, 15, 16

概率论与数理统计的题目

1 .掷一颗均匀骰子,设A表示所掷结果为“四点或五点”,B表示所 P(A)和P(B)。 2.货架上有外观相同的商品15件,其中12件来自甲产地,3件来自乙产地。先从15件商品中随机的抽取两件,求这两件商品来自同一产地的概率。 3.一批灯泡共100只,其中10只是次品,其余是正品。作不放回抽取,每次取一只,求第三次取到正品的概率。 4.8只步枪中有5只已校准过,3只未校准。一名射手用校准过的枪射击时,中靶的概率为0.8;用未校准的枪射击时,中靶的概率为0.3.现从8只步枪中任取一只用于射击,结果中靶。求所用的枪是校准过的概率。 5.甲乙两射手独立地射击同一目标,他们击中目标的概率分别是0.9和0.8。求每人射击一次后,目标被射中的概率。 6.写出下列随机试验的样本空间:(2)掷一颗均匀的骰子两次,观察前后两次出现的点数之和;(3)观察某医院一天内前来就诊的人数;(5)检查两件产品是否合格; 7.设A,B,C为三事件,用A,B,C的运算关系表示下列各事件: (1)A与B都发生,但C 不发生; (2)A发生,且B与C 至少有一个发生; (3)A,B,C 中至少有一个发生; (4)A,B,C 中恰有一个发生; (5)A,B,C中至少有两个发生;

(6)A,B,C中至多有一个发生; (7)A,B,C中至多有两个发生; (8)A,B,C中恰有两个发生; 8.若W表示昆虫出现残翅,E表示昆虫有退化性眼睛,且P(W)=0.125,P(E)=0.075,P(WE)=0.025,求下列事件的概率: (1)昆虫出现残翅或退化性眼睛; (2)昆虫出现残翅,但没有退化性眼睛; (3)昆虫未出现残翅,也无退化性眼睛; 9.计算下列各题: (1)设P(A)=0.5,P(B)=0.3,P(AB)=0.6,求P(AˉB); (2)设P(A)=0.8,P(A-B)=0.3,求P(ˉAB); 10.掷一颗均匀的骰子两次,求前后两次出现的点数之和为3,4,5的概率各是多少? 11.在整数0,1,2....9中任取三个数,求下列事件的概率: (1)三个数中最小的一个是5; (2)三个数中最大的一个是5; 13.12个乒乓球中有4只是白色的,8只是黄色的。现从这12只乒乓球中随机的取出两只,求下列事件的概率: (1)取到两只黄球;(2)取到两只白球;(3)取到一只白球,一只黄球。 14.已知P(A)=0.7,P(B)=0.4 ,P(AˉB)=0.5,求P(AuB|B). 15.已知P(A)=0.6,P(B)=0.4 ,P(A|B)=0.5,计算下列二式:

2015、2016高考试题概率统计专题

2015、2016高考试题概率、统计专题 1.(2015北京卷16)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下: A组:10,11,12,13,14,15,16 B组:12,13,15,16,17,14,a 假设所有病人的康复时间互相独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(Ⅰ) 求甲的康复时间不少于14天的概率; a ,求甲的康复时间比乙的康复时间长的概率; (Ⅱ) 如果25 (Ⅲ) 当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明) 2.(2015福建卷16)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定. (I)求当天小王的该银行卡被锁定的概率;(II)设当天小王用该银行卡尝试密码次数为X,求X的分布列和数学期望. 3.(2015湖北卷20)某厂用鲜牛奶在某台设备上生产,A B两种奶制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B产品的产量不超过A 产品产量的2倍,设备每天生产,A B两种产品时间之和不超过12小时. 假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为 该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.(Ⅰ)求Z的分布列和均值; (Ⅱ)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.

概率论与数理统计学1至7章课后标准答案

第五章作业题解 5.1 已知正常男性成人每毫升的血液中含白细胞平均数是7300, 标准差是700. 使用切比雪 夫不等式估计正常男性成人每毫升血液中含白细胞数在5200到9400之间的概率. 解:设每毫升血液中含白细胞数为,依题意得,7300)(==X E μ,700)(==X Var σ 由切比雪夫不等式,得 )2100|7300(|)94005200(<-=<

概率论与数理统计复习大纲

概率论与数理统计复习大纲2013 一、概率论的基本概念 内容 随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念和基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验 考点 1.掌握事件的关系及运算. 2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes )公式等. 3.理解事件的独立性的概念,掌握用事件独立性进行概率计算. 二、随机变量及其分布 内容 随机变量 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布 考点 1.理解随机变量的概念,理解分布函数 (){}()F x P X x x =≤-∞<<∞ 的概念及性质,掌握与随机变量相联系的事件的概率计算方法. 2.理解离散型随机变量及其概率分布的概念及性质,掌握0-1分布、二项分布(,)B n p 、泊松(Poisson )分布. 3.理解连续型随机变量及其概率密度的概念及性质,掌握均匀分布(,)U a b 、正态分布2 (,)N μσ、指数分布,其中参数为(0)(1/)λλλθ>=注:此时的指数分布()E λ的概率密度为 ()00x e f x x λλ-?=?≤?若x>0若 4.掌握离散型随机变量函数的分布律求法,掌握连续型随机变量函数的概率密度求法 (分布函数法和单调函数下的公式法). 三、多维随机变量及其分布 内容 多维随机变量及其分布函数 二维离散型随机变量的概率分布、边缘分布、条件分布 二维连续型随机变量的概率密度、边缘概率密度、条件概率密度 随机变量的独立性和不相关性 常见二维随机变量的分布 两个随机变量的函数的分布 考点 1.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度及其性质,掌握二维随机变量的边缘分布(离散型下边缘分布律、连续型下边缘密度的计算).

概率统计试题和答案

题目答案的红色部分为更正部分,请同志们注意下 统计与概率 1.(2017课标1,理2)如图,正方形ABCD 内的图形来自中国古代的 太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中 心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( B ) A .14 B . π8 C .12 D . π 4 2.(2017课标3,理3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. 根据该折线图,下列结论错误的是( A ) A .月接待游客量逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月 D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 3.(2017课标2,理13)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D X = 。 4.(2016年全国I 理14)5(2)x x + 的展开式中,x 3的系数是 10 .(用数字填写答案) 5.(2016年全国I 理14)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( B ) (A )13 (B )12 (C )23 (D )3 4 5.(2016年全国2理10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y , ()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近 似值为( C )(A ) 4n m (B )2n m (C )4m n (D )2m n 6.(2016年全国3理4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气 温的雷达图。图中A 点表示十月的平均最高气温约为150 C ,B 点表示四月的平均 最低气温约为50 C 。下面叙述不正确的是( D ) (A) 各月的平均最低气温都在00 C 以上 (B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200 C 的月份有5个 7.(15年新课标1理10)投篮测试中,每人投3次,至少投中2次才能通过测试。已知某同学每次投

概率论复习大纲

第一章 随机事件和概率 基本概念:随机试验、样本点、样本空间、随机事件、事件发生、事件关系、事 件运算、事件互不相容、概率、概率空间、古典概型、条件概率、全概率公式、贝叶斯公式、事件独立、试验独立。 典型例题: 1. 一批产品由90件正品和10件次品组成,从中任取一件,问取得正品的概率多大. 2. 甲、乙两人各自向同一目标射击,已知甲命中目标的概率为 0.7,乙命中目标的概率为0.8 求:(1)甲、乙两人同时命中目标的概率;(2)恰有一人命中目标的概率;(3)目标被命中的概率. 3. 甲、乙、丙三人同时对飞机进行射击, 三人击中的概率分别为0.4、0.5、0.7. 飞机被一人击中而击落的概率为0.2,被两人击中而击落的概率为0.6, 若三人都击中, 飞机必定被击落, 求飞机被击落的概率. 4. 有一批产品是由甲、乙、丙三厂同时生产的.其中甲厂产品占50%,乙厂产品占30%, 丙厂产品占20%,甲厂产品中正品率为95%,乙厂产品正品率为90%, 丙厂产品正品率为85%, 如果从这批产品中随机抽取一件, 试计算该产品是正品的概率多大. 第二章 随机变量及其分布函数 基本概念:随机变量、分布函数、二项分布、正态分布、条件分布、2χ-分布、 t -分布、F -分布。 典型例题: 1、有1000件产品,其中900件是正品,其余是次品. 现从中每次任取1件,有放回地取5 件,试求这5件所含次品数ξ的分布列. 2、 设随机变量ξ的分布密度为p (x )= ,? ??<≥-0x 00 2x ae x ,求: (1)常数a ; (2)P (ξ>3). 3、已知随机变量ξ的分布列为 ???? ? ?-25.013.02.005.037.073101 ,

概率论和数理统计带答案

单选 题(共 40 分) 1、在假设检验问题中,犯第一类错误的概率α的意义是( ) (C) A、在H0不成立的条件下,经检验H0被拒绝的概率 B、在H0不成立的条件下,经检验H0被接受的概率 C、在H0成立的条件下,经检验H0被拒绝的概率 D、在H0成立的条件下,经检验H0被接受的概率 2、设,AB是两个事件,且P(A)≤P(A|B),则有 (C) A、P(A)=P(A|B) B、P(B)>0 C、P(A|B)≥P(B) D、设,AB是两个事件 3、某中学为迎接建党九十周年,举行了”童心向党,从我做起”为主题的演讲比赛.经预赛,七、八年纪各有一名同学进入决赛,九年级有两名同学进入决赛,那么九年级同学获得前两名的概率是( )(A) A、1/6. B、1/5. C、1/4. D、1/3. 4、设,,ABC是三个相互独立的事件,且0(B) A、AUB与c B、AC与C C、A-B与C D、AB与C 5、设随机事件A与B相互独立,P(A)=0.5,P(B)=0.6则P(A-B)= (D) A、1/2. B、1/5. C、1/4. D、1/12. 6、将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为 (A) A、4/7. B、4/9. C、5/11. D、6/7. 7、设事件,AB满足ABBB,则下列结论中肯定正确的是( )(D) A、AB互不相容 B、AB相容 C、互不相容 D、P(A-B)=P(A) 8、已知P(B)=0.3,P(AUB)=0.7,且A与B相互独立,则P(A)=(D) A、0.2 B、0.3 C、0.7 D、0.5 9、若事件A和事件B相互独立, P(A)==,P(B)=0.3,P(AB)=0.7,则则 (A) A、3/7. B、4/7. C、5/7. D、6/7. 10、,设X表示掷两颗骰子所得的点数,则EX =(D) A、2 B、3 C、4 D、7 ?多选 题(共 20 分) 1、甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为(D) A、0.3 B、0.5 C、0.6 D、0.8

统计与概率高考题2

统计与概率高考题2(2015—2018年文科) 1.(2018全国卷Ⅰ)某家庭记录了未使用节水龙头50天的日用水量数据(单位:3 m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下: 未使用节水龙头50天的日用水量频数分布表 使用了节水龙头50天的日用水量频数分布表 (1)在下图中作出使用了节水龙头50天的日用水量数据的频率分布直方图: (2)估计该家庭使用节水龙头后,日用水量小于0.35 3 m的概率; (3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中 的数据以这组数据所在区间中点的值作代表.)

2.(2018全国卷Ⅱ)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图. 为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1217,,…,)建立模型 ①:?30.413.5=-+y t ;根据2010年至2016年的数据(时间变量t 的值依次为127,,…,)建立模型②:?9917.5=+y t . (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.

3.(2018全国卷Ⅲ)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图: (1)根据茎叶图判断哪种生产方式的效率更高?并说明理由; (2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m 和不超过m的工人数填入下面的列联表:

概率论与数理统计的发展

数理统计学前沿简介 (陈希孺院士访谈) 一、概率论与数理统计学的产生和发展 记者:陈希孺院士,请你谈谈概率论与数理统计学学科的诞生和发展情况。 陈希孺院士:我们先从数理统计学开始,数理统计学是研究收集数据、分析数据并据以对所研究的问题作出一定的结论的科学和艺术。数理统计学所考察的数据都带有随机性(偶然性)的误差。这给根据这种数据所作出的结论带来了一种不确定性,其量化要借助于概率论的概念和方法。数理统计学与概率论这两个学科的密切联系,正是基于这一点。 统计学起源于收集数据的活动,小至个人的事情,大至治理一个国家,都有必要收集种种有关的数据,如在我国古代典籍中,就有不少关于户口、钱粮、兵役、地震、水灾和旱灾等等的记载。现今各国都设有统计局或相当的机构。当然,单是收集、记录数据这种活动本身并不能等同于统计学这门科学的建立,需要对收集来的数据进行排比、整理,用精炼和醒目的形式表达,在这个基础上对所研究的事物进行定量或定性估计、描述和解释,并预测其在未来可能的发展状况。例如根据人口普查或抽样调查的资料对我国人口状况进行描述,根据适当的抽样调查结果,对受教育年限与收入的关系,对某种生活习惯与嗜好(如吸烟)与健康的关系作定量的评估。根据以往一般时间某项或某些经济指标的变化情况,预测其在未来一般时间的走向等,做这些事情的理论与方法,才能构成一门学问——数理统计学的内容。

这样的统计学始于何时?恐怕难于找到一个明显的、大家公认的起点。一种受到某些著名学者支持的观点认为,英国学者葛朗特在1662年发表的著作《关于死亡公报的自然和政治观察》,标志着这门学科的诞生。中世纪欧洲流行黑死病,死亡的人不少。自1604年起,伦敦教会每周发表一次“死亡公报”,记录该周内死亡的人的姓名、年龄、性别、死因。以后还包括该周的出生情况——依据受洗的人的名单,这基本上可以反映出生的情况。几十年来,积累了很多资料,葛朗特是第一个对这一庞大的资料加以整理和利用的人,他原是一个小店主的儿子,后来子承父业,靠自学成才。他因这一部著作被选入当年成立的英国皇家学会,反映学术界对他这一著作的承认和重视。 这是一本篇幅很小的著作,主要内容为8个表,从今天的观点看,这只是一种例行的数据整理工作,但在当时则是有原创性的科研成果,其中所提出的一些概念,在某种程度上可以说沿用至今,如数据简约(大量的、杂乱无章的数据,须注过整理、约化,才能突出其中所包含的信息)、频率稳定性(一定的事件,如“生男”、“生女”,在较长时期中有一个基本稳定的比率,这是进行统计性推断的基础)、数据纠错、生命表(反映人群中寿命分布的情况,至今仍是保险与精算的基础概念)等。 葛朗特的方法被他同时代的政治经济学家佩蒂引进到社会经济问题的研究中,他提倡在这类问题的研究中不能尚空谈,要让实际数据说话,他的工作总结在他去世后于1690年出版的《政治算术》一书中。 当然,也应当指出,他们的工作还停留在描述性的阶段,不是现代意义下的数理统计学,那时,概率论尚处在萌芽的阶段,不足以给数理统计学的发展提供充分的理论支持,但不能由此否定他们工作的重大意义,作为现代数理统计学发展的几个源头之一,他们以及后续学者在人口、社会、经济等

概率统计复习题201301

概率统计重修复习题型 填空题: 1. 已知P (A )=0.4,P (B )=0.6,P (AB ) =0.2,则P (A ∪B )= 。 2. 已知P (A )=0.3,P (B )=0.5,P (A ∪B )=0.7,则=)(A B P 。 3. 已知P (A )=0.5,P (B )=0.4,P (A ∪B )=0.7,则=-)(B A P 。 4. 已知P (B )=0.1,则P (B ) = 。 5. 从5双鞋子中选取4只,这4只鞋中恰有两支配成一双的概率为 。 6. 一袋中有20个乒乓球,其中8个是黄球,12个是白球. 今有2人依次随机 地从袋中各取一球,取后不放回。则第二个人取得黄球的概率是 。 7. 有6支笔,其中2支蓝笔,4支红笔. 今有3人依次随机地从中各取一支笔, 取后不放回。则第三个人取得红笔的概率是 。 8. 已知随机变量X 的密度为,其他?? ?<<=, 01 0,)(x x a x f 则a = 。 9. 设X 是连续型随机变量,则P {X = 5} = 。 10. 设随机变量X 的概率密度为) 1(1 )(2 x x f += π,+∞<<∞-x ,则Y = 2X 的概 率密度为 。 11. 设二维连续型随机变量(,)X Y 的概率密度函数为(,)f x y ,则X Y +的概率密度函数()X Y f z += 。 12. 设随机变量 X 与Y 相互独立,且 X 的分布函数为F (x ), Y 的分布函数为 G (x ),则 Z = max{ X ,Y }的分布函数为 。 13. 设随机变量 X 与Y 相互独立,且 X 的概率密度函数为f (x ), Y 的概率密度 函数为g (y ),则X 与Y 的联合概率密度函数(,)f x y = 。 14. 设随机变量X 服从指数分布,且=)(X D 0.2,则=)(X E 。 15. 设随机变量X 服从泊松分布,且=)(X D 0.3,则=)(X E 。 16. 设~U(1,5),X -则=)(X E ,()D X = 。 17. 设~b(5,0.1),X ~π(2),Y 且,X Y 相互独立,则()E XY = 。 18. 设),5,2(~),4,3(~N Y N X 且,2),(-=Y X Cov 则=-)32(Y X D 。 19. 设),5,2(~),4,3(~N Y N X 且,2),(-=Y X Cov 则相关系数为 。

概率论与数量统计-公式

第1章随机事件及其概率 (1)排列组合公式 从m 个人中挑出n 个人进行排列的可能数。 从m 个人中挑出n 个人进行组合的可能数。 (2)加法和乘法原理 加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题 (4)随机试验和随机事件 如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。 (5)基本事件、样本空间和事件 在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用来表示。 基本事件的全体,称为试验的样本空间,用表示。 一个事件就是由中的部分点(基本事件)组成的集合。通常用大写字母A,B,C,…表示事件,它们是的子集。为必然事件,?为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。(6)事件的关系与运算 ①关系: 如果事件A 的组成部分也是事件B 的组成部分,(A 发生必有事件B 发生):如果同时有, ,则称事件A 与事件B 等价,或称A 等于B : A=B 。 A、B 中至少有一个发生的事件:A B ,或者A +B 。 属于A 而不属于B 的部分所构成的事件,称为A 与B 的差,记为A-B ,也 可表示为A-AB 或者 ,它表示A 发生而B 不发生的事件。 A、B 同时发生:A B ,或者AB 。A B=?,则表示A 与B 不可能同时发 生,称事件A 与事件B 互不相容或者互斥。基本事件是互不相容的。

概率统计试题及答案一份2016(仅供参考)

概率统计试题及答案一份(仅供参考2016) 一.填空题(每空3分,共24分) 1.设,,A B C 为三个随机事件,则事件“A ,B 发生同时C 不发生”可 表示为 __ AB C 。 2.设()0.3,()0.4P A P B ==,如果事件A ,B 互不相容,则()P A B ? 0.7。 3.甲乙两人同时向同一目标射击,击中的概率分别为0.7,0.8,则该目标被击中的概率为 0.94。 4.设随机变量X 在区间(0,2)上服从均匀分布,则{1}P X = 0 。 5.设随机变量X 和Y 的相关系数为0.5,分布密度分别为 2 2(1)()},, 82, 0,()0, X y Y x f x x e y f y y --=--∞<<∞?>=? ≤? 则2(32)Y E X e -- 2 ,(32)Var X Y - 31 。 6.从某总体中抽取容量为5的一样本,其观测值分别为2,3,2,1,2,则样本均值为 2 ;具有无偏性质的样本方差为 0.5 二.简述题(每小题8分,共16分) (1)概率的公理化定义及其概率的四种形式。 解:设F 为样本空间Ω的事件域,如果对任意A F ∈,都存在实数 ()P A 与之对应,且满足 (1)()1;(2)0()1;P P A Ω=≤≤(3)如果12,,,,n A A A 两两互不相容, 有1 1 ()()i i i i P A P A ∞∞ ===∑ ,则称()P A 为事件A 的概率。

概率四种形式:统计概率;古典概率;几何概率;主观概率;条件概率。 (2)什么叫统计量?列举四种常用的统计量。 解:设12,,,n X X X 为总体X 的一样本,如果函数12(,,,)n g X X X 不包含任何未知参数,则称12(,,,)n g X X X 为统计量。 样本均值__ 11n i i X X n ==∑,样本方差__ 22 11()1n i i S X X n ==--∑,样本原点矩1 1n k k i i A X n ==∑,样本中心矩__ 1 1()n k k i i B X X n ==-∑。 三.(12分)设离散型随机变量X 的分布律为 1{}(1) ,1,2,,01, k P X k A p p k p -==-=<< 求:①常数A ;②{}P X k >;③EX 。 解:①因为11 1 {}1(1)1(1) k k k p P X k A p p A A p ∞∞ -=====-==--∑∑,所以1A =。 4分 ②{}1 1 1 {}(1) (1)j k j k j k P X k P X j p p p ∞∞ -=+=+>===-=-∑∑。 8分 ③ 1 ' ''1 1 11 1 {}(1) [(1)][(1)]()1k k k k k k k q EX kP X k kp p p p p p p q p ∞∞ ∞∞ -=======-=-=-==-∑∑∑∑ 四.(12分)设随机变量(,)X Y 在区域D 上服从均与分布,D 为由,2,1y x y x x ===所围成有限区域,求(1)联合密度函数;(2)边际密度函数;③判断,X Y 的独立性。 解:(1) 区域D 的面积为 1 1 (2)2s x x dx =-= ?。故所求联合密度函数为 2,01,2, (,)0,x x y x f x y <<<

概率论与数理统计在生活中的应用

概率论与数理统计在生活中的应用 单位:兴隆场初级中学姓名:姜宏琼 摘要:随机现象无处不在,渗透于日常生活的方方面面和科学技术的各个领域,概率论就是通过研究随机现象及其规律从而指导人们从事物表象看到其本质的一门科学。生活中买彩票显示了小概率事件发生的几率之小,抽签与体育比赛赛制的选择用概率体现了公平与不公平,用概率来指导决策,减少错误与失败等等,显示了概率在人们日常生活中越来越重要。数理统计在人们的生活中也不断的发挥重要的作用,如果没有统计学,人们在收集资料和进行各项的大型的数据收集工作是非常困难的,通过对统计方法的研究,使得我们处理各种数据更加简便,所以统计也是一门很实用的科学,应该受到大家的重视。 关键字:概率、保险、彩票、统计、数据、应用 由赌徒的问题引起,概率逐渐演变成一门严谨的科学。1654年,有一个法国赌徒梅勒遇到了一个难解的问题:梅勒和他的一个朋友每人出30个金币,两人谁先赢满3局谁就得到全部赌注。在游戏进行了一会儿后,梅勒赢了2局,他的朋友赢了1局。这时候,梅勒由于一个紧急事情必须离开,游戏不得不停止。他们该如何分配赌桌上的60个金币的赌注呢?梅勒的朋友认为,既然他接下来赢的机会是梅勒的一半,那么他该拿到梅勒所得的一半,即他拿20个金币,梅勒拿40个金币。然而梅勒争执道:再掷一次骰子,即使他输了,游戏是平局,他最少也能得到全部赌注的一半——30个金币;但如果他赢了,并可拿走全部的60个金币。在下一次掷骰子之前,他实际上已经拥有了30个金币,他还有50%的机会赢得另外30个金币,所以,他应分得45个金币。 赌本究竟如何分配才合理呢?后来梅勒把这个问题告诉了当时法国著名的数学家帕斯卡,这居然也难住了帕斯卡,因为当时并没有相关知识来解决此类问题,而且两人说的似乎都有道理。帕斯卡又写信告诉了另一个著名的数学家费马,于是在这两位伟大的法国数学家之间开始了具有划时代意义的通信,在通信中,他们最终正确地解决了这个问题。他们设想:如果继续赌下去,梅勒(设为甲)和他朋友(设为乙)最终获胜的机会如何呢?他们俩至多再赌2局即可分出胜负,这2局有4种可能结果:甲甲、甲乙、乙甲、乙乙。前3种情况都是甲最后取胜,只有最后一种情况才是乙取胜,所以赌注应按3:1的比例分配,即甲得

相关文档