文档视界 最新最全的文档下载
当前位置:文档视界 › 几种常见的概率分布

几种常见的概率分布

几种常见的概率分布
几种常见的概率分布

几种常见的概率分布

一、 离散型概率分布

1. 二项分布

n 次独立的贝努利实验,其实验结果的分布(一种结果出现x 次的概率是多少的分布)即为二项分布

应用二项分布的重要条件是:每一种实验结果在每次实验中都有恒定的概率,各实验之间是重复独立的

平均数: (Y)np X E μ==

方差与标准差:2(1)X np P σ=-

;X σ=特例:(0-1)分布

若随机变量X 的分布律为

1(x k)p (1p)k k p -==- k=0,1;0

则称X 服从参数p 的(0-1)分布

2. 泊松分布

泊松分布是一种用来描述一定的空间和时间里稀有事件发生次数的概率分布

泊松分布变量x 只取零和正整数:0、1、2…..其概率函数为:

(x)!x p e x μμ-=

泊松分布的平均数:(x)E μμ==

泊松分布的方差和标准差:2σμ=

、σ=

3. 超几何分布 P(X=k)=k n k M N M n N C C C -- 记X~(N ,M ,n ) P=M N

期望:E(X)=np

方差:D(X)=np(1-p)1

N n N -- 适用范围:多次完全相同并且相互独立的重复试验,如果在有限总体中不重

复抽样,抽样成功的次数X 的概率分布服从超几何分布,如福利彩票

二、 连续型概率分布

1. 均匀分布

若随机变量X 具有概率密度函数

(x)f =

则称X 在区间(a ,b )上服从均匀分布,记为X ~ U(a ,b)

在区间(a ,b )上服从均匀分布的随机变量X 的分布函数为

0F(x),1

x a x a a x b b a b x ?

2指数分布

若随机变量X 具有概率密度函数,0(x)0,0

x e x f x λλ-?≥=? 是常数,

则称X 服从以λ 为参数的指数分布,记作~()X E λ ,X 的分布函数为

1,0(x)0,0

x e x F x λ-?-≥=?

3.正态分布

正态随机变量X 的概率密度函数的形式如下:

22(x )2(x),f x μδ--=-∞<<∞

式中,μ 为随机变量X 的均值;2δ 为随机变量X 的方差。

通常对具有均值μ,方差为2δ的正态概率分布,记为N (μ,2δ)。于是有正态随机变量X~N (μ,2δ)。

1,;0,a x b b a ?<

4.2χ 分布

如果从标准正态分布N (0,1)的总体中得到n 个随机变量分别为12n ,....,X X X ,

时,则由2i X ∑ 得到的分布叫做自由度为n 的2χ 分布,记为2~n X χ()

2~n X χ()

。 2χ分布的数学期望和方差分别为:

E (X )= n ,D (X )=2n

关于2χ分布的加法定理。设12,....k X X X ,,是相互独立的随机变量,且

2~(n ),i 1,2,....,i i X k χ=则

2121~(n n ...n )k i

k i X χ=++∑

2χ分布与N (0,1)分布有如下关系:

设12n ,....X X X ,是相互独立的随机变量,并且i X ~(0,1)

,i=1,2,…n ,则 221~(n)n

i

i X χ=∑ 5.t 分布

设X~N (0,1),2~(n)Y χ ,X 与Y 相互独立,则随机变量

t =

遵从n 个自由度的t

分布,记为~(n)t t =。 t 分布的数学期望和方差如下:

当n>2时,E(t)=0,D(t)=2

n n - t 分布的图形是对称的。当n<30时,t 分布的分散程度比标准正态分布大,密度函数曲线比较平缓,随着n 的增大,t 分布逐渐逼近标准正态分布。当n →∞ 时,t 分布渐近标准正态分布。

6.F 分布

设随机变量21~(n )X χ ,22Y ~(n )χ,且X 与Y 相互独立,则称随机变量

12

//X n F Y n 遵从自由度为12(n ,n ) 的F 分布,记作F~F 12(n ,n )

F 分布的形状为正偏态分布状,但随着12n ,n 的增大,其概率密度曲线的偏

斜度虽有所缓减却仍保持偏态分布,并不以正态分布为其极限分布形式。 如果~(n)t t ,则2~(1,n)t F 如果12211~F(n ,n ),~F F

F 则(n ,n ) 。

常用的概率分布类型其特征

常用的概率分布类型及其特征 3.1 二点分布和均匀分布 1、两点分布 许多随机事件只有两个结果。如抽检产品的结果合格或不合格;产品或者可靠的工作,或者失效。描述这类随机事件变量只有两个取值,一般取0和1。它服从的分布称两点分布。 其概率分布为: 其中 Pk=P(X=Xk),表示X取Xk值的概率: 0≤P≤1。 X的期望 E(X)=P X的方差 D(X)=P(1—P) 2、均匀分布 如果连续随机变量X的概率密度函数f(x)在有限的区间[a,b]上等于一

个常数,则X服从的分布为均匀分布。 其概率分布为: X的期望 E(X)=(a+b)/2 X的方差 D(X)=(b-a)2/12 3.2 抽样检验中应用的分布 3.2.1 超几何分布 假设有一批产品,总数为N,其中不合格数为d,从这批产品中随机地抽出n件作为被检样品,样品中的不合格数X服从的分布称超几何分布。 X的分布概率为: X=0,1,…… X的期望 E(X)=nd/N

X的方差 D(X)=((nd/N)((N-d)/N)((N-n)/N))(1/2)3.2.2 二项分布 超几何分布的概率公式可以写成阶乘的形式,共有9个阶乘,因而计算起来十分繁琐。二项分布就可以看成是超几何分布的一个简化。 假设有一批产品,不合格品率为P,从这批产品中随机地抽出n件作为被检样品,其中不合格品数X服从的分布为二项分布。 X的概率分布为: 0

16种常见概率分布概率密度函数、意义及其应用

目录 1. 均匀分布 (1) 2. 正态分布(高斯分布) (2) 3. 指数分布 (2) 4. Beta分布(:分布) (2) 5. Gamm 分布 (3) 6. 倒Gamm分布 (4) 7. 威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5) 8. Pareto 分布 (6) 9. Cauchy分布(柯西分布、柯西-洛伦兹分布) (7) 2 10. 分布(卡方分布) (7) 8 11. t分布................................................ 9 12. F分布 ............................................... 10 13. 二项分布............................................ 10 14. 泊松分布(Poisson 分布)............................. 11 15. 对数正态分布........................................

1. 均匀分布 均匀分布X ~U(a,b)是无信息的,可作为无信息变量的先验分布。

2. 正态分布(高斯分布) 当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量 很可能服从正态分布,记作 X~N (」f 2)。正态分布为方差已知的正态分布 N (*2)的参数」的共轭先验分布。 1 空 f (x ): —— e 2- J2 兀 o' E(X), Var(X) _ c 2 3. 指数分布 指数分布X ~Exp ( )是指要等到一个随机事件发生,需要经历多久时间。其 中,.0为尺度参数。指数分布的无记忆性: Plx s t|X = P{X t}。 f (X )二 y o i E(X) 一 4. Beta 分布(一:分布) f (X )二 E(X) Var(X)= (b-a)2 12 Var(X)二 1 ~2

几种常见的概率分布复习过程

几种常见的概率分布 一、 离散型概率分布 1. 二项分布 n 次独立的贝努利实验,其实验结果的分布(一种结果出现x 次的概率是多少的分布)即为二项分布 应用二项分布的重要条件是:每一种实验结果在每次实验中都有恒定的概率,各实验之间是重复独立的 平均数: (Y)np X E μ== 方差与标准差:2(1)X np P σ=- ;X σ=特例:(0-1)分布 若随机变量X 的分布律为 1(x k)p (1p)k k p -==- k=0,1;0

复抽样,抽样成功的次数X 的概率分布服从超几何分布,如福利彩票 二、 连续型概率分布 1. 均匀分布 若随机变量X 具有概率密度函数 (x)f = 则称X 在区间(a ,b )上服从均匀分布,记为X ~ U(a ,b) 在区间(a ,b )上服从均匀分布的随机变量X 的分布函数为 0F(x),1 x a x a a x b b a b x ? 是常数, 则称X 服从以λ 为参数的指数分布,记作~()X E λ ,X 的分布函数为 1,0(x)0,0 x e x F x λ-?-≥=?

第5、6章习题常用的概率分布

常用的概率分布 一、正态分布 概率密度函数:22 2)(21)(σμπσ--=x e x f 正态分布曲线的特点:在μ=x 处最高,两个参数(σμ,),曲线下面积等于1。 正态分布的应用:确定正常值范围 二、二项分布 概念:服从伯努力试验序列的试验,在n 次实验中发生阳性结果的次数为x 次的概率为二项分布,x n x x n c x P --=) 1()(ππ。 二项分布的特点:图形的形态取决于n 和?。 阳性率:n x p =, 标准差 :n p ) 1(ππσ-= 二项分布的应用:计算二项分布中出现阳性次数最多为k 次或者是至少为k 次的概率。 三.Poisson 分布 概念:Poisson 分布看作二项分布的特例,单位空间、单位面积或单位时间内某稀有事件发生次数的概率分布. μμ-=e x x P x !)( Poisson 分布的特点:图形的形态取决于 ? , 总体均数

等于方差, 具有可加性。 注意: 凡个体间有传染性、聚集性,均不能视为二项分布或Poisson 分布。 应用:计算Poisson 分布中某稀有事件出现次数最多为k 次或者是至少为k 次的概率。 ∑ ∑-+----=-+-222)2()2)(1(2)1())2()1((μμμμμμy y x x y x 案例分析: (一)观察某地100名12岁男孩身高,均数为138.00cm ,标准差为 4.12cm ,12 .400.13800.128-=u ,则9925.0)(1=-u φ,结论正确是_____________。 A .理论上身高低于138.00cm 的12岁男孩占%。 B .理论上身高高于138.00cm 的12岁男孩占% C .理论上身高在128.00cm 和138.00cm 之间的12岁男孩占%。 D .理论上身高高于128.00cm 的12岁男孩占% (二)研究人员为了解该地居民发汞(?mol/kg )的基础水平,为汞污染的环境监测积累资料,调查了居住该市1年以上,无明显肝、肾疾病,无汞作业接触史的居民230人,数据如下:

常用分布概率计算的Excel应用

上机实习常用分布概率计算的Excel应用利用Excel中的统计函数工具,可以计算二项分布、泊松分布、正态分布等常用概率分布的概率值、累积(分布)概率等。这里我们主要介绍如何用Excel来计算二项分布的概率值与累积概率,其他常用分布的概率计算等处理与此类似。 §3.1 二项分布的概率计算 一、二项分布的(累积)概率值计算 用Excel来计算二项分布的概率值P n(k)、累积概率F n(k),需要用BINOMDIST函数,其格式为: BINOMDIST (number_s,trials, probability_s, cumulative) 其中 number_s:试验成功的次数k; trials:独立试验的总次数n; probability_s:一次试验中成功的概率p; cumulative:为一逻辑值,若取0或FALSE时,计算概率值P n(k);若取1 或TRUE时,则计算累积概率F n(k),。 即对二项分布B(n,p)的概率值P n(k)和累积概率F n(k),有 P n(k)=BINOMDIST(k,n,p,0);F n(k)= BINOMDIST(k,n,p,1) 现结合下列机床维修问题的概率计算来稀疏现象(小概率事件)发生次数说明计算二项分布概率的具体步骤。 例3.1某车间有各自独立运行的机床若干台,设每台机床发生故障的概率为0.01,每台机床的故障需要一名维修工来排除,试求在下列两种情形下机床发生故障而得不到及时维修的概率: (1)一人负责15台机床的维修; (2)3人共同负责80台机床的维修。 原解:(1)依题意,维修人员是否能及时维修机床,取决于同一时刻发生故障的机床数。 设X表示15台机床中同一时刻发生故障的台数,则X服从n=15,p=0.01的二项分布: X~B(15,0.01), 而 P(X= k)= C15k(0.01)k(0.99)15-k,k = 0, 1, …, 15 故所求概率为 P(X≥2)=1-P(X≤1)=1-P(X=0)-P(X=1) =1-(0.99)15-15×0.01×(0.99)14 =1-0.8600-0.1303=0.0097 (2)当3人共同负责80台机床的维修时,设Y表示80台机床中同一时刻发生故障的台数,则Y服从n=80、p=0.01的二项分布,即 Y~B(80,0.01) 此时因为 n=80≥30, p=0.01≤0.2 所以可以利用泊松近似公式:当n很大,p较小时(一般只要n≥30,p≤0.2时),对任一确定的k,有(其中 =np)

几种常见的概率分布

几种常见的概率分布 离散型概率分布 1.二项分布 n次独立的贝努利实验,其实验结果的分布(一种结果出现x次的概率是多少的分布)即为二项分布 应用二项分布的重要条件是:每一种实验结果在每次实验中都有恒定的概率,各实验之间是重复独立的 平均数:\二E(Y)二叩 方差与标准差:▽ X = np(1- P) ; = J np(1- p) 特例:(0-1 )分布 若随机变量x的分布律为 p(x = k) = p k(1 - p)1* k=o,i ;0

复抽样,抽样成功的次数X的概率分布服从超几何分布,如福利彩票 二、连续型概率分布 1?均匀分布 若随机变量X具有概率密度函数 f(X)二 则称X在区间(a,b)上服从均匀分布,记为X?U(a,b)在区间(a,b)上服从均匀分布的随机变量X的分布函数为 x v a F(x)X— ,a 乞x b b — a , X x 2指数分布 若随机变量X具有概率密度函数f(X)= e ' x - 0其中0是常数, 0,x< 0 则称X服从以’为参数的指数分布,记作X?E(' ),X的分布函数为 F(x)=」1 -e ,x 色0 j 0,x<0 3.正态分布 正态随机变量X的概率密度函数的形式如下: 1 f (x) e 2 $ ,—:::: x ::: 式中,」为随机变量X的均值;、;2为随机变量X的方差通常对具有均值卩,方差为62的正态概率分布,记为N (卩,62)。于是有正态随机变量X~N ( '2)。

16种常见概率分布概率密度函数、意义及其应用

目录 1.均匀分布 (1) 2.正态分布(高斯分布) (2) 3.指数分布 (2) 4.Beta分布(β分布) (2) 5.Gamma分布 (3) 6.倒Gamma分布 (4) 7.威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5) 8.Pareto分布 (6) 9.Cauchy分布(柯西分布、柯西-洛伦兹分布) (7) χ分布(卡方分布) (7) 10.2 11.t分布 (8) 12.F分布 (9) 13.二项分布 (10) 14.泊松分布(Poisson分布) (10) 15.对数正态分布 (11) 1.均匀分布 均匀分布~(,) X U a b是无信息的,可作为无信息变量的先验分布。

1()f x b a = - ()2 a b E X += 2 ()()12 b a Var X -= 2. 正态分布(高斯分布) 当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量很可能服从正态分布,记作2~(,)X N μσ。正态分布为方差已知的正态分布 2(,)N μσ的参数μ的共轭先验分布。 22 ()2()x f x μσ-- = ()E X μ= 2()Var X σ= 3. 指数分布 指数分布~()X Exp λ是指要等到一个随机事件发生,需要经历多久时间。其中0λ>为尺度参数。指数分布的无记忆性:{}|{}P X s t X s P X t >+>=>。 (),0 x f x e x λλ-=> 1 ()E X λ = 2 1 ()Var X λ = 4. Beta 分布(β分布)

Beta 分布记为~(,)X Be a b ,其中Beta(1,1)等于均匀分布,其概率密度函数可凸也可凹。如果二项分布(,)B n p 中的参数p 的先验分布取(,)Beta a b ,实验数据(事件A 发生y 次,非事件A 发生n-y 次),则p 的后验分布(,)Beta a y b n y ++-,即Beta 分布为二项分布(,)B n p 的参数p 的共轭先验分布。 10 ()x t x t e dt ∞--Γ=? 1 1()()(1)()() a b a b f x x x a b --Γ+= -ΓΓ ()a E X a b = + 2 ()()(1) ab Var X a b a b = +++ 5. Gamma 分布 Gamma 分布即为多个独立且相同分布的指数分布变量的和的分布,解决的

考试练习题常用概率分布教学提纲

考试练习题常用概率 分布

第四章 选择题: 1.二项分布的概率分布图在 条件下为对称图形。 A .n > 50 B .π=0.5 C .n π=1 D .π=1 E .n π> 5 2.满足 时,二项分布B (n,π)近似正态分布。 A .n π和n (1-π)均大于等于5 B .n π或n (1-π)大于等于5 C .n π足够大 D .n > 50 E .π足够大 3. 的均数等于方差。 A .正态分布 B .二项分布 C .对称分布 D .Poisson 分布 E .以上均不对 4.标准正态典线下,中间95%的面积所对应的横轴范围是 。 A .-∞到+1.96 B .-1.96到+1.96 C .-∞到+2.58 D .-2.58到+2.58 E .-1.64到+1.64 5.服从二项分布的随机变量的总体均数为 。 A .n (1-π) B .(n -1)π C .n π(1-π) D .n π 6.服从二项分布的随机变量的总体标准差为 。 A . B . (1-π)(1-π)( -)π1 C . D . π(1-π)(π 7.设X 1,X 2分别服从以λ1,λ2为均数的Poisson 分布,且X 1与X 2独立,则X 1+X 2服从以 为方差的Poisson 分布。 A . B .λ2λ12+2λ 2λ1+ C . D . 2λ2λ1+() 2λ2λ1+() E .λ2λ12+2 8.满足 时,Poisson 分布Ⅱ(λ)近似正态分布。

A.λ无限大 B.λ>20 C.λ=1 D.λ=0 E.λ=0.5 9.满足时,二项分布B(n,π)近似Poisson分布。 A.n很大且π接近0 B.n→∞ C.nπ或n(1-π)大于等于5 D.n很大且π接近0.5 E.π接近0.5 10.关于泊松分布,错误的是。 A.当二项分布的n很大而π很小时,可用泊松分布近似二项分布 B.泊松分布均数λ唯一确定 C.泊松分布的均数越大,越接近正态分布 D.泊松分布的均数与标准差相等 E.如果X1和X2分别服从均数为λ1和λ2的泊松分布,且相互独立。则 X1+X2服从均数为λ1+λ2的泊松分布。 11.以下分布中,均数等于方差的分布是。 A.正态分布 B.标准正态分布 C.二项分布 D.Poisson分布 E.t 分布 12.随机变量X服从正态分布N(μ1,σ12),Y服从正态分布N(μ2,σ 2),X与Y独立,则X-Y服从。 2 A.N(μ1+μ2,σ12-σ22) B.N(μ1-μ2,σ12-σ22) C.N(μ1-μ2,σ12+σ22) D.N(0,σ12+σ22) E.以上均不对 13.下列叙述中,错误的是。 A.二项分布中两个可能结果出现的概率之和为1 B.泊松分布只有1个参数λ C.正态曲线下的面积之和为1

各种概率分布介绍

一、引言 Bayes统计起源于英国学者托马斯.贝叶斯(Thomas Bayes,1702~1761)死后发表的一篇论文“论有关机遇问题的求解”。在此论文中他提出了著名的贝叶斯公式和一些归纳推理方法,随后拉普拉斯(Laplace,P.C.1749~1827)不仅重新发现了贝叶斯定理,阐述的远比贝叶斯更为清晰,而且还用它来解决天体力学、医学统计以及法学问题。之后虽有一些研究和应用但由于其理论尚不完整,应用中出现一些问题,致使贝叶斯方法长期未被接受。直到二战后,瓦尔德(Wald,A.1902~1950)提出统计决策函数论后又引起很多人对贝叶斯研究方法的兴趣。因为在这个理论中,贝叶斯解被认为是一种最优决策函数。在Savage,L.J.(1954)、Jeffreys,H.(1961)、Good,I.J(1950)、Lindley,D.V(1961)、Box,G.E.P.&Tiao,G.C.(1973)、Berger,J.O.(1985)等贝叶斯学者的努力下,对贝叶斯方法在观点、方法和理论上不断的完善。另外在这段时期贝叶斯方法在工业、经济、管理等领域内获得一批无可非议的成功应用。贝叶斯统计的研究论文与著作愈来愈多,贝叶斯统计的国际会议经常举行。如今贝叶斯统计已趋成熟,贝叶斯学派已发展成为一个有影响的学派,开始打破了经典统计学一统天下的局面。 贝叶斯统计是在与经典统计的争论中发展起来的,现已成为统计学中不可缺少的一部分.贝叶斯统计与经典统计的主要区别就是是否利用先验信息。贝叶斯统计重视已出现的样本观测值,对尚未发生的样本观测值不予考虑。近几年来对贝叶斯统计的广泛应用,使得贝叶斯统计在可靠性问题中起到越来越重要的作用。尤其是对产品的失效率以及产品寿命的检验中,更是离不开贝叶斯统计。本文主要是探索串联系统和并联系统的可靠性,以及可靠性增长模型的Bayes估计,这些都表现出了Bayes统计在可靠性中的广泛应用。 二、绪论 (一)统计学及其发展历程 人类的统计活动源远流长,自从有了数的概念,有了计数活动,就有了统计。但作为一门学科的统计学,它的出现却晚得多。英国学者配第(W.Petty)《政治算术》一书的问世,标志着统计学的开端。 概率论是统计学的重要起源之一。14世纪时,在工商业比较繁荣的意大利以及地中海岸其他地区,由于赌博游戏盛行和保险活动的萌起。人们

概率论中几种常用的重要的分布

概率论中几种常用的重要的分布 摘要:本文主要探讨了概率论中的几种常用分布,的来源和他们中间的关系。其在实际中的应用。 关键词 1 一维随机变量分布 随机变量的分布是概率论的主要内容之一,一维随机变量部分要介绍六中常用分布,即( 0 -1) 分布、二项分布、泊松分布、均匀分布、指数分布和正态分布. 下面我们将对这六种分布逐一地进行讨论. 随机事件是按试验结果而定出现与否的事件。它是一种“定性”类型的概念。为了进一步研究有关随机试验的问题,还需引进一种“定量”类型的概念,即,根据试验结果而定取什么值(实值或向量值)的变数。称这种变数为随机变数。本章内将讨论取实值的这种变数—— 一维随机变数。 定义1.1 设X 为一个随机变数,令 ()([(,)])([]),()F x P X x P X x x =∈-∞=-∞+∞p p p . 这样规定的函数()F x 的定义域是整个实轴、函数值在区间[0,1]上。它是一个普通的函数。成这个函数为随机函数X 的分布函数。 有的随机函数X 可能取的值只有有限多个或可数多个。更确切地说:存在着有限多个值或可数多个值12,,...,a a 使得 12([{,,...}])1P X a a ∈= 称这样的随机变数为离散型随机变数。称它的分布为离散型分布。 【例1】下列诸随机变数都是离散型随机变数。 (1)X 可能取的值只有一个,确切地说,存在着一个常数a ,使([])1P X a ==。称这种随机变数的分布为退化分布。一个退化分布可以用一个常数a 来确定。 (2)X 可能取的值只有两个。确切地说,存在着两个常数a ,b ,使([{,}])1P X a b ∈=.称这种随机变数的分布为两点分布。如果([])P X b p ==,那么,([])1P X a p ===-。因此,一个两点分布可以用两个不同的常数,a b 及一个在区间(0,1)内的值p 来确定。 特殊地,当,a b 依次为0,1时,称这两点分布为零-壹分布。从而,一个零-壹分布可以用一个在区间(0,1)内的值p 来确定。 (3)X 可能取的值只有n 个:12,...,a a (这些值互不相同),且,取每个i a 值

考试练习题常用概率分布

第四章 选择题: 1.二项分布的概率分布图在条件下为对称图形。 A.n > 50 B.π=0.5 C.nπ=1 D.π=1 E.nπ> 5 2.满足时,二项分布B(n,π)近似正态分布。 A.nπ和n(1-π)均大于等于5 B.nπ或n(1-π)大于等于5 C.nπ足够大D.n > 50 E.π足够大 3. 的均数等于方差。 A.正态分布B.二项分布C.对称分布D.Poisson分布E.以上均不对4.标准正态典线下,中间95%的面积所对应的横轴范围是。 A.-∞到+1.96 B.-1.96到+1.96 C.-∞到+2.58 D.-2.58到+2.58 E.-1.64到+1.64 5.服从二项分布的随机变量的总体均数为。 A.n(1-π)B.(n-1)πC.nπ(1-π)D.nπ 6.服从二项分布的随机变量的总体标准差为。 7.设X1,X2分别服从以λ1,λ2为均数的Poisson分布,且X1与X2独立,则X1+X2服从以 为方差的Poisson分布。 8.满足时,Poisson分布Ⅱ(λ)近似正态分布。 A.λ无限大B.λ>20 C.λ=1 D.λ=0 E.λ=0.5 9.满足时,二项分布B(n,π)近似Poisson分布。 A.n很大且π接近0 B.n→∞C.nπ或n(1-π)大于等于5 D.n很大且π接近0.5 E.π接近0.5 10.关于泊松分布,错误的是。 A.当二项分布的n很大而π很小时,可用泊松分布近似二项分布 B.泊松分布均数λ唯一确定 C.泊松分布的均数越大,越接近正态分布 D.泊松分布的均数与标准差相等 E.如果X1和X2分别服从均数为λ1和λ2的泊松分布,且相互独立。则X1+X2服从均数为λ1+λ2的泊松分布。 11.以下分布中,均数等于方差的分布是。 A.正态分布B.标准正态分布C.二项分布D.Poisson分布E.t分布12.随机变量X服从正态分布N(μ1,σ12),Y服从正态分布N(μ2,σ22),X与Y 独立,则X-Y服从。 A.N(μ1+μ2,σ12-σ22)B.N(μ1-μ2,σ12-σ22) C.N(μ1-μ2,σ12+σ22)D.N(0,σ12+σ22)E.以上均不对 13.下列叙述中,错误的是。 A.二项分布中两个可能结果出现的概率之和为1 B.泊松分布只有1个参数λ C.正态曲线下的面积之和为1 D.服从泊松分布的随机变量,其取值为0到n的概率之和为1 E.标准正态分布的标准差为1 14.据既往经验,注射破伤风抗毒素异常发生率为5‰,某医院一年接种600人次,无1例发生异常,该情况发生的可能性P(X=0)应等于。

16种常见概率分布概率密度函数、意义及其应用

均匀分布 .................................... 1 .... 正态分布(高斯分布) ....................... 2 ... 指数分布 .................................... 2 .... Beta 分布( 分布) .......................... 2 ... Gamma 分布 .................................. 3 .... 倒 Gamma 分布 威布尔分布 (Weibull 分布、韦伯分布、韦布尔分布 ) .............................................. 5.. Pareto 分布 ................................ 6 .... Cauchy 分布(柯西分布、柯西 .................. - 洛伦 兹分布) 7.. 2 分布(卡方分布) ......................... 7. t 分布 ......................................................................................................... 8.. F 分布 ......................................................................................................... 9.. 二项分布 ....................................................................................................... 1..0. 泊松分布( Poisson 分布) .............................................................................................. 1..0. 对数正态分布 ..................................................................................................... 1..1.. 均匀分布 均匀分布 X ~U (a,b ) 是无信息的,可作为无信息变量的先验分布 1 f (x ) 目 录 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 1. .4.

相关文档