文档视界 最新最全的文档下载
当前位置:文档视界 › 深穿透地球化学方法

深穿透地球化学方法

深穿透地球化学方法
深穿透地球化学方法

深穿透地球化学方法在矿产勘查中的应用摘要常规的化探方法(如原生晕法、次生晕法、水化学法、分散流法等)在寻找近地表埋藏深度浅的矿体具有良好的效果,但是对于深部探矿存在一定的局限性。为了突破厚层覆盖物,获得深部隐伏矿的信息,各国学者逐步建立发展了深穿透地球化学方法。深穿透地球化学方法探测深度大,可达数百米;所测量的主要内容是直接来自深部矿体的直接信息;这种信息极为微弱,但这种微弱信息反而更可靠,因为常规化探中起干扰作用的物质发不出这种信息。本文主要介绍深穿透地球化学方法的研究状况、原理、在矿产勘查中应用及其存在的问题。1前言

地球化学勘查简称化探,是一种找矿技术方法。它是系统地在不同尺度和规模上研究大气圈、岩石圈、水圈、土壤圈、生物圈中的化学元素、同位素及其化学特征的空间分布变化规律,并探讨它们在宏观、微观尺度内的分配与迁移机制。常规的化探技术方法如原生晕法、次生晕法、水化学法、分散流法等,在矿产勘探中取得了良好的效果[1]。

随着勘查程度的提高,在出露区找到新矿床的可能性越来越小,因此寻找大型矿床的最大机遇出现在隐伏区[2]。为适应在隐伏区寻找新的大型矿床的需要,突破覆盖层、获得深部矿化信息就成为当务之急,深穿透地球化学方法应运而生。

深穿透地球化学是探测深部隐伏矿或地质体发出的直接信息的勘查地球化学理论与方法,通过研究隐伏矿成矿元素或伴生元素向地表的迁移机理和分散模式,含矿信息在地表的存在形式和富集规律,发展含矿信息采集、提取、分析和成果解释技术,以达到在覆盖区寻找隐伏矿的目的[3]。

2国内外研究状况

多年来地球化学方法主要用于圈定出露及亚出露矿化四周的地表次生分散晕和分散流找矿或圈定盲矿上方地表的原生晕找矿,取得极大效果,但对被厚层沉积物或厚层成矿后沉积岩或火山岩埋藏的矿体,由于地表次生异常与原生晕皆被掩蔽而显得无能为力[4]。

为适应在隐伏区寻找新的大型矿床的需要,突破覆盖层,获得深部矿化信息,国际上自50年代开始就致力于能探测更大深度的地球化学新方法研究。瑞典人

Kristiansson与Malmqvist首先提出的地气(geogas)方法;美国Clarke等人提出酶提取方法;在90年代初苏联提出引起广泛国际关注的电地球化学方法(CHIM)、元素有机态法(MPF);澳大利亚Mann等人提出活动金属离子法(MMI)[4]。在形成机理的研究方面提出了地气流迁移理论模型、还原烟筒柱模型等。

我国地质工作者于上世纪六、七十年代开始,经多年研究于1990年代进一步发展了适合隐伏区矿产勘查的深穿透地球化学理论与方法[5]。如谢学锦、王学求等人提出的金属活动态法(MOMEO)。

深穿透地球化学勘查技术包括以下几个系列。(1)物理分离提取技术:细粒级测量、磁性分离氧化物测量;(2)电化学测量技术:大电流供电提取技术,小电流独立供电提取技术;(3)选择性化学提取技术:偏提取法、元素有机质形式结合法,活动金属离子法,酶提取法,金属活动态提取法;(4)气体和地气测量技术:地气测量,纳米物质测量,气溶胶测量,地球气纳微金属测量,气体测量(包括常规气体和烃类气体);(5)水化学测量技术:元素测量、离子(硫酸根、氯离子、钙离子等)测量;(6)生物测量技术:植物、细菌测量。

3原理

各类矿床本身及其围岩中的成矿元素或伴生元素,以活动态的形式,在某种或几种营力作用下被迁移至地表[5]。常见的活动态包括各种离子、络合物、原子团、胶体、超微细的亚微米金属颗粒、铁族元素氧化物吸附和包裹金属、碳酸盐包裹金属、矿物颗粒间的成矿元素独立金属矿物(自然金属、金属互化物、硫化物等)。

一般认为元素被运移至地表的几种途径是:(1)风化过程中元素的物理和化学释放;(2)地下水循环将元素溶解带到地表;(3)离子扩散作用;(4)氧化还原作用(5)蒸发作用;(6)植物根系吸收;(7)气体扩散或被气体搬运。用适当的方法捕获或提取这些元素叠加在地表介质中的含量,可以达到寻找隐伏矿的目的[3]。不同的学者提出了不同的迁移模型,如离子扩散迁移模型(图1)、地下水溶解迁移模型(图2)、电化学迁移模型(图3)、地气流迁移模型(图4)、多营力迁移模型等[6]。

图1 离子扩散模型图2 水成异常模型

图3 电化学迁移模型图4 地气流迁移模型深穿透地球化学理论与方法具有下列特点:(1)可以用于大面积隐伏区的战略性勘查;(2)方法具有广谱性,可以适应于不同景观条件的隐伏区;(3)可以提取活动态金属,这部分金属都是可以被成矿流体所利用的,这就使得我们有可能从微观精细的尺度认识成矿过程和控制矿床形成规模的“基因”,架起成矿学与找矿学的桥梁[7]。

4金属活动态法

上面提到了多种深穿透地球化学方法,鉴于篇幅限制,现在主要介绍金属活动态法(MOMEO)。

4.1理论基础

金属元素活动态测量方法提出的基本思想是在金属矿床及其围岩中,与矿有关的超微细金属或金属离子或化合物会相应增多,并会在某种营力作用下,如地下水、电场、地气流、蒸发作用、浓度梯度、毛细管作用等,向地表迁移,到达

地表后被上覆土壤或其它疏松物的地球化学障所捕获,在原介质含量的基础上形

成活动态叠加含量,用适当的提取剂将这些元素叠加含量提取出来,从而达到寻找隐伏矿的目的。

金属元素在地表的活动态形式主要有以下几种:(1)离子状态;(2)各种可溶性化合物和络合物形式;(3)可溶性盐类;(4)胶体形式吸附在土壤颗粒表面;(5)呈离子或超微细颗粒吸附在粘土矿物表面,或呈可交换的离子态存在于粘土矿物之中;(6)不溶有机质结合形式;(7)呈离子或超微细颗粒吸附在矿物颗粒的氧化膜上。

4.2方法技术

对金属活动态的提取,不仅要破坏载体使金属释放出来,而且还要将释放出来的金属能够溶解于溶液中。金属活动态提取是针对金属活动态本身的,而不只是对载体的提取,故称之为金属活动态提取(MOMEO)。针对金属活动态的提取,提出了金属活动态2阶段提取方案:第一阶段是使用顺序提取的方法将载体由弱到强依次溶解,并使金属释放出来;第二阶段是对提取液的处理过程,将第一阶段释放出来的金属溶解于溶液中。

设计的金属活动态提取形式主要包括:(1)水提取态金属(包括金属离子、可溶性化合物、可溶性胶体和可溶性盐类中的金属元素);(2)吸附和可交换金属;(3)有机质结合金属;(4)氧化物膜吸附或包裹金属。

分析方法以等离子质谱为主,并配合石墨炉原子吸收、预富集化学光谱和原子荧光光谱的分析测试系统,可分析30余种元素。可根据需要选择分析其中的一种或几种元素。一般来说,对金矿而言主要分析Au、Ag、As、Sb、Hg等元素,对于多金属矿主要分析Cu、Pb、Zn、Ag、Au等,对于铜镍硫化物矿床主要分析Cu、Cr、Ni、Co、Pb、Zn、Fe、Mn,对于铂族矿床主要分析Pt、Pd、Ir、Cu、Ni、Au等。

4.3实际应用

勘查地球化学的特点就是它借助于分析技术,可以有效识别肉眼无法识别的矿床类型或矿种,过去在发现难识别矿种或难识别类型上取得了巨大成功。但现在依然有些新的难识别矿种或难识别类型矿床,有待于深入研究和找矿技术的突破,如砂岩型铀矿、黑色岩系中铂族元素矿床、稀有分散元素矿床和油田中伴生的金属矿床等。

4.3.1砂岩型铀矿

过去对铀矿的勘查主要是利用放射性方法。放射性方法在铀矿找矿历史中发挥了巨大作用,但放射性方法只适用于寻找出露矿或近地表矿,即使只有几英尺土壤盖层或岩石盖层,该方法就无能为力[8]。现在世界各国都将找矿方向转向盆地中砂岩型铀矿。而盆地中砂岩型铀矿都为隐伏矿,产于地表以下几十米至几百米深处。因此,发展能用于盆地砂岩铀矿评价的地球化学方法是勘查地球化学面临的重要挑战。中国正在这方面取得重要进展,王学求等利用深穿透地球化学方法的元素活动态提取测量可以有效发现300m盖层以下的铀矿体,铀钼组合异常是砂岩型铀矿的最显著标志(图5)。

图5 深穿透地球化学活动态U、Mo测量可清晰发现砂岩型铀矿

4.3.2黑色岩系中铂族元素矿床

俄罗斯干谷PGE-Au矿床,德国-波兰交界地带Cu-Au-PGE矿床,加拿大育空Nick盆地Ni-Zn-Mo-PGE矿床的共同特征是都产于黑色岩系中。我国西南地区有大片黑色岩系分布,并且已经发现巨大的铂族元素、铜、镍等地球化学异常。但由于黑色岩系中含有大量有机碳和金属呈超微细分散状态,因此难以识别。这类矿床的地球化学勘查受到很多地球学家的关注。

4.3.3稀有分散元素矿床

过去勘查地球化学对稀有分散元素矿床的找矿方法和大面积地球化学填图所做的工作很少,勘查地球化学发挥的作用有限。但随着现代工业对这些元素的

大量需求以及环境问题对这些元素的研究兴趣,引起了勘查地球化学研究人员的注意。如中国的区域化探扫面计划所分析的39种元素,包括了极少几个元素,国际地球化学填图计划和全球地球化学填图计划在开始酝酿时,也只包括了少量这类元素,但后来增加到76种元素,新增加的元素大部分是这类元素。这76种元素的全国地球化学编图的进行和完成,将会为稀有分散元素矿床的发现提供重要的找矿线索。

4.3.4油田中伴生的金属矿床

过去由于受到认识的局限,对石油和金属矿的寻找是风马牛不相及的两件事,但现在越来越多的证据显示石油与某些金属矿有着密不可分的关系。在世界很多油田中都发现含有大量金。如胜利油田原油中金的浓度可达0.106-0.132g/t,据称是我国油田中石油含金量最高的。据胜利油田测井资料,在某钻孔中2400m 处,有1g/t的金含量。像这样与石油相伴生的金属,由于面积巨大,尽管含量相对较低,只要开采技术过关,完全可以加以利用。

5存在的问题

(1)异常形成的时间、合理的采样深度是影响深部隐伏矿异常探测的两个关键要素。总的来说,没有任何一种技术能使用于所有地区和所有矿种。每种提取技术的应用,都在相当程度上受土壤物理化学性质(如组分、组构、pH、Eh、粒度等)的影响,指示元素的地表地球化学行为和样品加工分析过程中的思路、操作、控制技术都会左右测定和解释的结果。因此,采样深度与介质、“目标矿物”的选择、次生矿物中内外生组分的比例、提取剂的浓度、提取时的pH、胶体形成等问题,都是技术方法研究者和应用者必须面对的关键课题[5]。

(2)区分矿致异常与非矿异常。随着找矿难度的增加和众多复杂因素的干扰,勘查过程中往往能发现大量性质不明的化探异常,而仅从异常的规模、形态、元素含量以及从元素总量派生出的各种地球化学参数很难准确地判定异常的性质。因此,如何从为数众多的化探异常中快速筛选出最有找矿前景的靶区,并对矿体进行定位预测,成为目前化探勘查中的关键技术难题之一。

(3)与方法有关的基础性问题的研究,如活动性元素的存在形式、迁移机制等。由于元素从深部向地表迁移的机理难以直接观测,而且可能还有其他一些新的地质现象或作用营力未被发现和注意,因此这些基础性问题一直存在着争

议。但是,这些问题的解决不仅对金属矿产的勘查有着十分重要的意义,而且对于方法自身的发展以及对矿床成因等问题的研究都具有十分重要的意义。

现有的试验结果表明,还没有一种方法提取的结果能完全用现有的理论模型来解释。每种方法都有使用的局限性,并非总能成功。所以在一个新区开展工作时,要进行大量的实验研究,包括对各种技术方法的比较和采样深度、提取时间、提取温度的研究。

(4)难识别类型或难识别矿种的勘查。过去一段时间,勘查地球化学借助于高精度、高灵敏度的分析技术,在发现难识别矿种或难识别类型矿床上取得了巨大成功,特别是贵金属矿以及有色金属矿。但目前依然存在一些新的难识别矿种或难识别类型矿床,有待于深入研究和找矿技术的突破,如砂岩型铀矿、黑色岩系中铂族元素矿床、稀有分散元素矿床和油田中伴生的金属矿床等[9]。

(5)此外,因为这类技术所探测的信息十分微弱,指示元素的含量水平低,异常背景难以辨析,单凭分析结果解释异常,不确定性会很大。所以在实际应用的过程中,要与基础地质、地球物理等方法相结合,对分析的结果进行全面、综合的评价。

参考文献

[1] 彭省临,邵拥军,张建东.金属矿山隐伏矿找矿预测理论与方法[J].地质通报,2011,30(4):538-543.

[2] 尤宏亮.深穿透地球化学方法综述[J].有色矿冶,2005,21(6):3-6.

[3] 王学求.深穿透勘查地球化学[J].物探与化探,1998,22(3):166-169.

[4] 谢学锦.战术性与战略性深穿透地球化学方法[J].地学前缘,1998,5(1-2):171-183.

[5] 杨少平,弓秋丽,文志刚等.地球化学勘查新技术应用研究[J].地质学报,2011,85(11):1844-1877.

[6] 王学求.深穿透地球化学迁移模型[J].地质通报,2005,24(10-11):892-896.

[7] 王学求.矿产勘查地球化学:过去的成就与未来的挑战[J].地学前缘,2003,10(1):239-248.

[8] STEVENS D N,ROUSE G E,de VOTO R H.Radon222 insoil gas:

three uranium exploration case histories in the western United States[A].BOYLE R W. Geochemical Exploration,Proceedings of the 3rd International Geochemical Exploration Symposium[C].Toronto:Canadian Institute of Mining and Metallurgy,1971,11:258-264.

[9] 蒋永建,魏俊浩,周京仁.勘查地球化学新方法在矿产勘查中的应用及其地质效果[J].物探与化探,2010,34(2):134-138.

勘查地球化学习题集答案

地球化学找矿习题集 一、填空题 1.地球化学找矿具有对象的微观化,分析测试技术是基础,擅于寻找隐伏矿体和准确率高、速度快、成本低。的特点。 2.地球化学找矿的研究物质主要是岩石、土壤、水系沉积物、水、气体和生物。 3.地球化学找矿的研究对象是地球化学指标(或物质组成)。 4.应用地球化学解决地球表层系统物质与人类生存关系。 5.应用地球化学研究方法可以分为现场采样调查评价研究与实验研究。 6.元素在地壳的分布是不均匀的,不均匀性主要表现在空间和时间两方面。 7.克拉克值在0.1%以下的元素称为微量元素,其单位通常是ppm(或 10-6)。 8.微量元素的含量不影响地壳各部分基本物理、化学性质,但是在特定的条件下,可以富集而形成矿床。 9.戈尔德施密特根据元素的地球化学亲和性,将元素分为亲铁元素、亲硫(亲铜)元素、亲氧(亲石)元素、亲气元素和亲生物元素。 10.元素迁移的方式主要有化学-物理化学迁移、机械迁移和生物-生物化学迁移。 11.热液矿床成矿过程中,成晕元素主要呈液相迁移,迁移方式主要有渗透迁移和扩散迁移两种。 12.影响元素沉淀的原因主要有PH变化、Eh变化、胶体吸附、温度变化和压力变化。 13.地壳中天然矿物按阴离子分类,常见有含氧化合物、硫化物、卤化物和自然元素。 14.地球化学异常包括异常现象、异常范围、异常值三层含义。 15.地球化学省实质是以全球地壳为背景的规模巨大的一级地球化学异常。 16.地壳元素的丰度是指地壳中化学元素的平均含量,又称为克拉克值。 17.地壳中元素的非矿物赋存形式包括超显微非结构混入物、类质同象结构混入物、胶体或离子吸附和与有机质结合。 18.风化作用的类型包括化学风化、物理风化和生物风化。

地球化学知识汇总

中科院研究生院硕士研究生入学考试 《地球化学》考试大纲 本《地球化学》考试大纲适用于中国科学院研究生院地质学各专业的硕士研究生入学考试。地球化学是地质学的重要支柱学科之一,也是地质学各专业必备的基础理论课程。地球化学是个庞大的学科家族,不仅研究固体地球岩石圈,也研究地球表层的土壤、水系、有机体的地球化学演化规律。它从微观角度研究宏观问题,探索地球系统物质运动中物质的化学运动规律。研究目标集中于地球系统中元素及同位素组成、元素的共生组合及赋存形式、元素的迁移和循环、地球及其它行星形成历史及演化等四大科学问题。尤其是近年来,随着实验方法和分析手段的迅猛发展,地球化学理论发展更加迅速,研究方法更加先进,研究内容日益丰富,能解决的问题也更加宽广。本考试大纲限于无机地球化学范围,要求考生准确掌握无机地球化学的基本原理和研究方法,初步了解各项实验分析手段,并能客观地解释实验分析数据,具有从地球化学角度解决地质科学问题的基本能力。 一、考试内容 (一)化学元素的丰度与分布 1. 元素丰度的概念和表示方法 2. 地球的化学组成 3. 地壳的化学组成 4. 大气圈、水圈、生物圈的化学组成 (二)地球化学热力学基础 1. 热力学基本定律 2. 热力学状态函数 3. 自然过程的方向判据 4. 热力学平衡系统的表达 5. 矿物固体溶液的混合性质 (三)微量元素地球化学 1.微量元素的概念 2.能斯特分配定律 3.岩浆过程中的微量元素 4. 稀土元素地球化学 5. 微量元素地球化学示踪 (四)放射性同位素地球化学 1.自然界的放射性同位素 2.放射性衰变定律及地质年代学基本原理 3.各种放射性定年系统 4.同位素封闭温度及冷却年龄

地球化学心得

勘查地球化学心得体会--兼浅谈广东化探找金矿 王立强 广东省地质局七一九地质大队地质勘查所 1前言 目前,化探找金逐步被人们重视,在地质找矿中的效果也逐渐明显,成为寻找各种类型金矿床比较快速、经济、有效的重要手段。在区域普查中,通过查明区域地球化学异常,可迅速指出找矿远景区;在详查及勘探阶段,通过岩石地球化学异常的研究,可直接发现金矿床或矿体,更好地发挥化探在地质找矿工作中的作用。但是金在地壳内部的本底含量极低,即使是金矿体中的金含量一般亦仅为n×10-6~10n×10-6,仅凭肉眼无法将之直接区分出来,因此以对样品(水系沉积物、土壤、岩石等>进行定量分析为主要工作手段的化探方法,在当今金矿勘查中发挥了极其重要的作用。 中国地球化学的发展主要是借鉴了前苏联和西方的研究思路,前苏联的勘察地球化学主要依靠对土壤进行金属测量,但采样点布置较稀疏,而西方国家主要采用水系沉积物测量,但是主要用于研究,两者优缺点都有。80年代以来,金分析技术目臻成熟,当时Au分析的检出限低于或等于0.3×10-6,准确度、精密度在一定程度上能满足区域化探的要求,因而全国区域化探找金空前繁荣,特别是谢学锦先生提出的“区域化探全国扫面计划”建议,将我国的勘察地球化学推进到快速发展的崭新阶段。随着时代发展,金分析技术逐步进步,中国勘察地球化学也得到了长足的进步,三十年以来已完成1:500万和1:1 000万比例尺的39种元素或氧化物的全国地球化学图,使中国拥有了最引人瞩目的全国规模地球化学数据库,使中国化探走在了世界前列。而广东化探找金始于1974年,主要为以1:20万水系沉积物测量为主要工作方法的区域化探扫面,不过因为受金分析技术的影响,当时找金主要从金的伴生元素如As、Cu、Pb等入手,其难度不言而喻,但广东各地质单位的前辈在这种艰难条件下提交了大

指南_地球化学勘查样品分析方法

地球化学勘查样品分析方法 24种主、次元素量的测定 波长色散X 射线荧光光谱法 1 范围 本方法规定了地球化学勘查试样中Al 2O 3、CaO 、Fe 2O 3、K 2O 、 MgO 、Na 2O 、SiO 2、Ce 、Cr 、Ga 、La 、Mn 、Nb 、P 、Pb 、Rb 、Sc 、Sr 、Th 、Ti 、V 、Y 、Zn 、Zr 等24种元素及氧化物的测定方法。 本方法适用于水系沉积物及土壤试样中以上各元素及氧化物量的测定。 本方法检出限:见表1。 表1 元素检出限 计量单位(μg/g ) 方法检出限按下式计算: L D = T I m 2 3B 式中: L D ——检出限; m ——1μg/g 元素含量的计数率; I B ——背景的计数率; T ——峰值和背景的总计数时间。 本方法测定范围:见表2。 表2 测定范围 计量单位 (%)

2 规范性引用文件 下列文件中的条款通过本方法的本部分的引用而成为本部分的条款。 下列不注日期的引用文件,其最新版本适用于本方法。 GB/T 20001.4 标准编写规则第4部分:化学分析方法。 GB/T 14505 岩石和矿石化学分析方法总则及一般规定。 GB 6379 测试方法的精密度通过实验室间试验确定标准测试方法的重复性和再现性。 GB/T 14496—93 地球化学勘查术语。 3 方法提要 样品经粉碎后,采用粉末压片法制样。用X射线荧光光谱仪直接进行测量。各分析元素采用经验系数法与散射线内标法校正元素间的基体效应。 4 试剂 4.1 微晶纤维素:在105℃烘2h~4h。 5 仪器及材料 5.1 压力机:压力不低于12.5MPa。 5.2 波长色散X射线荧光光谱仪:端窗铑靶X射线管(功率不低于3kW),仪器必须采用《波长色散X射线荧光光谱仪检定规程(JJG810—93)》检定合格。 5.3 氩甲烷(Ar/CH4)混合气体,混合比为9∶1。 5.4 低压聚乙烯塑料环,壁厚5 mm,环高 5 mm,内径φ30 mm, 外径φ40mm。 6 分析步骤 6.1 试料 6.1.1 试料粒径应小于0.074mm。 6.1.2 试料应在105℃烘6 h~8h,冷却后放入干燥器中备用。 6.2 试料片制备 称取试料(6.1)4g,均匀放入低压聚乙烯塑料环中(5.4),置于压力机(5.1)上,缓缓升压至10MPa,停留5s,减压取出。试料片表面应光滑,无裂纹。若试料不易成型,应用微晶纤维素(4.1)衬底,按上述步骤重新压制,直至达到要求为止,也可以使用微晶纤维素衬底和镶边的方法制备成试料片。

地球化学

一.关于地球化学的定义: 地球化学是研究地球(包括部分天体)的化学组成、化学作用和化学演化的科学。二.地球化学的基本问题 1、地球系统中元素的组成(质) 2、元素的共生组合和赋存形式(量) 3、元素的迁移和循环(动)4:地球的历史和演化(史)三.地球化学研究思路 在地质作用过程中,在宏观地质体变化和形成的同时,亦伴有大量肉眼难以辨别的化学组成变化的微观踪迹,它们包含着重要的定性和定量的地质作用信息,应用现代化学分析测试手段,剖析这些微观踪迹,从而揭示宏观地质作用的奥秘。(一句话那就是“见微而知著”) 第一章地球和太阳系的化学组成 第一节地球的结构和组成 一.大陆地壳和大洋地壳的区别: 1.大洋地壳较薄,10-5公里,平均厚8公里;大陆地壳较厚,最厚可达70公里,平均厚33公里。(整个岩石圈也是大陆较厚,海洋较薄。海洋为50—60公里,大陆为100—200公里或更深。) 2.在元素的分配上,洋壳比陆壳贫硅和碱金属,但较富镁富铁。正是这种原因,大洋沉积物中富含Fe、Mn、Co、Ni等亲铁元素,它们是现代海洋中巨大的潜在资源。 二. 固体地球各圈层的化学成分特点 ○1地壳:O、Si、Al、Fe、Ca○2地幔:O、Mg、Si、Fe、Ca○3地核:Fe-Ni○4地球:Fe、O、Mg、Si、Ni 第二节元素和核素的地壳丰度 一.概念 1.地球化学体系:按照地球化学的观点,我们把所要研究的对象看作是一个地球化学体系,每个地球化学体系都有一定的空间,都处于特定的物理化学状态(C,T,P等)并且有一定的时间联系。 2.丰度:表示元素在某地质体中(如地球,地壳,宇宙星体及某岩类,岩体等)的含量。 3.克拉克值:元素在地壳中的平均含量 4.质量克拉克值:若计算元素在地壳中的平均含量时以质量计算,则称为质量克拉克值。 5.原子克拉克值:以原子数之比表示的元素相对含量(即指某元素在某地质体中全部元素的原子总数中所含原子个数的百分数) 任意元素的原子克拉克值=某元素在某地质体中的相对原子数(用N表示)/所有元素相对原子数之和(用 N表示) 6.浓度克拉克值:某元素在某地质体中的平均含量/元素克拉克值 二.克拉克值的变化规律: ①递减:元素的克拉克值大体上随原子序数的增加而减少(但锂,铍,硼以及惰性气体的含量并不符合上述规律,丰度值很低)②偶数规则:周期表中原子序数为偶数的元素总分布量(86%)大于奇数元素的总分布量(14%)。相邻元素之间偶数序数的元素分布量一般大于奇数元素分布量,稀土特别明显。③四倍规则:4q型占87%,4q+3占13%,剩下的只占千分之几。 三“元素克拉克值”研究意义 1.是地球化学研究重要的基础数据。 2.确定地壳中各种地球化学作用过程的总背景。 3.是衡量元素集中、分散及其程度的标尺。 4.是影响元素地球化学行为的重要因素。四.区域元素丰度的研究的意义: 1.它是决定区域地壳(岩石圈)体系的物源、物理化学特征的重要基础数据; 2.为研究各类地质、地球化学作用、分析区域构造演化历史及区域成矿规律提供重要的基础资料; 3.为研究区域生态环境,为工业、农业、畜牧业、医疗保健等事业提供重要信息。 第四节水圈、大气圈和生物圈的成分二.自然水的主要阳离子和阴离子成分海水:钠离子>镁离子>钙离子、氯离子>硫酸根>碳酸氢根、淡水:钙离子>钠离子>镁离子、碳酸氢根>硫酸根>氯离子。 第六节元素的地球化学分类 一.元素的地球化学分类(戈氏分类法)以及各类元素的主要分布趋势 (1)亲石元素:主要分布于岩石圈(2)亲铜元素:主要分布于地幔(3)亲铁元素:主要分布于地核(4)亲气元素:主要集中于大气圈。此外,戈氏还划分出"亲生物元素" 第七节太阳系化学 一.太阳系化学组成的基本特点 1) 在所有元素中H, He占绝对优势, H占90%, He占8% 。 2)递减规则:太阳系元素的丰度随着原子序数(Z)的增大而减少,曲线开始下降很陡,以后逐渐变缓。在原子序数大于45的重元素范围内,丰度曲线近于水平,丰度值几乎不变。 3)奇-偶规则:偶数原子的丰度大于奇数原子 第二章微量元素地球化学 一.微量元素的概念 人们常常相对于地壳中的主量元素而言,人为地把地球化学体系中,其克拉克值低于0.1%的元素,通称为微量元素。 二.微量元素的基本性质 ①微量元素的概念到目前为止尚缺少一个严格的定义;②自然界“微量”元素的概念是相对的;③低浓度(活度)是公认的特征,因此往往不能形成自己的独立矿物(相)。四.能斯特定律 能斯特定律描述了微量元素在平衡共存两相间的分配关系。当一种矿物(α相)与一种溶液(β相)共存时,微量元素i(溶质)将在两相间进行分配,当分配达到平衡时(有:μi α=μ i β ),其两相浓度比为一常数。此常数称为能斯特分配系数。 五.由能斯特定律引出的分配系数 ①简单分配系数(即能斯特分配系数)a α i /aβi=K D(T、P)。在一定温度压力条 件下,在恒温恒压下,微量元素i在两 相间的浓度比为一常数,它适用于稀溶 液中微量元素的分配。K D即为能斯特分 配系数,也称简单分配系数。 ②复合分配系数:既考虑微量元素在两相 中的比例,也考虑与微量元素置换的常 量元素在两相中的浓度比例,能较真实 地反映两者之间类质同象交换对微量元 素分配的影响。 D tr/cr=[C s tr/C s cr]/[C l tr/C l cr]=(C tr/C cr)s/(C tr/C c r )l。 ③总体分配系数(岩石分配系数):实际上 是矿物的简单分配系数和岩石矿物的百 分含量乘积的代数和。代表式:D i=∑(上 n下j=i)K i D,j W j。第j种矿物对微量元 素i的简单分配系数、D i为岩石的分配 系数,n为含微量元素i的矿物数,W j 为第j种矿物的质量百分数。 五.影响分配系数的因素 体系成分、温度、压力、氧逸度 六.由分配系数引出的微量元素的分类 相容元素(D>1):按地球化学作用过程中,当固相(结晶相)和液相(熔体相,流体相)共存时,若微量元素易进入固相,称为相容元素 不相容元素(D小于1):按地球化学作用过程中,当固相(结晶相)和液相(熔体相,流体相)共存时,若微量元素易进入液相,称为不相容元素. 亲岩浆元素(D<<1):亲岩浆元素总体分配系数相对于1来说可忽略不计。 超亲岩浆元素(D<<0.2):超亲岩浆元素的总体分配系数相对于0.2到0.5可忽略不计第四节稀土元素地球化学 一.稀土元素组成

深穿透技术方法简介——以周庵为例1

深穿透技术方法简介——以周庵为例1

深穿透技术方法简介 鉴于寻找隐伏矿床的迫切需要,深穿透地球化学勘查方法应运而生。深穿透地球化学被定义为探测深部隐伏矿所发出的直接找矿信息的勘查地球化学方法技术(王学求,1998)。 深穿透地球化学是E.M.Cameron与谢学锦院士于1997年在第16届国际化探大会期间谈话时提出的,两人当时正在讨论一些能够有效的探索数百米以下隐伏矿的新方法。自上世纪80年代开始,勘查地球化学家们开始关注能够有效探索数百米以下隐伏矿床的方法研究。特别是1990年以后,大量等离子体质谱仪进入地质样品分析领域,实现了地质样品多种痕量元素同时测定,一些痕量或超痕量元素无须通过繁琐的预富集过程即可测定,同时分析测试的检出限大大降低,分析领域的这些进展为选择性提取技术的发展提供了重要的技术支撑。一些新的勘查地球化学方法开始出现,并且在覆盖区矿产勘查方面逐渐取得了突破性的进展,这些方法主要有:瑞典的Kristiansson与Malmqvist(1984)提出的地气(geogas)方法,美国的Clarke 等人(1990)提出的酶提取方法,前苏联的地电地球化学方法(CHIM)(Shmakin, 1985; Ryss et al., 1990)和元素有机态方法(MPF)(Antropova et al., 1992),澳大利亚的Mann (1995)等人提出的活动金属离子方法(MMI),以及中国地球化学专家提出的金属活动态方法(MEMEO)(王学求,1998)。 地气法(geogas) 地气的概念是于1982年由瑞典Kristiansson 和Malmqvist (1982)提出。王学求(1999)初次提出地气流迁移假说,他认为,地下深部存在上升的地气流,当气体流通过矿体时,成矿元素及其伴生元素的活动态部分(离子、纳米级颗粒、超微细亚微米颗粒、胶体等)会被带到地表,在地表遇到地球化学障(各种次生可溶性盐类、氧化物、粘土、胶体物质或有机物等)时,地气流携带的金属元素将被卸载(图1)。王学求提出地气流的来源可能有4种:地幔排气、矿体风化产生的气体、与大气有关的气体和当地土壤产生的气体。地气采样选用的滤膜孔径为0.4μm,但考虑到孔径的不均匀性,最大可达1μm,所以只有

地球化学勘查(专升本)阶段性作业

地球化学勘查(专升本)阶段性作业1 总分:100分得分:0分 一、单选题 1. 勘查地球化学最初起源于_____(5分) (A) 美国 (B) 德国、 (C) 中国 (D) 前苏联 参考答案:D 2. 勘查地球化学研究元素在天然介质中的分布特征,其主要目的是_____(5分) (A) 发现地球化异常 (B) 找到矿产资源 (C) 元素的分布规律 (D) 治理污染 参考答案:B 3. 影响元素在矿物中分配形式的主要因素是_____(5分) (A) 元素的地球化学性质 (B) 元素的含量、 (C) 同位素组成 (D) 其它元素 参考答案:B 4. 贵金属的含量单位常用_____(5分) (A) % (B) ‰ (C) g/t (D) 10-6 参考答案:C 5. 从元素的戈尔特施密特分类来看,Au属于_____(5分) (A) 亲硫元素 (B) 亲铁元素 (C) 亲生物元素 (D) 亲气元素 参考答案:B 二、多选题 1. 影响元素表生地球化学行为的主要因素有_____(5分) (A) 元素本身的地球化学性质 (B) 元素的含量、 (C) 降雨 (D) 生物作用 参考答案:A,C,D 2. 影响物理风化的主要因素是_____(5分) (A) 植物根系 (B) 气候、 (C) 地形 (D) 温度 参考答案:B,C,D

(A) Si (B) Al、 (C) Zn (D) Cu 参考答案:C,D 4. 灰岩风化后原地留下的土壤剖面发育哪些层_____(5分) (A) A层 (B) B层、 (C) C层 (D) D层 参考答案:A,B,D 5. 灰岩风化后原地留下的土壤剖面发育哪些层_____(5分) (A) A层 (B) B层、 (C) C层 (D) D层 参考答案:A,B,D 三、判断题 1. 降水是影响元素表生地球化学行为的主要因素之一(5分)正确错误 参考答案:正确 解题思路: 2. 松散堆积物就是残坡积物_____(5分) 正确错误 参考答案:错误 解题思路: 3. 高异常区下面就能找到矿_____(4分) 正确错误 参考答案:错误 解题思路: 4. 土壤测量是化探中适用性最好的方法_____(4分) 正确错误 参考答案:错误 解题思路: 5. Mg在岩石中通常是微量元素_____(4分) 正确错误 参考答案:错误 解题思路: 6. 稀土元素是亲硫元素_____(4分) 正确错误 参考答案:错误 解题思路: 7. LILE是亲石元素(4分) 正确错误 参考答案:正确 解题思路:

勘查地球化学新进展

1999年第1期 矿产与地质第13卷1999年2月M I N ERAL R ESOU RCES AND GEOLO GY总第69期 勘查地球化学新进展 (江西有色地质矿产勘查开发院 林 春) 1998年9月21日至25日在湖南省张家界市召开了第六届全国勘查地球化学学术讨论会。出席会议有地矿、有色、冶金、黄金、石油、核工业、中科院和院校等系统的代表,共121人。大会收到科技论文110余篇,其中固体矿产地球化学勘查99篇,能源矿产地球化学勘查14篇,环境与农业地球化学9篇在会议上进行了交流。反映了自五届会议(1993年)以来,勘查地球化学工作者所取得的成果,积累的工作经验,反映了我国勘查地球化学的科学技术水平。 1 勘查地球化学工作成果 国土资源部地调局牟绪赞副总工程师报告了地矿部自“六五”以来,完成区域化探扫面575万km2,发现各类元素异常4.3万处,异常检查发现工业矿床580处。有色物化探管理中心李幸凡教授介绍了有色地质地球化学勘查工作,在30个重点成矿区带上完成1 5万水系地球化学普查65万km2,7千km2土壤加密和5千km2详查地球化学,发现大型、特大型矿床12处,中型矿床21处,小型矿床100余处。武警黄金部队地质处郭瑞栋高级工程师回顾了武警黄金部队地球化学找金工作,1992年以来,重视区域化探和矿区异常评价工作,共完成区带化探20万km2,获得5千个金或金为主的异常,发现30个矿产地,找到大中小型矿床16个。 2 地球化学勘查技术方法经验 (1)区带普查与重点评价结合,优选异常与地物化、遥感综合查证结合的工作方法。 (2)有色系统以“有色地质成矿区带地球化学普查技术规定”指导研究区域地球化学特征,结合地质物探成果,划分不同级次地球化学区,选定找矿靶区进行验证的工作方法。 (3)统计我国63个典型金矿床原生晕轴向分带序列,总结了金矿不同类型、不同规模成矿成晕规律,建立金矿原生晕理想分带序列,建立金矿成矿成晕的多期多阶段叠加成晕模式和用于“反分带”的盲矿预测准则的工作经验。 (4)研究地壳物质垂直迁移规律,即地壳内存在纳米级物质的垂向迁移,形成与深部矿化相对应的地气异常,应用于发现和查明深部或隐伏矿化地段、查明隐伏含矿构造等。 3 勘查地球化学的发展与展望 中国地质矿产信息研究院施俊法副研究员从区域性矿产勘查、隐伏区的化探新方法、环境地球化学三个方面论述90年代以来国际勘查地球化学的发展。 (1)在区域农业规划、地方病防治、区域环境背景评价等应用进行十分缓慢。 (2)取样代表性、重现性、时间序列等问题仍是地球化学填图中的重要研究课题。 (3)地球化学工程学的环境技术和环境调查:衰变、分解或中和、富集或分散、隔离作用等。 (4)转变以往研究评价单个地化异常特征的方法,应研究区域地球化学场来揭示矿床周围的地球化学环境及探矿的地质因素。 (5)研制和开发具有较大深度的地球化学方法,深穿透地球化学方法,活动态金属离子法 (I M M)、酶浸析法、地电化学法(CH I M)、地气法、元素分子形式法(M FE)和离子晕法等。 5

成矿流体活动的地球化学示踪研究综述

第14卷第4期1999年8月 地球科学进展 ADVAN CE I N EA R TH SC IEN CES V o l.14 N o.4 A ug.,1999 成矿流体活动的地球化学示踪研究综述Ξ 倪师军,滕彦国,张成江,吴香尧 (成都理工学院,四川 成都 610059) 摘 要:成矿流体活动的地球化学示踪是近年来流体地球化学研究的一个新趋势。通过流体来源示踪、运移示踪和定位示踪可以追溯流体活动的全过程,对恢复流体活动历史、演化历程具有积极意义。对成矿流体活动的地球化学示踪方法进行了一定的总结,对人们常用的地球化学示踪方法——同位素地球化学示踪、元素地球化学示踪、包裹体地球化学示踪及气体地球化学示踪的研究现状进行了综述。 关 键 词:成矿流体;流体地球化学;地球化学示踪 中图分类号:P595 文献标识码:A 文章编号:100128166(1999)0420346207 地球化学示踪研究是查明元素、矿物等在地质地球化学作用过程中的来源、演化及其最终发展状态,是揭示地球化学作用机理和过程的重要途径和有效手段。成矿流体地球化学是当前国际地学界研究的前沿和热点之一,成矿流体活动的地球化学示踪研究已成为一个新的趋势,通过流体来源示踪、运移示踪和定位可以追溯流体活动的全过程,对恢复流体活动的历史、演化历程具有积极意义。 1 同位素地球化学示踪 由于同一元素不同同位素的原子质量不同,其热力学性质有微小的差异。正是这种差异导致同位素组成在物理、化学作用过程中发生变化,引起同位素分馏,包括热力学平衡分馏和动力学分馏2种类型〔1〕。 经过长期的分异、分馏、衰变演化,地球不同层圈、不同地质单元具有明显不同的同位素组成特征。因此可以根据同位素具有基本相同的化学性质示踪成岩、成矿物质的来源、推断源区的地球化学特征。另外还可以根据同位素分馏规律和矿物的同位素组成,示踪矿物形成时的物化条件和演化过程〔1〕。用稳定同位素数据来定量地说明成矿介质水和其他物质的来源,开始于60年代初期〔2〕,作为独特的示踪剂和形成条件的指标,稳定同位素组成已广泛地应用于陨石、月岩、地球火成岩、沉积岩、变质岩、大气、生物、海洋、河流、湖泊、地下水、地热水及各种矿床的研究,成为解决许多重大地质地球化学问题的强大武器〔3〕。在应用稳定同位素研究成矿流体的演化过程(源、运、储)的同时,人们也不断地应用放射性同位素来定量、半定量地研究地质地球化学作用过程,即应用放射性同位素研究地球化学示踪和地球化学作用发生的年代问题。同位素分析新方法新技术的不断发展,如R e2O s、L u2H f、L a2B a2Ce等方法的建立〔4〕,使同位素示踪技术也得到了丰富和发展。111 氢、氧同位素示踪 利用氢、氧同位素示踪成矿溶液的来源,是同位素示踪技术在地质研究中取得的最重要成果之一〔1〕。由于不同来源的流体具有不同特征的氢氧同位素组成,因此成矿流体的氢氧同位素组成成为判断成矿流体来源的重要依据,如卢武长①、魏菊英〔5〕 Ξ国家自然科学基金项目“成矿流体定位的地球化学界面及地学核技术追踪方法研究”(编号:49873020)、国家科技攻关项目“矿床(体)快速追踪的地球化学新方法、新技术”(编号:962914203202)和国土资源部百名跨世纪优秀人才培养计划基金资助。 第一作者简介:倪师军,男,1957年4月出生,教授,主要从事地球化学的教学与研究。 收稿日期:1998208210;修改稿:1999204213。 ①卢武长1稳定同位素地球化学1成都地质学院内部出版,19861116~1451

勘查地球化学习题

课程习题集 绪论 1.地球化学勘查的研究对象? 2.地球化学勘查的分类? 3.地球化学勘查的作用? 4.地球化学勘查的特点? 5.勘查地球化学的概念? 6.勘查地球化学的研究内容? 第一章地球化学基础理论 一、名词解释 1.地球化学背景; 2.地球化学异常; 3.原生分散晕; 4.次生分散晕 二、简答题 1.地化异常的分类? 2.分散晕与异常的异同? 3.研究克拉克值的地球化学找矿意义? 4.化学元素在各类岩浆岩中的分配特征? 5.化学元素在各类沉积岩中的分配特征? 6.地壳中元素的存在形式有哪些? 7.元素迁移的方式有哪些? 8.元素迁移的影响因素有哪些? 第二章岩石地球化学测量 一、名词解释 1.渗滤作用; 2.扩散作用; 3.指示元素; 4.线金属量; 5.面金属量; 6.浓度分带; 7.组分分带; 8.轴向分带; 9.纵向分带;10.横向分带;11.同生异常;12.后生异常; 二、简答题 1.指示元素的分类? 2.化探工作对指示元素的要求有哪些? 3.简述热液矿床岩石地化异常的形成机理? 4.成晕元素迁移的方式有哪些? 5.成晕元素的赋存形式有哪些? 6.简述渗滤作用与扩散作用的区别? 7. 异常组分的沉淀受哪些因素控制? 8.影响热液矿床原生晕发育的地质控制因素有哪些? 9.举例说明卤族元素在成矿成晕中的作用? 10.热液矿床原生晕轴向分带序列的确定方法有哪些? 11.原生晕外部形态的分类? 12.岩浆矿床原生晕的特征? 三、论述题 1.岩石地球化学测量的应用? 第三章土壤地球化学测量 1.微量元素在土壤剖面中的分配特征有哪些? 2.成矿元素的次生分散有哪些? 3.土壤中指示元素的存在形式如何? 4.简述残积物中同生碎屑异常的特征? 5.简述上移水成异常的特征? 6.简述侧移水成异常的特征? 7.土壤地球化学测量的应用有哪些方面? 第四章水系沉积物地球化学测量 一、名词解释 1.分散流; 2.分散流流长; 3.一级水系; 4.碎屑分散流; 5.化学分散流 二、简答题 1.分散流的形成? 2.碎屑分散流在水系中的哪些部位容易沉淀? 3.水系沉积物在矿产勘查中的应用有哪些? 第五章水文地球化学测量

环境地球化学知识点

概念题 绪论(1/6) 环境问题由于人类活动或自然活动作用于人们周围的环境所引起的环境质量变化,以及这种变化反过来对人类生产、生活和健康产生的影响。 环境容量人类生存和自然环境在不致受害的前提下,环境可能容纳污染物质的最大负荷量。 环境要素构成人类环境整体的各个独立的、性质不同的而又服从整体演化规律的基本因素。 环境背景值在未受人类活动干扰的情况下,各环境要素(大气、水、土壤、生物、光、热等)的物质组成或能量分布的正常值。 环境质量在一具体环境内,环境的某些要素或总体对人类或社会经济发展的适宜程度。 环境质量评价按照一定的评价标准和评价方法对一定区域范围内的环境质量进行说明、评定和预测。 第一章岩石圈环境地球化学(0/0) 第二章土壤环境地球化学(1/9) 土壤覆盖在地球陆地表面和浅水水域底部,具有肥力,能够生长植物的疏松物质表层。 土壤圈覆盖于地球陆地表面和浅水域底部土壤所构成的一种连续体或覆盖层及其相关的生态环境系统。 成土过程地壳表面的岩石风化体及其搬运的沉积体,受其所处环境因素的作用,形成具有一定剖面形态和肥力特征的土壤的历程。 土壤酸度土壤酸性表现的强弱程度,以pH表示。 植物营养植物体从外界环境中吸取其生长发育所需的养分,用以维持其生命活动。 土壤污染进入土壤的污染物积累到一定程度,引起土壤质量下降、性质恶化的现象。 土壤净化污染物在土壤中,通过挥发、扩散、吸附、分解等作用,使土壤污染物浓度逐渐降低,毒性减少的过程。 土壤质量评价单一环境要素的环境现状评价,是根据一定目的和原则,按照一定的方法和标准,对土壤是否污染及污染程度进行调查、评估的工作。

土壤中微量元素动植物体内含量很少、需要量很少的必需元素。 第三章水圈环境地球化学(2/11) 水圈地球表面或接近地球表面各类水体的总称。 水资源世界上一切水体,包括海洋、河流、湖泊、沼泽、冰川、土壤水、地下水及大气中的水分,都是人类宝贵的财富,即水资源。(广义)在一定时期内,能被人类直接或间接开发利用的那一部分动态水体。(狭义) 水矿化度天然水中各种元素的离子、分子与化合物(不包括游离状态的气体)的总量。 水硬度水中钙和镁含量。 化学需氧量(COD)水样在一定条件下,氧化1L水样中还原性物质所消耗的氧化剂的量,以氧的mg/L表示。 高锰酸钾指数法(COD Mn)在一定条件下,以高锰酸钾为氧化剂,氧化水样中的还原性物质,所消耗的量以氧的mg/L来表示。 重铬酸钾指数法(COD Cr)在一定条件下,以重铬酸钾为氧化剂,氧化水样中的还原性物质,所消耗的量以氧的mg/L来表示。 生化需氧量(BOD)在有溶解氧的条件下,好氧微生物在分解水中有机物的生物化学氧化过程中所消耗的溶解氧量。 水体污染进入水体中的污染物含量超过了水体的自净能力,就会导致水体的物理、化学及生物特性的改变和水质的恶化,从而影响水的有效利用,危害人类健康的现象。 水体自净污染物质进入天然水体后,通过一系列物理、化学和生物因素的共同作用,使水中污染物质的浓度降低的现象。 水环境质量评价按照评价目标,选择相应的水质参数、水质标准和评价方法,对水体的质量利用价值及水的处理要求作出评定。 第四章大气圈环境地球化学(1/11) 大气圈包围在地球最外面的圈层,是由气体和气溶胶颗粒物组成的复杂的流体系统。 同温层从对流层顶以上到25km以下气温不变或微有上升的圈层。 逆温层从25km以上到50-55km,温度随高度升高而升高的圈层。 臭氧层地球上空10-50km臭氧比较集中的大气层, 其最高浓度在20-25km处。

地球化学异常下限确定方法

一、地球化学数据处理基础 数据处理的意义是获得较为准确的平均值(背景)和异常下限。 1、地球化学数据处理归根结底仍属于统计学的范畴,所以要求数据应是正态分布的,不是拿来数据就能应用的,特别是用公式计算时更要注意这一点。 正态(μ=0, δ=1)----(偏态)。 大数定理:又称大数法则、大数率。在一个随机事件中,随着试验次数的增加,事件发生的频率趋于一个稳定值;同时,在对物理量的测量实践中,测定值的算术平均也具有稳定性。 所以如果在计算时,数据中包含较多的野值时,实际获得的是一个不具稳定性的算术平均,它实际不能替代背景值。 2、异常是一个相对概念,有不同尺度上的要求,所以不要将其看作一个定值。在悉尼国际化探会议上(1976),对异常下限定义:异常下限是地球化学工作者根据某种分析测试结果对样品所取定的

一个数值,据此可以圈定能够识别出与矿化有关的异常。并对异常下限提出了一个笼统的定义:凡能够划分出异常和非异常数据的数值即为异常下限。 据此,异常下限不能简单的理解为背景上限。 二、异常下限确定方法 具体异常下限确定方法较多:地化剖面法、概率格纸法、直方图法、马氏距离法、单元素计算法、数据排序法、累积频率法…… 下面逐一介绍: 1、地化剖面法:(可以不考虑野值)

在已知区做地化剖面:要求剖面较长,穿过矿化区(含蚀变区)和正常地层(背景),能区分含矿区和非矿区就可确定为下限。 2、概率格纸法:(可以不考虑野值) 以含量和频率作图 15%--负异常 50%--背景值 85%--X+δ(高背景) 98%-- (X+2δ)异常下限 3、直方图法:(可以不考虑 野值) 能分解出后期叠加的 值就为异常下限

深穿透地球化学方法全解

深穿透地球化学方法在矿产勘查中的应用摘要常规的化探方法(如原生晕法、次生晕法、水化学法、分散流法等)在寻找近地表埋藏深度浅的矿体具有良好的效果,但是对于深部探矿存在一定的局限性。为了突破厚层覆盖物,获得深部隐伏矿的信息,各国学者逐步建立发展了深穿透地球化学方法。深穿透地球化学方法探测深度大,可达数百米;所测量的主要内容是直接来自深部矿体的直接信息;这种信息极为微弱,但这种微弱信息反而更可靠,因为常规化探中起干扰作用的物质发不出这种信息。本文主要介绍深穿透地球化学方法的研究状况、原理、在矿产勘查中应用及其存在的问题。1前言 地球化学勘查简称化探,是一种找矿技术方法。它是系统地在不同尺度和规模上研究大气圈、岩石圈、水圈、土壤圈、生物圈中的化学元素、同位素及其化学特征的空间分布变化规律,并探讨它们在宏观、微观尺度内的分配与迁移机制。常规的化探技术方法如原生晕法、次生晕法、水化学法、分散流法等,在矿产勘探中取得了良好的效果[1]。 随着勘查程度的提高,在出露区找到新矿床的可能性越来越小,因此寻找大型矿床的最大机遇出现在隐伏区[2]。为适应在隐伏区寻找新的大型矿床的需要,突破覆盖层、获得深部矿化信息就成为当务之急,深穿透地球化学方法应运而生。 深穿透地球化学是探测深部隐伏矿或地质体发出的直接信息的勘查地球化学理论与方法,通过研究隐伏矿成矿元素或伴生元素向地表的迁移机理和分散模式,含矿信息在地表的存在形式和富集规律,发展含矿信息采集、提取、分析和成果解释技术,以达到在覆盖区寻找隐伏矿的目的[3]。 2国内外研究状况 多年来地球化学方法主要用于圈定出露及亚出露矿化四周的地表次生分散晕和分散流找矿或圈定盲矿上方地表的原生晕找矿,取得极大效果,但对被厚层沉积物或厚层成矿后沉积岩或火山岩埋藏的矿体,由于地表次生异常与原生晕皆被掩蔽而显得无能为力[4]。 为适应在隐伏区寻找新的大型矿床的需要,突破覆盖层,获得深部矿化信息,国际上自50年代开始就致力于能探测更大深度的地球化学新方法研究。瑞典人

勘查地球化学新方法在矿产勘查中的应用探讨

勘查地球化学新方法在矿产勘查中的应用探讨 勘查地球化学方法属于一种先进的矿产勘查法与获得矿产资源信息的重要手段,如今,已经逐渐在我国矿产勘查工作中获得了普遍推广和取得了显著的经济效益。本文重点对近些年来在我国应势而起的矿产勘查手段的现状与应用水平展开探讨,研究显示,无论是哪一种勘探办法都拥有其独特的适用性,因此,在实际应用中更应当结合具体的地质环境,让勘查地球化学新方法发挥更好的作用。 标签:勘查地球化学矿产勘查新方法 0引言 现阶段,我国的资源形势日益严峻,在我国工业、制造业等需要应用四十五种常用矿产中,已有一半以上出现的储量消耗程度超过储备资源创造的速度。并且,随着当前我国对矿产资源需求的日益加强,使得勘查矿产的难度也呈现出明显加大。对此,强化我国矿产资源的勘查能力,从而实现勘查的重大突破,是目前提升我国矿产资源保障水平的主要措施。 1勘查地球化学新方法在矿产勘查中的找矿效果 勘查地球学是二十世纪三十年代为人类所发现,历经七十余年的发展,早已从最初庞杂的“个人经验”与“技能”衍生成为了一门地学科学理论。如今,除去传统意义上的水地球化学测量法、水系沉积物地球化学测量法、以及土壤地球化学测量法以外,还发展出了热释汞法、电地球化学法、地气法、金属活动态测量法等新型方法。 1.1金属活动态测量法 早已二十世纪九十年代初期,我国的一些学者就在归纳前人研究的背景下,提出了金属元素活动态测量法的概念。自从该办法问世至今,早已在我国的西藏措勤、日喀则、新疆布尔津及哈巴河、轮台县迪那河一带、四川甘孜州石渠地区上展开了行之有效的实验,而结果显示,金属活动态测量法具备高强度的敏感性、其勘查深入大、抗信号干扰水平高、找矿效果显著等诸多优势特点。 金属活动态测量法的发现主要的根据金属(尤其是金)主要呈现超微细粒,而并非出于离子状态存在的概念下完成的。超微细粒离子会在一定的地质营力的影响之下向地表进行转移。对于厚层运积物覆盖区域及之后的沉积岩,地气的搬运也许会出现主导的功能。这些超微细粒离子在抵达地表以后,进一步被许多天然物质给抓获,且于原介质元素含量的背景下生成活动态含量。该测量法对采集而来的土壤样品主要进行两方面的流程提炼:一方面是通过诸多弱溶剂让活动态金属和其可能依附上的物体实施脱离;另一方面,通过强溶剂对胶体进行破坏,让活动态金属可以逃离胶体的吸引从而能够进入溶液,利用离子质谱等措施检测

深部探测技术与试验研究专项

“深部探测技术与实验研究”专项(SinoProbe)概况 为落实《国务院关于加强地质工作的决定》(国发【2006】4 号文)的战略部署,揭示地球深部结构与组成,减轻资源、灾害和环境多重压力,响应国际地球科学发展趋势,参与全球地学竞争,国家启动“深部探测技术与实验研究专项(SinoProbe)”(2008-2012),作为“地壳探测工程”的培育性科学计划,由国土资源部组织实施。 深部探测技术与实验研究专项总体目标是,为实施“地壳探测工程”做好关键技术准备,解决关键探测技术难点与核心技术集成,形成对固体地球深部层圈进行立体探测的技术方法体系;在不同景观、复杂矿集区、含油气盆地、重大地质灾害区等关键地带进行实验与示范,形成若干深部探测实验基地;围绕现代地球科学难题和热点问题,部署实验研究工作;实现深部探测数据的融合与共享,建立深部探测数据管理系统;积聚优秀人才,形成若干技术体系的研究团队;完善《地壳探测工程》计划设计方案,推动国家立项。 深部探测技术与实验研究专项的主要任务是,建立我国大陆电磁参数标准网、全国地球化学基准网,为深部探测提供结构、组分的参考系;在东部的华北、华南开展综合探测实验,运用不同的方法、技术集中探测实验,包括区域超长剖面、矿集区立体探测和万米科学钻选址等,形成深部探测技术体系;选择复杂结构的西秦岭中央造山带,超厚地壳的青藏高原腹地,现今最活跃的三江地球动力活动带,松辽超大型油气盆地进行探测技术实验,获得特殊地质结构的高精度探测数据;在具有重大科学研究、资源环境意义的关键部位,开展精细探测和科学钻验证,争取重要科学发现,并为进一步部署超深科学钻进行选址;研究深部地壳地球化学探测技术,包括深穿透地球化学、岩石探针等方法技术;研发具有自主知识产权的深层地应力测量,监测现今地壳运动,建立地应力标定技术系统;创新并行巨型地壳结构数值模拟平台,计算模拟洲际规模的地球动力学过程,建立岩石圈三维结构;集成各种方法数据与成果,集成深部探测有效的技术体系;实现海量探测数据储存、计算、共享、演示与发布全流程现代化,提升科学管理水平,完善《地壳探测工程》的技术路线和实施方案,推动国家立项论证。 专项设立8个项目: 项目1. 大陆电磁参数标准网实验研究 实验性地建立中国大陆阵列式大地电磁场标准网的实施方法和关键技术,在全国部署及华北、青藏地区部署多层次的观测网。 项目2. 深部探测技术实验与集成

勘查地球化学复习题

《勘查地球化学》复习题 一、名词对解释与异同比较 1、变异系数与衬度系数 变异系数:地球化学指标的均方差相对于均值的变化程度,即C V=S/X*100%。 衬度系数:异常清晰度的度量,目前有多种表示方法:异常均值相对异常下限或背景值的百分比、异常峰值与异常下限的比值等三种。 前者反映了数据的相对离散程度,该值较大时也可表现出较大的衬度系数。 2、表生环境与内生环境 表生环境指氧、二氧化碳、水等充分且能自由参与、常温恒压、开放的体系,并有生物作用参与的地表或近地表环境,包括岩石圈表层、土壤圈、水圈、大气圈、生物圈等环境。 内生环境则与之相反,是一种高温、高压、还原、流体活动受限的环境。 3、同生碎屑异常与后生异常 同生碎屑异常:岩石在地表以物理风化为主时,其风化后形成的土壤中碎屑矿物与岩石的化学组成并没有发生明显改变所形成的异常。 后生异常可以发育在任何介质中。形成异常的物质通常已经在活动相(水溶液、气体、植物体及大气搬运的质点)中迁移了或远或近的距离,而在异常地点沉积下来。 4、上移水成异常与侧移水成异常 上移水成异常:土壤中的呈溶解态的离子在毛细管作用下,由深部向地表迁移,在土壤中形成的次生异常。 金属元素被地下水溶解并随着迁移很远的距离,在某种沉淀障上析出,这就形成了侧移的水成异常。 5、地球化学背景与异常 地球化学背景指未受矿化影响或无明显的人为污染的地区为背景区,在背景区内某个地球化学指标的数值特征即为背景值。与背景相对存在就是异常区,空间上如矿化地区及受到明显人为污染地区,我们常把高于背景上限的或低于背景上限的范围称为异常。 6、机械分散流与盐分散流 前者以物理风化作用形成的碎屑流为主;后者为岩屑在水介质搬运过程中溶解形成的可溶性的离子或分子为盐分散流。 7、原生晕与次生晕 前者的赋存介质主要为岩石,而后者的赋存介质为岩石的次生产物,如土壤、水系沉积物、水中可溶性物质及生物地球化学异常等。 8、非屏障植物与屏障植物 非屏障植物指植物中某元素的含量与下伏土壤中该元素的含量(可溶解吸收部分)呈线性相关,具有该元素的极大的富集能力(大于300倍)的植物。其对矿产勘查来说是最优选择的种属。 9、空间分带与成因分带 这是原生晕的两种分类方式,前者以现代方位来观察原生晕的形态,分垂直分带和水平分带;后者考虑热液成矿过程及地质体产状等,具有成因意义,分轴向、纵向及横向分带等三种。 10、相容元素与不相容元素 总分配系数大于1的元素为相容元素,而其小于1为不相容元素,即元素在固液两相间倾向于后期流

构造地球化学探矿方法的应用

构造地球化学探矿方法的 应用 This manuscript was revised by JIEK MA on December 15th, 2012.

构造地球化学探矿方法的应用—以山东招远魏家沟 金矿床为例 摘要:通过对招远某些金矿的成矿预测研究,总结了构造地球化学探矿的理论和方法,并且以山东招远魏家沟金矿床为例详细阐述了工作程序,并对该方法的优、缺点作了总结。 关键词:构造地球化学探矿成矿预测金矿床 1 构造地球化学探矿的原理和工作方法 构造地球化学探矿的原理 构造地球化学晕,可以定义为“含矿溶液运移过程中在构造带内部及其两侧形成的元素异常带”。基于以上认识,在与成矿有关的断裂构造中按一定的构造地球化学晕取样网度系统采样化验,圈定构造地球化学晕(异常),根据其形态、产状、规模及与成矿有利构造部位、金矿体关系,推测矿床边部和深部盲矿体存在的可能性,确定预测矿体的空间定位。 构造地球化学探矿的工作方法 样品采集 样品只在构造破碎蚀变带中采集,其网度依据矿床的实际情况而定。所采集样品投影到一定地质图件上,包括剖面图、平面图、垂直纵投影图等。 数据处理和解释 包括数据预处理、成矿指示元素确定和构造地球化学晕圈定与解释。数据预处理是将地质原始变量经过适当的变换,使之服从正态分布,常用的变换包括标准化变换、极差变换、对数变换、广义幂正态变换等[1];成矿指示元素确定是通过统计分析得出一系列与成矿元素有相关关系的单变量或组合变量,用单变量或组合变量圈定成矿元素异常,达到减少工作量和工作成本的目的,常用的方法包括聚类分析和因子分析;构造地球化学晕的圈定和解释是将所变换的数据经过一定的处理(如趋势分析),用计算机成图,所成的图件结合地质实际来判别异常,指出盲矿的空间定位。 2 实际应用 以山东招远魏家沟金矿床3号脉为例。 矿床地质特征 魏家沟金矿床位于胶东招掖金矿带北截—灵山沟断裂的中段,矿床断裂构造发育,矿脉成群出现,主要矿脉有1号、2号、3号、7号,矿体赋存在矿脉中,具较高的工业价值(图1)。 图1 魏家沟金矿床平面地质图 —玲珑花岗岩;Is—斜长角闪 Q-第四系;δμ—闪长玢岩;γm2 5

相关文档
相关文档 最新文档