文档视界 最新最全的文档下载
当前位置:文档视界 › 纳米白炭黑粉体表面改性的研究

纳米白炭黑粉体表面改性的研究

纳米白炭黑粉体表面改性的研究
纳米白炭黑粉体表面改性的研究

纳米白炭黑粉体表面改性的研究

1 研究目的和意义

白炭黑是一种超细微具有活性的二氧化硅粒子,是一种白色、无毒、无定形微细粉状物,具有多孔性、高分散性、质轻、化学稳定性好、耐高温、不燃烧、电绝缘性好等优异性能的重要无机硅化合物。其相对密度为2.319~2.653,熔点为1750℃,是一种重要的精细无机化工产品。化学名称为水合无定形二氧化硅或胶体二氧化硅,分子式为SiO2 .nH2O,系以Si原子为中心,O原子为顶点所形成的四面体不规则堆积而成的。它表面上的Si原子并不是规则排列,连在Si原子上的羟基也不是等距离的,它们参与化学反应时也不是完全等价的[1]。和其他氧化物相似,一旦白炭黑(SiO2)和湿空气接触,表面上的Si原子就会和水"反应",以保持氧的四面体配位,满足表面Si原子的化合价,也就是说,表面有了羟基。白炭黑对水有相当强的亲和力,水分子可以不可逆或可逆地吸附在其表面上。所以SiO2表面通常是由一层羟基和吸附水覆盖着,前者是键合到表面Si原子上的羟基,也就是化学吸附的水;后者是吸附在表面上的水分子,也就是物理吸附的水。已有的研究成果表明白炭黑表面存在羟基官能团,其羟基主要划分为三种类型[2]:(1)孤立单羟基, SiOH;(2)孤立双羟基,=Si(OH)2;

(3)在羟基相互之间有氢键存在的邻位羟基。当表面硅醇基浓度足够大时白炭黑表面是亲水的。水分子可以和白炭黑表面的羟基群形成氢键。白炭黑具有特殊的表面结构(带有表面羟基和吸附水)、特殊的颗粒形态(粒子小,比表面积大等)和独特的物理化学性能, 白炭黑微粉能提高材料和产品固有的物理属性和化学性能,广泛应用于催化剂、催化剂载体、石油化工、脱色剂、消光剂、橡胶补强剂、塑料充填剂、油墨增稠剂、金属软性磨光剂、绝缘绝热填充剂、高级日用化妆品填料及喷涂材料等各种领域,是橡胶、化工、电子、医药等行业提高产品质量所需要的“工业味精”。

然而,由于白炭黑内部的聚硅氧和外表面存在的活性硅醇基及其吸附水,使其呈亲水性,在有机相中难以湿润和分散,与有机基体之间结合力差, 易造成界面缺陷, 使复合材料性能降低;而且由于其表面存在羟基,表面能较大,聚集体总倾向于凝聚,因而产品的应用性能受到影响。如在橡胶硫化系统里不能与聚合物很好地相容和分散,在涂料产品中容易引起凝聚沉淀,在轮胎中大量使用需要同时加入硅烷偶联剂等等。纳米白炭黑微粒表面改性后,由于表面性质发生了变化,其吸附、润湿、分散等一系列性质都将发生变化。在涂料中,对

确定的基料来说,分散体系的稳定性(包括光化学稳定性等)直接由分散粒子的表面性质所决定。在复合材料中,材料的复合是通过界面直接接触实现的,因此界面的微观结构和性质将直接影响其结合力性质、粘合强度和复合材料的力学性能以及物理功能。通过对纳米白炭黑微粒表面的改性,可以达到以下几个方面的目的:

①改善或改变纳米粒子的分散性;

②提高微粒表面活性;

③使微粒表面产生新的物理、化学、机械性能及新的功能;

④改善纳米粒子与其他物质之间的相容性。

为了增加白炭黑微粒与有机体的界面结合力。提高复合材料的性能,需要对白炭黑进行表面改性,以改善其应用效果,提高产品的附加值,拓展产品的应用领域。经表面改性后的白炭黑是一种具有特殊结构的新型无机材料,广泛应用于国民经济的各行各业。因此,白炭黑粉体表面改性的研究不仅具有学术意义,更具有重要的实用价值[3]。

2 国内外研究进展

白炭黑的表面有一层均匀的羟基,这使白炭黑的表面可相对容易地进行改性,白炭黑的表面改性就是利用一定的化学物质通过一定的工艺方法使其与白炭黑表面上的羟基发生反应,消除或减少表面硅醇基的量,接枝或包覆其他化学物质,使产品由亲水性变为疏水性,以达到改变表面性质的目的。主要改性方法如下:

(1)偶联剂改性法:采用有机基团取代白炭黑的表面羟基,使其有机硅烷化。

(2)聚合物接枝改性法:利用聚合反应将高分子链连接到纳米白炭黑表面高活性点上,这样既可防止颗粒的团聚,又增加了无机相在有机相中的分散性。

(3)酯化反应改性法:利用纳米白炭黑粒子表面的羟基与醇、酸的羟基反应,形成新的表面结构,改变粒子性能。

2.1偶联剂改性法

采用偶联剂改性纳米白炭黑也可以解决纳米粒与有机体亲和性差的问题。一般偶联剂分子必须具备两种基团:能与纳米白炭黑粒子表面羟基进行反应的极性

基团和与有机物有反应性或相容性的有机官能团。常用的偶联剂有如下几种:(1)硅烷偶联剂:有机硅烷偶联剂是目前应用最多、用量最大的偶联剂,对于表面具有羟基的无纳米粒子最有效。当纳米白炭黑采用具有非极性有机官能团的硅烷偶联剂改性时,其表面具有很好的疏水性,通常被用于涂料等高分子材料中,改性纳米粒子能够很好地被涂料浸润,还可改善其在涂料中悬浮性、触变性、防腐性、及粉末物料流动性等

[4]。

(2)钛酸酯偶联剂:这一类偶联剂对许多无机粒子有良好的改性效果。经钛酸酯偶联剂改性的纳米白炭黑在涂料中的分散性、悬浮性和储藏稳定性均得到改善,还提高了涂膜的附着力和固含量,且具有阻燃、耐腐蚀、增加粘结力和催化其固化过程等功效。

(3)其它偶联剂:常用的偶联剂有铝酸酯偶联剂、锆铝酸酯偶联剂、铝钛复合偶联剂、稀土偶联剂、硬脂酸类偶联剂、磷酸酯类偶联剂等。

1971年双官能团硅烷偶联剂TESPT出现后,人们开始研究硅烷偶联剂对白炭黑的改性效果。Norio Tsubokawa等[5]选用硅烷偶联剂改性,增加SiO2表面引发基团,再加入可反应有机单体,经过多次处理以在其表面进行接枝。

Ou等[6]研究了烷基化白炭黑对橡胶增强效果的影响。发现白炭黑烷基化后,胶料中键合橡胶的数量减少,但提高了白炭黑和橡胶基体的相容性。

孙云蓉等[7]采用湿法工艺对白炭黑进行改性,该法为:称取待改性的纳米白炭黑填料20 g ,量取无水乙醇150 mL,加入三口烧瓶中恒温水浴搅拌加热,缓慢滴加硅烷偶联剂Si-75 ,搅拌一定的时间后,将物料取出,用水浴烘箱将样品烘干,驱除溶剂,然后再用干式超细粉碎机将物料分散。

2004年毋伟等[8]研究了在溶胶-凝胶法原位制备纳米二氧化硅复合材料过程中硅烷偶联剂与纳米二氧化硅间的作用机理, 硅烷偶联剂量的变化对机理的影响以及对在环氧树脂清漆中应用性能的影响。结果表明:溶胶-凝胶法纳米二氧化硅复合材料的形成机理是纳米二氧化硅表面的物理吸附水和硅羟基被硅烷偶联剂的有机部分所代替, 生成分散均匀的纳米复合材料。当硅烷偶联剂的用量适当时该复合材料在环氧树脂清漆中具有良好的应用性能, 表现出纳米材料特有的既增强又增韧特性, 有很好的应用前景。

伍林等[9]以六甲基二硅胺烷(HMDS)为改性剂,氮气为保护气,对纳米二氧化硅表面进行改性研究,并通过粘度测定、红外光谱分析等手段对改性的效果进行

评价。结果显示,在本实验所考察的范围内,反应温度为100℃,偶联剂用量为12mL时,改性效果最好。

Jesionowski T[10]等分别使用巯基硅烷、乙烯基硅烷和氨基硅烷偶联剂对白炭黑进行了表面处理。分析表明,经前两者处理后的纳米白炭黑粒子疏水性比氨基硅烷偶联剂处理的效果要好,粒子之间的团聚也明显减弱。

李莹等[11]分别采用 -氨基丙基三乙氧基硅烷(KH550) , -环氧丙氧基丙基三甲氧基硅烷(KH560)、钛酸酯偶联剂以及铝酸盐偶联剂对纳米SiO2粒子进行表面改性,并采用原位聚合的方法制备了尼龙6/SiO2纳米复合材料,研究了不同体系中相界面的形成及其对纳米复合材料性能的影响。实验证实,钛酸酯偶联剂以及铝酸盐偶联剂与粒子之间形成氢键作用,其界面上的氢键反应有利于纳米SiO2粒子与基体间的相互作用。而KH550含有的氨基基团则可参与尼龙6的聚合反应,在SiO2粒子表面生成接枝型聚合物,形成具有3-4个CH2厚度的柔性界面层,从而在受力时可以促进SiO2表面附近聚合物基体的屈服和塑性变形,导致断裂伸长率和冲击强度的提高。力学测试表明,当SiO2粒子的含量为4. 3wt%时,由KH550改性的复合材料的拉伸强度、冲击强度和弯曲强度较尼龙6

分别增加了18.5%, 43.4%, 18.8%;由KH560改性的样品分别提高了:22. 1%, 29.8%, 27.8%而断裂伸长率和冲击强度为由铝酸盐偶联剂改性制备的复合材料最高,分别增加了18. 6%和44. 5%。当加入表面未经任何处理的SiO2粒子时,虽然SiO2表面可以形成一定量的接枝聚合物,并能与基体间形成较强的界面粘着,但在相界面间没有柔性层存在,因此与通常的刚性粒子增韧的情况相同,即在提高基体强度的同时,导致韧性的损失。

2.2聚合物接枝改性法

2.2.1辐照接枝聚合改性法

该法是将单体和纳米SiO2粒子按照一定比例混合后溶于适当溶剂经60Co -射线辐照,在粒子表面接枝上聚合物,从而改善粒子在聚合物基体当中的分散性。采用该法接枝到SiO2粒子表面的聚合物主要有聚苯乙烯、聚丁基丙烯酸酯、聚乙烯醋酸酯、聚乙烯丙烯酸酯、聚甲基丙烯酸甲酯(PMMA)、聚甲基丙烯酸酯等。经过辐照接枝后的纳米SiO2粒子与聚合物基体的相容性得到很好的改善,并且接枝聚合物的分子链与基体聚合物分子链的缠结作用显著增强了纳米SiO2粒子与聚合物基体间的相互作用,因此,改性后的纳米SiO2粒子对复合材料可起到增强增韧作用。

RongMZ等[12]在SiO2粒子表面辐照接枝PMMA并与聚丙烯制得纳米复合材料,当粒子的体积含量为3. 31vo1.%时,复合材料的拉伸强度,杨氏模量较之纯聚丙烯分别增加了10%,19%,且断裂伸长率也略有增加。

Zhang M Q等[13]将聚丙烯酰胺(PAAM)接枝到纳米SiO2粒子表面,并制得环氧树脂纳米复合材料,研究发现,PRAM可以参与到环氧树脂的固化过程中,于是在纳米SiO2粒子与环氧树脂之间形成化学键,这样在较低的SiO2粒子的填充量(2vo1. %)下,就使得复合材料的抗磨损性能有了较大提高。

2.2.2 粒子表面引入双键与烯类单体共聚接枝改性法

该法通常是首先采用含双键的硅烷偶联剂对SiO2粒子进行表面改性,然后再将粒子与烯类单体共聚,从而将聚合物包覆在粒子表面。聚合方法有乳液聚合,悬浮聚合等。采用的单体通常为亲水性单体甲基丙烯酸甲酯、醋酸乙烯酯和乙酸乙酯等,以及亲油性单体苯乙烯等。亲水性单体比亲油性单体更易包覆粒子。

Elodie B 等[14]研究了在95%的乙醇溶液中,采用分散聚合法在纳米SiO2粒子表面包覆聚苯乙烯。该法因体系当中单体和引发剂可溶于乙醇溶液,而聚合物不溶,生成的粒子采用稳定剂乙烯毗咯烷酮进行分散而得名。反应前,粒子采用 -(甲基丙烯酰氧)丙基三甲氧基硅烷(KH570)进行改性,并将未改性的和改性后的粒子分别作为种子对其进行包覆。结果表明,表面未经处理的SiO2粒子更趋向于停留在聚苯乙烯粒子的表面,而经过KH570表面改性后的SiO2粒子,绝大多数被完全包覆在聚苯乙烯粒子内部,平均每个聚苯乙烯乳胶粒子内部包覆有4到23个SiO2粒子。

Sondi I等[15]采用KH570对纳米SiO2粒子进行表面处理后,以偶氮二异丁睛作为引发剂,在2一丙醇溶液中,采用原位聚合的方法在SiO2粒子表面包覆上聚叔丁基丙烯酸酯。研究发现,包覆上的聚合物的含量随着单体的浓度及纳米SiO2粒子上KH570接枝含量的增加而增加,但接枝到粒子上聚合物的比例不超过14.5wt%。该包覆后的纳米SiO2粒子可以长时间稳定的存在于乙醇溶液中。Rong M Z 等[16]采用KH570处理纳米SiO2粒子后,在其表面分别接枝了聚苯乙烯、聚甲基丙烯酸甲酯、聚乙基丙烯酸酯以及聚丁基丙烯酸酯,并制备出PP/SiO2纳米复合材料。结果表明,纳米SiO2粒子经过聚合物接枝后,使纳米复合材料的力学性能较之原聚合物,以及填充了没有改性过的纳米SiO2:粒子的复合材料有了很大提高。这是由于经过聚合物接枝的纳米SiO2粒子与聚合物基

体之间产生了很强的界面粘结力,并且只有在较低的纳米SiO2粒子以及接枝物含量的情况下,才会获得较高的界面粘结力,因为在这种情况下纳米粒子可以在聚合物基体中获得均匀的分散状态。

2.2.3 粒子表面直接引入活性聚合物改性法

该法是将具有活性端基的聚合物通过化学键合作用接枝到SiO2粒子表面的活性点(如一OH、-NH2等)上,从而对粒子进行表面改性。SiO2粒子表面大量的硅羟基为改性提供了有利条件,这些硅轻基可直接与带一NCO、烷氧硅烷基和氯硅烷基等基团的聚合物链发生接枝反应。

Tsubokawa N等[17]以KH550和N-苯基- -氨丙基三甲氧基硅烷处理SiO2,在其表面引入氨基后,分别与聚(异丁基乙烯醚)和聚(2一甲基一2-唑啉)活性聚合物反应,制得分子量可控、分布窄的聚合物包覆的改性粒子。

通常,纳米SiO2粒子表面接枝的聚合物多为线型的,而郭朝霞等[18]采用KH550对纳米SiO2粒子表面处理后,将一种聚芳酷树枝状分子接枝到粒子表面,其中,接枝过程涉及二环己基碳二酰亚胺(DCC)催化酰胺化反应,结果表明,接枝后的纳米SiO2具有很好的亲油性。

采用粒子表面直接引入活性聚合物的改性方法,可以预先设计聚合物,可得到结构明确、分子量分布窄的接枝链。但是,在反应过程中,已接枝到粒子表面的聚合物链由于空间位阻的原因,会阻碍体系中的聚合物向粒子表面扩散,因此接枝率通常不高。

2.3 酯化反应改性法

利用酯化反应对纳米微粒表面修饰改性最重要的是使原来亲水疏油的表面变成亲油疏水的表面,这种表面功能的改性在实际应用中十分重要。例如为了得到表面亲油疏水的纳米氧化铁,可用铁黄[α- FeO(OH) ]与高沸点的醇进行反应,经200 ℃左右脱水后得到α- Fe2O 3,在275 ℃脱水后成为Fe2O4 ,这时氧化铁表面产生了亲油疏水性;α- Al (OH)3用高沸点醇处理后,同样可以获得表面亲油疏水性的α- AlO(OH) 及中间氧化铝。

酯化反应用的醇中最有效的是伯醇,其次是仲醇,叔醇是无效的。实验证明,用醇类与钛白粉反应时,要使钛白具有较好的亲油性,必须使用C4以上的直链醇处理[19]。

当用醇类处理白炭黑时,白炭黑表面的酯化度越高,其憎水性越强[20]。以SiO2 为例,简单说明酯化反应的基本过程,表面带有羟基的氧化硅粒子与高沸点的醇

反应方程式如下:

反应过程中硅氧键开裂,Si与烷氧基(RO) 结合,完成了纳米表面酯化反应。

通过酯化反应,纳米白炭黑粒子原来亲水疏油的表面就会变成亲油疏水的表面,这样就可以在有机溶剂中很好地分散。目前采用醇酯化法改性纳米SiO2的研究并不多。

李志虎[21]分别用乙醇、异丙醇和丁醇用分水回流法对纳米SiO2进行表面改性,发现异丙醇改性效果优于乙醇,丁醇的改性效果优于异丙醇,即碳链越长改性效果越好。因为SiO2醇分散液回流过程中,表面的羟基可能与醇发生酯化反应,除酯化反应之外还应存在大量的物理吸附。无论是酯化化学吸附,还是物理吸附,包覆在SiO2表面的基团,都对SiO2有防团聚作用。由空间位阻机理可知,基团越大,位阻越大,防团聚作用越好,乙醇较异丙醇、丁醇来说,基团小,防团聚效果也就越差,所以在分散液中,平均粒径就大,分散稳定性能也差,其蔬水性能也相对较差。

Fuji M等[22]用一系列醇改性纳米白炭黑,发现链长在8个碳以上的伯醇可使纳米白炭黑憎水性明显提高, 8个碳以下的醇只有在接枝率大于20 %时才能使纳米白炭黑完全转变为憎水性。通过条件实验得出最佳反应条件:235℃,30atm 下分水回流1h。

钱晓静等[23]在微波辐射下用正辛醇对SiO2纳米粒子进行表面接枝改性。改性SiO2纳米粒子的表征结果显示其亲油疏水性得到了很大提高。其实验过程为:在带有分水装臵的三颈瓶中加入SiO210.0 g,正辛醇60 mL, 对甲苯磺酸0.4 g, 将烧瓶臵于微波炉中辐射加热, 回流分水4 h。产物用乙醇离心洗涤3次~4次后真空干燥至恒重得SiO2 -octyl。在微波辐射下, SiO2与正辛醇发生酯化反应,有效的将正辛基接枝到SiO2表面,使其亲油疏水性得到了很大的提高。这一工作为SiO2表面接枝含- CO2H, - NH 2等基团的高分子奠定了基础

Gabriel C. Ossenkamp[24]等对醇酯化改性纳米SiO2的反应机理进行了研究。认为醇类在SiO2表面的化学吸附可用能精确计算表面覆盖量的朗缪尔模型来描述。并指出先六甲基二硅胺烷酯化预处理,再用正辛醇酯化改性的SiO2的水解稳定性大大提高。

3 存在的问题

以上几种化学改性方法,虽然手段各异,但从本质上讲,都是经偶联剂或酯化改性,来消除或减少粒子表面的羟基,或经在SiO2粒子表面接枝、包覆聚合物,

从而减少粒子在聚合物基体当中的团聚。

对于硅烷偶联剂改性而言,该法简单可行,目前己有多种硅烷偶联剂广泛地应用于SiO2粒子的表面改性。但是当体系中形成团聚体时,由于偶联剂只能与团聚体外表面的粒子进行反应,导致团聚体内部仍然是结构松散的SiO2聚集体,这将成为材料的缺陷部位,因而在受到外力时,无法有效地承接和传递应力,结果在缺陷部位发生断裂,导致材料力学性能下降。所以在硅烷偶联剂改性中,应采用超声波分散、电磁搅拌等尽量减少团聚体的存在。硅烷偶联剂对表面具有羟基的纳米白炭黑粒子最有效,目前以六甲基二硅胺烷处理效果最好,但六甲基二硅胺烷价格昂贵。

当采用聚合物接枝聚合改性时,由于接枝单体较小的分子量,可使其易渗透到SiO2粒子团聚体的内部,同时与内部和外部粒子上的活性点发生反应,将聚合物接枝到粒子表面,防止粒子团聚。但是在接枝过程中,无法避免均聚反应的存在,所以在最终的体系中会有一定量均聚物存在,这对材料的性能会造成一定影响。而且,在反应过程中,已接枝到粒子表面的聚合物链由于空间位阻的原因,会阻碍体系中的聚合物向粒子表面扩散,因此接枝率通常不高。此外,接枝密度的大小同样会影响材料的力学性能,通常认为接枝密度不宜过大,其大小与具体的接枝聚合物和基体聚合物的结构有关。

酯化反应法中酯基易水解,且热稳定性差,这是主要缺点,但醇价格较便宜。选择合适的反应条件即可实现大规模工业生产。

纳米二氧化硅表面改性研究

文章编号:1003 1545(2011)02 0018 04 纳米二氧化硅表面改性研究 李金玲,王宝辉,李 莉,张钢强,盖翠萍,杨雪凤,邵丽英,隋 欣 (东北石油大学化学化工学院,黑龙江大庆 163318) 摘 要:采用甲苯二异氰酸酯(TD I)接枝聚乙二醇(PEG )对纳米Si O 2进行表面改性,并利用红外光谱(FT I R )和热重(TG )、扫描电镜(SE M )、粒径分析、重力沉降法等方法对改性前后的纳米Si O 2的表面形貌和在介质中的分散稳定性进行了表征和分析。结果表明,改性后的纳米S i O 2表面接枝上了TD I 、PEG 的有机官能团,降低了颗粒的团聚程度,提高了纳米S i O 2在介质中的分散性。当n (TD I):n (PEG )=1:0 8时,分散性最好,接枝率为54 03%。 关键词:纳米S i O 2;表面改性;分散性中图分类号:TQ127.2 文献标识码:A 收稿日期:2010-10-12 基金项目:黑龙江省教育厅科学技术研究项目资助(11531009) 作者简介:李金玲,1984年生,女,在读硕士研究生,主要从事纳米改性水性聚氨酯的研究。E -m a i:l dqp ilj@l 163.co m 纳米二氧化硅是目前世界上大规模工业化 生产的产量最高的一种纳米粉体材料[1] 。特殊的微粒表面层结构和电子能级结构产生了普通粒子所不具有的量子尺寸效应、小尺寸效应、表面效应和宏观量子效应,导致了其在热、磁、光、敏感特性和表面稳定性等方面不同于常规粒子[2] 。但这些特殊效应同时赋予了纳米S i O 2表层大量羟基,导致羟基间的范德华力、氢键的产生,使粉体间的排斥力变为吸引力,热力学状态不稳定,极易发生凝并、团聚,在介质中难以分散,难以与基料很好结合,纳米粒子的优异特性 得不到充分发挥[3] 。因此要维持纳米粉体的特异性能,拓展其在生物、医药、化工、材料、电子、机械、能源、国防及交叉学科等领域的应用范围,有必要对纳米粉体进行表面改性。 纳米粉体表面改性方法有酯化反应法、偶联剂法、表面活性剂法、接枝聚合物法、高能法等[4] 。本文采用PEG2000、TDI 对纳米二氧化硅进行接枝改性,通过FT I R 、SE M 、TG 、粒度分析、沉降实验等对改性前后的纳米S i O 2进行表征和分析。 1 实验部分 1 1 实验原料 表1 实验药品 药 品生产厂家预处理纳米Si O 2 自制 真空脱水二月桂酸二丁基锡 (DB TDL 分析纯)天津市光复精细化工研究所直接使用 2,4 二异氰酸甲苯酯(TD I 分析纯)天津市化学试剂厂六分厂分子筛干燥无水乙醇(分析纯)沈阳市华东试剂厂直接使用聚乙二醇2000(PEG 分析纯)沈阳市华东试剂厂真空脱水甲苯(分析纯) 沈阳市华东试剂厂 分子筛干燥 1 2 表面改性及表征 将纳米二氧化硅在真空烘干箱中120 烘4h ,以除去表面吸附的水分。将烘好的纳米粒子分散于甲苯溶液中,剪切分散30m i n 、超声分散30m in 后,加入到装有温度计、冷凝管的三口烧瓶中,同时加入TD I 、DBTDL ,在水浴锅中缓慢升温,80 冷凝回流反应4h 后,加入PEG 恒温反应4h 。产物进行离心分离,并用甲苯、无水乙醇各洗涤3次,然后在120 进行真空干燥8h ,得到改性后的纳米Si O 2,研磨待用。 将上述TDI /PEG 分别按摩尔比为1:0 6,1:0 8,1:1 0,1:1 2重复上述实验步骤。

纳米二氧化硅表面改性及其 补强天然胶乳研究

万方数据

万方数据

万方数据

纳米二氧化硅表面改性及其补强天然胶乳研究 作者:邱权芳, 彭政, 罗勇悦, 李永振, Qiu Quanfang, Peng Zheng, Luo Yongyue, Li Yongzhen 作者单位: 刊名: 广东化工 英文刊名:GUANGDONG CHEMICAL INDUSTRY 年,卷(期):2009,36(11) 被引用次数:0次 相似文献(10条) 1.期刊论文邱权芳.彭政.罗勇悦.李永振.Qiu Quanfang.Peng Zheng.Luo Yongyue.Li Yongzhen"胶乳共混法"制备天然橡胶/二氧化硅纳米复合材料及其性能-广东化工2009,36(4) 采用γ-甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)改性纳米二氧化硅(SiO2),然后通过乳液聚合接枝上聚甲基丙烯酸甲酯(PMMA),再将其与甲基丙烯酸甲酯(MMA)改性的天然胶乳,通过胶乳共混法制备天然橡胶/二氧化硅纳米复合材料,结果显示,纳米二氧化硅表面接枝上了PMMA,二氧化硅在橡胶基体中分散良好,粒径在60~100 nm之间,得到的胶膜力学性能有很大的提高. 2.期刊论文魏福庆.李志君.殷茜.邵月君.段宏义.Wei Fuqing.Li Zhijun.Yin Qian.Shao Yuejun.Duan Hongyi纳米SiO2对天然橡胶/聚丙烯共混型热塑性弹性体的改性-合成橡胶工业2006,29(3) 在双辊电热式塑炼机上采用动态硫化法制备了天然橡胶/聚丙烯共混型热塑性弹性体(NR/PP TPV).考察了纳米SiO2的加入顺序及其用量对NR/PP TPV力学性能的影响,研究了纳米SiO2填充改性TPV的耐溶剂性能和耐热变形性能,并用扫描电镜(SEM)观察了其两相结构和断面形貌.结果表明,纳米SiO2先与NR混炼均匀,再加入小料和硫黄所得的NR母炼胶与PP制备的TPV力学性能较好,且最佳的纳米SiO2加入量为3份;纳米SiO2改性的NR/PP TPV具有良好的耐溶剂性能和耐热变形性能;纳米SiO2提高了NR与PP相间结合强度. 3.期刊论文李志君.魏福庆.LI Zhijun.WEI Fuqing接枝和交联对纳米SiO2改性NR/PP共混型热塑弹性体的影响-高分子学报2006(1) 动态硫化制备纳米二氧化硅(SiO2)改性天然橡胶/聚丙烯共混型热塑性弹性体(NR/PP TPE).研究了马来酸酐/苯乙烯/过氧化二异丙苯(MAH/St/DCP)多单体"就地"熔融接枝、交联对TPE力学性能、耐溶剂性能和耐热变形性能的影响,并用SEM分析了TPE的断面形貌.结果表明:纳米SiO2和MAH/St/DCP的最佳质量分数分别为0.03和0.0375/0.0188/0.00375时,MAH/St/DCP接枝、交联改性NR/PP/纳米SiO2 TPE的力学性能、耐溶剂性能和耐热变形性能最佳 .MAH/St/DCP"就地"接枝、交联通过细化交联NR分散相、改善交联NR分散的均匀性和增加两相之间的共交联,使NR与PP两相界面结合强度明显提高,NR/PP TPE的综合性能得到明显的改善. 4.期刊论文郑辉林.李志君.赵红磊.胡树.ZHENG Hui-lin.LI Zhi-jun.ZHAO Hong-lei.HU Shu NR-g-(GMA-co-St)与nano-SiO2协同增强增韧PVC的研究-弹性体2009,19(2) 研究了甲基丙烯酸缩水甘油酯(GMA)/苯乙烯(St)多单体熔融接枝天然橡胶(NR)[NR-g-(GMA-co-St)]与nano-SiO2协同增强增韧PVC的力学性能,并通过SEM、TG-DTG表征了改性PVC的相结构及耐热分解性能.结果表明,当NR-g-(GMA-co-St)和nano-SiO2的质量分数分别为5%和3%时,相界面的结合强度明显提高,达到较好的协同增强增韧效果;与未改性PVC相比,增强增韧PVC的缺口冲击强度和断裂拉伸强度分别提高了78.9%和50.5%,并且具有较好的耐热分解性能. 5.期刊论文李志君.魏福庆NR-g-(MAH-co-St)对纳米SiO2改性NR/PP共混型热塑性弹性体的影响-弹性体 2004,14(6) 研究了马来酸酐/苯乙烯(MAH/St)多单体熔融接枝NR[NR-g-(MAH-co-St)]对纳米SiO2改性天然橡胶/聚丙烯动态硫化共混型热塑性弹性体(NR/PP TPV)力学性能的影响;采用SEM分析了TPV的断面形貌.结果表明:纳米SiO2的质量分数为0.03时,NR-g-(MAH-co-St)通过改善纳米SiO2分散的均匀性和细化交联NR分散相,使NR与PP两相的相容性得到明显改善,两相界面结合强度明显提高,NR/PP/纳米SiO2 TPV的力学性能提高. 6.会议论文鹿海华.刘岚.罗远芳.贾德民胶粉中原位生成SiO2及其在天然胶的应用研究2007 通过溶胶-凝胶法在胶粉中原位生成纳米SiO2网络,利用傅立叶变换红外(FTIR)、热重分析(TGA)等技术,证实了溶胶-凝胶反应中在胶粉表面过渡层中原位生成了约3%~5%wt的-O-Si-O-类似SiO2的网络结构;改性胶粉表现出更好的热稳定性,失重5%对应的温度提高了72.4℃.将50份改性胶粉添加到天然橡胶(NR)中,考察了反应前驱体及有机硅氧烷用量等对NR/改性胶粉复合材料性能的影响。研究发现,NR/改性胶粉复合材料仍具有较好的力学性能及动态性能。 7.期刊论文郑辉林.李志君.赵红磊.胡树.ZHENG Hui-lin.LI Zhi-jun.ZHAO Hong-lei.HU Shu原位接枝NR与nano-SiO2协同增韧PVC的研究-塑料2009,38(3) 研究了原位接枝NR与nano-SiO2协同增韧PVC的力学性能和耐溶剂性,通过SEM表征了增韧PVC的相结构.结果表明:当原位接枝NR和nano-SiO2的质量分数分别为5%和3%时,与未增韧PVC相比,相界面的结合强度明显提高,增韧PVC的缺口冲击强度和拉伸强度分别提高了102%和35.11%,并且具有较好的耐溶剂性能,达到较好的协同增韧增强效果. 8.会议论文李志君.魏福庆.符新NR/PP共混型热塑性弹性体的改性技术2004 动态硫化制备NR/PP/纳米SiO2共混型热塑性弹性体(TPV).通过力学性能的测定,确定了TPV的最佳加工工艺条件;研究了纳米SiO2改性和马来酸酐/苯乙烯/过氧化二异丙苯(MAH/St/DCP)多单体熔融接枝、交联改性对TPV力学性能、耐溶剂性能和耐热性能的影响.结果表明:MAH/St/DCP"就地"接枝、交联改性NR/PP/纳米SiO2TPV的力学性能最好,耐溶剂性能和热稳定性最佳.纳米SiO2的最佳质量分数为0.03;MAH/St/DCP的最佳质量分数为3.75/1.875/0.375. 9.期刊论文魏福庆.刘义.王卓妮.殷茜.李志君.林秀娟.Wei Fuqing.Liu Yi.Wang Zhuoni.Yin Qian.Li Zhijun. Lin Xiujuan马来酸酐和苯乙烯接枝改性对天然橡胶/聚丙烯共混物物理机械性能的影响-合成橡胶工业 2007,30(1) 用动态硫化法制备了天然橡胶(NR)/聚丙烯(PP)热塑性弹性体(TPV).研究了马来酸酐/苯乙烯/过氧化二异丙苯(MAH/St/DCP)多单体熔融接枝交联改性及纳米二氧化硅用量对NR/PP TPV物理机械性能的影响,讨论了NR/PP TPV的重复加工性能.结果表明,当MAH/St/DCP用量为3.750/1.875/0.375质量份、纳

纳米二氧化硅的表面改性研究

第4期王云芳等:纳米二氧化硅的表面改性研究383SizeofSi02grain(nm) 图1水溶胶中Si05颗粒的大小分布 Fig.1 SizedistributionofSi02graininhydrosol可以看出,所制得的二氧化硅水溶胶中,二氧化硅成纳米状态分布,粒径为50—127rim,其电子显微镜照片如图2所示。另外,从二氧化硅水溶胶的红外光谱(图3(a))可以看出,2900cmd为SiOH的吸收峰;3433emd为吸附的水峰;1216em’1为Si—O—Si的不对称伸缩峰;958cmd为SiOH的伸缩峰;471cmd为O—Si?O的畸变吸收峰,说明纳米二氧化硅表面还有大量羟基,因此它可以和许多有机官能团发生作用。 2.2表面羟基值的测定【l列 采用离心干燥分离、醇洗,反复5次使溶胶中的二氧化硅分离,1000C真空干燥48h,得到纳米二氧化硅粉体,其红外光谱如图3(a)所示。称取该粉体29放入100mL的锥形瓶中,加入0.05mol/L的NaOH溶液80mL,密封搅拌24h。离心分离二氧化硅颗粒后的溶液体积为C毫升(一80mL),从分离的C毫升溶液中量取10mL,用A毫升0.05moL/L的HCl溶液滴定至中性,剩余溶液(C一10mL)用同样的方法滴定至中性所用HCl溶液为B毫升,根据下式可计算出单位重量二氧化硅颗粒表面的羟基含量(x)u引。 茗:盟笔华≈7.8mmol/g 茗2——广2Lg 上式中,A一中和分离溶液10mL所消耗0.05moL/LHCl溶液的体积数;B一滴定剩余溶液(约70mL)至中性所用0.05mol/LHCI溶液的体积数;w一纳米二氧化硅粉体的克重数。 2.3纳米二氧化硅的表面改性及分析 配制2.0wt%纳米二氧化硅水溶胶100mL,并用冰醋酸调节溶液的pH=3.5—4.5,随后加入 图2改性前纳米Si02粒子的TEM图片 Fig.2TEMphotographsofnano—silica particlesbeforemodification 400¥0012001600200024002800320036004000 Wavcntunber“gnrl 图3si02(a),cr,rMS(b)和 GPTMS改性Si02(c)的红外光谱 Fig.3FTIRgpl圮-q:raof(a)silica,(b)CPa'MS and(c)CPTMS—modifiedsilica 2mL偶联剂GPTMS(未水解前的红外光谱如图3(b)所示),磁力搅拌,常温反应2.5h后得到纳米二氧化硅改性溶胶(改性后纳米颗粒溶液的透射电子显微镜显微分析如图4所示)经离心干燥后醇洗(重复五次),常温干燥24h,然后在200℃真空干燥48h得到改性纳米SiO:粉体,其红外图谱如图3(c),从图谱可以看出:纳米二氧化硅接枝GPTMS后,二氧化硅的物理吸附水(3433cm。)和表面的硅醇羟基Si.OH(958em~,3744emd)明显减少,还有明显的亚甲基(2944em4)的吸收峰,但二氧化硅的特征吸收峰(1100cm~,797—805em~,471cm4)无明显变化,只是Si.O.Si键的伸缩振动吸收峰(1100—1216em。1)变宽增强。分析表明,在二氧化硅颗粒表面接枝硅烷偶联剂并未改变二氧化硅的物质组成和结构,只是SiO:表面羟基与硅烷偶联剂水解产生的童SiOH基团缩合,硅烷偶

粉体表面改性设备介绍

粉体表面改性设备

中国粉体表面改性设备种类很多,例如高速混合机、捏合机、密炼机、开炼机、单螺杆挤出机、双螺杆挤出机等,但这些设备大多从化工机械借用过来。存在许多严重问题,针对这些问题,近年来有了许多改进和进展,本文重点介绍引进国外机型和对高冷搅机组进行的改进。 现状粉体表面改性设备,主要担负三项职责,一是混合,二是分散,三是表面改性剂在设备中熔化和均匀分散到物料表面,并产生良好的结合。由于混合物的种类和性质各不相同,混合、分散和表面改性要求的质量指标也不相同,因而出现多种性质不同的改性设备,而这些设备又多为借用,因而并不能很好地完成改性任务。主要使用的改性设备为: •。重力混合器 •。气动混合器 •。转鼓式混合机 •。v型混合机 •。Z型混合机 •。高速混合机及高速混合机和冷却混合机组(简称高冷搅机组) •。开炼机 •。密炼机 •。混炼型单螺杆挤出机,布斯混炼机 •。双螺杆挤出机以及静态混合器,空腔混合器,和拉伸混合器等。 这些设备存在的主要问题是: ①多数是间歇式的,连续式设备如单、双螺杆挤出机大都是直线运动式,混合效果差。存在产量低,能耗大,工人劳动强度高,易造成环境污染等问题。

②升温慢,改性时间长,相反改性剂用量大,改性效果差。 ③比较而言,高冷搅机组价格低、耐用、易操作、改性效果好。 ④与国外设备相比,差距明显,主要表现在连续性和改性效果方面。 可以说,中国的粉体表面改性设备的落后,严重制约表面改性深加工技术的发展。已经到了非改不可的地步。 从90年代开始,一些科技人员就着手对改性设备进行改革、到2002年已经取得阶段性成果。 这些阶段成果包含两个方面: ①引进国外连续改性机型 ②对高冷搅机组进行改革 引进国外机型 引进、吸收、消化国外先进设备,是现阶段我们的主要手段之一。改性设备也不例外,现在由大专院校、科研单位与生产企业共同引进开发的改性设备已经问世,且价格大大低于直接购买的国外同类设备。 1、PS系列粉体表面改性机 由原武汉工业大学北京研究生部非矿所和青岛青矿矿山设备有限公司共同开发研制成功的PSC系列粉体表面改性机是表面化学改性的专用设备,它具有设计先进,科学,能连续生产,产量高,能耗低,自动化程度高,工人劳动强度低,无粉尘污染,且表面改性剂用量少,包覆率高等特点。 ①PSC表面改性性能结构特征: 本机由给料输送、主机、改性剂供给、排料、成品输送、成品收集仓、加热、给风、除尘等系统构成。

高分子材料中粉体表面改性的作用

超细粉体材料进行表面改性的作用分析 (上海汇精亚纳米新材料有限公司刘涛) (凤阳汇精纳米新材料科技有限公司) 高新技术的发展对材料的要求越来越高,而材料又是技术进步的关键和后盾。随着科技的发展,我们经常需要既能适应高温、高压、高硬度条件的材料,又具有能发光、导电、电磁、吸附等特殊性能的材料。因此,对材料特殊性能及品质要求的提高,为适应发展需要,人们不断地开发超微细粉体这一新兴填料体系。但由于超细粉体间普遍存在着范德华力(分子间作用力)、库仑力(静电力),粉体的细化过程实质上是以粒子的内部结合力不断被破坏,体系总能量不断增加的过程。因此从热力学角度来看,超细粉体有自发凝聚的倾向,而且颗粒越细小,团聚越严重。因此如何使团聚解聚,使颗粒均匀分散成为超细粉体材料得到很好应用的首要问题。研究表明,影响超细粉体分散的主要原因是:1:液桥力(液体的表面张力):当粉体受潮时,此力最大;2:范德华力;3:库仑力,不同电荷吸引力是粉体团聚的第三大因素。而对于超细粉体在高分子材料中的分散,一是常温下的分散混合,二是熔融状态下的分散混合,这两个过程都要求做到分散均匀。表面改性就是指在保持材料或制品原性能的前提下,赋予其表面新的性能,如生物相容性、抗静电性能、染色性能及良好的分散性能等。汇精公司粉体材料的表面改性产品就是用偶联剂及表面活性剂在粉体表面进行,其可以降低粉体表面能,提高相容性,阻止或减轻团聚体的形成,提高其分散性,并使得粉体在高分子材料中得到迅速、均匀的分散。若超细粉体不加任何处理就加入到高分子材料中去,材料与聚合物之间就会存在明显的界面,如果在基体树脂中存在的许多空洞,在外力作用下能承受外力的有效截面积减少,填充材料的力学性能就会变差。因此超细粉体在表面处理水份控制以及选择合适的表面改性剂是非常关键的。 上海汇精亚纳米新材料有限公司、凤阳汇精纳米新材料科技有限公司利用自身丰富粉体应用技术资源,采用专业的配方,使用SLG加热式连续性表面改性机对超细粉体材料进行表面改性处理,使得超细粉体材料在各行业的使用性能得到大大提升,更赋予它新的功能;使得超细粉体的各项性能得到更好的发挥,适应了时代发展的趋势需求。

SLG 型连续式粉体表面改性机应用研究

SLG型连续式粉体表面改性机应用研究 郑水林1李 杨2骆剑军3 1.中国矿业大学北京校区,北京 100083; 2.北京工业大学; 3.江阴市启泰非金属工程有限公司 摘 要:在论述粉体表面改性设备应具备的工艺特性的基础上,介绍了新研制开发的SLG型连续式粉体表面改性机的结构、工作原理、性能特点以及在重钙、轻钙、纳米氧化锌、纳米碳酸钙、煅烧高岭土等无机粉体表面改性中的应用。工业应用结果表明,SLG型连续式粉体表面改性机对粉体和表面改性剂具有良好的分散性,能使它们充分和机会均等地接触,对粉体,特别是对超细粉体和无机纳米粉体的表面改性或处理效果较好,且能耗低、无粉尘污染、操作简单、运行平稳。 关键词:粉体 表面改性 改性机 超细粉体 纳米粉体 在现代有机/无机和无机/无机复合材料中,广泛应用各种无机粉体原(材)料。这些粉体原料的分散性及与有机基料或其它无机组份的相容性,对复合材料的性能,尤其是力学性能有重要的影响。而且,随着粉体制备技术向亚微米及纳米尺度推进,解决粉体的团聚问题就成为其应用的关键。此外,随着对粉体材料功能性要求的提高,粒子表面性能的优化和设计也越来越重要。因此,现代粉体材料,尤其是超细和纳米粉体材料的表面改性或表面处理技术,已成为重要和必需的粉体深加工技术之一。 粉体的表面改性或表面处理技术,包括表面改性方法、工艺、表面改性剂及其配方、表面改性设备等。其中在表面改性工艺和改性剂配方确定的情况下,表面改性设备的优劣就成为粉体表面改性或表面处理的关键。性能好的表面改性设备应具备以下基本工艺特性:①对粉体及表面改性剂的分散性好;②粉体与表面改性剂的接触或作用机会均等;③改性温度可调;④单位产品能耗低;⑤无粉尘污染;⑥操作简便、运行平稳。 我国粉体表面改性技术的发展较晚,在2000年之前基本上无专业化的表面改性设备。除湿法改性之外,干法改性大多采用塑料加工行业的高速加热混合机或其它带导热油加热的混合设备。由于不是针对粉体表面改性处理,尤其是不是针对超细和纳米粉体表面改性设计的,这些设备难以满足超细粉体表面改性的要求。在这种背景下,原武汉工业大学北京研究生部与江阴市启泰非金属工程设备有限公司合作研制开发了专门针对超细粉体表面改性或表面

纳米二氧化硅修饰-改性文献总结

一、单分散纳米二氧化硅微球的制备及羧基化改性赵存挺,冯新星,吴芳,陈建勇2009年第 11期(40)卷 采用改进工艺条件的St ber法制备纳米SiO2微球 用KH-550硅烷偶联剂和丁二酸酐对纳米二氧化硅表面羧基化改性。结果表明,纳米二氧化硅表面成功接枝了羧基官能团。 2.1主要试剂 正硅酸乙酯(TEOS,AR);无水乙醇(AR);氨水,含量为25%~28%;去离子水;硅烷偶联剂KH-550, 纯度≥95%;丁二酸酐(AR)。 2.2二氧化硅微球的制备 将一定量无水乙醇、去离子水和氨水混合磁力搅拌约20min成均匀溶液。将4ml正硅酸乙酯分散在20ml无水乙醇中,磁力搅拌约30min混合成均匀溶液。然后将上面两种溶液混合在100ml单口烧瓶中,在一定温度下恒温磁力搅拌5h即生成二氧化硅微球溶胶。小球经多次醇洗离心分离后,即得SiO2小球样品。 2.3二氧化硅微球表面羧基化改性 将等摩尔的KH-550和丁二酸酐均匀分散在一定量的DMF中,一定温度下磁力搅拌3h后,往该

体系中加入经过超声分散的约20ml二氧化硅的DMF悬浊液,同时加入2ml去离子水。 在相同温度下继续磁力搅拌5h后,用超高速离心机分离出纳米二氧化硅,多次醇洗离心分离后,即得到羧基化改性后的纳米二氧化硅。改性的纳米SiO2标为样品S1,未改性的标为S0。 SiO2表面羧基的引入不仅提高了纳米粒子与基体的界面相容性,更重要的是羧基宽广的反应范围和易于离子化的特性赋予了纳米粒子很高的反应活性,使之可以广泛地应用于纳米粒子自组装[5]、高分子材料改性剂、水处理剂、催化剂和蛋白质载体、微胶囊包埋等领域[6] 二、二氯二甲基硅烷改性纳米二氧化硅工艺研究唐洪波李萌马冰洁精细石油化工 第24卷第6期2007年11月 以纳米二氧化硅为原料,乙醇为溶剂,二甲基二氯硅烷为改性剂,水为改性助剂,较佳工艺条件为:二甲基二氯硅烷用量15%,预处理温度120℃,预处理时间50min,回流温度130℃,回流时间50min,水用量4%。 称取纳米二氧化硅29置于三口瓶中,搅拌,加热至一定温度,并恒温。另称取一定量乙醇置于三口瓶中,配制成纳米二氧化硅质量分数为4.8%的乳液,继续搅拌分散10min后,一次性加人全部改性剂二甲基二氯硅烷,同时缓慢滴加一定量的改性助剂,当改性助剂加完后,升温至回流温度。反应结束后,将悬浮液用乙醇离心洗涤3一4次,经干燥至恒重即得产物。 3、氟烷基改性的二氧化硅纳米球的制备与应用研究郭庆中,周书祥,伍双全,喻湘华有机硅 材料, 2009, 23(4): 238~241 以浓氨水为催化剂、正硅酸乙酯(TEOS)为原料,通过种子生长法制得二氧化硅纳米球;进一步以十三氟辛基三乙氧基硅烷(F-8261)对二氧化硅纳米球的表面进行改性,得到氟烷基改性二氧化硅纳米球。利用IR、UV、TEM等手段对氟烷基改性纳米球进行了表征。有机基多为甲基或长碳链烷基,究其本质是亲油性的 1·5 mL TEOS、1·7 mL浓氨水(25% ~28% )、1mL去离子水和50 mL乙醇加入到250 mL的圆底烧瓶中,在40℃下缓慢搅拌3 h;然后再加入1mLTEOS,继续搅拌水解3 h;离心,水洗至pH=7,

粉体表面改性复习要点(精简版)

第2章 纳米粉体的分散 1.粉体分散的三个阶段(名词解释) 润湿 是将粉体缓慢加入混合体系形成的漩涡,使吸附在粉体表面的空气或其它杂质被液体取代的过程。 ?解团聚 是指通过机械或超声等方法,使较大粒径的聚集体分散为较小颗粒。 ?稳定化 是指保证粉体颗粒在液体中保持长期的均匀分散 2.常用的分散剂种类 (1)表面活性剂 空间位阻效应 (2)小分子量无机电解质或无机聚合物 吸附--提高颗粒表面电势 (3)聚合物类(应用最多) 空间位阻效应、静电效应 (4)偶联剂类 3.聚电解质(名词解释) 是指在高分子链上带有羧基或磺酸基等可离解基团的水溶性高分子 4.对不同pH 值下PAA 在ZrO 2表面的吸附构型进行分析。 图.不同pH 值下PAA 在ZrO 2 表 面的吸附构型 a.当pH<4时,PAA 几乎不解离,以线团方式存在于固液界面上,吸附层很薄,几乎无位阻作用 δ δδ

b.随pH值增加,链节间静电斥力使其伸展开 c.ZrO2表面电荷减小直至由正变负,PAA的负电荷量增加,其间斥力增加, 使得PAA链更加伸展,可在较远范围提供静电位阻作用 5.用聚电解质分散剂分散纳米粉体时,影响浆料稳定性的各种因素有哪些? 1、聚电解质的分子量 当聚电解质分子量过小,在粉体表面的吸附较弱,吸附层也较薄,影响位阻作用的发挥。 分子量过大,易发生桥连或空位絮凝,使团聚加重,粘度增加。 2、分散剂用量 适宜的分散剂用量才可以使分散体系稳定。 用量过低,粉体表面产生不同带电区域,相邻颗粒因静电引力发生吸引,导致絮凝。 用量过高,离子强度过高,压缩双电层,减小静电斥力;同时,还易发生桥连或空缺絮凝,稳定性下降。 3、温度 研究表明,为了获得较好的分散效果(以最低粘度为衡量标准),随温度的升高,所需分散剂的用量随之增加 6.结合下图,分析煅烧为什么能够改善纳米Si3N4粉体的分散性? 煅烧改善纳米Si3N4粉体的可分散性 ?此前提到,球磨可有效降低粉体的粒度。但球磨过程可能造成分散介质与粉体发生化学反应。 ?以乙醇为介质球磨Si3N4粉体时,表面的Si-OH可能与乙醇反应生成酯。 ?酯基的生成对粉体的分散性影响很大: a、酯基是疏水基团 b、屏蔽负电荷,影响分散剂的吸附 ?采取煅烧去除酯基,可改善其分散性 第3章纳米粉体表面改性(功能化) 1.表面改性有哪些重要应用? 改善纳米粉体的润湿和附着特性。 改善纳米粉体在基体中的分散行为,提高其催化性能。 改善粉体与基体的界面结合能等。 2.纳米粉体的表面改性方法? 气相沉积法 机械球磨法 高能量法

非金属矿物粉体表面改性技术探讨

非金属矿物粉体表面改性技术探讨 发表时间:2018-07-26T10:08:10.707Z 来源:《基层建设》2018年第15期作者:张仕奇张君杰张扬[导读] 摘要:表面改性是进行非金属矿物材料性能优化的关键技术,本文对非金属矿物分体表面改性的方法和表面改性工艺进行了分析。 内蒙古科技大学内蒙古自治区包头市昆都仑区 014010 摘要:表面改性是进行非金属矿物材料性能优化的关键技术,本文对非金属矿物分体表面改性的方法和表面改性工艺进行了分析。 关键词:非金属矿物;表面改性;技术 随着新型复合材料的兴起,非金属矿物表面改性技术也得到了快速的发展,表面改性是非金属矿物材料必须的加工技术,通过表面改性能够使材料的性能和应用价值得到极大的提升。 1 表面改性方法 表面改性的方法很多,能够改变非金属矿物粉体表面或界面的物理化学性质的方法,如表面物理涂覆、化学包覆、无机沉淀包覆或薄膜、机械力化学、化学插层等可称为表面改性方法。目前工业上非金属矿物粉体表面改性常用的方法主要有表面化学包覆改性法、沉淀反应改性法和机械化学改性法及复合法。 (1)表面化学包覆改性法:是目前最常用的非金属矿物粉体表面改性方法,这是一种利用有机表面改性剂分子中的官能团在颗粒表面吸附或化学反应对颗粒表面进行改性的方法。所用表面改性剂主要有偶联剂(硅烷、钛酸酯、铝酸酯、锆铝酸酯、有机络合物、磷酸酯等)、表面活性剂(高级脂肪酸及其盐、高级胺盐、非离子型表面活性剂、有机硅油或硅树脂等)、有机低聚物及不饱和有机酸等。改性工艺可分为干法和湿法两种。 (2)沉淀反应法:是利用化学沉淀反应将表面改性物沉淀包覆在被改性颗粒表面,是一种“无机/无机包覆”或“无机纳米/微米粉体包覆”的粉体表面改性方法。粉体表面包覆纳米Ti02、ZnO、CaC03等无机物的改性,就是通过沉淀反应实现的,如云母粉表面包覆TiO2制备珠光云母颜料、钛白粉表面包覆Si02和A1203。 (3)机械力化学改性法:是利用超细粉碎过程及其他强烈机械力作用有目的地激活颗粒表面,使其结构复杂或无定形化,增强它与有机物或其他无机物的反应活性。机械化学作用可以增强颗粒表面的活性点和活性基团,增强其与有机基质或有机表面改性剂的使用。以机械力化学原理为基础发展起来的机械融合技术,是一种对无机颗粒进行复合处理或表面改性,如表面复合、包覆、分散的方法。 (4)化学插层改性法:是指利用层状结构的粉体颗粒晶体层之间结合力较弱(如分子键或范德华键)或存在可交换阳离子等特性,通过化学反应或离子交换反应改变粉体的性质的改性方法。因此,用于插层改性的粉体一般来说具有层状或似层状晶体结构,如蒙脱土、高岭土等层状结构的硅酸盐矿物或粘土矿物以及石墨等。用于插层改性的改性剂大多为有机物,也有无机物。 (5)复合改性法:是指综合采用多种方法(物理、化学和机械等)改变颗粒的表面性质以满足应用的需要的改性方法。目前应用得复合改性方法主要有物理涂覆/化学包覆、机械力化学/化学包覆、无机沉淀反应/化学包覆等。 2 表面改性工艺 表面改性工艺依表面改性的方法、设备和粉体制备方法而异。目前工业上应用的表面改性工艺丰要有干法工艺、湿法工艺、复合工艺三大类。干法工艺根据作业方式的不同又可以分为间歇式和连续式;湿法工艺又可分有机改性工艺和无机改性工艺;复合工艺又可分为物理涂覆/化学包覆、机械力化学/化学包覆、无机沉淀反应/化学包覆工艺等。 (1)干法工艺:是一种应用最为广泛的非金属矿物粉体表面改性工艺。目前对于非金属矿物填料和颜料,如重质碳酸钙和轻质碳酸钙、高岭土与煅烧高岭土、滑石、硅灰石、硅微粉、玻璃微珠、氢氧化铝和轻氧化镁、陶土、陶瓷颜料等,大多采用干法表面改性工艺。原因是干法工艺简单,作业灵活、投资较省以及改性剂适用性好等特点。其中,间歇式干法工艺的特点是可以在较大范围内灵活调节表面改性的时间(即停留时间),但颗粒表面改性剂难以包覆均匀,单位产品药剂耗量较多,生产效率较低,劳动强度大,有粉尘污染,难以适应大规模工业化生产,一般应用于小规模生产。连续式改性工艺的特点是粉体与表面改性剂的分散较好,颗粒表面包覆较均匀,单位产品改性剂耗量较少,劳动强度小,生产效率高,适用于大规模工业化生产。连续式干法表面改性工艺常常置于干法粉体制备工艺之后,大批量连续生产各种非金属矿物活性粉体,特别是用于塑料、橡胶、胶粘剂等高聚物基复合材料的无机填料和颜料。 (2)湿法表面有机改性工艺:与干法工艺相比具有表面改性剂分散好、表面包覆均匀等特点,但需要后续脱水(过滤和干燥)作业。一般用于可水溶或可水解的有机表面改性剂以及前段为湿法制粉(包括湿法机械超细粉碎和化学制粉)工艺而后段又需要干燥的场合,如轻质碳酸钙(特别是纳米碳酸钙)、湿法细磨重质碳酸钙、超细氢氧化铝与氢氧化镁、超细二氧化硅等的表面改性,这是因为化学反应后生成的浆料即使不进行湿法表面改性也要进行过滤和干燥,在过滤和干燥之前进行表面改性,还可使物料干燥后不形成硬团聚,改善其分散性。无机沉淀包覆改性也是一种湿法改性工艺。它包括制浆、水解、沉淀反应和后续洗涤,脱水、煅烧或焙烧等工序或过程。 (3)机械力化学/化学包覆复合改性工艺:是在机械力作用或细磨、超细磨过程中添加表面改性剂,在粉体粒度减小的同时对颗粒进行表面化学包覆改性的工艺。这种复合表面改性工艺的特点是可以简化工艺,某些表面改性剂还具有一定程度的助磨作用,可在一定程度上提高粉碎效率。不足之处是温度不好控制;此外,由于改性过程中颗粒不断被粉碎,产生新的表面,颗粒包覆难以均匀,要设计好表面改性剂的添加方式才能确保均匀包覆和较高的包覆率;此外,如果粉碎设备的散热不好,强烈机械力作用过程中局部的过高温升可能使部分表面改性剂分解或分子结构被破坏。 (4)无机沉淀反应/化学包覆复合改性工艺:是在沉淀反应改性之后再进行表面化学包覆改性,实质上是一种无机/有机复合改性工艺。这种复合改性工艺已广泛用于复合钛白粉表面改性,即在沉淀包覆SiO2或A1203薄膜的基础上,再用钛酸酯、硅烷及其他有机表面改性剂对Ti02/Si02或A1203复合颗粒进行表面有机包覆改性。 (5)物理涂覆/化学包覆复合改性工艺:是一种物理涂覆的方式,在进行金属镀膜或者覆膜之后,在通过有机化学进行改性的工艺。 参考文献: [1] 刘伯元.中国粉体表面改性(塑料填充改性)的最新进展[C]// 中国建筑材料及非金属矿物加工与检测技术交流大会.建筑材料工业技术情报研究所,2009. [2] 郑水林.粉体表面改性工艺设备及其选择[C]// 中国白色工业矿物技术与市场交流大会.2009.

关于超细碳酸钙粉体的干法表面改性分析

关于超细碳酸钙粉体的干法表面改性分析 【摘要】碳酸钙粉体的表面改性是其深加工的重要部分,是塑料工业使用数量最大、应用面最广的粉体填料。工业生产中使用的活性碳酸钙粉体,主要是通过单一的硬脂酸及其盐、表面活性剂或偶联剂的吸附、表面涂覆和表面化学性来实现表面有机化改性。本文主要介绍超细碳酸钙的干法表面改性以及应用效果。解决塑料制品加工中混料的均匀性及下料的离析现象,减少清洗设备的用料量,提高超细碳酸钙粉体的应用性能与质量。 【关键词】超细;碳酸钙粉体;干法表面改性 粉体表面改性是集粉体加工材料、材料性能、化工机械等于一体的新技术,此技术的针对性和目的性比较强,而且此技术工艺方法比较多,影响因素也比较复杂,所以在制作的过程中要细致的分析这些影响因素,从而选择正确的表面改性方法、工艺配方和设备,使碳酸钙粉体的表面改性达到预期目的。碳酸钙粉是一种普通的无机非金属填料,经过超细粉碎和改性,可以将其变成一种性能优越的功能填料。 1 碳酸钙粉体表面改性概述 碳酸钙在人们的日常生活中比较常见,被广泛应用于塑料、造纸、建筑材料、食品添加剂等行业。碳酸钙一般有轻质与重质之分,轻质碳酸钙的活化改性一般采用湿性工艺加工。重质碳酸钙是通过天然粉碎碎石而得,它的活化改性可以采用干性也可以采用湿性。我国的高档碳酸钙仍然需要从国外进口,国内的碳酸钙技术在质量上与西方国家存在一定的差距,所以必须加强对碳酸钙的研究,碳酸钙表面改性剂的研究是研究碳酸钙的重要领域之一,比较常用的表面改性剂与改性方法有:有机/无机改性剂、聚合物改性剂、偶联剂等等。碳酸钙的活性改性实际上是选择特定的表面改性剂,对碳酸钙颗粒进行包覆处理,从而使碳酸钙成为一种填充材料。 2 影响碳酸钙粉体表面改性的主要因素 2.1 粉体原料 碳酸钙粉体原料的比表面积、颗粒形状以及大小,还与它的物理、化学性质等都对其改性效果有一定的影响。在不计粉体空隙的状况下,粉体的颗粒大小与其比表面积成反比的关系,也就是说粉体的颗粒越细,其比表面积越大,此时表面改性剂的用量也越大。粉体表面性质,比如表面电性、湿润性、溶解性等都直接影响着碳酸钙粉体与表面改性剂分子的作用,进而影响其表面改性的效果。 2.2 表面改性剂用量 在进行碳酸钙表面改性剂的研究中,其颗粒表面达到单分子层吸附所用的最

纳米二氧化硅表面改性条件优化

纳米二氧化硅表面改性条件优化 【摘要】引入微波有机合成技术对纳米SiO2进行表面改性,考察了偶联剂、微波功率和辐照时间、浓硫酸用量等对纳米SiO2表面处理的影响,并通过红外光谱和热失重测试考察了粉体表面化学结构及改性情况。实验得出的纳米SiO2表面处理的最佳工艺条件为:偶联剂的用量为6%(质量百分含量),微波功率为320W,硫酸用量为1.25%(质量百分含量),微波辐射反应时间为15min。 【关键词】纳米二氧化硅;表面处理;微波 对于用熔融共混法制备的纳米复合材料而言,无机粒子能在聚合物中作纳米级的原生粒子分散是决定材料性能改善的最重要因素之一。粒子在塑料中分散粒径大小及分散均匀性对填充改性塑料的性能及其均匀性影响很大。因此解决自身团聚很强的纳米粒子在材料中的分散性问题,成为制备性能优良复合材料的关键点,也是难点之所在。 纳米SiO2为无定形白色粉末,是一种无毒、无味、无污染的无机非金属材料,其呈现出絮状和网状的准颗粒结构。由于纳米SiO2表面能大,易于团聚,通常以二次聚集体的形式存在,限制了其超细效应的充分发挥,在有机相中难以浸润和分散。 目前,对纳米SiO2的改性方法有多种,通常采用的是硅烷偶联剂法。硅烷偶联剂由于具有双反应功能团[1],能使填料与聚合物的结合界面以化学键相连,从而提高填料的补强性能[2~4]。 微波是一种波长从1mm到1m左右的超高频电磁波,具有物理、化学、生物学效应。在电磁场中,体系介质产生极化取向,相邻分子间由于分子热运动产生强烈的相互作用,极性分子产生“变极”效应,由此产生了类似摩擦作用,使极性分子瞬间获得能量,以热量形式表现出来,介质整体温度同时随之升高。微波还存在一种不是由温度引起的非热效应,微波作用下的有机反应,改变了反应动力学,降低了反应活化能。以上特性使得微波加热有机反应具有传统加热法所无法具备的优点,反应速度快,效率高。 本文作者采用微波法对纳米SiO2进行表面改性,考察了偶联剂用量、微波功率、硫酸用量对改性效果的影响,探讨了最佳表面改性条件,并对改性后的纳米SiO2进行了表征。 1 实验部分 1.1 主要试剂与仪器 纳米二氧化硅:粒径<100nm,购自海川化工有限公司,硅烷偶联剂SCA-1603:分析纯,哈尔滨化工研究所实验厂产品;浓硫酸:分析纯,购自莱

无机纳米粉体表面改性研究进展

摘要: 由于纳米粒子易团聚, 对其进行表面改性是很必要的。本文综述了纳米粒子表面改性的主要方法, 介绍了国内外表面改性的一些实例, 并对纳米粒子表面改性的一些新发展和应用前景作了说明。 关键词: 纳米粉体; 团聚; 表面改性;表征 Abstract:Accumulation is one of the most important problems to be resolved in the application of nanosize power.Surface modification can efficiently resolve this problem.In this aricle,the author discuss the cause of the accumulation,the way of surface medication and the manifestion of surface modification. Key words: nanosizes power, accumulation, surface modification, manifetation 1、引言 物质经微纳米化后, 尤其是处于纳米状态时, 其尺寸介于原子、分子与块状材料之间, 故有人称之为物质的第四状态。由于纳米粒子具有大比表面积, 随着粒子半径的减小, 其表面能和表面张力都急剧增大,此外还具有小尺寸效应、量子尺寸效应和量子隧道效应, 因而纳米材料具有独特的力学、光、热、电、磁、吸附、气敏等性质, 在传统材料中加入纳米粉体将大大改善其性能或带来意想不到的性质。 目前, 纳米材料在信息、能源、环境和生物技术等高科技产业中的应用已取得了初步成果。但是在应用过程中, 由于纳米粒子粒径小, 表面活性高, 使其易发生团聚而形成尺寸较大的团聚体[1], 严重地阻碍了纳米粉体的应用和相应的纳米材料的制备。 2、纳米粒子的团聚 所谓纳米粉体的团聚是指原生的纳米粉体颗粒在制备、分离、处理及存放过程中相互连接、由多个颗粒形成较大的颗粒团簇的现象。 从热力学上, 纳米粒子的分散体系具有巨大的比表面积, 表面能很大, 系统会自动朝着表面积减小的方向变化, 导致纳米粒子发生团聚。粉末的团聚分为软团聚和硬团聚。软团聚主要是由于颗粒之间的范德华力和库仑力所致, 该团聚可通过施加机械能能消除粉末的硬团聚体内除了颗粒之间的范德华力和库仑力之外, 还存在化学键作用, 目前人们对粉末的硬团聚机理存在不同的看法, 其中最有代表性的是晶桥理论、毛细管吸附理论、氢键作用理论和化学键作用理论[2]。 图1 纳米粒子的团聚机理示意图 Fig1 agglomeration mechanism schematic diagram of nano2particles 为了解决纳米粉体的团聚问题以及改善粉体粒子表面活性,就需要对粉体粒子进行表面改性。

纳米二氧化硅

纳米二氧化硅 简介: 为相关工业领域的发展提供了新材料基础和技术保证。由于它在磁性、催化性、光吸收、热阻和熔点等方面与常规材料相比显示出特异功能,因而得到人们的极大重视。一、XZ-G01二氧化硅产品的主要技术指标,含量:99.99 % 水分≤0.01 二、XZ-G01二氧化硅用途1、涂料及饱和树脂的增稠剂和触变剂;2、平光剂:家具漆有向亚光方向发展的趋势,列沦清漆或色漆均可使用超细二氧化硅凝胶产品作为平光剂,另外卷材涂层、PVC、塑料壁纸、雨衣帐篷等平光剂亦可使用此类产品。3、聚乙烯、聚苯烯、无毒聚氯乙稀薄膜抗阻塞剂/开口剂。三.XZ-G01二氧化硅在高分子工业中的应用它广泛地应用于橡胶、塑料、电子、涂料、陶(搪)瓷、石膏、蓄电池、颜料、胶粘剂、化妆品、玻璃钢、化纤、有机玻璃、环保等诸多领域。 应用范围 由于纳米二氧化硅SP30具有小尺寸效应,表面界面效应、量子尺寸效应和宏观量子遂道效应和特殊光、电特性、高磁阻现象、非线性电阻现象以及在高温下仍具的高强、高韧、稳定性好等奇异性,纳米二氧化硅可广泛应用各个领域,具有广阔的应用前景和巨大的商业价值。纳米二氧化硅是应用较早的纳米材料之一,关于纳米SiO2在橡胶改性、工程塑料、陶瓷、生物医学、光学、建材、树脂基复合材料改性中的应用已有过许多报道,这里重点介绍纳米氧化硅SP30)在其他领域的应用进展。 4.1在涂料领域 纳米二氧化硅具有三维网状结构,拥有庞大的比表面积,表现出极大的活性,能在涂料干燥时形成网状结构,同时增加了涂料的强度和光洁度,而且提高了颜料的悬浮性,能保持涂料的颜色长期不退色。在建筑内外墙涂料中,若添加纳米氧化硅,可明显改善涂料的开罐效果,涂料不分层,具有触变性、防流挂、施式性能良好,尤其是抗沾污染性能大大提高,具有优良的自清洁能力和附着力。纳米SiO2还可与有机颜料配用,可获得光致变色涂料,M.P .J .Peeters 等用溶胶凝胶法合成了含纳米二氧化硅SP30的全透明的耐温涂料 H.Schmidt 等合成了很厚的含纳米SiO2的涂料,并耐高温,在500℃下没有出现裂缝,Fayna Mamme ri等合成了P MMA- SiO2纳米涂料。明显增强了涂料的弹性和强度。

相关文档
相关文档 最新文档