文档视界 最新最全的文档下载
当前位置:文档视界 › 制备纳米钛酸钡粉体

制备纳米钛酸钡粉体

制备纳米钛酸钡粉体
制备纳米钛酸钡粉体

制备纳米钛酸钡粉体

化学共沉淀法

——制备纳米钛酸钡粉体

录 ..................................................................... ...........................(1) 成绩考评表...................................................................... ......................(2) 中文摘要...................................................................... .........................(3) 英文摘要...................................................................... ..........................(4) 1前言...................................................................... ...............................(5) 1 .1制备方法介绍...................................................................... . (6)

1.2所制备的材料介绍...................................................................... . (9)

1.3本实验主要研究内容....................................................................(1 2)

2.实验实施阶段

2.1方案介绍...................................................................... (13)

15) 3实验结果分析与 2.2方案具体实施...................................................................... ..........(

讨论...................................................................... .(17) 参考文献...................................................................... (22)

综合实验感想...................................................................... . (23)

BaTiO3纳米粉体的制备

摘要

以TiCl4为钛源,BaCl2为钡源,采用草酸共沉淀法制备batio3粉体,

研究了前驱体的煅烧温度对产物的影响,实验结果表明当煅烧温度控制在800度以上时,可制的纯度高结晶好的batio3超细粉体。关键词:钛酸钡,草酸共沉淀,前驱体,温度

1

English abstract

Thought of TiCl4 for titanium source BaCl2 for barium source,

using oxalate coprecipitation preparation of batio3 powders, studied the precursor of the

influence of calcining temperature on the product, the experimental results show that when the

calcination temperature control over 800 degrees, can be made of

high purity crystal good batio3

ultrafine powders.

Key words: barium titanate, oxalate coprecipitation, precursor, temperature

2

前言

钛酸钡陶瓷是最为典型重要的铁电介质瓷和压陶瓷, 同时也是半导体瓷和独石

结构介质

瓷。近年来,BaTiO3 陶瓷的应用范围迅速拓

宽, 并逐渐进入高技术领域, 因此, 电子行业对钛酸钡粉料的产量和质量都提

出了更高的要求, 如准确化学计量比, 粒径小, 无团聚, 粒度分布均一等特点。

化学共沉淀法具有工艺简单、成本低、合成的粉体纯度高、粒径小等优点, 是很有发展前景的粉体合成方法。

化学共沉淀法合成钛酸钡在我国已有研究和生产, 但产品批量小、质量不稳定, 远远不能满足市场需求。

3

常见的制备方法介绍

1.固相研磨-低温煅烧法

传统钛酸钡的制备主要采用高温煅烧碳酸钡和二氧化钛的混合物或高温煅烧草酸氧钛钡的方法, 它是我国目前工业制备钛酸钡的主要方法, 但由于煅烧温度高达1000~ 1200?, 因而制得的粉体硬团聚严重、颗粒大而粒度分布不均匀, 纯度低, 烧结性能差。采用室温下将氢氧化钡与钛酸丁酯混合研磨, 再在较低温度( < 300 ?) 下煅烧的方法制得了钡钛物质的量比约为1. 0、颗粒大小分布均匀、粒径在15~ 20nm 的钛酸钡纳米粉体, 既克服了高温固相煅烧法反应温度高、产品质量低的缺点, 又克服了液相法在水溶液中制备易引入杂质、粒子易团聚等缺点其煅烧温度比传统的固相反应法降低了约700 ~900?

2.水热法合成

水热合成是指在密封体系如高压釜中, 以水为溶剂, 在一定的温度和水的自生压力下, 原始混合物进行反应的一种合成方法。由于在高温、高压水热条件下, 能提供一个在常压条件下无法得到的特殊的物理化学环境, 使前驱物在反应系统中得到充分的溶解, 并达到一定的过饱和度, 从而形成原子或分子生长基元, 进行成核结晶生成粉体或纳米晶。

水热法制备的粉体, 晶粒发育完整、粒度分布均匀、颗粒之间少团聚, 可以得到理想化学计量组成的材料, 其颗粒度可控, 原料较 4

便宜, 生成成本低。而且粉体无须煅烧, 可以直接用于加工成型, 这就可以避免在煅烧过程中晶粒的团聚、长大和容易混入杂质等缺点。

3.溶胶凝胶法

钛酸钡( BaTiO3 ) 在当今科技领域里占有重要地位, 它是电子

陶瓷领域应用最广泛的材料之一。钛酸钡是钛酸盐系电子陶瓷的主要原料, 是一种具有高介电常数和低介电损耗的铁电材料,被广泛应用于制作热敏电阻器

( PTCR) 、多层陶瓷电容器(MLCC) 、电光器件和DRAM 器件。现代技术要求BaTiO3 粉料具有高纯、超细、粒径分布窄

等特性, 而传统的BaTiO3 固相合成法制得的粉体颗粒粗且硬, 无法

满足高科技的要求,所以液相法是制备BaTiO3纳米粉体的一种重要方

法, 其中溶胶-凝胶法是最为常用且较优异的.

为制备高性能低成本压电陶瓷材料, 以无机锆为锆源, 低价的乙酸与乙二醇为

溶剂, 采用So l-Ge l法制备Ba( Zr, T i) O3 溶胶和纳米粉体. XRD和TEM 分

析显示, 所制备的粉体为纯钙钛矿相, 近球形, 粒径在40nm左右. 通过IR、GC -

M S分析了锆钛酸钡溶胶的形成机理, 结果表明: 在锆钛酸钡的溶胶过程中乙二

醇、乙酸与乙酸钡、钛酸四丁酯、柠檬酸锆发生化学反应, 生成以金属氧键为中心, 乙二醇与冰乙酸为中间络合支架的链状聚合体, 提高了溶胶凝胶的质量和稳定性.

4.草酸盐共沉淀法

BaTiO3 陶瓷粉体传统的制备方法是以BaCO3 和T iO2 为原料,

在1 150?以上的高温条件下经固相反应得到。但由于该法存在高温 5

焙烧过程, 制得的粉体粒径大且分布范围宽, 虽经反复研磨, 产物粒径也只能

达到微米级, 从而严重影响了陶瓷的性能。随着现代陶瓷日益向高精度、高可靠性和微型化方向发展, 对粉体的粒径、纯度、形貌提出了越来越高的要求, 传统的固相法已不能适应科技的发展。为了解决这一问题, 人们开发出各种制备BaTiO3陶

瓷粉体的方法,

如溶胶-凝胶法 , 该法易实现多组分均匀混合, 但制备时间较长, 产量小, 难

工业化; 水热法合成BaTiO3可在较低温度下直接生成,

产物粒径小, 但该法存在反应较难, 晶化时间长; 共沉淀法具有工艺简单的优点, 其中草酸盐共沉淀法已在工业生产中获得应用。

以Ti(OC4H 9 )4 作钛源, Ba( Ac)2 、BaCl2 或Ba(NO3 )2 作钡源, 采用草

酸盐共沉淀法制备BaTiO3 粉,具体过程为首先控制草酸物质的量为T i 与Ba 物

质的量之和,即n( H2C2O4 ) = n( Ti) + n( Ba) , 分别称取各原料, 将草酸、钡

盐分别溶于适量的水中配成水溶液。在不断搅拌下将Ti(OC4H9 )4 滴入草酸溶液中, 先有白色T i( OH) 4 沉淀生成, 而后沉淀与草酸反应形成易溶的TiOC2

O4 。待沉淀完全溶解后, 在搅拌下慢慢滴入钡盐水溶液, 同时用2 mol / L- 1的稀氨水使反应体系的pH 值保持在2. 5 左右, 使钡、钛能完全共沉淀生成草酸氧钛钡。沉淀经过滤、洗涤, 在电热干燥箱中110? 下干燥得前驱物, 前驱物在马弗炉中一定条件下焙烧得疏松的BaTiO3粉体:

BaTiO(C2O4 )2-4H2O = BaTiO3+ 2CO+ 2CO2 + 4H2O

6

钛酸钡纳米粉体

钛酸钡(BaTiO3)是最早发现的一种具有ABO3型钙钛矿晶体结构的典

型铁电体,它具有高介电常数、低的介质损耗及铁电、压电和正温度系数效应等优异的电学性能,被广泛应用于制备高介陶瓷电容器、多层陶瓷电容器、PTC热敏电阻、动态随机存储器、谐振器、超声探测器、温控传感器等,被誉为“电子陶瓷工业的支柱”。钛酸钡晶体的结构

钛酸钡是一致性熔融化合物,其熔点为1618?。在此温度以下,1460?以上结晶出来的钛酸钡属于非铁电的六方晶系6mmm点群。此时,六方晶系是稳定的。在1460~130?之间钛酸钡转变为立方钙钛矿型结构。在此结构中Ti4+(钛离子)居于

O2-(氧离子)构成的氧八面体中央,Ba2+(钡离子)则处于八个氧八面体围成的空隙中。此时的钛酸钡晶体结构对称性极高,因此无偶极矩产生,晶体无铁电性,也无压电性。

随着温度下降,晶体的对称性下降。当温度下降到130?时,钛酸钡发生顺电-铁电相变。在130~5?的温区当温度下降到5?以下,在5~-90?温区内,钛酸钡晶体转变成正交晶系mm2点群,此时晶体仍具有铁电性,其自发极化强度沿原立 7

方晶胞的面对角线[011]方向。为了方便起见,通常采用单斜晶系的参数来描述正交晶系的单胞。这样处理的好处是使我们很容易地从单胞中看出自发极化的情况。钛酸钡从四方晶系转变为正交晶系,其结构变化也不大。从晶胞来看,相当于原立方晶系的一根面对角线伸长了,另一根面对角线缩短了,c轴不变。当温度继续下降到-90?以下时,晶体由正交晶系转变为三斜晶系3m点群,此时晶体仍具有铁电性,其自发极化强度方向与原立方晶胞的体对角线[111]方向平行。钛酸钡从正交晶系转变成三斜晶系,其结构变化也不大。从晶胞来看,

相当于原立方晶胞的一根体对角线伸长了,另一根体对角线缩短了。综上所述,在整个温区(,1618?),钛酸钡共有五种晶体结构,即六方、立方、四方、单斜、三斜,随着温度的降低,晶体的对称性越来越低。在130?(即居里点)以上,钛酸钡晶体呈现顺电性,在130?以下呈现铁电性。

钛酸钡晶体的自发极化

钛酸钡是一种典型的铁电体,所以提到钛酸钡,就一定要提到它的自发极化。一般来讲,电介质的电极化过程(方式)有三种,即电子位移极化、离子位移极化和固有电矩转向极化。对于钛酸钡而言,经过物理学家的严格推算,钛酸钡的自发极化的贡献主要来自于Ti4+的离子位移极化和氧八面体其中一个O2-的电子位移极化。钛酸钡晶体的铁电畴

钛酸钡晶体是由无数钛酸钡晶胞组成的。当立方钛酸钡晶体冷却到居里点Tc 时,将开始产生自发极化,并同时进行立方相向四方相 8

的转变。在发生自发极化的时候,其中一部分相互临近的晶胞都沿着原来立方晶胞的某个晶轴产生自发极化,而另一部分相互临近的晶胞可能沿原立方晶胞的另一个晶轴产生自发极化。这样当钛酸钡转变成四方相后,晶体就出现了沿不同方向自发极化的晶胞小单元,我们称之为电畴。也就是说,通过降低温度,晶体从顺电相转变为铁电相时,由于自发极化,引起表面静电相互作用变化,产生电畴结构。

电畴的类型、畴壁的取向,除了主要由晶体的结构对称性决定外,同时还要满足以下两个条件: ? 晶格形变的连续性:电畴形成的结果,使得沿畴壁而切割晶体所产生的两个表面上的晶格连续并相匹配。 ? 自发极化分量的连续性:两相邻电畴的自发极化强度在垂直于畴壁方向上的分量相等。因此,在四方钛酸钡单晶中,相邻电畴的自发极化方向只能相交成180?或90?,即只存在180?畴和90?畴。

钛酸钡应用

钛酸钡陶瓷是目前应用最广泛和研究较透彻的一种铁电材料。钛酸钡是第一个不含氢的氧化物铁电体,由于其性能优良,化学上,热学上的稳定性好。钛酸钡具有高介电常数、低介质损耗等优异的性能,广泛地应用于多层陶瓷电容器、热敏电阻、光电器件等电子元件,是电子工业中应用最广泛的陶瓷材料之一。

9

本实验主要研究内容:

粉体制备,本次实验主要采取草酸共沉淀法制备高纯度结晶良好的钛酸钡纳米粉体,尽可能的控制反应条件提高产率,这里仅用XRD对钛酸钡粉体的物相进行分析,并研究不同反应温度及煅烧温度对钛酸钡粉体生成的影响。

通过本次实验,希望找出影响钛酸钡粉体制备的合理煅烧温度。成型:本实验成型采用干压成型,干压成型的优点是生产效率高,人工少,废品率低。

烧结:烧结方式采用常压烧结,常压烧结不对胚体在进行加压,在大气压力下烧结。

通过本次实验,希望找到影响成型和烧结的主要因素,例如:成型时加入添加剂的多少,压力等。

10

实验实施阶段

实验方案:

本实验的原理是将四氯化钛、氯化钡和草酸一起反应 ,先得到草酸氧钛钡前驱体沉淀 ,然后沉淀物经干燥、煅烧 ,最后得到钛酸钡粉体. 合成钛酸钡的化学反应方程式如下:

实验药品:

四氯化钛、氯化钡、草酸、无水乙醇、蒸馏水、HCl水溶液实验仪器:

恒温水浴锅、搅拌仪、XRD、干燥炉、电子天平、真空抽滤设备、煅烧炉、压片机、烧结炉等。

成型采用干压成型,是将干粉料填充入金属磨具里,施加压力使其成为致密胚体。

烧结采用常压烧结,即对材料不进行加压而使其在大气压下烧结。实验过程及步骤:

1、前驱体制备:将制得的草酸水溶液/四氯化钛溶液和氯化钡水溶

液置于恒温水浴锅中,温度控制为75?,先将草酸溶液和四氯化钛溶液混合,同时搅拌,然后缓慢加入已升至该温度的氯化钡溶液同时剧烈搅拌,加完后慢速搅拌并保持反应时间1h。将制得的草酸氧钛钡沉淀冷却后过滤,用蒸馏水洗涤数次,在无 11

水乙醇中超声波分散半小时,最后在电热鼓风干燥箱中干燥,温度100?,时间1h ,即可获得钛酸钡的前驱体草酸氧钛钡。

2、共沉淀产物的热分析及煅烧

采用热分析仪(DSC)分析共沉淀产物草酸氧钛钡的热分解过程 ,

以确定共沉淀产物的煅烧温度范围 ,根据所确定的煅烧温度将共沉淀产物煅烧得到BaTiO3粉体。

分解反应如下:

BaTiO(C2O4)24H2O?BaTiO(C2O4)2 + 4H2O

BaTiO(C2O4)2?BaCO-TiO2 + 2CO + CO2

BaCO3-TiO2 ? BaTiO3 + CO2

实验所需试剂理论值计算:

假设共生成5克BaTiO3纳米粉体

X 5

353.295

,1 ,2 ,3 X

计算得理论值:

12

草酸

实验具体实施阶段

1.草酸盐沉淀法制备钛酸钡纳米粉体

配制四氯化钛水溶液,为了抑制TiCl4的水解,将TiCl4 溶于HCl水溶液中,制得了澄清的TiCl4的溶液。称取盐酸水溶液100g于烧杯中,在通风柜中向盐酸水溶液中加入四氯化钛液

体,然后在电子天平上称量溶入盐酸水溶液的四氯化钛液体的质量,计算溶解的四氯化钛的摩尔质量,量取烧杯中的四氯化钛水溶液并加入蒸馏水,配制一定摩尔分数的四氯化钛溶液,然后按照1:1:2的比例计算所需氯化钡和草酸的质量,配制摩尔比为1:1:2的氯化钡水溶液和草酸水溶液,将制得的草酸水溶液/四氯化钛溶液和氯化钡水溶液置于恒温水浴锅中,温度控制为75?,先将草酸溶液和四氯化钛溶液混合,同时搅拌,然后缓慢加入已升至该温度的氯化钡溶液同时剧烈搅拌,加完后慢速搅拌并保持反应时间1h。将制得的草酸氧钛钡沉淀冷却后过滤,用无水乙醇洗涤数次,制的前驱体,将制的的前驱体置于干燥箱中干燥,然后再在烧结炉内煅烧,制的钛酸钡纳米粉体,称量制得的粉体质量,计算产率,做XRD图谱分析,检验制得粉体的成分及纯度。

13

实验结果记录如下

14

3.结果分析与讨论

3.1将粉体做XRD检测得下面结果

第一组:无结晶状态的钛酸钡粉体生成,第一组实验失败。 15

第二组:无结晶状态的钛酸钡粉体生成,第二组实验失败。

第三组:无结晶状态的钛酸钡粉体生成,第三组实验失败。

16

.

5

第四组:有明显的峰值,结晶程度高,几乎无杂质,实验成功。 17

实验数据记录如下

实验结果分析与讨论

由上面的实验数据可以看出:由图1,图2,图3得当反应温度不断增加,煅烧温度600度不变时,始终无钛酸钡粉体生成。

当煅烧温度增加到800度时由图5可以看出有明显的峰值结晶程度高

18

且含杂质少,由表可以看出在相同的煅烧温度下反应温度高产量就高。

综上所述:

(1)采用化学共沉淀法, 通过控制反应温度, 反应物浓度及搅拌速度, 煅烧温度的控制,成功制得了超细BaTiO3粉体, 粉体颗粒基本呈球形, 颗粒尺寸在50~ 200 nM间, 相结构为单一立方相;

(2) 反应温度在85--90范围为了抑制TiCl4的水解,将TiCl4 溶于HCl水溶液中,制得了澄清的TiCl4的溶液。

19

参考文献:

王镇山. 钛酸钡的研制[ J] . 无机盐工业, 1988( 3) : 8-11.

李标荣. 电子陶瓷工艺原理[ M] . 武汉: 华中工学院出版社, 1986. 畅柱国, 解红妮, 吴淑荣等. BaTiO3陶瓷基质粉料的合成路线[ J] . 陕西化工, 1995, 沈志刚, 陈建峰, 刘方涛, 初广文. 纳米钛酸钡电子陶瓷粉体的制备技术

[ J] . 化工进展, 2002, 21( 1) : 34-37.

沈志刚, 陈建峰, 刘方涛, 初广文. 纳米钛酸钡电子陶瓷粉体的制备技术

[ J] . 化工进展, 2002, 21( 1) : 34-37.

全学军, 蒲昌亮. 钛酸钡的制备研究进展[ J] . 材料导报,2002, 16( 6) : 45- 48.

袁正希. 用化学区沉淀法制备掺锑钛酸锶钡粉体[ J] . 电子元件与材料, 1995, 14( 3) : 42-

46.

顾达, 顾燕芳, 郑柏存, 等. 高纯超细BaTiO3 前驱体的热解机理及动力学[ J] . 华东理工大学学报, 1995, 21

陈瑞澄. 四氯化钛水解过程的研究[ D] . 北京: 核工业北京化工冶金研究院, 1999.

曹茂盛. 超微颗粒制备科学与技术[ M] . 哈尔滨: 哈尔滨工业大学出版社, 1998.

20

综合实验感想

为期俩周的综合实验结束了,这俩周内我充分感受到了时间的紧迫性和对待科学实验必须持有的严谨的态度,我们的实验主要包括了三大部分粉体的制备,胚体的成型以及烧结,我们必须团队合作才能制备出完整的陶瓷。

虽然整个实验的各个步骤我们都曾经学习过,但在实验过程中难免遇到这样或那样的难题,我们必须将平时做的实验结合起来,并且实验过程中遇到的难题必须自己去结局,从实验方案的准备开始,我们就开始查找文献,来了解我们所制的产品的性能以及应用,具体的制备方法。我们发现单篇的文献是有很大的局限性,要想完整的做好实验,就要在大量的文献中找到对自己有用的,有价值的进行参考,在实验的操作过程中由于文献的掌握不足导致第一次实验失败,自己才感觉到必须要用严谨的态度来对待这次综合实验,在查阅了大量的文献后终于能制备出结晶化高,纯度高的粉体。

从这样的综合实验中,我们学到了很多科学研究上的技能知识。最具体的,当然是增强了实验仪器的操作能力,让我们在平时实验里学过的歌中操作,包括洗涤,干燥,秤取,溶液的配制,过滤,煅烧等等的基本操作,在这个综合实验中得到了很好的锻炼,考验了我们对每一个步骤的理解,灵活运用程度等。实验的初期

并没有怎样认真的对待,伴随着实验的进行以及失败,化学是门实验性的科学,有些东西能想的出来但是在实际操作中会有一定的困难。

21

通过这次综合实验我学会了怎样去搜索参考文献,自己的实验操作基础也得到了锻炼,作为一名将要从事化工行业的应届毕业生在今后的学习和工作中必须用严谨的态度对待每一次科学实验。附:实验实施阶段使用的仪器及药剂

22

23

制备纳米钛酸钡粉体

化学共沉淀法 ——制备纳米钛酸钡粉体 目录 (1) 成绩考评表 (2) 中文摘要 (3) 英文摘要 (4) 1前言 (5) 1 .1制备方法介绍 (6) 1.2所制备的材料介绍 (9) 1.3本实验主要研究内容 (12) 2.实验实施阶段 2.1方案介绍 (13) 2.2方案具体实施 (15) 3实验结果分析与讨论 (17) 参考文献 (22)

综合实验感想 (23) 3Ba TiO 纳米粉体的制备 摘要 以4TiCl 为钛源,2BaCl 为钡源,采用草酸共沉淀法制备batio3粉体, 研究了前驱体的煅烧温度对产物的影响,实验结果表明当煅烧温度控制在800度以上时,可制的纯度高结晶好的batio3超细粉体。 关键词:钛酸钡,草酸共沉淀,前驱体,温度

English abstract Thought of 4TiCl for titanium source 2BaCl for barium source, using oxalate coprecipitation preparation of batio3 powders, studied the precursor of the influence of calcining temperature on the product, the experimental results show that when the calcination temperature control over 800 degrees, can be made of high purity crystal good batio3 ultrafine powders. Key words: barium titanate, oxalate coprecipitation, precursor , temperature

纳米粉体制备方法

纳米粉体制备方法 纳米技术是当今世界各国争先发展的热点技术,纳米技术和材料的生产及其应用在中国已起步,可以产业化的只有为数不多的几个品种,纳米二氧化钛(TiO2)、纳米氧化锌(ZnO)、纳米碳酸钙(CaCO3)便是其中较具代表性的几个品种。纳米粉体的制备方法很多,可分为物理方法和化学方法。以下是对各种方法的分别阐述并举例。 1. 物理方法 (1)真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。1。金属烟粒子结晶法是早期研究的一种实验室方法。将金属原料置于真空室电极处,真空室抽空(真空度1P a)导入102到103 P a压力的氩气或不活泼性气体,然后像通常的真空蒸发那样,用钨丝蓝蒸发金属。在气体中,通过蒸发、凝聚产生的金属蒸气形成金属烟粒子,像煤烟粒子一样沉积于真空室内壁上。在钨丝篮上方或下方位置可以预先放置格网收集金属烟粒子样品,以备各类测试所用。2。流动油面上的真空蒸发沉积法(VEROS),VEROS法是将物质在真空中连续的蒸发到流动着的油面上,然后把含有纳米粒子的油回收到贮存器内,再经过真空蒸馏、浓缩,从而实现在短时间制备大量纳米粉体。 (2)物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。例,有一种制备纳米粉体材料新方法,最适用于碳化物、氮化物及部分金属粉体的制备。其方法是先对反应器抽真空,然后充入保护气体或反应气体,在反应器中设置石墨电极,在石墨电极与反应器坩埚中的金属之间通电,使之产生高温碳电弧,由高温电弧产生金属蒸汽。采用保护气体可以生产出由石墨原子包覆的纳米镍粉、铜粉、铝粉等不易团聚的金属纳米粉末;采用反应气体可以生产碳化物、氮化物纳米粉末。与现有技术相比,生产的纳米粉末不易团聚,具有成本低,电弧功率大,可以实现规模化生产,具有广泛的实用性。用冲击波处理共沉淀法制备的氧化铁与氧化锌混合物合成了铁酸锌,用XRD、TEM 和电子衍射法对这种产品进行了鉴定.与传统的高温焙烧法相比,这种产品的特点是其颗粒尺寸为纳米级.主要原因可能在于冲击波的作用时间极短,因此生成的铁酸锌不会生长成为完整的晶粒.由此可以认为,冲击波处理可能是一种制备复合金属氧化物的纳米粉体的新方法. (3)机械球磨法 采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。例,一种钛合金纳米粉体制备方法,原料包括钛合金粗粉、助磨键合剂、分散剂、表面活性剂;制备方法是,将所述原料按配比投入反应釜,反应釜转速200-300mpr、温度50℃-60℃,反应釜旋转时间15-30分钟;反应釜转速升高至达1000mpr以上,维持该转速1.5-2.5小时,温度为180℃以上;反应釜转速降到300mrp以下,在0.5-1.0小时内降低温度至40℃-50℃,停机,即完成纳米粉体的制备。它稳定地对钛合金实现了纳米化加工;由此为利用纳米粉体的小尺寸效应、表面积效应而使它的耐蚀优点得到提升得以实现,使之可作为一种活性添加剂与各种优良树脂结合成一种新型复合材料。 2. 化学方法 (1)气相沉积法 利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。例,TiCl4气相氧化法,其基本化学反应式为:TiCl4(g)+O2(g)=TiO2(s)+Cl2(g) 施利毅、李春忠等利用

纳米粉体制备方法总结文档(最新版)

纳米粉体制备方法总结文档(最新版) Summary document on preparation methods of nano powder (latest edition) 汇报人:JinTai College

纳米粉体制备方法总结文档(最新版) 前言:本文档根据题材书写内容要求展开,具有实践指导意义,适用于组织或个人。便于学习和使用,本文档下载后内容可按需编辑修改及打印。 1、化学沉淀法: 沉淀法主要包括共沉淀法、均匀沉淀法、多元醇为介质 的沉淀法、沉淀转化化、直接沉淀法等。 共沉淀法 在含有多种阳离子的溶液中加入沉淀剂,使金属离子完 全沉淀的方法称为共沉淀法共沉淀法.可制备BaTiO3、PbTiO3等PZT系电子陶瓷及ZrO2等粉体.与传统的固相反应法相比,共沉淀法可避免引入对材料性能不利的有害杂质,生成的粉末具有较高的化学均匀性,粒度较细,颗粒尺寸分布较窄且具有一定形貌。 均匀沉淀法 在溶液中加入某种能缓慢生成沉淀剂的物质,使溶液中 的沉淀均匀出现,称为均匀沉淀法本法克服了由外部向溶液中直接加入沉淀剂而造成水热合成反应釜沉淀剂的局部不均匀性本法多数在金属盐溶液中采用尿素热分解生成沉淀剂NH4OH,

促使沉淀均匀生成制备的粉体有Al、Zr、Fe、Sn的氢氧化物[12-17]及Nd2(CO3)3等。 多元醇沉淀法 许多无机化合物可溶于多元醇,由于多元醇具有较高的 沸点,可大于100°C,因此可用高温强制水解反应制备纳米 颗粒[20]例如Zn(HAC)2·2H2O溶于一缩二乙醇(DEG),于100-220°C 下强制水解可制得单分散球形ZnO纳米粒子又如 使酸化的FeCl3—乙二醇—水体系强制水解可制得均匀的Fe (III)氧化物胶粒。 沉淀转化法 本法依据化合物之间溶解度的不同,通过改变沉淀转化 剂的浓度、转化温度以及表面活性剂来控制颗粒生长和防止颗粒团聚例如:以Cu(NO3)2·3H2ONi(NO3)2·6H2O为原料,分别以Na2CO3、NaC2O4为沉淀剂,加入一定量表面活性剂, 加热搅拌,分别以NaC2O3、NaOH为沉淀转化剂,可制得CuO、Ni(OH)2、NiO超细粉末。该法工艺流程短,操作简便,但 制备的化合物仅局限于少数金属氧化物和氢氧化物。 2、化学还原法 水溶液还原法

钛酸钡制法汇总

电子陶瓷材料纳米钛酸钡制备工艺的研究进展 1 前言 钛酸钡是电子陶瓷材料的基础原料,被称为电子陶瓷业的支柱。它具有高介电常数、低介电损耗、优良的铁电、压电、耐压和绝缘性能,被广泛的应用于制造陶瓷敏感元件,尤其是正温度系数热敏电阻(PTC)、多层陶瓷电容器(MLCCS)、热电元件、压电陶瓷、声纳、红外辐射探测元件、晶体陶瓷电容器、电光显示板、记忆材料、聚合物基复合材料以及涂层等。钛酸钡具有钙钛矿晶体结构,用于制 粉体粒度、形造电子陶瓷材料的粉体粒径一般要求在100nm以内。因此BaTiO 3 貌的研究一直是国内外关注的焦点。 钛酸钡粉体制备方法有很多,如固相法、化学沉淀法、溶胶—凝胶法、水热法、超声波合成法等。最近几年制备技术得到了快速发展,本文综述了国内外具有代表性的钛酸钡粉体的合成方法,并在此基础上提出了研究展望。 2 钛酸钡粉体的制备工艺 2.1 固相合成法 固相法是钛酸钡粉体的传统制备方法,典型的工艺是将等量碳酸钡和二氧化钛混合,在1 500℃温度下反应24h,反应式为:BaCO3+TiO2→BaTiO3+CO2↑。该法工艺简单,设备可靠。但由于是在高温下完成固相间的扩散传质,故所得BaTiO3粉体粒径比较大(微米),必须再次进行球磨。高温煅烧能耗较大,化学成分不均匀,影响烧结陶瓷的性能,团聚现象严重,较难得到纯BaTiO3晶相,粉体纯度低,原料成本较高。一般只用于制作技术性能要求较低的产品。 2.2化学沉淀法 2.2.1 直接沉淀法 在金属盐溶液中加入适当的沉淀剂,控制适当的条件使沉淀剂与金属离子反应生成陶瓷粉体沉淀物团。如将Ba(OC3H7)2和Ti(OC5H11)4溶于异丙醇中,加水分解产物可得沉淀的BaTiO3粉体。该法工艺简单,在常压下进行,不需高温,反应条件温和,易控制,原料成本低,但容易引入BaCO3、TiO2等杂质,且粒度分布宽,需进行后处理。 2.2.2 草酸盐共沉淀法 将精制的TiCl4和BaCl2的水溶液混合,在一定条件下以一定速度滴加到草酸溶液中,同时加入表面活性剂,不断搅拌即得到BaTiO3的前驱体草酸氧钛钡沉淀BaTiO(C2O4)4·4H2O(BTO)。该沉淀物经陈化、过滤、洗涤、干燥和煅烧,可得到化学计量的烧结良好的BaTiO3微粒: TiCl4+BaCl2+2H2C2O4+4H2O→BaTiO(C2O4)2·4H2O↓+6HCl, BaTiO(C2O4)2·4H2O→BaTiO3+4H2O+2CO2↑+2CO↑。 该法工艺简单,但容易带人杂质,产品纯度偏低,粒度目前只能达到100nm 左右,前驱体BTO煅烧温度较低,产物易掺杂,难控制前驱体BTO中Ba/Ti的物质的量比;微粒团聚较严重,反应过程中需要不断调节体系pH值。尽管有不同的改进方法,但仍难于实现工业化生产。 2.2.3 柠檬酸盐法 柠檬酸盐法是制备优质BaTiO3微粉的方法之—。由于柠檬酸的络合作用,可以形成稳定的柠檬酸钡钛溶液,从而使得Ba/Ti的物质的量比等于1,化学均匀性高。同时由于取消了球磨工艺,BaTiO3粉体的纯度得到提高。实验中采用喷雾干燥法对柠檬酸钡钛溶液进行脱水处理,制得BaTiO3的前驱体,再在一定温度下处理即可获得BaTiO3粉体。但煅烧得到的BaTiO3粉体易团聚,成本高,难于实现工业化。

纳米粉体的制备方法

纳米粉体的制备方法 一、纳米粉体应具备的特性 1、化学成分配比准确:尽量符合化学计量,避免烧结出现液相或阻碍烧结; 2、纯度高:出现液相或影响电性能; 3、成分分布均匀:尤其微量掺杂; 4、粒度要细,尺寸分布范围要窄;结构均匀,密度高; 5、无团聚体:软团聚,硬团聚。 二、制备方法分类 化学法 化学法是指通过适当的化学反应,从分子、原子、离子出发制备纳米物质,它包括化学气相沉积法、化学气相冷凝法、溶胶一凝胶法、水热法、沉淀法、冷冻干燥法等。 化学气相沉积(CVD)是迄今为止气相法制备纳米材料应用最为广泛的方法,该方法是在一个加热的衬底上,通过一种或几种气态元素或化合物产生的化学元素反应形成纳米材料的过程,该方法主要可分成热分解反应沉积和化学反应沉积。该法具有均匀性好,可对整个基体进行沉积等优点。其缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积门、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。 化学气相冷凝法(CVC)主要通过有机高分子热解获得纳米粉体,具体过程是先将反应室抽到或更高真空度,然后注入惰性气体He,使气压达到几百帕斯卡,反应物和载气He从外部系统先进入前部分的热磁控溅射CVD装置由化学反应得到反应物产物的前驱体,然后通过对流达到后部分的转筒式骤冷器,用于冷却和收集合成的纳米微粒。 化学沉淀法是在金属盐类的水溶液中控制适当的条件使沉淀剂与金属离子反应,产生水合氧化物或难溶化合物,使溶液转化为沉淀,然后经分离、干燥或热分解而得到纳米级超微粒。化学沉淀法可分为直接沉淀法、均匀沉淀法、共沉淀法和醇盐水解沉淀法。 物理法 早期的物理制备方法是将较粗的物质粉碎,如低温粉碎法、超声波粉碎法、冲击波粉碎法、蒸气快速冷却法、蒸气快速油面法等等。近年来发展了一些新的物理方法,如旋转涂层法将聚苯乙烯微球涂敷到基片上,由于转速不同,可以得到不同的空隙度.然后用物理气相沉积法在其表面上抗积一层膜,经过热处理,即可得到纳米颗粒的阵列。这些方法我们统称为物理凝聚法,物理凝聚法主要分为: (1)真空蒸发靛聚法 将原料用电弧高频或等离子体等加热,使之气化或形成等离子体,然后骤冷,使之凝结成纳米微粒。其粒径可通过改变通入惰性气体的种类、压力、蒸发速率等加以控制,粒径可达1—100nm。具体过程是将待蒸发的材料放人容器中的柑锅中,先抽到或更高的真空度,然后注人少量的惰性气体或性2N、3NH等载气,使之形成一定的真空条件,此时加热,使原料蒸发成蒸气而凝聚在温度较低的钟罩壁上,形成纳米微粒。 (2)等离子体蒸发凝聚法 把一种或多种固体颗粒注人惰性气休的等离子体中,使之通过等离子体之间时完全蒸发,通过骤冷装置使蒸气奴聚制得纳米微粒。通常用于制备含有高熔点金属合金的纳米微粒,如Fe-A1,Nb-Si等。此法常以等离子体作为连续反应器制备纳米微粒。 综上所述,物理方法通常采用光、电等技术使材料在真空或惰性气氛中蒸发,然后使原子或分子形成纳米颗粒,它还包括球磨、喷雾等以力学过程为主的制备技术。物理法的特点是:操作简单,成本低,但产品纯度不高,颗粒分布不均匀,形状难以控制。 物理化学方法

钛酸钡粉体制备

钛酸钡纳米粉体的制备方法 摘要:钛酸钡粉体是陶瓷工业的重要原料,本文将简要介绍钛酸钡纳米粉体的一些制备工业,如固相法、水热法、溶胶-凝胶法、沉淀法等。 关键词:钛酸钡;粉体;制备方法; 1.引言 钛酸钡是制备陶瓷电容器和热敏电阻器等许多介电材料和压电材料的主要原料, 近几年来, 随着陶瓷工业和电子工业的快速发展,BaTiO3 的需求量将不断增加,对其质量要求也越来越高。制备高纯、超细粉体材料是提高电子陶瓷材料性能的主要途径。所以高纯、均匀、超细乃至纳米化钛酸钡的制备研究一直 是各国科学家的研究重点。钛酸钡的应用越来越广泛。目前制备钛酸钡的方法主要有:共沉淀法、溶胶- 凝胶法、固相法、反相微乳液法、水热法。 2.钛酸钡粉体的制备工艺 2.1固相研磨-低温煅烧法 传统钛酸钡的制备主要采用高温煅烧碳酸钡和二氧化钛的混合物或高温煅 烧草酸氧钛钡的方法, 它是我国目前工业制备钛酸钡的主要方法, 但由于煅烧 温度高达1000~ 1200℃, 因而制得的粉体硬团聚严重、颗粒大而粒度分布不均匀, 纯度低, 烧结性能差。 朱启安[1]等采用室温下将氢氧化钡与钛酸丁酯混合研磨, 再在较低温度( < 300 ℃) 下煅烧的方法制得了钡钛物质的量比约为1. 0、颗粒大小分布均匀、粒径在15~ 20nm 的钛酸钡纳米粉体, 既克服了高温固相煅烧法反应温度高、产品质量低的缺点, 又克服了液相法在水溶液中制备易引入杂质、粒子易团聚等缺点其煅烧温度比传统的固相反应法降低了约700 ~900℃ 2.2水热法合成 水热合成是指在密封体系如高压釜中, 以水为溶剂, 在一定的温度和水的 自生压力下, 原始混合物进行反应的一种合成方法。由于在高温、高压水热条件下, 能提供一个在常压条件下无法得到的特殊的物理化学环境, 使前驱物在反 应系统中得到充分的溶解, 并达到一定的过饱和度, 从而形成原子或分子生长 基元, 进行成核结晶生成粉体或纳米晶[2]。 水热法制备的粉体, 晶粒发育完整、粒度分布均匀、颗粒之间少团聚, 可以得到理想化学计量组成的材料, 其颗粒度可控, 原料较便宜, 生成成本低。而且粉体无须煅烧, 可以直接用于加工成型, 这就可以避免在煅烧过程中晶粒的 团聚、长大和容易混入杂质等缺点[2]。 2.3 溶胶凝胶法 钛酸钡( BaTiO3 ) 在当今科技领域里占有重要地位, 它是电子陶瓷领域应用最广泛的材料之一。钛酸钡是钛酸盐系电子陶瓷的主要原料, 是一种具有高介电常数和低介电损耗的铁电材料,被广泛应用于制作热敏电阻器( PTCR) 、多层陶瓷电容器(MLCC) 、电光器件和DRAM 器件。现代技术要求BaTiO3 粉料具有高纯、

粉体材料的制备方法有几种

粉体材料的制备方法有几种?各有什么优缺点?(20分) 答:粉末的制备方法: 气相合成、湿化学合成、机械粉碎. 1. 物理方法 (1)真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。 (2)物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 (3)机械球磨法 采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 2. 化学方法 (1)气相沉积法 利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。 (2)沉淀法 把沉淀剂加入到盐溶液中反应后,将沉淀热处理得到纳米材料。其特点简单易行,但纯度低,颗粒半径大,适合制备氧化物。 (3)水热合成法 高温高压下在水溶液或蒸汽等流体中合成,再经分离和热处理得纳米粒子。其特点纯度高,分散性好、粒度易控制。 (4)溶胶凝胶法 金属化合物经溶液、溶胶、凝胶而固化,再经低温热处理而生成纳米粒子。其特点反应物种多,产物颗粒均一,过程易控制,适于氧化物和Ⅱ~Ⅵ族化合物的制备。 (5)微乳液法 两种互不相溶的溶剂在表面活性剂的作用下形成乳液,在微泡中经成核、聚结、团聚、热处理后得纳米粒子。其特点粒子的单分散和界面性好,Ⅱ~Ⅵ族半导体纳米粒子多用此法制备 2. 为什么要对粉体材料的表面进行改性?什么是物理吸附?什么是化学吸附?试举例说明。(20分) 答: 材料表面改性的目的 力学性能:表面硬化、防氧化、耐磨等 电学性能:表面导电、透明电极 光学性能:表面波导、镀膜玻璃 生物性能:生物活性、抗菌性 化学性能:催化性 装饰性能:塑料表面金属化 材料表面改性的意义 通过较为简单的方法使一个部件部件或产品产品具有更为综合的性能第一节材料表面结构的变化 粉体表面改性是指用物理、化学、机械等方法对粉体材料表面进行处理,根据应用的需要有目的改变粉体材料表面的物理化学性质,如表面组成、结构和官能团、

实验二 溶胶-凝胶法制备钛酸钡纳米陶瓷粉体

醋酸钡255.21、钛酸丁酯340.3 实验二溶胶-凝胶法制备纳米钛酸钡陶瓷粉体 一、实验目的 1、了解溶胶-凝胶制备纳米粉体的方法 2、制备纳米钛酸钡陶瓷粉体 二、实验背景和原理 1. 实验背景 钛酸钡(BaTiO )具有良好的介电性,是电子陶瓷领域应用最广的材料之一。传 3 制备方法是固相合成,这种方法生成的粉末颗粒粗且硬,不能满足高统的BaTiO 3 科技应用的要求。现代科技要求陶瓷粉体具有高纯、超细、粒径分布窄等特性,与粗晶材料相比在物理和机械性能方面有极大的差别:熔点降低,烧结温度降低、荧光谱峰向低波长移动、铁电和铁磁性能消失、电导增强等。溶液化学法是制备超细粉体的一种重要方法,其中以溶胶-凝胶法最为常用。 2. 溶胶-凝胶法合成BaTiO3纳米粉体的基本原理 溶胶—凝胶(简称Sol—Gel)法是以金属醇盐的水解和聚合反应为基础的。其反应过程通常用下列方程式表示: (1)水解反应: M(OR)4 + χ H2O = M(OR)4- χ OH χ + χ ROH (2)缩合-聚合反应: 失水缩合-M-OH + OH-M-=-M-O-M-+H2O 失醇缩合-M-OR + OH-M-=-M-O-M-+ROH 缩合产物不断发生水解、缩聚反应,溶液的粘度不断增加。最终形成凝胶——含金属—氧—金属键网络结构的无机聚合物。正是由于金属—氧—金属键的形成,使Sol—Gel法能在低温下合成材料。Sol—Gel技术关键就在控制条件发生水解、缩聚反应形成溶胶、凝胶。

本次实验使用的钛酸丁酯(亦称丁醇钛)是一种非常活泼的醇盐,遇水会发生剧烈的水解反应。在Sol—Gel工艺中,让溶液系统暴露在空气中从空气中吸收水分,使水解反应不充分(或不完全),其反应式可表示为 Ti(OR)4 + χ H2O = Ti(OR)4- χ OH χ + χ ROH (1) 式中,R=C 4H 9 为丁烷基,RO或OR为丁烷氧基。未完全水解反应的生成物 Ti(R) 4-χ (OH)χ中的(OH)-极易与丁烷基(R)或乙羰基(R′=CH3CO)结合,生成丁醇或乙酸,而使金属有机基团通过桥氧聚合成有机大分子。如本实验可能发生典型的聚合反应的结构反应式为 R′-O-Ba-O-R Ti OH+Ti O Ba O R'+ R'OH (2) 或 Ti OR Ti OH +Ti O Ti+ ROH (3)实验中的水解及聚合反应在缓慢吸收空气中水分的过程中不断地进行着,实际 上是金属有机化合物经过脱酸脱醇反应,金属Ti4+和Ba2+通过桥氧键聚合成了有机大分子团链,随着这种分子团链聚合度的增大,溶液粘度增加,溶胶特征明显,经过一定时间就会变成半固体透明的凝胶。凝胶经过烘干,煅烧得到钛酸钡粉末。三、主要仪器与药品 仪器:烧杯,机械搅拌、烘箱; 药品:醋酸钡,乙酸,钛酸丁酯,无水乙醇。 四、实验步骤 1.称取醋酸钡0.02mol (5g),量取36%的乙酸20ml,倒入烧杯中,搅拌使醋 酸钡完全溶解。 2.称取钛酸丁酯0.02mol (6.8g), 量取无水乙醇10ml,倒入锥形瓶中, 摇匀。 3.将上述两种溶液迅速混合,快速搅拌,溶液澄清后减慢搅拌速度,继续搅拌 2小时,停止搅拌,此时已经形成透明溶胶,使透明溶胶在空气中静置3-4小时,得到透明凝胶。 4.将凝胶取出,置于干燥皿中,在120°C下烘干。得到干凝胶,研磨得到淡 黄色粉末。

粉体纳米材料制备方法及其应用前景

收稿日期:2000-03-14 作者介绍:李芳宇,1977—,南方冶金学院机械系98级研究生。 纳米粉体制备方法及其应用前景 李芳宇,刘维平 (南方冶金学院机械系,江西赣州341000) 摘 要:论述了纳米粉末材料的物理、化学及其他的一些特殊制备方法,并详述了纳米粉末材料在高强度、高韧性材料、电磁材料、光学材料、催化剂材料、传感器材料、医学和生物工程材料等领域的应用。关键词:纳米粉体;制备;应用 中图分类号:TQ029+.1 文献标识码:A 文章编号:1008-5548(2000)05-0029-04 近年来,随着科学技术的发展,世界各地许多科学家都在积极开展新材料尤其是纳米材料的研究。纳米材料包括零维颗粒材料、一维纳米针、二维纳米膜材料以及三维纳米晶体材料。纳米颗粒一般在1~100nm 之间,处于微观粒子和宏观物体之间的过渡区域。它具有小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应等特性。这些特性使其呈现出一系列奇异的物理、化学性质,目前在国防、电子、化工、轻工、核技术、航空航天、医学和生物工程等领域中具有重要的应用价值。 在纳米粉体材料的研究中,它的制备、特性和应用是比较重要的方面,本文将着重介绍近期国内外的一些关于这些方面的研究现状。 1 纳米粉体材料的制备方法 1.1 物理法1.1.1 气体冷凝法 气体冷凝法(IGC ),其主要过程是在低压的氩、 氦等惰性气体中加热金属,使其蒸发,产生原子雾,经冷凝后形成纳米颗粒。纳米合金可通过同时蒸发数种金属物质得到;纳米氧化物可在蒸发过程中真空室内通以纯氧使之氧化得到。这种方法是制备清洁界面的纳米粉体的主要方法之一。1.1.2 测射法 用两块金属板分别作阳极和阴极,阴极为蒸发 用的材料,在两电极间充入氩气,在两电极之间施加适当电压,两电极间的辉光放电促使氩离子的形成,在电场作用下,氩离子冲击阴极材料,使靶材原子从其表面沉积下来。而且加大被溅射的阴阳表面可提高纳米微粒的获得量。该方法可有效制备多种高熔点和低熔点的纳米金属;能制备多组元的化合物纳米颗粒。 1.1.3 高能机械球磨法 高能球磨法是近年来发展起来的一种制备纳米粉体材料的方法,该方法尤其是在制备合金粉末方面具有较好的工业应用前景。它是将欲合金化的元素粉末混合起来[1],在高能球磨机长时间运转,将回转机械能传递给金属粉末,依靠球磨过程中粉末的塑性变形产生复合,并发生扩散和固态反应而形成合金粉末。由于该过程引入大量的粉末颗粒应变、缺陷以及纳米量级的微结构,使合金过程的热力学和动力学不同于普通的固态反应过程,有可能制备出用常规液态或气相法难以合成的新型合金。此外,通过高能机械球磨中气氛的控制与外部磁场的引入,使这一技术得到了较大的发展。1.2 化学法 1.2.1 固相配位化学法 固相配位化学法在物质合成方面特别是在利用固相配位化学反应合成金属簇合物和固相配合物等方面显示了极大的优势,是一种非常有前途的纳米粉体制备方法。用此法制备氧化物纳米粉体的主要过程[2],就是首先在室温或低温下制备可在较低温度分解的固相金属配合物,然后将固相产物在一定的温度下进行热分解,得到氧化物纳米粉体。与液相合成法相比,具有纯度高、工艺简单、可缩短制备时间等特点。在400℃热分解就可得到平均晶粒尺寸约为10nm 具有纤锌矿结构的ZnO 纳米粉体。1.2.2 溶胶-凝胶法(sol -gel ) 溶胶-凝胶法是指在高分子界面活性剂存在及 第6卷第5期2000年10月 中 国 粉 体 技 术 China Powder Science and T echnology Vol 16No 15 October 2000

钛酸钡的制备工艺以及制备方法

1 前言 钛酸钡是电子陶瓷材料的基础原料,被称为电子陶瓷业的支柱。它具有高介电常数、低介电损耗、优良的铁电、压电、耐压和绝缘性能,被广泛的应用于制造陶瓷敏感元件,尤其是正温度系数热敏电阻(PTC)、多层陶瓷电容器(MLCCS)、热电元件、压电陶瓷、声纳、红外辐射探测元件、晶体陶瓷电容器、电光显示板、记忆材料、聚合物基复合材料以及涂层等。钛酸钡具有钙钛矿晶体结构,用于制造电子陶瓷材料的粉体粒径一般要求在100nm以内。因此BaTiO3粉体粒度、形貌的研究一直是国内外关注的焦点。钛酸钡粉体制备方法有很多,如固相法、化学沉淀法、溶胶—凝胶法、水热法、超声波合成法等。最近几年制备技术得到了快速发展,本文综述了国内外具有代表性的钛酸钡粉体的合成方法,并在此基础上提出了研究展望。 2 钛酸钡粉体的制备工艺 2.1 固相合成法 固相法是钛酸钡粉体的传统制备方法,典型的工艺是将等量碳酸钡和二氧化钛混合,在1 500℃温度下反应24h,反应式为:BaCO3+TiO2→BaTiO3+CO2↑。该法工艺简单,设备可靠。但由于是在高温下完成固相间的扩散传质,故所得BaTiO3粉体粒径比较大(微米),必须再次进行球磨。高温煅烧能耗较大,化学成分不均匀,影响烧结陶瓷的性能,团聚现象严重,较难得到纯BaTiO3晶相,粉体纯度低,原料成本较高。一般只用于制作技术性能要求较低的产品。 2.2化学沉淀法 2.2.1 直接沉淀法在金属盐溶液中加入适当的沉淀剂,控制适当的条件使沉淀剂与金属离子反应生成陶瓷粉体沉淀物团。如将Ba(OC3H7)2和Ti(OC5H11)4溶于异丙醇中,加水分解产物可得沉淀的BaTiO3粉体。该法工艺简单,在常压下进行,不需高温,反应条件温和,易控制,原料成本低,但容易引入BaCO3、TiO2等杂质,且粒度分布宽,需进行后处理。 2.2.2 草酸盐共沉淀法将精制的TiCl4和BaCl2的水溶液混合,在一定条件下以一定速度滴加到草酸溶液中,同时加入表面活性剂,不断搅拌即得到BaTiO3的前驱体草酸氧钛钡沉淀 BaTiO(C2O4)4·4H2O(BTO)。该沉淀物经陈化、过滤、洗涤、干燥和煅烧,可得到化学计量的烧结良好的BaTiO3微粒: TiCl4+BaCl2+2H2C2O4+4H2O→BaTiO(C2O4)2·4H2O↓+6HCl, BaTiO(C2O4)2·4H2O→BaTiO3+4H2O+2CO2↑+2CO↑。 该法工艺简单,但容易带人杂质,产品纯度偏低,粒度目前只能达到100nm左右,前驱体BTO煅烧温度较低,产物易掺杂,难控制前驱体BTO中Ba/Ti的物质的量比;微粒团聚较严重,反应过程中需要不断调节体系pH值。尽管有不同的改进方法,但仍难于实现工业化生产。 2.2.3 柠檬酸盐法柠檬酸盐法是制备优质BaTiO3微粉的方法之—。由于柠檬酸的络合作用,可以形成稳定的柠檬酸钡钛溶液,从而使得Ba/Ti的物质的量比等于1,化学均匀性高。同时由于取消了球磨工艺,BaTiO3粉体的纯度得到提高。实验中采用喷雾干燥法对柠檬酸钡钛溶液进行脱水处理,制得BaTiO3的前驱体,再在一定温度下处理即可获得BaTiO3粉体。但煅烧得到的BaTiO3粉体易团聚,成本高,难于实现工业化。

纳米钛酸钡的研究

纳米钛酸钡的研究 摘要:钛酸钡具有高介电常数、低介质损耗等优异的性能,广泛地应用于多层陶瓷电容器、热敏电阻、光电器件等电子元件,是电子工业中应用最广泛的陶瓷材料之一。本文介绍了钛酸钡结构、性能、用途及制备方法。制备超细,高纯和粒径分布均匀的纳米BaTiO3粉体的制备成为了纳米材料制备领域的研究热点之一。 关键词:钛酸钡,结构,性能,制备方法,粉体 1. 引言 钛酸钡(BaTiO3)是最早发现的一种具有ABO3型钙钛矿晶体结构的典型铁电体,它具有高介电常数、低的介质损耗及铁电、压电和正温度系数效应等优异的电学性能,被广泛应用于制备高介陶瓷电容器、多层陶瓷电容器、PTC热敏电阻、动态随机存储器、谐振器、超声探测器、温控传感器等,被誉为“电子陶瓷工业的支柱”。 2. 钛酸钡晶体的结构 钛酸钡是一致性熔融化合物,其熔点为1618℃。在此温度以下,1460℃以上结晶出来的钛酸钡属于非铁电的六方晶系6/mmm点群。此时,六方晶系是稳定的。在1460~130℃之间钛酸钡转变为立方钙钛矿型结构。在此结构中Ti4+(钛离子)居于O2-(氧离子)构成的氧八面体中央,Ba2+(钡离子)则处于八个氧八面体围成的空隙中。此时的钛酸钡晶体结构对称性极高,因此无偶极矩产生,晶体无铁电性,也无压电性。 随着温度下降,晶体的对称性下降。当温度下降到130℃时,钛酸钡发生顺电-铁电相变。在130~5℃的温区内,钛酸钡为四方晶系4mm点群,具有显著地铁电性,其自发极化强度沿c轴方向,即[001]方向。钛酸钡从立方晶系转变为四方晶系时,结构变化较小。从晶胞来看,只是晶胞沿原立方晶系的一轴(c轴)拉长,而沿另两轴缩短。

ZnO纳米粉体材料的制备

实 验 2 ZnO 纳米粉体材料的制备 (一)实验类型:综合性 (二)实验类别:设计性实验 (三)实验学时数:16 (四)实验目的 (1)掌握沉淀法制备纳米粉体的工作原理。 (2)了解X-射线粉末衍射仪鉴定物相的原理。 (五)实验原理 纳米ZnO 是一种新型高功能精细无机材料, 其粒径介于1~ 100 nm 之间,又称为超微细ZnO 。由于颗粒尺寸的细微化,使得纳米ZnO 产生了其本体块状材料所不具备的表面效应、小尺寸效应、量子效应和宏观量子隧道效应等,因而使得纳米ZnO 在磁、光、电、敏感等方面具有一些特殊的性能, 主要用来制造气体传感器、荧光体、紫外线遮蔽材料、变阻器、图像记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。合成纳米ZnO 的方法有多种,沉淀法工艺简单,成本低, 便于实现工业化生产。 合成纳米ZnO 的方法有多种,本实验采用化学沉淀法是在可溶性锌盐溶液中加入沉淀剂后,于一定条件下生成沉淀从溶液中析出,将阴离子洗去,经分离、干燥、热处理后,得到纳米氧化锌。该方法操作简单,对设备和技术要求不太苛刻,产品纯度高,不易引入杂质,成本低。 X-射线粉末衍射仪是分析材料晶体结构的重要工具。晶体的X射线衍射图象实质上是晶体微观结构形象的一种精细复杂的变换。由于每一种结晶物质,都有其特定的结构参数,包括点阵类型、晶胞大小、单胞中原子(离子或分子)数目及位置等,而晶体物质的这些特定参数,反映在衍射图上机表现出衍射线条的数目、位置及相对强度各不相同。因此,每种晶态物质与其X射线衍射图之间有着一一对应的关系。任何一种晶态物质都有自己独立的X射线衍射图,不会因为他种物质混聚在一起而产生变化。这就是X射线衍射物相定性分析的方法的依据。 根据粉体X-射线衍射图得到的相关数据,利用谢乐公式(如下),可以计算纳米粒子的晶粒尺寸。 0.89cos D λ βθ= (λ为X 射线的波长,β为最强峰的半峰宽,θ 为衍射角) (六)实验内容 1. 制备 以Zn(NO 3)2·6H 2O 与NH 4HCO 3为原料,聚乙二醇(PEG 600)为模板剂,采用直接沉淀法将制得的沉淀,洗涤后经煅烧制备纳米ZnO 。 2. 称量、计算产率 3. X-射线物相测定:计算晶粒尺寸 (七)实验要求 1、设计实验方案: (1)设计不同煅烧温度及时间 (2)设计不同原料比及模板剂 设计实验方案要求:方案必须切合实际,具有可操作性;尽量选择原料易得,反应条件温和,催化剂价廉,后处理方便,收率高及环境友好的方案。

纳米粉体制备方法的研究

纳米粉体制备方法地研究 辛辉,易贝贝 (平顶山工业职业技术学院化工系,河南平顶山) 摘要:纳米粉体具有独特地性能而被广泛应用.其制备方法地研究已经成为材料研究领域地重要内容.本文对纳米粉体地制备方法进行了研究,总结出各种方法地利弊.文档来自于网络搜索 关键词:纳米粉体制备方法团聚性质 (文档来自于网络搜索 ) : . . .文档来自于网络搜索 : ; ; ; 文档来自于网络搜索 引言 纳米粉体泛指粒径在范围内地粉末.由于纳米粉体地晶粒小,表面曲率大或表面积大,所以它在磁性、催化性、光吸收、热阻和熔点等方面与常规材料相比显示出奇特地性能,因而广泛应用于高性能结构与功能陶瓷材料、涂层材料、磁性材料、催化材料、气敏材料、医药和石油化工领域.纳米粉体制备方法地研究已经成为材料研究领域地一个重要内容.文档来自于网络搜索 激光法制备纳米粉体 激光法制备粉体是以激光为加热源,利用激光地诱导作用和作用物质对特定激光波长地共振吸收制备出所要求地纳米粉体[].激光法有激光诱导化学气相沉积法()和激光烧蚀法().文档来自于网络搜索 激光诱导化学气相沉积法 激光诱导化学气相沉积法是利用反应气体分子(或光敏分子)对特定波长激光地共振吸收,诱导反应气体分子地激光热解、激光离解(如紫外光解、红外多光子离解)、激光光敏化等化学反应,在一定工艺条件下(激光功率密度、反应池压力、反应气体配比、流速和反应温度等)反应生成物成核和生长,通过控制成核与生长过程,即可获得纳米粒子[].文档来自于网络搜索 激光烧蚀法 激光烧蚀法是将作为原料地耙材置于真空或充满氩等保护气体地反应室中,耙材表面经激光照射后,与入射地激光束相作用.耙材吸收高能量激光束后迅速升温、蒸发形成气态.气态物质可直接冷凝沉积形成纳米微粒,气态物质也可在激光作用下分解后再形成纳米微粒.若反应室中有反应气体,则蒸发物可与反应气体发生化学反应,经过形核生长、冷凝后得到复合化合物地纳米粉体.文档来自于网络搜索 激光烧蚀法与激光诱导化学气相法相比,生产率更高,使用范围更广,并可合成更为细小地纳米粉体. 溶剂蒸发法制备纳米粉体 常用地溶剂蒸发法有喷雾干燥法、喷雾热分解法.喷雾干燥法是将金属盐溶液喷入热风中,溶剂迅速蒸发从而析出金属盐地纳米颗粒.喷雾热分解法则是将溶液喷入高温气氛中,使溶剂蒸发和金属盐地热分解同时进行,从而用道工序制得氧化物纳米颗粒.文档来自于网络搜索 采用喷雾法生成地氧化物颗粒一般为球状,流动性好且易于处理,并且可以连续进行,因而

微波水热合成钛酸钡纳米粉体_陈杰

第42卷第11期人工晶体学报 Vol.42No.112013年11月 JOURNAL OF SYNTHETIC CRYSTALS November ,2013 微波水热合成钛酸钡纳米粉体 陈 杰,闫 峰,罗昆鹏 (西安科技大学材料科学与工程学院,西安710054) 摘要:采用微波水热法低温合成了立方相钛酸钡纳米粉体。通过正交实验法及线性回归,研究了反应温度、反应时间及分散剂用量等因素对颗粒比表面积的影响规律及回归函数, 并通过XRD 、TEM 、XRF 等对粉体进行了表征。研究结果表明,在反应温度70?、反应时间10min 、分散剂与钛的物质的量比为1?20的条件下制得粒径约50 100nm 、呈球状的分散性良好的立方相钛酸钡纳米粉体。反应温度、反应时间及分散剂用量对粒度均有不同程度的影响, 其中反应温度影响最为显著。关键词:微波水热法;钛酸钡纳米粉体;正交实验法;线性回归中图分类号:TM282 文献标识码:A 文章编号:1000- 985X (2013)11-2359-05Synthesis of BaTiO 3Nano-powder by Microwave Hydrothermal Method CHEN Jie ,YAN Feng ,LUO Kun-peng (School of Materials Science and Engineering ,Xi'a n University of Science and Technology ,Xi'a n 710054,China ) (Received 12May 2013,accepted 13September 2013) Abstract :Cubic phase barium titanate nano-powders were synthesized under low temperature by microwave-hydrothermal method.The influence law of factors such as reaction temperature ,reaction time ,and the dispersant dosage on the specific surface area of particles and regression function were studied by the orthogonal experiment method and linear regression.The crystallized products were characterized by powder X-ray diffraction (XRD ),transmission electron microscopy (TEM ),X-ray fluorescence (XRF ).The experimental results showed that the spherical and well-dispersed cubic phase barium titanate nano-powders which particle size is about 50-100nm could be prepared under the conditions that the reaction temperature is 70?,and the reaction time is 10min ,and mole ratio of dispersant and titanium is 1?20.Reaction temperature ,reaction time ,and the dosage of dispersant have different effect on the specific surface area of particles.Among these factors ,the significant factors is reaction temperature. Key words :microwave hydrothermal method ;BaTiO 3nano-powder ;orthogonal experiment method ;linear regression 收稿日期:2013-05-12;修订日期:2013-09-13基金项目:国家自然科学基金(51072162)作者简介:陈 杰(1967-),女,陕西省人,教授,博士。E- mail :chenjie363@163.com 1引言 钛酸钡(BaTiO 3)是一种强介电材料、压电材料和铁电材料,广泛应用于电容器、PTC 组件、压电换能器等电子元器件的制造,是一种用途广泛的重要电子陶瓷材料。近年来,随着电子元器件的微型化、小型化、薄

粉体的合成制备方法

粉体的合成制备方法发展状况 如今,粉体的合成制备经过多年的发展,制备合成方法已经变得各种各样按理论也可分为物理和化学方法等纳米粒子的制备方法很多,可分为物理方法和化学方法。 1.物理方法 (1)真空冷凝法用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。 2)物理粉碎法通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 (3)机械球磨法采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 2. 化学方法 (1)气相沉积法 利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。 (2)沉淀法把沉淀剂加入到盐溶液中反应后,将沉淀热处理得到纳米材料。其特点简单易行,但纯度低,颗粒半径大,适合制备氧化物。 (3)水热合成法高温高压下在水溶液或蒸汽等流体中合成,再经分离和热处理得纳米粒子。其特点纯度高,分散性好、粒度易控制。 (4)溶胶凝胶法金属化合物经溶液、溶胶、凝胶而固化,再经低温热处理而生成纳米粒子。其特点反应物种多,产物颗粒均一,过程易控制,适于氧化物和Ⅱ~Ⅵ族化合物的制备。 (5)微乳液法两种互不相溶的溶剂在表面活性剂的作用下形成乳液,在微泡中经成核、聚结、团聚、热处理后得纳米粒子。其特点粒子的单分散和界面性好,Ⅱ~Ⅵ族半导体纳米粒子多用此法制备。 按照反应物的相可分为三类气相合成法,固相合成法和液相合成法。 一、气相合成法 (1)电阻加热法是通过电阻加热来实现气相粉体制备的方法,典型工艺如蒸

纳米粉体的制备方法及其研究进展

纳米粉体的制备方法及团聚简介 摘要:本文简要综述了制备纳米粉体的相关方法,物理方法有气体冷凝法、侧射法、高能机械球磨法等,化学方法有固相配位化学法、溶胶-凝胶法、沉淀法、化学气相沉积法等。并且简要的介绍了团聚的原因及如何防止纳米团聚 关键词:纳米粉体;制备方法;团聚 近年来,随着科学技术的发展,世界各地许多科学家都在积极开展新材料尤其是纳米材料的研究。纳米材料包括零维颗粒材料、一维纳米针、二维纳米膜材料以及三维纳米晶体材料。纳米颗粒一般在1~100nm之间,处于微观粒子和宏观物体之间的过渡区域。它具有小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应等特性。这些特性使其呈现出一系列奇异的物理、化学性质,目前在国防、电子、化工、轻工、核技术、航空航天、医学和生物工程等领域中具有重要的应用价值。为此,本文简要综述了纳米粉体的相关方法。 1 . 纳米粉体材料的制备方法 1.1 物理法 1.1.1 气体冷凝法[1] 气体冷凝法(IGC),其主要过程是在低压的氩、嗐等惰性气体中加热金属,使其蒸发,产生原子雾,经泠凝后形成纳米颗粒。纳米合金可通过同时蒸发数种金属物质得到;纳米氧化物可在蒸发过程中真空室内通以纯氧使之氧化得到。这种方法是制备清洁界面的纳米粉体的主要方法之一。 1.1.2 侧射法[1] 用两块金属板分别作阳极和阴极,阴极为蒸发用的材料,在两电极间充入氩气,在两电极之间施加适当电压,两电极间的辉光放电促使氩离子的形成,在电场作用下,氩离子冲击阴极材料,使靶材原子从其表面沉积下来。而且加大被溅射的阴阳表面可提高纳米微粒的获得量。该方法可有效控制多种高熔点和低熔点的纳米金属;能制备多组元的化合物纳米颗粒。 1.1.3 高能机械球磨法[1] 高能球磨法是近年来发展起来的一种制备纳米粉体材料的方法,该方法尤其是在制备合金粉末方面具有良好的工业应用前景。它是将欲合金化的元素粉末混合起来,在高能球磨机长时间运转,将回转机械能传递给金属粉末,依靠求魔过程中粉末的塑形变形产生复合,并发生扩散和固态反应而形成合金粉末。由于该过程引入大量的粉末颗粒应变、缺陷以及纳米量级的微结构,使合金过程的热力学和动力学不同于普通的固态反应过程,有可能制备出常规液态或气相难以合成的新型合金。此外,通过高能机械球磨中气氛的控制与外部磁场的引入,使这一技术得到了较大的发展。 1.2 化学法

相关文档