文档视界 最新最全的文档下载
当前位置:文档视界 › 气相色谱实验报告

气相色谱实验报告

气相色谱实验报告
气相色谱实验报告

气相色谱实验报告

姓名:XXX 专业:有机化学学号:312070303004 时间:2012.10.26

一、实验目的:

1.了解气相色谱的仪器组成、工作原理及数据采集、数据分析的基本操作。

2.学习纯物质对照法定性和归一化法定量的分析方法。

3.掌握气相色谱的定性、定量分析方法。

二、实验原理:

气相色谱方法是利用试样中各组份在气相和固定液相间的分配系数不同将混合物分离、测定的仪器分析方法,特别适用于分析含量少的气体和易挥发的液体。当汽化后的试样被载气带入色谱柱中运行时,组份就在其中的两相间进行反复多次分配,由于固定相对各组份的吸附或溶解能力不同,因此各组份在色谱柱中的运行速度就不同,经过一定的柱长后,便彼此分离,按流出顺序离开色谱柱进入检测器,被检测,在记录器上绘制出各组份的色谱峰——流出曲线。在色谱条件一定时,任何一种物质都有确定的保留参数,如保留时间、保留体积及相对保留值等。因此,在相同的色谱操作条件下,通过比较已知纯样和未知物的保留参数或在固定相上的位置,即可确定未知物为何中种物质。测量峰高或峰面积,采用外标法、内标法或归一化法,可确定待测组分的质量分数。

三、气相色谱法的特点:

1、分离效能高。对物理化学性能很接近的复杂混合物质都能很好地分离,进行定性、定量检测。有时在一次分析时可同时解决几十甚至上百个组分的分离测定。

2、灵敏度高。能检测出ppm级甚至ppb级的杂质含量。

3、分析速度快。一般在几分钟或几十分钟内可以完成一个样品的测定。

4、应用范围广。气相色谱法可以分析气体、易挥发的液体和固体样品。就有机物分析而言,应用最为广泛,可以分析约20%的有机物。此外,某些无机物通过转化也可以进行分析。

四、气相色谱仪的组成:

气相色谱仪由气源系统、进样系统、色谱柱系统、检测器系统、记录器系统、温控系统六部分组成。

1、气源系统:气源分载气和辅助气两种,载气是携带分析试样通过色谱柱,提供试样在柱内运行的动力,辅助气是提供检测器燃烧或吹扫用。

2、进样系统:进样系统的作用是接受样品,使之瞬间气化,将样品转移至色谱柱中。

3、色谱柱柱系统:试样在柱内运行的同时得到所需要的分离。色谱仪的核心部件,分为填充柱和毛细管柱。

4、检测系统:对柱后已被分离的组分进行检测,检测器的作用是指示与测量载气流中已分离的各种组分,即检测器是测定流动相中的组分的敏感器,因而是色谱仪的关键部件之一。

5、数据采集及处理系统:采集并处理检测系统输入的信号,给出最后试样定性和定量结果。

6、温控系统:控制并显示进样系统、柱箱、检测器及辅助部分的温度。

五、仪器、试剂:

气相色谱仪、进样针、丙酮、待测样品

六、实验步骤:

1.通氮气,启动主机:开启气源(高压钢瓶或气体发生器),接通载气,燃气,助燃气, 调整气体流量,氮气、氢气和空气分别稳定在0.5Mpa、0.4Mpa和0.4Mpa左右。打开气相色谱仪主机电源,打开计算机电源开关,联机,打开色谱工作站。

2.调节色谱条件:按色谱条件进行条件设置,使温度升至一定数值。

3. 用微量注射器准确抽取0.5μL溶液,快速注射入进样口。

4. 色谱峰记录与处理,色谱工作站自动获得积分峰面积、峰高、保留时间等数据。5.实验结束后退出,调节氢气、空气流量为零,随后关闭氢-空发生器,待柱温和检测器降到60℃后关闭色谱仪,最后将氮气钢瓶关闭。

七、实验数据处理、分析:

数据处理:

名称保留时间峰面积峰高

苯胺 2.53112.95192 2.83852

硝基苯 3.561 3.70013 1.26669

对氯苯胺 4.0744355.4341763.46094对氯硝基苯 4.3354261.8661830.43359

分析:利用面积归一法计算样品的转化率及选择

转化率=(总面积-原料的面积)/总面积

选择性=某样品的峰面积/产物总面积

名称选择性

苯胺0.29624%

硝基苯0.08463%

对氯苯胺99.619%

转化率=(8633.95205-4261.86621)/8633.95205=0.50638

气相色谱法实验报告记录

气相色谱法实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

实验五—气相色谱法实验 姓名:张瑞芳 学号:2013E8003561147 班级:化院413班 培养单位:上海高等研究院 指导教师:李向军 组别:2013年12月30日第二组

气相色谱法实验 一、实验目的 1.了解气相色谱仪的各部件的功能。 2.加深理解气相色谱的原理和应用。 3.掌握气相色谱分析的一般实验方法。 4.学会使用FID气相色谱对未知物进行分析。 二、实验原理 1.气相色谱法基本原理 气相色谱的流动向为惰性气体,气-固色谱法中以表面积大且具有一定活性的吸附剂作为固定相。当多组分的混合样品进入色谱柱后,由于吸附剂对每个组分的吸附力不同,经过一定时间后,各组分在色谱柱中的运行速度也就不同。吸附力弱的组分容易被解吸下来,最先离开色谱柱进入检测器,而吸附力最强的组分最不容易被解吸下来,因此最后离开色谱柱。如此,各组分得以在色谱柱中彼此分离,顺序进入检测器中被检测、记录下来。气相色谱仪器框图如图1所示: 图1.气相色谱仪器框图 仪器均由以下五个系统组成:气路、进样、分离、温度控制、检测和记录系统。 2.气相色谱法定性和定量分析原理 在这种吸附色谱中常用流出曲线来描述样品中各组分的浓度。也就是说,让

分离后的各组分谱带的浓度变化输入换能装置中,转变成电信号的变化。然后将电信号的变化输入记录器记录下来,便得到如图2的曲线。它表示组分进入检测器后,检测器所给出的信号随时间变化的规律。它是柱内组分分离结果的反映,是研究色谱分离过程机理的依据,也是定性和定量的依据。 图2.典型的色谱流动曲线 3.FID的原理 本次试验所用的为氢火焰离子化检测器(FID),它是以氢气和空气燃烧的火焰作为能源,利用含碳有机物在火焰中燃烧产生离子,在外加的电场作用下,使离子形成离子流,根据离子流产生的电信号强度,检测被色谱柱分离出的组分。 三.实验试剂和仪器 (1)试剂:甲醇、异丙醇、异丁醇 (2)仪器:气相色谱仪带氢火焰离子化检测器(GC-2014气相色谱仪); 氢-空发生器(SPH-300氢气发生器)、氮气钢瓶; 色谱柱; 微量注射器。 四.实验步骤 1.打开稳定电源。 2.打开N2钢瓶(减压阀),以N2为载气,开始通气,检漏;调整柱前压约为 0.12MPa。

气相色谱实验报告word精品

气相色谱实验报告 一、实验目的 1、了解气相色谱仪的基本结构及掌握分离分析的基本原理; 2、了解顶空气相色谱法; 3、了解影响分离效果的因素; 4、掌握定性、定量分析与测定的方法。 二、实验原理气相色谱分离是利用上试样中各组分在色谱柱中的气相和固定相间的分配系数不同,当气 化后的试样被载气带入色谱柱进行时,组分就在其中的两相中进行反复多次的分配,由于固定相各个组分的吸附或溶解能力不同,因此各组分在色谱柱中的运行速度就不同。经过 一定的柱长后,使彼此分离,顺序离开色谱柱进入检测器。检测器将各组分的浓度或质量的变化转换成一定的电信号,经过放大后在记录仪上记录下来,即可得到各组分的色谱峰。根据保留时间和峰高或峰面积,便可进行定性和定量的分析。 (1)顶空色谱法及其原理介绍顶空气相色谱是指对液体或固体中的挥发性成分进行气相色谱分析的一种间接测定法,它是在热力学平衡的蒸气相与被分析样品同时存在于一个密闭系统中进行的。这一方法从气相色谱仪角度讲,是一种进样系统,即“顶空进样系统” 。其原理如下: 一个容积为V、装有体积为V o浓度为0)的液体样品的密封容器,在一定温度下达到平衡时,气相体积为Vg,液相体积为Vs,气相样品浓度为Cg,液相中样品浓度为Cs,贝平衡常数K=Cs/Cg 相比3 =Vg/Vs V=Vs+Vg=V o+Vg 又因为是密封容器,所以 C o V o=CoVs=CsVs+CgVg= KCgVs + CgVg C o=KCg+CgVg/Vs=KCg+ 3 Cg=Cg()K+ 3 Cg=C0/(K+ 3 = K'(C 可见, 在平衡状态下, 气相组成与样品原组成为正比关系, 根据这一关系我们可以进行定性和定量分析。(2)顶空色谱法的优点 顶空色谱进样器可与国内外各种气相色谱仪相连接, 它是将液体或固体样品中的挥发性组分直接导入气相色谱仪进行分离和检测的理想进样装置。 它采用气体进样,可专一性收集样品中的易挥发性成分,与液-液萃取和固相萃取相比 既可避免在除去溶剂时引起挥发物的损失, 又可降低共提物引起的噪音, 具有更高灵敏度和分析速度,对分析人员和环境危害小,操作简便,是一种符合“绿色分析化学”要求的分析手段。固相萃取和液相萃取时不可避免地带入共萃取物干扰分析。顶空分析可看成是气相萃

色谱分析仪基础知识培训

在线色谱分析仪基础知识 色谱法,又称色层法或层析法,是一种物理化学分析法,它利用不同溶质(样品)与固定相和流动相之间的作用力(分配、吸附、离子交换等)的差别,当两相做相对移动时,各溶质在两相间进行多次平衡,使各溶质达到相互分离。它的英文名称为:chromatography 这个词来源于希腊字chroma和graphein,直译成英文时为color和writing两个字;直译成中文为色谱法。但也有人意译为色层法或层析法。 1906年由俄国科学家茨维特研究植物色素分离,提出色谱法概念;他在研究植物叶的色素成分时,将植物叶子的萃取物倒入填有碳酸钙的直立玻璃管,然后加入油醚使其自由流下,结果色素中各组分互相分离形成各种不同颜色的谱带。按光谱的命名式,这种法因此得名为色谱法。以后此法逐渐应用于无色物质的分离,“色谱”二字虽已失去原来的含义,但仍被人们沿用至今。 茨维特经典色谱分析实验示意图 9.1基础知识 固定相——色谱法中,静止不动的一相(固体或液体)称为固定相(stationary phase);流动相——运动的一相(一般是气体或液体)称为流动相(mobile phase)。 按固定相的几形式色谱分析法分为: 柱色谱法(column chromatography)

柱色谱法是将固定相装在一金属或玻璃柱中或是将固定相附着在毛细管壁上做成色谱柱,试样从柱头到柱尾沿一个向移动而进行分离的色谱法。目前在线色谱仪采用的是柱色谱法。 纸色谱法(paper chromatography) 纸色谱法是利用滤纸作固定液的载体,把试样点在滤纸上,然后用溶剂展开,各组分在滤纸的不同位置以斑点形式显现,根据滤纸上斑点位置及大小进行定性和定量分析。 薄层色谱法(thin-layer chromatography, TLC) 薄层色谱法是将适当粒度的吸附剂作为固定相涂布在平板上形成薄层,然后用与纸色谱法类似的法操作以达到分离目的。 简单的说,色谱分析仪就是基于色谱法原理用色谱柱先将混合物分离开来,然后再用检测器对各组分进行检测。与前面介绍的几种气体成分分析仪不同,色谱分析仪能对被测样品进行全面的分析,既能鉴定混合物中的各种组分,还能测量出各组分的含量。因此色谱分析仪在科学实验和工业生产中应用的越来越广泛。 色谱分离基本原理: 由以上法可知,在色谱法中存在两相,一相是固定不动的,我们把它叫做固定相;另一相则不断流过固定相,我们把它叫做流动相。 色谱法的分离原理就是利用待分离的各种物质在两相中的分配系数、吸附能力等亲和能力的不同来进行分离的。 使用外力使含有样品的流动相(气体、液体)通过一固定于柱中或平板上、与流动相互不相溶的固定相表面。当流动相中携带的混合物流经固定相时,混合物中的各组分与固定相发生相互作用。 由于混合物中各组分在性质和结构上的差异,与固定相之间产生的作用力的大小、强弱不同,随着流动相的移动,混合物在两相间经过反复多次的分配平衡,使得各组分被固定相保留的时间不同,从而按一定次序由固定相中先后流出,色谱柱的出口安装一个检测器,当有组分从色谱柱流入检测器中,检测器将输出对应于该组分浓度人小的电信号,通过记录仪把各个组分对应的输出信号记录下来,就形成了色谱图,如下图所示。根据各组分在色谱图中出现的时问以及峰值大小可以确定混合物的组成以及各组分的浓度。

气相色谱法实验报告

气相色谱定性和定量分析实验报告 班级 姓名 学号: 成绩: 一、实验目的 1.熟悉气相色谱仪的工作原理及操作流程; 2.能够根据保留值对物质进行定性分析; 3.能够对物质进行定量分析 二、实验原理 气相色谱法是一种用以分离、分析多组分混合物极有效的分析方法。它是基于被测组分在两相间的分配系数不同,从而达到相互分离的目的。在混合物分离以后,利用已知物保留值对各色谱峰进行定性是色谱法中最常用的一种定性方法。它的依据是在相同的色谱条件下,同一物质具有相同的保留值,利用已知物的保留时间与未知组分的保留时间进行对照时,若两者的保留时间相同,则认为是相同的化合物。 气相色谱法分离分析醇系物的基本原理是基于醇系物中各组分在气相和固相两相间分配系数的不同。当试样流经色谱柱时被相互分离,被分离组分依次通过检测器时,浓度(或质量)信号被转换为电信号输出到记录仪,获得醇系物的色谱流出曲线(如图1),完全分离时,可依据流出曲线上各组分对应的色谱峰面积进行定量。 色谱分析的定性方法有多种,当色谱条件固定且完全分离时,采用将未知物的保留值与已知纯试剂(标样)的保留值相对照的方法定性较为简单,两者相同或相近即为同一物质。 实际测定可采用相对保留值is r 代替保留值进行定性分析。 M Rs M Ri Rs Ri is t t t t t t r --=='' 式中:t ’Ri ——被测组分的调整保留时间 t ’Rs ——标准物质的调整保留时间 t Ri ——被测组分保留时间 t Rs ——标准物质的保留时间(热导池检测器的标准物质一般指定为:苯) t M ——死时间 常用的色谱定量方法有归一化法、外标法、内标法。 归一化法是将样品中的所有色谱峰的面积之和除某个色谱峰的面积,即得色谱峰相应组分在混合物中的含量。

气相色谱固定相及其选择

气相色谱固定相及其选择 一、气-固色谱固定相 在气—固色谱法中作为固定相的吸附剂,常用的有非极性的活性炭,弱极性的氧化铝,强极性的硅胶等。它们对各种气体吸附能力的强弱不同,因而可根据分析对象选用。一些常用的吸附剂及其一般用途均可从有关手册中查得。 二、气—液色谱固定相 1.担体 担体(载体)应是一种化学惰性、多孔性的颗粒,它的作用是提供一个大的惰性表面,用以承担固定液,使固定液以薄膜状态分布在其表面上。对担体有以下几点要求: (1)表面应是化学惰性的,即表面没有吸附性或和吸附性很弱,更不能与被测物质越化学反应; (2)多孔性,即表面积较大,使固定液与试样的接触面较大; (3)热稳定性好,有一定的机械强度,不易破碎; (4)对担体粒度的要求,一般希望均匀、细小,这样有利于提高柱效。 气—液色谱中所用担体可分为硅藻土型和非硅藻土型两类。常用的是硅藻土型担体,它又是可分为红色担体和白色担体两种。在分析这些试样时,担体需加以钝化处理,以改进担体孔隙结构,屏蔽活性中心,提高柱效率。处理方法可用酸洗、碱洗、硅烷化等。 2.固定液 A.对固定液的要求 (1)挥发性小,在操作温度下有较低蒸气压,以免流失。 (2)稳定性好,在操作温度下不发生分解。在操作温度下呈液体状态。 (3)对试样各组分有适当的溶解能力,否则被载气带走而起不到分配作用。 (4)具有高的选择性,即对沸点相同或相近的不同物质有尽可能高的分离能力。 (5)化学稳定性好,不与被测物质起化学反应。 B.固定液的分离特征。 固定液的分离特征是选择固定液的基础。固定液的选择,一般根据“相似相溶”原理进行,即固定液的性质和被测组分有某些相似性时,其溶解度就大。如果组分与固定液分子性质(极性)相似,固定液和被测组分两种分子间的作用力就强,被测组分在固定液中的溶解度就大,分配系数就大,也就是说,被测组分在固定液中溶解度或分配系数的大小与被测组分和固定液两种分子之间相互作用的大小有关。 分子间的作用力包括静电力、诱导力、色散力、和氢键力等。 固定液的极性可以采用相对极性P来表示。规定强极性的固定液β, β’氧二丙腈的相对极性P=100,非极性的固定液角鲨烷的相对极性P=0,然后用一对物质正丁烷—丁二烯或环己烷—苯进行试验,分别测定这一对试验物质在β, β’氧二丙腈,角鲨烷及欲测极性固定液的色谱柱上的调整保留值,然后按下列两式计算欲测固定液的相对极性P x: P x=100- q=lg 这样测得的各种固定液的相对极性均在0—100之间,为了便于在选择固定液时参考,又将其分为五级,每20为一级,P在0~+1间为非极性固定液,+1~+2

气相色谱基础学习

气相色谱基础学习

第一章气相色谱简介 1 气相色谱仪的组成 2 气相色谱仪的原理 3 基本术语 4 常用概念 5 气相色谱应用的领域 气相色谱仪的组成 1. 气体 载气:用于传送样品通过整个系统的气体。 检测器气体:某些检测器所需要的支持气体。 2. 进样系统 将样品蒸汽引入载气 3. 色谱柱 实现样品组分的分离 4. 检测器 对流出柱的样品组分进行识别和响应 5. 数据系统 将检测器的信号转换为色谱图,并进行定性、 6. 气相色谱的原理 在色谱法中存在. 两相,一相是固定不动的,我们把它叫做固定相;另一相则不断流过固定相,我们把它叫做流动相。 7. 气相色谱的原理 色谱法的分离原理:. 就是利用待分离的各种物质在两相中的分配系数、吸附能力等亲和能力的不同来进行分离的。使用外力使含有样品的流动相(气体、液体)通过与流动相互不相溶的固定相表面。当流动相中携带的混合物流经固定相时,混合物中的各组分与固定相发生相互作用。由于混合物中各组分在性质和结构上的差异,与固定相之间产生的作用力的大小、强弱不同,随着流动相的移动,混合物在两相间经过反复多次的分配平衡,使得各组分被固定相保留的时间不同,从而按一定次序由固定相中先后流出。按顺序离开色谱柱进入检测器,产生离子流信号经放大后,在工作站中描绘出各组分的色谱峰。 8. 基本术语 保留时间(Retention time):. 组分从进样到出现最大值所需要的时间; 峰面积(Peak Area):从峰的最大值到峰底的距离;

峰高(Peak Heigh):峰与峰底之间包围的面积; 9. 基本术语 分离度(resolution):又称分辨率,两个相邻峰的分离程度,两个组分保留时间之差与其平均半峰宽值比值。R=2(tR2-tR1)/(W1+W2) 固定相、柱温及载气的选择是气相色谱分离条件选择的三个主要方面,用于提高相邻两组分的分离度,在作定量分析时,为了能获得较好的精密度与准确度,应使R≥1.5。 10. 常用概念 噪声:由于各种原. 因引起的基线波动,称为基线噪声。无论在无组分流出还是有组分流出时,这种波动均存在。它是一种背景信号。噪声分短期和长期噪声二类。 漂移:基线随时间单方向的缓慢变化,称基线漂移。 响应值:组分通过检测器产生的信号。该值取决于组分的性质和浓度。气相色谱分析是用各组分的响应值(峰面积或峰高)来定量的。为此,必须掌握各组分在不同检测器上的响应特征。 相对响应因子:又称相对响应值(s)就是表明组分响应特征的指标。它是指某一组分与相同量参比物质,两者响应值之比。 灵敏度:指通过检测器物质的量变化时,该物质响应值的变化率。 . 检测限:将产生两倍噪声信号时,单位体积的载气或单位时间内进入检测器的组分量 称为检测限。 线性:不同类型检测器的响应值与进入检测器组分浓度、质量或质量流量之间的关系。 线性范围:进入检测器的组分量与其响应值保持线性关系,或是灵敏度保持恒定所覆 盖的区间。 11. 气相色谱应用的领域 GC是一种极为广泛. 和重要的分析方法,范围从石油化工、环境保护,到食品分析、医疗卫生等 第二章气相色谱仪的主要组成部分 1 气路部分 2 进样口 3 色谱柱 4 检测器 1. 气路 气体:载气(用于. 传送样品通过整个系统的气体)和检测器气体(部分检测器所需要的支持气体)。

气相色谱柱固定相简介及使用温度

气相色谱柱固定相简介及使用温度 毛细管色谱柱最常用的是聚硅氧烷和聚乙二醇,另外还有一类是小的多孔粒子组成的聚合物或沸石(例如氧化铝、分子筛等)。 1、聚硅氧烷 聚硅氧烷由于其用途广泛、性能稳定性,是最常用的固定相。标准的聚硅氧烷是由许多单个的硅氧烷链接而成。每个硅原子与两个功能集团相连,最常见的功能集团为甲基和苯基,此外还有氰丙基和三氟丙基。些功能集团的类型和数量决定了色谱柱固定相的性质。最基本的聚硅氧烷是由100%甲基取代的,相应的柱子牌号有:HP-1、BP-1、DB-1、SE-30等。若有其他取代基取代甲基时,该取代基的数量一般由一个百分数来表示。例如:5%二苯基-95%二甲基聚硅氧烷表示其包含有5%的苯基集团和95%的甲基集团(“二”是表示每个硅原子包含有两个特定集团)。相应的柱子牌号有:HP-5、BP-5、DB-5、SE-54等。如果甲基的百分数没有表征,则表示它们的含量是100%(如50%苯基-甲基聚硅氧烷表示甲基的含量为50%)。相应的柱子牌号有:HP-50+、BPX-200、DB-17等。 2、聚乙二醇 聚乙二醇是另外一类广泛应用的固定相。有些我们称之为“W AX”或“FFAP”。聚乙二醇的稳定性、使用温度范围都比聚硅氧烷要差一些。聚乙二醇固定相色谱柱的寿命较短,而且容易受温度和环境(有氧环境等)的影响。但由于它的极性比较强,对极性物质有特殊的分离效能,所以仍是我们常用的固定相之一。为了提高分离效能,还有用pH阳离子改性聚乙二醇固定相。FFAP柱就是一类用对苯二甲酸改性的聚乙二醇作为固定相的(DB-FFAP)。这种色谱柱常用于分析分离酸性化合物。另外,我们也用碱性化合物对聚乙二醇固定相改性用来分

气相色谱固定相及使用注意事项

气相色谱柱常用的固定液 一、非极性 1、100%Dimethyl polysiloxane,100%聚二甲基硅氧烷,商品名:AC1,OV-10 1,OV-1,DB-1,SE-30,HP-1,RTX-1,BP-1 二、弱极性 2、5%Phenyl dimethyl polysiloxane, 5%二苯基(95%)二甲基聚硅氧烷,商品名:AC5,SE-52, 3、5% Phenyl 1%vinyl dimethyl polysiloxane,5%二苯基1%乙烯基(94%)二甲基聚硅氧烷,商品名:OV-5,DB-5,SE-54,HP-5,RTX-5,BP-5 注:2、3常无严格区分,通常混称。 三、中等极性 4、50%Phenyl dimethyl polysiloxane, 50%二苯基(50%)二甲基聚硅氧烷,商品名:OV-17,HP-50,RTX-50 5、14%Cyanopropyl phenyl polysiloxane, 14%氰丙基苯基(其中7%氰丙基7%苯基)(86%)二甲基聚硅氧烷,商品名:AC10,OV-1701,DB-1701,RTX-1701 6、50% Cyanopropyl phenyl polysiloxane,50%氰丙基苯基(其中25%氰丙基2 5%苯基)(50%)二甲基聚硅氧烷,商品名:AC225,OV-225,BP-225,DB-225,HP-225,RTX-225 四、强极性 7、polyethylene glycol,聚乙二醇,商品名:AC20,PEG20M,HP-INNOWAX(F FAP是其与2-硝基对苯二甲酸的反应产物) 气相色谱使用注意事项 一、进样应注意问题 手不要拿注射器的针头和有样品部位、不要有气泡(吸样时要慢、快速排出再慢吸,反复几次,10ul注射器金属针头部分体积0.6ul,有气泡也看不到,多吸1-2ul把注射器针尖朝上气泡上走到顶部再推动针杆排除气泡,(指10ul注射器,带芯子注射器平感觉)进样速度要快(但不易特快),每次进样保持相同速度,针尖到汽化室中部开始注射样品。 二、安装色谱柱 1.安装拆卸色谱柱必须在常温下。 2.填充柱有卡套密封和垫片密封,卡套分三种,金属卡套,塑料卡套,石墨卡套,安装时不易拧的太紧。垫片式密封每次按装色谱柱都要换新的垫片(岛津色谱是垫片密封)。 3.色谱柱两头是否用玻璃棉塞好。防止玻璃棉和填料被载气吹到检测器中。 4.毛细管色谱柱安装插入的长度要根据仪器的说明书而定,不同的色谱汽化室结构不同,所以插进的长度也不同。需要说明的如果你用毛细管色谱柱采用不分流,汽化室采用填充柱接口这时与汽化室连接毛细管柱不能探进太多,略超出卡套即可。 三、氢气和空气的比例对FID检测器的影响 氢气和空气的比例应1:10,当氢气比例过大时FID检测器的灵敏度急剧下降,在使用色谱时别的条件不变的情况下,灵敏度下降要检查一下氢气和空气流速。氢气和空气有一种气体不足点火时发出“砰”的一声,随后就灭火,一般当你点火电着就灭,再点还着随后又灭是氢气量不足。 四、使用TCD检测器

气相色谱理论基础

气相色谱理论基础 原理分类 【情节1】食品添加剂的检测,一个学生进入自选超市,拿起一袋零食,包装袋上有各种成分的含量,这些含量是怎么检测出来的呢?通常由两种方法:一种是先将各组分分离开,然后对已分离的组分进行测定;另一种是不需将组分分离开,直接对感兴趣的组分进行测定。其中第一种分离、分析方法也就是常用的色谱法。近代首先认识到这种分离现象和分离方法大有可为的是俄国的植物学家茨维特。 【知识点1】茨维特的经典实验 1906年,俄国植物学家茨维特(M.S.Tswett)在研究植物色素的过程中,做了一个经典的实验;在一根玻璃管的狭小一端塞上一小团棉花,在管中填充沉淀碳酸钙,这就形成了一个吸附柱,然后将其与吸滤瓶连接,使绿色植物叶子的石油醚抽取液自柱通过。结果植物叶子中的几种色素便在玻璃柱上展开:留在最上面的是两种叶绿素;绿色层下面接着叶黄质;随着溶剂跑到吸附层最下层的是黄色的胡萝卜

素。 如此则吸附柱成了一个有规则的、与光谱相似的色层。接着他用纯溶剂淋洗。使柱中各层进一步展开,达到清晰的分析。然后把该潮湿的吸附柱从玻璃管中推出,依色层的位置用小刀切开,于是各种色素就得以分离。再用醇为溶剂将它们分别溶下,即得到了各成分的纯溶液。 【思考题1】俄国植物学家茨维特用于分离植物色素的色谱法属()色谱法。 【情节2】气相色谱法可比喻为一群运动员在一条泥泞的道路顺风赛跑,他们同时起跑后,因本身体力差异及道路、风力的影响,相互间的距离逐渐增大,最后于不同的时间到达终点。若把欲分离的组分视为运动员,固定相与流动相各为道路上的泥泞与顺风,色谱柱为道路,那么可以将色谱法分离、分析的原理写成:利用组分在体系中固定相与流动相的分配有差异,当组分在两相中反复多次进行分配并随流动相向前移动,各组分沿色谱柱运动的速度就不同,分配系数小的组分较快地从色谱柱流出。 【知识点2】分类和基本原理一 气相色谱法是以惰性气体(又称载气)作为流动相,以固定液或固体吸附剂作为固定相的色谱法。 气相色谱法按不同的分类方式可分为不同的类别: (1)气相色谱法按使用固定相的类型分为气液色谱法和气固色谱法。

气相色谱法挥发性有机物测定实验报告

GC-MS测定挥发性有机物实验报告 专业:环境工程学号:1233351 姓名:刘鹏一、实验方法 进样器参数设定如下: 用预溶剂冲洗次数: 3 用溶剂冲洗次数: 3 用样品冲洗次数: 2 柱塞速度: 高粘度补偿时间: 0.2 sec 柱塞进样速度: 高进样器进样速度: 高注射模式: 一般抽吸次数: 5 进样口停留时间: 0.3 sec 尾部空气间隙: 否活塞吹扫速度: 高清洗体积: 8uL 注射器吸入位置: 1.0 mm 注射器注射位置: 0.0 mm 使用3个溶剂瓶: 1个瓶 [GC-2010] 柱箱温度:30.0℃进样温度:250.00℃进样模式:分流 流量控制模式:线速度压力:45.6 kPa 总流量:14.0 mL/min 柱流量:1.00 mL/min 线速度:35.9 cm/sec 吹扫流量:3.0 mL/min 分流比:10.0 高压进样模式:关载气节省器:关分流阻尼固定:关 柱温箱: 是SPL1: 是MS: 是 < 检测器(FTD)检查完毕> < 基线移动检查完毕> < 进样流量检查完毕> SPL1 载气: 是SPL1 吹扫: 是 < APC流量检查完毕> < 检测器APC流量检查完毕> 外部等待:否平衡时间: 2.0 min [GC 程序] [GCMS-QP2010 SE] 微扫描半峰宽:0.00 amu 离子源温度:200.00 ℃接口温度:250.00 ℃ 溶剂延迟时间:2.50 min 检测器增益方式:相对检测器增益:0.83 kv +0.00 kV

M 0 0 0 二、标准物质色谱图 三、实验结果 ①实验数据 浓度(ppm)保留时间(min)峰面积20 Chloroform 2.812 57512 Methane, tetrachloro- (CAS) Carbon tetrachloride 3.383 49049 Methane, bromodichloro- 4.068 66435 Methane, dibromochloro- 5.687 75262 Methane, tribromo- (ISTD)7.409 138822 40 Chloroform 2.811 129095 Methane, tetrachloro- (CAS) Carbon tetrachloride 3.376 111609 Methane, bromodichloro- 4.071 129212 Methane, dibromochloro- 5.694 182065 Methane, tribromo- (ISTD)7.414 162528 60 Chloroform 2.812 189860 Methane, tetrachloro- (CAS) Carbon tetrachloride 3.373 151922 Methane, bromodichloro- 4.075 193871 Methane, dibromochloro- 5.702 254807 Methane, tribromo- (ISTD)7.419 155012 80 Chloroform 2.806 235776 Methane,tetrachloro-(CAS)Carbon tetrachloride 3.366 178609 Methane, bromodichloro- 4.072 244831 Methane, dibromochloro- 5.706 334295 Methane, tribromo- (ISTD)7.421 151093 100 Chloroform 2.812 350007 Methane, tetrachloro- (CAS) Carbon tetrachloride 3.367 265810 Methane, bromodichloro- 4.08 354933 Methane, dibromochloro- 5.712 440660

醇系物的气相色谱分析——归一化法定量

江南大学实验报告 实验名称 醇系物的气相色谱分析——归一化法定量 一、实验目的 1、 了解气—固色谱法的分离原理。 2、 学习归一化法定量的基本原理及测定方法。 3、 掌握色谱分析的基本技术。 二、实验原理 气—固色谱法中的固定相是固体吸附剂,其分离是基于吸附剂对各组分气体的吸附能力不同。目前广泛使用的气—固色谱固定相是以二乙烯基苯作为单体,经悬浮共聚所得的交联多孔聚合物,国产商品牌号为GDX 。 醇系物系指甲醇、乙醇、正丙醇、正丁醇等以及这些醇试剂常含有的水分。用GDX —103做固定相,并使用热导池检测器,在一定操作条件下,可使醇系物中的各组分完全分离。 在一定条件下,同系物的半峰宽与保留时间成正比,即 Y 1/2∝t R Y 1/2 =b t R A =hY 1/2=hb t R 在做相对计算时,比例系数又b 可约去,这样就可用峰高与保留时间的乘积来表示同系物峰面积的大小。 使用归一化法定量,要求试样中的各组分都能得到完全分离,并且在色谱图上应能绘出其色谱峰,计算式为 ωi = ∑=n i i i i i A f A f 1 ωi = ∑=n i Ri i i Ri i i t h f t h f 1 归一化法的优点是计算简便,测定准确,结果与进样量无关,且操作条件不需严格控制。但若试样中的组分不能全部出峰,则不能应用此法;若只需测量试样中的一两个组分,应用此法也显得麻烦。

三、仪器和试剂 1、仪器:GC—7890Ⅱ气相色谱仪,秒表,微量进样器。 2、试剂:醇系物混合液。 四、实验步骤 1、色谱柱的准备 2、色谱操作条件 (1)色谱柱:内径:4mm,柱长:2m。 (2)固定相:GDX—103,60~80目。 (3)载气:氮气,流速:20 mL/min-1 (4)检测器:热导池检测器,桥电流:150A,温度:150℃(5)柱温:100℃ (6)气化室温度:150℃ (7)纸速:600mm/h-1 1、2步骤均有实验技术人员完成。 3、混合液进样 用微量取样器按规定量进样,同时测定各组分的保留时间。五、实验结果与分析

气相色谱柱的基本知识

气相色谱柱的基本知识 本文简单介绍了气相色谱柱固定相极性、保留机制、基本柱参数,以及气相柱固定相选择的方法。仅供参考。 1、固定相极性:极性或非极性。相似相容原理:非极性化合物-非极性固定相 80%的应用使用最普遍的固定相:ZB-1、ZB-5、ZB-WAX;其他20%的应用使用特殊固定相。 Q Q 3 0 9 3 3 5 7 4 0 5 2、固定相保留机制:(1)色散力;(2)永久偶极;(3)诱导偶极;(4)H-键合;(5)π-π键合(1)色散力:非极性相互作用,最弱的作用力,按沸点差别分离 对应色谱柱:ZB-1、ZB-1ms、ZB-5、ZB-5ms (2)偶极-偶极:极性相互作用,中等强度,最普遍用于含O、N或卤化的化合物 对应色谱柱:ZB-624、ZB-1701、ZB-wax、ZB-waxplus、ZB-FFAP (3)H-键合:极性相互作用,最强的相互作用(有时是不利的) 对应色谱柱:ZB-wax、ZB-waxplus、ZB-FFAP (4)π-π作用:π电子的相互作用,中等强度,如芳香族、腈类、羰类和烯/炔 对应色谱柱:ZB-5、ZB-5ms、ZB-35、ZB-50、ZB-624、ZB-1701 3、气相柱基本柱参数,膜厚、柱容量、色谱柱极限温度 图1 色谱柱规格描述 (1)膜厚:一根气相柱的膜厚度会影响到几个重要的色谱参数 ①保留:厚膜柱对低沸点化合物有更强保留 ②柱效:膜越薄柱效越高 ③活性:膜越厚对酸碱的活性越低 ④载样量:膜越厚载样量越大 ⑤流失:膜越薄流失越低 (2)柱容量:色谱柱对溶质可容纳的最大值,超过该值,峰型会发生畸变。 与柱容量相关的因素:①固定相与溶质极性的匹配性;②膜厚;③内径;④柱长

实验报告-气相色谱法测定乙烯含量

实验三气相色谱法测定乙烯含量 1 实验目的 1.1了解气相色谱仪的基本操作; 1.2了解气相色谱仪测定乙烯的原理。 2 实验原理 气相色谱仪器是以气体为流动相。当某一种被分析的多组分混合样品被注入一起后,瞬间气化,样品由流动相载气所携带,经过装有固定相的色谱柱时,由于组分分子与色谱柱内部固定相分子间要发生吸附、脱附、溶解等过程,组分分子在两相间反复多次分配,使混合样品中的组分得到分离。被分离的组分顺序进入检测器系统,由检测器转换成电信号形成色谱图。 乙烯是植物生长过程中自然散发的一种激素,广泛存在于植物的各种组织器官中,具有促进果实成熟的作用。乙烯通过气象色谱柱进行分离,氢火焰离子化检测器检测,外标法定量。 3 实验试剂与仪器 3.1 实验样品:苹果。 3.2实验试剂:20ppm的乙烯标样。 3.3 实验仪器:气相色谱仪附氢火焰离子化检测器(FID)。 4 实验步骤 4.1样品处理:将苹果放入密封罐中,静置待乙烯气体释放并收集。 4.2测定:待仪器准备好后,将样品和标准注入气相色谱中进行分析,以标准溶 液峰的保留时间作为定性的依据,以其面积求出样品中被测定的乙烯的含量。 4.3色谱条件 色谱柱:毛细管柱;载气速度:1mL/min;进样量:5μL; 进样口温度:130℃;检测器温度:230℃;柱温:80℃ 5 实验结果与讨论 5.1实验结果 气相色谱仪测定样品苹果中的乙烯含量结果见下表1。本次实验采用的是单点法测定。 表1. 气象色谱仪测定苹果的乙烯含量 进样量保留时间峰面积 乙烯标样10μL 2.497min 181254 苹果20μL 2.682min 5868765.4 乙烯标样的浓度=20ppm 苹果的乙烯的浓度=乙烯标样的总量×苹果的峰面积/乙烯标样的峰面积

气相色谱法测定丙酸的浓度 实验报告

气相色谱法测定丙酸的浓度 一、实验目的: 1、了解气相色谱法的基本原理,掌握气相色谱仪的操作方法。 2、学会用气相色谱法测定未知样品的浓度。 二、实验原理: 气相色谱仪在石油、化工、生物化学、医药卫生、食品工业、环保等方面应用很广。它除用于定量和定性分析外,还能测定样品在固定相上的分配系数、活度系数、分子量和比表面积等物理化学常数。一种对混合气体中各组成分进行分析检测的仪器。 气相色谱法主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的 色谱仪利用色谱柱先将混合物分离,然后利用检测器依次检测已分离出来的组分。色谱柱的直径为数毫米,其中填充有固体吸附剂或液体溶剂,所填充的吸附剂或溶剂称为固定相。与固定相相对应的还有一个流动相。流动相是一种与样品和固定相都不发生反应的气体,一般为氮或氢气。待分析的样品在色谱柱顶端注入流动相,流动相带着样品进入色谱柱,故流动相又称为载气。载气在分析过程中是连续地以一定流速流过色谱柱的;而样品则只是一次一次地注入,每注入一次得到一次分析结果。样品在色谱柱中得以分离是基于热力学性质的差异。固定相与样品中的各组分具有不同的亲合力(对气固色谱仪是吸附力不同,对气液分配色谱仪是溶解度不同)。当载气带着样品连续地通过色谱柱时,亲合力大的组分在色谱柱中移动速度慢,因为亲合力大意味着固定相拉住它的力量大。亲合力小的则移动快。4根柱管实际上是一根,只是用来表示样品中各组分在不同瞬间的状态。样品是由A、B、C3个组分组成的混合物。在载气刚将它们带入色谱柱时,三者是完全混合的,如状态(Ⅰ)。经过一定时间,即载气带着它们在柱中走过一段距离后,三者开始分离,如状态(Ⅱ)。再继续前进,三者便分离开,如状态(Ⅲ)和(Ⅳ)。固定相对它们的亲合力是A>B>C,故移动速度是C>B>A。走在最前面的组分C首先进入紧接在色谱柱后的检测器,如状态(Ⅳ),而后A和B 也依次进入检测器。检测器对每个进入的组分都给出一个相应的信号。将从样品注入载气为计时起点,到各组分经分离后依次进入检测器,检测器给出对应于各组分的最大信号(常称峰值)所经历的时间称为各组分的保留时间tr。实践证明,在条件(包括载气流速、固定相的材料和性质、色谱柱的长度和温度等)一定时,不同组分的保留时间tr也是一定的。因此,反过来可以从保留时间推断出该组分是何种物质。故保留时间就可以作为色谱仪器实现定性分析的依据。

第二章 气相色谱分析习题参考答案

第二章 气相色谱分析课后习题参考答案(P 60页) 1、简要说明气相色谱分析的分离原理。 借在两相间分配原理而使混合物中各组分分离。气相色谱就是根据组分与固定相与流动相的亲和力不同而实现分离。组分在固定相与流动相之间不断进行溶解、挥发(气液色谱),或吸附、解吸过程而相互分离,然后进入检测器进行检测。 2、气相色谱仪的基本设备包括哪几部分?各有什么作用? 气路系统、进样系统、分离系统、温控系统以及检测和记录系统。气相色谱仪具有一个让载气连续运行,管路密闭的气路系统;进样系统包括进样装置和气化室。其作用是将液体或固体试样,在进入色谱柱前瞬间气化,然后快速定量地转入到色谱柱中;分离系统完成对混合样品的分离过程;温控系统是精确控制进样口、汽化室和检测器的温度;检测和记录系统是对分离得到的各个组分进行精确测量并记录。 3、当下列参数改变时:(1)柱长缩短,(2)固定相改变,(3)流动相流速增加,(4)相比减少,是否会引起分配系数的改变?为什么? 分配系数只与组分的性质及固定相与流动相的性质有关。所以(1)柱长缩短不会引起分配系数改变;(2)固定相改变会引起分配系数改变;(3)流动相流速增加不会引起分配系数改变;(4)相比减少不会引起分配系数改变。 4、当下列参数改变时:(1)柱长增加,(2)固定相量增加,(3)流动相流速减小,(4)相比增大,是否会引起分配比的变化?为什么? βK m m k M S == ;而S M V V =β,分配比除了与组分、两相的性质、柱温、柱压有关外,还与相比有关,而与流动相流速、柱长无关。故(1)不变化;(2)增加;(3)不改变;(4)减小。 5、试以塔板高度H 做指标,讨论气相色谱操作条件的选择。 提示:主要从速率理论(范弟姆特Van Deemter )来解释,同时考虑流速的影响,选择最佳载气流速(P 13-24)。(1)选择流动相最佳流速。(2)当流速较小时,可以选择相对分子质量较大的载气(如N 2,Ar),而当流速较大时,应该选择相对分子质量较小的载气(如H 2,He )同时还应该考虑载气对不同检测器的适应性。(3)柱温不能高于固定液的最高使用温度,以免引起固定液的挥发流失。在使最难分离组分能尽可能好的分离的前提下,尽可能采用较低的温度,但以保留时间适宜,峰形不拖尾为度。(4)固定液用量:担体表面积越大,固定液用量可以越高,允许的进样量也越多,但为了改善液相传质,应使固定液膜薄一些。(5)对担体的要求:担体表面积要大,表面和孔径均匀。粒度要求均匀、细小(但不宜过小以免使传质阻力过大)。(6)进样速度要快,进样量要少,一般液体试样0.1~5 μL ,气体试样0.1~10 mL 。(7)气化温度:气化温度要高于柱温30~70 ℃。 6、试述速率方程中A ,B ,C 三项的物理意义。H –u 曲线有何用途?曲线的形状受哪些主要因素的影响? 参见教材(P 14-16)。A 称为涡流扩散项,B 为分子扩散系数,C 为传质阻力系数。 下面分别讨论各项的意义: (1)涡流扩散项A 。气体碰到填充物颗粒时,不断地改变流动方向,使试样组分在气相中形成类似“涡流”的流动,因而引起色谱峰的扩张。由于A = 2 λ·d p ,表明A 与填充物的平均颗粒直径d p 的大小和填充的不均匀性λ有关,而与载气性质、线速度和组分无关,因此使用适当细粒度和颗粒均

气相色谱基础知识

气相色谱基本知识 1、什么是气相色谱法 以气体为流动相(称载气)的色谱分析法称气相色谱法(GC )。 2.、气相色谱是基于时间的差别进行分离 在加温的状态下使样品瞬间气化,由载气带入色谱柱,由于各组分在固定相与流动相(载气)间相对吸附能力/保留性能不同而在两相间进行分配,在色谱柱中以不同速度移动,经一段时间后得到分离,再依次被载气带入检测器,将各组分的浓度或质量转换成电信号变化并记录成色谱图,每一个峰代表最初混合物中不同的组分。峰出现的时间称为保留时间(t R ),可以用来对每个组分进行定性,根据峰的大小(峰面积)对每个组分进行定量。 涉及的几个术语: 固定相(stationary phase ): 在色谱分离中固定不动、对样品产生保留的一相; 流动相(mobile phase ):与固定相处于平衡状态、带动样品向前移动的另一相; 色谱图:若干物质的流出曲线,即在不同时间的浓度或响应大小; 保留时间 (retention time ,t R ):样品注入到色谱峰最大值出现的时间; 3、气相色谱法特点 3.⒈选择性高:能分离同位素、同分异构体等物理、化学性质十分相近的物质。 3.⒉分离效能高:一次可进行含有150多个组分的烃类混合物的分离分析。 3.⒊灵敏度高:气相色谱可检测11 10 -~13 10 -g的物质。 3.⒋分析速度快:一般几分钟或几十分钟便可完成一个分析周期。 3.⒌应用范围广:450℃以下有不低于27~330Pa 的蒸气压,热稳定性好的物质。

3.⒍缺点:不适应于大部分沸点高的和热不稳定的化合物;需要有已知标准物作对照。 4、气相色谱系统 主要包括五大系统:载气系统、进样系统、分离系统、检测系统和记录系统。基本流程如下 脱水管限流器 4.1、载气系统: 可控而纯净的载气源。载气从起源钢瓶/气体发生器出来后依次经过减压阀、净化器、气化室、色谱柱、检测器,然后放空。 载气必须是纯洁的(99.999%),要求化学惰性,不与有关物质反应。载气的选择除了要求考虑对柱效的影响外,还要与分析对象和所用的检测器相配。常用的载气有氢气、氮气、氦气等惰性气体。一般用热导检测器时,使用氢气、氦气,其它检测器使用氮气, 净化器:多为分子筛和活性碳管的串联,可除去水、氧气以及其它杂质。 4.2、进样系统: 包括气化室和进样装置,保证样品瞬间完全气化而引入载气流。常以微量注射器(穿过隔膜垫)将液体样品注入气化室。 进样条件的选择:影响色谱的分离效率以及分析结果的精密度和准确度 气化室温度:一般稍高于样品沸点,保证样品瞬间完全气化; 进样量:不可过大,否则造成拖尾峰,进样量不超过数微升;柱径越细,进样量应越少;采用毛细管柱时,应分流进样以免过载; 进样速度(时间):1秒内完成,时间过长可引起色谱峰变宽或变形。 4.3分离系统: 分离系统是色谱分析的心脏部分,是在色谱柱内完成试样的分离,因为大多数分离都强烈

气相色谱法实验报告

气相色谱法实验报告 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

实验五—气相色谱法实验

气相色谱法实验 一、实验目的 1.了解气相色谱仪的各部件的功能。 2.加深理解气相色谱的原理和应用。 3.掌握气相色谱分析的一般实验方法。 4.学会使用FID气相色谱对未知物进行分析。 二、实验原理 1.气相色谱法基本原理 气相色谱的流动向为惰性气体,气-固色谱法中以表面积大且具有一定活性的吸附剂作为固定相。当多组分的混合样品进入色谱柱后,由于吸附剂对每个组分的吸附力不同,经过一定时间后,各组分在色谱柱中的运行速度也就不同。吸附力弱的组分容易被解吸下来,最先离开色谱柱进入检测器,而吸附力最强的组分最不容易被解吸下来,因此最后离开色谱柱。如此,各组分得以在色谱柱中彼此分离,顺序进入检测器中被检测、记录下来。气相色谱仪器框图如图1所示:

图1.气相色谱仪器框图 仪器均由以下五个系统组成:气路、进样、分离、温度控制、检测和记录系统。 2.气相色谱法定性和定量分析原理 在这种吸附色谱中常用流出曲线来描述样品中各组分的浓度。也就是说,让分离后的各组分谱带的浓度变化输入换能装置中,转变成电信号的变化。然后将电信号的变化输入记录器记录下来,便得到如图2的曲线。它表示组分进入检测器后,检测器所给出的信号随时间变化的规律。它是柱内组分分离结果的反映,是研究色谱分离过程机理的依据,也是定性和定量的依据。

图2.典型的色谱流动曲线 的原理 本次试验所用的为氢火焰离子化检测器(FID),它是以氢气和空气燃烧的火焰作为能源,利用含碳有机物在火焰中燃烧产生离子,在外加的电场作用下,使离子形成离子流,根据离子流产生的电信号强度,检测被色谱柱分离出的组分。 三.实验试剂和仪器 (1)试剂:甲醇、异丙醇、异丁醇 (2)仪器:气相色谱仪带氢火焰离子化检测器(GC-2014气相色谱仪); 氢-空发生器(SPH-300氢气发生器)、氮气钢瓶; 色谱柱; 微量注射器。 四.实验步骤

相关文档
相关文档 最新文档