文档视界 最新最全的文档下载
当前位置:文档视界 › 碳纳米管的制备方法概况

碳纳米管的制备方法概况

碳纳米管的制备方法概况
碳纳米管的制备方法概况

文章编号:100320794(2004)0820007202

碳纳米管的制备方法概况

罗 勇,应鹏展,苏慧仙,贾良菊

(中国矿业大学材料科学与工程学院,江苏徐州221008)

摘要:碳纳米管是纳米材料中最富有代表性,并且是性能最优异的材料。碳纳米管自1991

年被发现以来,就立刻引起了人们的广泛关注,碳纳米管的研究已形成目前国际上最热门的研究课题之一。介绍了国内外碳纳米管的发展及制备方法,并对影响碳纳米管制备的一些因素进行了分析。

关键词:碳纳米管;制备;富勒烯中图号:TH14514文献标识码:A

1 引言

纳米材料被誉为是21世纪的重要材料,将是构

成未来智能社会的四大支柱之一,而碳纳米管是纳米材料中最富有代表性,并且是性能最优异的材料。碳纳米管的理论抗拉强度是钢的100倍,而密度仅为钢的1/6。碳纳米管的理论比表面积可达8000m 2/g ,可作为双电层超级电容器的极板材料,达到很高的比功率。采用碳纳米管作为场发射的阴极材料,在逸出功、阈值电压和散热等方面比钼尖锥具有明显的优越

性,因此,在场发射显示器领域有广阔的应用前景。由于碳纳米管具有强度高、重量轻、性能稳定、柔软灵活、导热性好、比表面积大,并具有许多吸引人的电子性质,故在无线电通信、储氢电池、航空航天、军事等各个领域都有着极为广泛的应用。

从1991年多壁碳纳米管首次在电弧放电法生产富勒烯[2]的阴极沉淀物中发现以来,关于碳纳米管的制备就在不断地探索和完善中取得了重大进展。1993年日本的Iijima 在电极中加入铁作为催化剂,在氩气保护下放电打弧制备出了单壁碳纳米管[3]。产物中的单壁碳纳米管直径分布在017~116nm 范围内,最长达700nm 。与此同时,I BM 公司的Bethune 等人采用铁作为催化剂,并尝试镍和钴2种金属,制备出了具有较为一致的直径(直径约为112nm )的单壁碳纳米管,单壁碳纳米管的结构模型如图1所示。

图1 单壁碳纳米管的结构模型

Fig 11 Sketch of single -w alled carbon nanotubes

为了获得产量高、管径均匀、结构缺陷少、杂质含量低、

成本相对低廉、操作方便的制备方法,广大科技工作者进行了不懈的探索。获得大批量的、管径均匀的和高纯度的碳纳米管是研究其性能及应用的基础,而大批量、低成本的合成工艺是碳纳米管实现工业化应用的保证。因此,对碳纳米管制备工艺的研究具有重要的意义。2 碳纳米管的制备方法

碳纳米管是碳异构体家族中的一个新成员,它

可以被看成是由层状结构的石墨片卷成的纳米尺寸的空心管。碳纳米管按层数可分为单壁碳纳米管和多壁碳纳米管。另外,按定向性分类,碳纳米管可分为定向性碳纳米管和非定向性碳纳米管。由于碳纳米管的直径一般在几十纳米以下,而长度则在几百微米或更长。如此高的长径比使碳纳米管在生长过程中会自然发生弯曲且相互缠绕。而控制碳纳米管的合成过程,使其按照一定方向或模式有规律生长,便可得到定向碳纳米管。211 单壁碳纳米管的制备

(1)电弧法

电弧法是制备富勒碳的常用方法,也是制备单壁碳纳米管的传统方法。在真空室中充入一定量的惰性气体,用填充有铁或钴作为催化剂的较细的石墨棒作为阳极,而较粗的石墨棒作为阴极。通过石墨电弧法进行反应,在容器内壁上得到富含单壁碳纳米管的碳灰,经提纯,可以得到单壁碳纳米管。其制备装置如图2所示。

图2 石墨电弧法工艺装置

Fig 12 Schem atic diagram of an app aratus for prep aring

carbon nanotubes by graphite arc method

11真空计 21真空室 31进料系统 41阳极石墨电极 51接真空泵61冷却水气流流通 71阴极石墨电极 81冷却水系统 91惰性气体

电弧法中最典型的是氦气保护石墨电弧法和氢气保护电弧放电法。Journet 等人[4]采用镍、钇复合电极,在氦气保护下,放电数分钟,充分水冷后,在反应内壁上获得橡胶似的碳灰生成物、阴极与内壁间的网状物、阴极端部圆柱状沉淀物及“衣领“状产物,最后获得成批的单壁碳纳米管。中科院沈阳金属研

?

7? 2004年第8期 煤 矿 机 械

究所用氢电弧法,并添加含硫的生长剂,使单壁碳纳米管的纯度和产量大大提高。

电弧法制备单壁碳纳米管的一个重要因素是催化剂的选用,如果不采用催化剂,则不能得到单壁碳纳米管,而采用催化剂,也有可能得到多壁碳纳米管。因此,选择合适的催化剂组合与含量,是电弧法制备单壁碳纳米管研究的主要方向之一。

(2)激光蒸发法

激光蒸发法是在高温电阻炉中,由激光束蒸发石墨靶,采用钴及硫或Al 2O 3载M o 或La 等催化剂,反应得到绳索状的直径均匀的单壁碳纳米管,又称为激光烧蚀法。

Smalley 研究小组在1200℃下用激光蒸发石墨棒,以镍、钴作为催化剂,得到了纯度高达70%的直径均匀的单壁碳纳米管束。

(3)化学气相沉积法

化学气相沉积法是在制备碳纤维的基础上制备单壁碳纳米管的。在制备中,常采用浮动裂解法,在1100~1200℃的温度范围内,以二茂铁为催化剂

,通过其引入量来控制催化剂颗粒的大小和碳氢比,以苯为碳源,添加适量的噻吩可以制得碳纳米管,如图3所示。

图3 化学气相沉积法制备碳纳米管装置图

Fig 13 Schem atic diagram of app aratus for prep aring carbon

nanotubes by chemical vapor deposition

11气体混合 21催化剂 31电源 41石英管 51温度控制 61热电偶

此方法条件较为苛刻,需对反应温度、硫添加量及氢气流量比进行优化,才能得到直径较为均匀的单壁碳纳米管。212 多壁碳纳米管的制备

(1)石墨电弧法

石墨电弧法是最早用于制备多壁碳纳米管的方法,在真空室中充入惰性气体或氢气,采用粗大石墨棒为阴极,细石墨棒为阳极,在电弧放电过程中阳极石墨棒不断被消耗,同时在阴极上沉积出含多壁碳纳米管的产物。

把阴极改为可以冷却的铜电极,在上面接石墨电极,可以避免产物沉积时因温度太高而造成的碳纳米管的烧结,可减少缺陷。而在阳极石墨中间打洞,添加金属元素能有效地提高多壁碳纳米管的产

率。另外,用液氮取代氦气可实现多壁碳纳米管的连续制备,得到高质量的多壁碳纳米管。

(2)激光蒸发法在1200℃的电阻炉中,通过激光蒸发过渡金属与石墨的复合材料棒,用流动的氩气使产物沉积到水冷铜柱上,得到多壁碳纳米管。

由于碳纳米管的稳定性不如球状富勒碳,所以要在一定的外加条件下才能生成。在强电场或低温表面,端部层与层之间的边缘碳原子可以成键,从而是一端开口,促进了多壁碳纳米管的生成。

(3)化学气相沉积法

制备多壁碳纳米管的化学气相沉积法主要有2种:基种催化法和浮动催化法。

基种催化法的原理是用碳氢化合物为碳源,氢气为还原气,在铁、钴和镍基催化剂作用下,在管式电阻炉中裂解原料气形成自由碳原子,在催化剂表面形成多壁碳纳米管。

而浮动裂解法则同单壁碳纳米管制备原理差不多,只是在工艺参数上有所不同,制备出的产物有粗大的多壁碳纳米管和细直的多壁碳纳米管,需要严格控制反应温度、反应溶液量及氢气引入量。

(4)其它制备方法

多壁碳纳米管的制备方法还有热解聚合法、火焰法、电解法、金属材料原位合成法、太阳能法、离子辐射法等,其中又以热解聚合法由于其生长机制与催化裂解法相似,在制备多壁碳纳米管中也有广泛的应用。

热解聚合法是通过热解某些有机金属化合物、聚合物或高分子化合物,从而得到多壁碳纳米管的方法。Cho 等人[5]将柠檬酸和甘醇聚脂化,并将产物在400℃加热,8h 后冷却得到了纯度较高的多壁碳纳米管。

参考文献:

[1]Iijima S 1Helical microtubules of graphitic carbon [J ]1Nature ,1991,

(354):56-58.

[2]Curl R F and Smalley R E 1Fullerenes[J ].Scientific American ,1991,

(10):54-63.

[3]Iijima S ,Ichihashi T 1S ingle -shell carbon nanotubes of 1-nm diameter

[J ]1Nature ,1993,(363):603-605.

[4]Journet C ,M aster W K,Bernier P ,Loiseau A ,Delachapelle M L ,lefrant S ,Deniard P ,Lee R ,fischer J E 1Large -Scale production of single -walled carbon nanotubes by the electric -arc technique[J ]1Na 2ture ,1997,(388):756-758.[5]Cho W S ,Hamada E ,K ondo Y 1Synthesis of carbon nanotubes from bulk polymer[J ]1Appl 1Phys 1Lctt 1,1996,(69):278.

作者简介:罗勇(1981-),四川仁寿人,硕士研究生在读,主要从事纳米氧化物及碳纳米管的制备研究1E -mail :suly0flying @1631com 1

收稿日期:2004202229

The general situation of carbon nanotubes ’preparation

L U O Yong ,YING Peng -zh an ,SU H ui -xian ,JIA Liang -ju

(C ollege of Material Science and Engineering ,China University of Mining and T echnology ,Xuzhou 221008,China )

Abstract :Carbon nanotubes ,which own the best performance as typical representative of nanomaterials ,have drawn a

widespread attention since they was found in 1991,and become one of the m ost hottest programs in the w orld 1In this pa 2per ,the development and the general situation of carbon nanotubes ’preparation were reviewed 1The factors which affect the preparation of carbon nanotubes were als o analyzed 1K ey w ords :carbon nanotubes ;preparation ;fullerene

?

8? 碳纳米管的制备方法概况———罗 勇,等 2004年第8期 

碳纳米管纳米材料的应用要点

碳纳米管及其复合材料在储能电池中的应用 摘要碳纳米管具有良好的机械性能和导电性、高化学稳定性、大表面积以及独特的一维结构,选择合适的方法制备出碳纳米管复合材料,可以使其各种物理化学性能得到增强, 因而在很多领域有着极大的应用前景,尤其是在储能电池中的应用。本文分析了碳纳米管及其复合材料的特点,总结了碳纳米管的储锂机理,对其发展趋势作了展望。 关键词碳纳米管复合材料储能电池应用 Abstract carbon nanotubes(CNTs) are nanometer-sized carbon materials with the characteristics of unique one-dimensional geometric structure,large surface area,high electrical conductivity,elevated mechanical strength and strong chemical inertness. Selecting appropriate methods to prepare carbon nanotube composites can enhance physical and chemical properties , and these composites have a great future in many areas,especially in energy storage batteries . In this paper, based on the analysis and comparison of the advantages and disadvantages of carbon nanotube composites,the enhancement mechanisms of the CNTs catalysts are introduced. Afterward,the lithium ion storage properties are summarized according to the preparation methods of composite materials. Finally, the prospects and challenge for these composite materials are also discussed. Keywords carbon nanotube; composite; energy storage batteries; application 1 引言 碳纳米管(CNTs)在2004 年被人们发现,是一种具有特殊结构的一维量子材料, 它的径向尺寸可达到纳米级, 轴向尺寸为微米级, 管的两端一般都封口, 因此它有很大的强度, 同时巨大的长径比有望使其制作成韧性极好的碳纤维。碳纳米管由于其独特的一维纳米形貌被作为锂离子电池负极材料广泛研究,通过对碳纳米管进行剪切,官能化及掺杂等方法进行改性处理,能有效的减少碳纳米管的首次不可逆容量,增加可逆的储锂比容量。此外,碳纳米管的中空结构也成为抑制高容量金属及金属氧化物体积膨胀理想复合基体。本文中,我们研究了碳纳米管的储锂性能,考察了碳纳米管作为锡类复合材料基体,其内部限域空间对高容量金属及金属氧化物的储锂性能促进的具体原因。该研究结果为碳纳米管以及其他具有限域空间的结构在锂离子电池中的应用提供了参考。 2 碳纳米管的储锂机理和应用 相比广泛应用的石墨类材料,碳纳米管在锂离子电池负极材料中有其独特的应用优势。首先,碳纳米管的尺寸在纳米级,管内及间隙空间也都处于纳米尺寸级,因而具有纳米材料的小尺寸效应,能有效的增加锂离子在化学电源中的反应活性空间;其次,碳纳米管的比表面积较大,能增加锂离子的反应活性位,并且随着

碳纳米管的结构_制备及修饰

科 ● 自Iijima [1]首次用高分辨透射电镜发现碳纳米管(CNTs)后,碳纳米管及其相关材料以其独特的性质、新颖的结构及许多潜在的应用前景引起了人们极大的兴趣和关注,而用纳米材料来修饰和填充碳纳米管成为人们研究的热点之一[2-4]。探索碳纳米管的物理、化学性能及其在各个领域中的应用也成为众多科研工作者研究的目标。碳纳米管的结构比较特殊是由类似于石墨的六边形网络所组成的管状物,独特的纳米中空结构、封闭的拓扑构型及不同的螺旋结构等使其具有大量特殊的优异性能,如导电性好,耐热,机械强度比较高,耐腐蚀,有自润滑性和生物相容性等。这些优异特性使得碳纳米管在复合材料、储氢材料、催化剂材料等方面有着巨大的应用潜力。纳米中空结构使得它有可能作为一种纳米反应器[5]。作为碳家族的新成员,它有合适的孔径分布,便于金属组分更好地分散[6]。它独特而又稳定的结构及形貌,尤其是表面性质,能依据人们的需要进行不同方法的修饰,使其适合作为新型催化剂载体[7-8]。 1 碳纳米管的性质 1.1 碳纳米管的结构 碳纳米管可分为单壁碳纳米管(SWNTs )和多璧碳纳米管(MWNTs )。碳纳米管可看作是由石墨烯层片卷成、直径为纳米尺度的圆桶,其两端由富勒烯半球封帽而成。多壁碳纳米管则是由若干个单层管同心套迭而成的,石墨碳原子中的4个价电子只有3个成键,形成六边形的平面网状结构。这种排列使石墨中的每个碳原子有一个未成对电子,这个未成对电子围绕着这个碳环平面高速运转,因而使石墨具有较好的导电性,碳纳米管中存在大量的六边形结构,当六边形往外逐渐延伸成为五边形时,会造成碳纳米管突出;而形成七边形时碳纳米管则凹进。这样就形成了碳纳米管独特的纳米中空结构、封闭的拓扑构型及不同的螺旋结构。而碳纳米管也由于如此的特殊结构具有了一系列卓越的性质。1.2碳纳米管的制备 电弧法制备碳管的基本原理是在两个相距很近的石墨电极间加上高电压以至放电,放电电弧产生的高温使得阳极石墨棒上的碳物质迅速蒸发,随后蒸发物质中的碳原子以团簇为单元组成多种碳物质形态,沉积于阴极和反应腔壁上,碳纳米管是其中的沉积产物之一。电弧法多用来制备多璧碳纳米管(MWNTs )但制备的碳纳米管缺陷多,且与其他的副产物如无定形碳、纳米微粒等杂质烧结于一体,对以后的分离和提纯会有不利的影响。 催化裂解法(CVD 法)是目前应用最广泛的方法之一,该方法所用的关键设备就是可加热反应腔。反应腔可以分为立式固定床和卧式磁舟两种。其基本原理是:在中等温度下(800-1200K 左右),含碳化合物如烃、金属有机化合物、CO 等在金属催化剂的作用下分解为碳原子,沉积在金属颗粒的表面,然后溶解、扩散进入金属体相,最后析出生长成为碳纳米管。可以认为实现可控制技术的一个可能的途径是通过控制催化剂颗粒的大小和分布间接控制碳管的生长,因此有关CVD 技术的催化剂问题受到广泛关注。可以用于合成碳管的催化剂一般为过渡金属元素:Fe 、Co 、Ni 、Cr 、Mo 、Mg 和Si 等。同电弧法相比,催化裂解法制得的CNTs 缺陷较多,但是此法制得的碳纳米管产量大且易提纯,还可通过催化剂颗粒的大小控制碳纳米管的粗细。 激光蒸发法是制备碳纳米管的重要方法之一。它是利用激光对石墨进行蒸发并利用专门设计的收集器来收集合成的碳管。其基本原理是:在惰性气体流中用激光蒸发含有金属催化剂的石墨靶表面,在石墨上生长碳纳米管,随后收集于铜水冷器。激光束的宽度为6至7个毫米,经过计算机的精确引导,激光束持续而定量地蒸发含有金属催化 剂的石墨靶,再由流动的Ar 气将碳物质送到蒸发炉外的水冷铜收集器处,在那里就能找到碳管,该方法首次得到相对较大数量的单壁碳纳米管。激光蒸发(烧蚀)法的主要缺点是单壁碳纳米管的纯度较低、易缠结。 1.3碳纳米管的修饰 碳纳米管的修饰共分为两类,分别为共价修饰和有机化学修饰。其中碳纳米管的共价修饰共有三种途径:自由基加成法、电化学氧化法、化学试剂氧化法这三种。 自由基加成法是一种碳纳米管共价修饰的方法,CNTs 管壁上存在很大的自由基加成的可能性。在碳纳米管璧原位上的重氮化可以是碳纳米管有效地溶解在水中,增大碳纳米管的溶解度。Sinnott [15]采用经典分子动力学模拟方法构建了碳自由基与碳纳米管的加成模型,通过模型的建立发现带羧基的烷基自由基可以有效地加成到碳纳米管管壁上,得到功能化的碳纳米管。 通过电化学氧化法可以制得大量的碳纳米管修饰电极,将CNTs 固定于电极材料上,加压条件下用NaOH 溶液处理。万谦等[16]碳纳米管经过纯化、浓酸回流处理后与DMF 分散物质形成悬浮液,然后通过微量滴管等直接滴涂或溅射等方法修饰到各种基质电极上,即可制成碳纳米管修饰电极。 化学试剂氧化法是一种较为普遍的方法,以浓硝酸或者硝酸和硫酸的混酸作为强氧化剂,经过处理后使得碳纳米管表面具有大量的羧基和羟基基团,这种方法简单易行,很多文献对碳纳米管修饰都是采用此方法,但是表面羧基化后的CNTs 其表面羧基之间存在氢键作用,碳纳米管分散性和溶解性还是仍然较差,还需要进一步对CNTs 表面的COOH 进行反应,破坏羧基之间的氢键作用。 CNTs 的化学修饰共分为三类,包括酸碱中和反应、酰化反应、胺化反应,其中酸碱中和反应是认为羧基化后的CNTs 可以与带碱性基团的聚合物发生类似于酸碱中和反应的反应,在上个世纪90年代,Chen 等以羧基化后的碳纳米管与带碱性基团的聚合物十八胺发生中和反应,第一次得到了可溶性CNTs 为SWNTs 在各种生物及超分子领域的应用提供了依据。Banerjee 等用Wilkinson 催化剂[RhCl(PPh 3)3]与羧基化SWNTs 反应,发现修饰后的SWNTs 溶解度显著增大在二甲基甲酰胺(DMF)、四氢呋喃(THF)、二甲基亚砜(DMSO)等有机溶剂中,从而证明金属离子可通过离子作用与羧基化CNTs 反应。 酰化反应如酰胺化反应和酰氯化反应等,酰氯化反应是碳纳米管在加热条件下在硝酸中回流后,以亚硫酰二氯(SOCl 2)作酰化剂,得到含有酰基氯的碳纳米管。由于含有酰基氯的碳纳米管具有更高的活性,可以与苯胺发生酰胺化反应进一步得到含有酰基苯胺的碳纳米管。 2结论 多壁碳纳米管是一类新奇碳素纳米材料。典型的CNTs 具有纳米级管状结构。鉴于这类新奇管状纳米碳材料具有独特的结构和物化性质,作为一种新型碳素催化剂载体或促进剂,较之一些常规载体材料更具特色,近年来引起国际催化学界的日益注意,所涉及用CNTs 作为新型催化剂载体或促进剂的研究领域包括:选择加氢、氢甲酞化、选择脱氢、氨合成、FT 合成、甲醇/低碳醇合成等。【参考文献】 [1]Iijima S.Helical microtubules of graphitic carbon .Nature ,1991,354:56-58.[2]Kogak,Gao G T ,Tanaka H ,et al.Formation of ordered ice nanotubes inside carbon nanotubes[J].Nature ,2001,412:802-805.(下转第38页) 碳纳米管的结构、制备及修饰 赵健勇(山东师范大学化学化工与材料科学学院 山东济南250014) 【摘要】本文详细介绍了碳纳米管的特殊结构,各种不同的制备方法,以及在共价修饰和化学修饰的各种方法,对碳纳米管应用作出展 望。 【关键词】碳纳米管;结构;制备;修饰

碳纳米管的特性及应用_孙晓刚

作者介绍:孙晓刚(1957-),男,吉林人,江西金世纪冶金(集团)股份有限公司高级工程师,长期从事碳纳米管制备工 艺的研究,并对碳纳米管的工业化生产进行了广泛深入的研究和商业策划工作。 收稿日期:2001-02-21 修回日期:2001-05-08 碳纳米管的特性及应用 孙晓刚1,曾效舒2,程国安2 (1.江西金世纪冶金(集团)股份有限公司,江西南昌 330046; 2.南昌大学,江西南昌 330029) 摘 要:介绍了巴基球及碳纳米管的发现和历史,重点介绍 了碳纳米管的基本性能和晶体结构,描述了碳纳米管电传导 和热传导的机理。文中还介绍了碳纳米管的主要生产方法 和各自的优点。根据全球碳纳米管应用研究的方向,对碳纳 米管的应用领域进行了探讨,展望了碳纳米管的应用前景及 商业开发价值。 关键词:碳纳米管;性能;制备;应用 中图分类号:T B383 文献标识码:A 文章编号:1008-5548(2001)06-0029-05 1 碳纳米管简介 仅仅在十几年前,人们一般认为碳的同素异形 体只有两种:石墨和金刚石。1985年,英国Sussex 大学的Kroto教授和美国Rice大学的Sm alley教授 进行合作研究,用激光轰击石墨靶以尝试用人工的 方法合成一些宇宙中的长碳链分子。在所得产物中 他们意外发现了碳原子的一种新颖的排列方式,60 个碳原子排列于一个截角二十面体的60个顶点,构 成一个与现代足球形状完全相同的中空球,这种直 径仅为0.7nm的球状分子即被称为碳60分子。此 即为碳晶体的第三种形式。 1991年,碳晶体家族的又一新成员出现了,这 就是碳纳米管。日本NEC公司基础研究实验室的 Iijima教授在给《Nature》杂志的信中宣布合成了一 种新的碳结构。它由一些柱形的碳管同轴套构而 成,直径大约在1~30nm之间,长度可达到1μm。 进一步的分析表明,这种管完全由碳原子构成,并可 看成是由单层石墨六角网面以其上某一方向为轴, 卷曲360°而形成的无缝中空管。相邻管子之间的 距离约为0.34nm,与石墨中碳原子层与层之间的距 离0.335nm相近,所以这种结构一般被称为碳纳米 管。这是继C60之后发现的碳的又一同素异形体, 是碳团簇领域的又一重大科研成果。 碳纳米管由层状结构的石墨片卷曲而成,因卷 曲的角度和直径不同,其结构各异:有左螺旋的、右 螺旋的和不螺旋的。由单层石墨片卷成的称为单壁 碳纳米管,多层石墨片卷成的称为多壁碳纳米管。 碳纳米管的径向尺寸较小,管的外径一般在几纳米 到几十纳米;管的内径更小,有的只有1nm左右。 而碳纳米管的长度一般在微米量级,长度和直径比 非常大,可达103~106,因此,碳纳米管被认为是一 种典型的一维纳米材料。 碳纳米管、碳纳米纤维材料一直是近年来国际 科学的前沿领域之一。仅就碳纳米管而言,自从 1991年被人类发现以来,就一直被誉为未来的材 料。 2 基本性能 碳纳米管的性质与其结构密切相关。就其导电 性而言,碳纳米管可以是金属性的,也可以是半导体 性的,甚至在同一根碳纳米管上的不同部位,由于结 构的变化,也可以呈现出不同的导电性。此外,电子 在碳纳米管的径向运动受到限制,表现出典型的量 子限域效应;而电子在轴向的运动不受任何限制。 无缺陷金属性碳纳米管被认为是弹道式导体,其导 电性能仅次于超导体。根据经典电阻理论和欧姆定第7卷第6期 2001年12月 中 国 粉 体 技 术 China Powder Science and Technology Vol.7No.6 December2001

纳米材料的制备方法

1化学气相沉积法 1.1化学气相沉积法的原理 化学气相沉积法(Chemical Vapour Deposition (CVD) )是通过气相或者在基板表面上的化学反应,在基板上形成薄膜。化学气相沉积方法实际上是化学反应方法,因此。用CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,而且即使是高熔点物质也可以在很低的温度下制备。 用化学气相沉积法可以制备各种薄膜材料、包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件——基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜构料。化学气相沉积的化学反应形式.主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。 化学气相沉积法制备纳米碳材料的原理是碳氢化合物在较低温度下与金属纳米颗粒接触时通过其催化作用而直接生成。化学气相沉积法制备碳纳米管的工艺是基于气相生长碳纤维的制备工艺。在研究气相生长碳纤维早期工作中就己经发现有直径很细的空心管状碳纤维,但遗憾的是没有对其进行更详细的研究[4]。直到Iijima在高分辨透射电子显微镜发现产物中有纳米级碳管存在,才开始真正的以碳纳米管的名义进行广泛而深入的研究。 化学气相沉积法制备碳纳米管的原料气,国际上主要采用乙炔,但也采用许多别的碳源气体,如甲烷、一氧化碳、乙烯、丙烯、丁烯、甲醇、乙醇、二甲苯等。在过渡金属催化剂铁钴镍催化生成的碳纳米管时,使用含铁催化剂,多数得到多壁碳纳米管;使用含钴催化剂,大多数的实验得到多壁碳纳米管;过渡金属的混合物比单一金属合成碳纳米管更有效。铁镍合金多合成多壁碳纳米管,铁钴合金相比较更容易制得单壁碳纳米管。此外,两种金属的混合物作为催化剂可以大大促进碳纳米管的生长。许多文献证实铁、钴、镍任意两种的混合物或者其他金属与铁、钴、镍任何一种的混合物均对碳纳米管的生长具有显著的提高作用,不仅可以提高催化剂的性能,而且可以提高产物的质量或者降低反应温度。催化裂解二甲苯时,将适量金属铽与铁混合,可以提高多壁碳纳米管的纯度和规则度。因而,包括像烃及一氧化碳等可在催化剂上裂解或歧化生成碳的物料均有形成碳纳米管的可能。Lee Y T 等[5]讨论了以铁分散的二氧化硅为基体,乙炔为碳源所制备的垂直生长的碳纳米管阵列的生长机理,并提出了碳纳米管的生长模型。Mukhopdayya K等[6]提出了一种简单而新颖的低温制备碳纳米管阵列的方法。该法以沸石为基体,以钴和钒为催化剂,仍是以乙炔气体为碳源。Pna Z W等[7]以乙炔为碳源,铁畦纳米复合物为基体高效生长出开口的多壁碳纳米管阵列。 1.2评价 化学气相沉积法该法制备的纳米微粒颗粒均匀,纯度高,粒度小,分散性好,化学反应活性高,工艺可控和连续,可对整个基体进行沉积等优点。此外,化学气相沉积法因其制备工艺简单,设备投入少,操作方便,适于大规模生产而显示出它的工业应用前景。因此,化学气相沉积法成为实现可控合成技术的一种有效途径。化学气相沉积法缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。化学气相沉积法是纳米薄膜材料制备中使用最多的一种工艺,广泛应用于各种结构材料和功能材料的制备。用化学气相沉积法可以制备几乎所有的金属,氧化物、氮化物、碳化合物、复合氧化物等膜材料。总之,随着纳米材料制备技术的不断完善,化学气相沉积法将会得到更广泛的应用。

纳米材料的制备方法及其研究进展

纳米材料的制备方法及其研究进展纳米材料的制备及其研究进展 摘要:综述了纳米材料的结构、性能及发展历史;介绍了纳米材料的制备方法及最新进展;概述了纳米材料在各方面的应用状况和前景;讨论了目前纳米材料制备中存在的问题。 关键词:纳米材料;结构与性能;制备技术;应用前景;研究进展 1 引言 纳米微粒是由数目极少的原子或分子组成的原子群或分子群,微粒具有壳层结构。由于微粒的表面层占很大比重,所以纳米材料实际是晶粒中原子的长程有序排列和无序界面成分的组合,纳米材料具有大量的界面,晶界原子达15%-50%。 这些特殊的结构使得纳米材料具有独特的体积效应、表面效应,量子尺寸效应、宏观量子隧道效应,从而使其具有奇异的力学、电学、磁学、热学、光学、化学活性、催化和超导性能等特性,使纳米材料在国防、电子、化工、冶金、轻工、航空、陶瓷、核技术、催化剂、医药等领域具有重要的应用价值,美国的“星球大战计划”、“信息高速公路”,欧共体的“尤里卡计划”等都将纳米材料的研究列入重点发展计划;日本在10年纳米微粒的制备方法 1 纳米微粒的制备方法一般可分为物理方法和化学方法。制备的关键是如何控制颗粒的大小和获得较窄且均匀的粒度分布。 1.1 物理方法 1.1.1 蒸发冷凝法

又称为物理气相沉积法,是用真空蒸发、激光、电弧高频感应、电子束照射等方法使原料气化或形成等离子体,然后在介质中骤冷使之凝结。特点:纯度高、结晶组织好、粒度可控;但技术设备要求高。根据加热源的不同有: (1)真空蒸发-冷凝法其原理是在高纯度惰性气氛(Ar,He)下,对蒸发物质进行真空加热蒸发,蒸气在气体介质中冷凝形成超细微粒。1984年Leiter[2]等首次用惰性气体沉积和原位成型方法,研制成功了Pd、Cu、Fe 等纳米级金属材料。1987 年Siegles[3]采用该法又成功地制备了纳米级TiO2 陶瓷材料。这种方法是目前制备纳米微粒的主要方法。特点:粒径可控,纯度较高,可制得粒径为5~10nm的微粒。但仅适用于制备低熔点、成分单一的物质,在合成金属氧化物、氮化物等高熔点物质的纳米微粒时还存在局限性。 (2)激光加热蒸发法是以激光为快速加热源,使气相反应物分子是利用高压气体雾化器将-20~-40OC的氦气和氩气以3倍于音速的速度射入熔融材料的液流是以高频线圈为热源,使坩埚是用等离子体将金属等的粉末熔融、蒸发和冷凝以获得纳米微粒。特点:微粒纯度较高,粒度均匀,是制备氧化物、氮化物、碳化物系列、金属系列和金属合金系列纳米微粒的最有效的方法,同时为高沸点金属纳米微粒的制备开辟了前景。但离子枪寿命短、功率小、热效率低。目前新开发出的电弧气化法和混合等离子体法有望克服以上缺点。 (6)电子束照射法1995年许并社等人[4]利用高能电子束照射母材,成功地获 得了表面非常洁净的纳米微粒,母材一般选用该金属的氧化物,如用电子束照射 Al2O3 后,表层的Al-O 键被高能电子“切断”,蒸发的Al原子通过瞬间冷凝,形核、长大,形成Al的纳米微粒,但目前该方法获得的纳米微粒限于金属纳 米微粒。 1.1.2 物理粉碎法

壳聚糖对碳纳米管的表面修饰

许爱民等:堇青石陶瓷表面Ca0.6Mg0.4Zr4(PO4)6涂层的显微结构及耐碱性· 163 ·第36卷第2期 壳聚糖对碳纳米管的表面修饰 刘爱红1,2,孙康宁1,2,王菲1,2,俞中平1,2 (1. 山东大学,液态结构及其遗传性教育部重点实验室;2. 山东省工程陶瓷重点实验室,济南 250061) 摘要:采用表面沉积交联法实现了壳聚糖对碳纳米管的表面修饰,并对所得的复合材料进行了相应的检测。结果表明:得到的复合材料中碳纳米管表面完全被壳聚糖所覆盖,管径变粗,并且由于壳聚糖覆盖层的静电排斥作用,使壳聚糖修饰后碳纳米管的团聚减少。 关键词:碳纳米管;壳聚糖;表面修饰 中图分类号:R318.08 文献标识码:A 文章编号:0454–5648(2008)02–0163–03 SURFACE MODIFICATION OF CARBON NANOTUBES WITH CHITOSAN LIU Aihong1,2,SUN Kangning1,2,WANG Fei1,2,YU Zhongping1,2 (1. Key Laboratory for Liquid Structure and Heredity of Materials of Education Ministry; 2. Engineering Ceramics Key Laboratory of Shandong Province, Shandong University, Jinan 250061, China) Abstract: Surface modification of carbon nanotubes (CNTs) with biopolymer chitosan was performed via a controlled surface depo-sition and crosslinking process. The characteristic of modified CNTs was measured The results show that the diameter of CNTs be-comes thicker because the surface of CNTs is covered with chitosan, and the glomeration of the CNTs decreases to improve the dis-persion of CNTs due to static electric repulsive action of chitosan coating. Key words: carbon nanotubes; chitosan; surface modification 近年来,碳纳米管(carbon nanotubes, CNTs)的研究热点转向生物医用材料方面,已在生物医学方面得到广泛应用。用CNTs可制备各种生物传感器,生物医学微电子器件的导线、开关、记忆元件等。[1–4] 由于CNTs的生物相容性较差,常需要对CNTs 进行表面修饰改性。用生物相容性好的天然高分子修饰碳纳米管,制备成CNTs/天然高分子复合材料,是改善碳纳米管生物相容性的一种重要方法。 壳聚糖(chitosan, CS)是甲壳素(chitin)脱去部分乙酰基后的产物,是一种常见的天然高分子,在生物材料的研究中得到了广泛的应用,其良好的生物相容性已经得到认可。[5] 通过壳聚糖对CNTs的表面修饰,有望改善CNTs的生物相容性,更有可能赋予CNTs某些生物学的性质,为扩大CNTs在生物医学领域的应用提供了一种途径。据此,采用表面沉积交联法,由壳聚糖修饰CNTs的表面,并对所得复合材料进行了检测。 1 实验 1.1 CNTs的纯化氧化预处理 实验所用原料为:多壁CNTs,深圳纳米港有限公司产,纯度95%(质量分数)以上;壳聚糖(食品级,脱乙酰度为95%),济南海得贝海洋生物工程有限公司产;其他试剂均为分析纯试剂。 采用混酸液相氧化法对CNTs原料进行纯化氧化预处理。将2g CNTs加入120mL混酸溶液中(浓H2SO4与浓HNO3体积比为3:1),超声分散2~3h,然后在室温磁力搅拌120h,进行氧化。通过0.22μm 的聚碳酸酯滤纸真空抽滤混合物,再由去离子水洗涤至pH值为7。处理后的CNTs在80℃真空干燥 收稿日期:2007–07–27。修改稿收到日期:2007–10–21。 基金项目:国家自然科学基金(50672051,30540061);山东大学大学生科技创新基金资助项目。 第一作者:刘爱红(1981—),女,博士研究生。 通讯作者:孙康宁(1955—),男,教授。Received date:2007–07–27. Approved date: 2007–10–21. First author: LIU Aihong (1981–), female, postgraduate student for doctor degree. E-mail: aihong1981@https://www.docsj.com/doc/ef4158129.html, Correspondent author: SUN Kangning (1955–), male, professor. E-mail: sunkangning@https://www.docsj.com/doc/ef4158129.html, 第36卷第2期2008年2月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 36,No. 2 February,2008

碳纳米管的制备

常用的碳纳米管制备方法主要有:电弧放电法、激光烧蚀法、化学气相沉积法(碳氢气体热解法)、固相热解法、辉光放电法、气体燃烧法以及聚合反应合成法等。 电弧放电法 碳纳米管制备 电弧放电法是生产碳纳米管的主要方法。1991年日本物理学家饭岛澄男就是从电弧放电 法生产的碳纤维中首次发现碳纳米管的。电弧放电法的具体过程是:将石墨电极置于充满氦气或氩气的反应容器中,在两极之间激发出电弧,此时温度可以达到4000度左右。在 这种条件下,石墨会蒸发,生成的产物有富勒烯(C60)、无定型碳和单壁或多壁的碳纳 米管。通过控制催化剂和容器中的氢气含量,可以调节几种产物的相对产量。使用这一方法制备碳纳米管技术上比较简单,但是生成的碳纳米管与C60等产物混杂在一起,很难 得到纯度较高的碳纳米管,并且得到的往往都是多层碳纳米管,而实际研究中人们往往需要的是单层的碳纳米管。此外该方法反应消耗能量太大。有些研究人员发现,如果采用熔融的氯化锂作为阳极,可以有效地降低反应中消耗的能量,产物纯化也比较容易。 发展出了化学气相沉积法,或称为碳氢气体热解法,在一定程度上克服了电弧放电法的缺陷。这种方法是让气态烃通过附着有催化剂微粒的模板,在800~1200度的条件下,气态 烃可以分解生成碳纳米管。这种方法突出的优点是残余反应物为气体,可以离开反应体系,得到纯度比较高的碳纳米管,同时温度亦不需要很高,相对而言节省了能量。但是制得 的碳纳米管管径不整齐,形状不规则,并且在制备过程中必须要用到催化剂。这种方法的主要研究方向是希望通过控制模板上催化剂的排列方式来控制生成的碳纳米管的结构,已经取得了一定进展。 激光烧蚀法 激光烧蚀法的具体过程是:在一长条石英管中间放置一根金属催化剂/石墨混合的石墨靶,该管则置于一加热炉内。当炉温升至一定温度时,将惰性气体冲入管内,并将一束激光聚焦于石墨靶上。在激光照射下生成气态碳,这些气态碳和催化剂粒子被气流从高温区带向低温区时,在催化剂的作用下生长成CNTs。 固相热解法

碳纳米管的性质性能及其应用前景

碳纳米管的性质性能其应用前景 The Properties and Applications of Carbon Nano-Tubes 张雅坤北京师范大学化学学院201411151935 摘要:从1991年被正式认识并命名至今,碳纳米管凭借其特殊的结构及异常的力学、电学和化学性能获得了材料、物理、电子及化学界的广泛关注。近些年随着碳纳米管及纳米材料研究的深入,其广阔的应用前景也不断地展现出来。本文主要对碳纳米管目前的性质性能及其应用前景进行了系统详细的介绍【8】。 关键词:碳纳米管、无机化学、性质性能、应用前景 一、综述 1.发展历史与研究进程 在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛(Lijima)在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。 1993年,S. Lijima等和D. S. Bethune等同时报道了采用电弧法,在石墨电极中添加一定的催化剂,可以得到仅仅具有一层管壁的碳纳米管,即单壁碳纳米管产物。

1997年,A. C. Dillon等报道了单壁碳纳米管的中空管可储存和稳定氢分子,引起广泛的关注。相关的实验研究和理论计算也相继展开。据推测,单壁碳纳米管的储氢量可达10%(质量比)。此外,碳纳米管还可以用来储存甲烷等其他气体。但该猜测在后来被证实是错误的,碳纳米管无法用于储氢的主要问题有两个:一是假如作为容器进行储氢,则无法对其进行可控的封闭和开启;二是假如用于氢气吸附,则其吸附率不超过1%(质量分数)。 能否控制单壁碳纳米管的生长是近二十余年来一直困扰着碳纳米管研究领域科学家们的难题,能否找到控制方法也成为碳纳米管应用的瓶颈。2014年,这道世界性难题被北京大学李彦教授研究团队攻克,该团队在全球首次提出单壁碳纳米管生长规律的控制方法,研究成果已于2014年6月26日发表在国际权威学术期刊《自然》杂志上,这是碳纳米管研究方面的又一大突破。 2.碳纳米管的制备方法 常用的碳纳米管制备方法主要有:电弧放电法、激光烧蚀法、化学气相沉积法(碳氢气体热解法)、固相热解法、辉光放电法、气体燃烧法以及聚合反应合成法等。 2.1电弧放电法 电弧放电法是生产碳纳米管的主要方法。1991年日本物理学家饭岛澄男就是从电弧放电法生产的碳纤维中首次发现碳纳米管的。电弧放电法的具体过程是:将石墨电极臵于充满氦气或氩气的反应容器中,在两极之间激发出电弧,此时温度可以达到4000度左右。在这种条件下,石墨会蒸发,生成的产物有富勒烯(C60)、无定型碳和单壁或多壁的碳纳米管。通过控制催化剂和容器中的氢气含量,可以

碳纳米管的制备方法

碳纳米管的制备方法 摘要:本文简单介绍了碳纳米管的结构性能,主要介绍碳纳米管的制备方 法, 包括石墨电弧法、催化裂解法,激光蒸发法等方法,也对各种制备方法的优缺 点进行 了阐述。 关键词:碳纳米管制备方法 Preparation of carbon nanotubes Abstract: The structure and performance of carbon nanotubes are briefly introduced, and some synthesis methods, including graphite arc discharge method, catalytic cracking method, laser evaporation method and so on, are reviewed. And the advantages and disadvantages of various preparation methods are also described. Key words:carbon nanotubes methods of preparation 纳米材料被誉为是21世纪最重要材料,是构成未来智能社会的四大支柱之一 ,而碳纳米管是纳米材料中最富有代表性,并且是性能最优异的材料。碳纳米管是碳 的一种同素异形体,它包涵了大多数物质的性质,甚至是两种相对立的性质,如从高 硬度到高韧性,从全吸光到全透光、从绝热到良导热、绝缘体/半导体/高导体和高临界温度的超导体等。正是由于碳纳米材料具有这些奇异的特性,被发现的短短十几年

来,已经广泛影响了物理、化学、材料等众多科学领域并显示出巨大的潜在应用前景。 碳纳米管又名巴基管,即管状的纳米级石墨晶体。它具有典型的层状中空结构, 构成碳纳米管的层片之间存在一定夹角,管身是准圆筒结构,并且大多数由五边形截 面组成,端帽部分由含五边形的碳环组成的多边形结构。是一种具有特殊结构(径向 尺寸为纳米量级、轴向尺寸为微米两级,管子两端基本上都封口)的一维纳米材料。 碳纳米管存在多壁碳纳米管(MWNTS)和单壁碳纳米管(SWNTS)两种形式。单层碳纳米管结构模型如图1所示。理想的多层碳纳米管可看成多个直径不等的单层管同轴套构而成,层数可以从二层到几十层,层与层之间保持固定距离约为0.34nm,直径一般为2~20nm.但实际制备的碳纳米管并不完全是直的或直径均匀的,而是局部 1 区域出现凸凹弯曲现象,有时会出现各种形状如L、T、Y形管等。研究认为所有这 些形状的出现是由于碳六边形网络中引入五边形和七边形缺陷所致。五边形的引入引 起正弯曲,七边形的引入引起负弯曲。

碳纳米材料概述

碳纳米材料概述 名字:唐海学号:1020560120 前言 纳米碳材料是指分散相尺度至少有一维小于100nm的碳材料。分散相既可以由碳原子组成,也可以由异种原子(非碳原子)组成,甚至可以是纳米孔。纳米碳材料主要包括三种类型:碳纳米管,碳纳米纤维,纳米碳球。 近年来,碳纳米技术的研究相当活跃,多种多样的纳米碳结晶、针状、棒状、桶状等层出不穷。2000年德国和美国科学家还制备出由20个碳原子组成的空心笼状分子。根据理论推算,包含20个碳原子仅是由正五边形构成的,C60分子是富勒烯式结构分子中最小的一种,考虑到原于间结合的角度、力度等问题,人们一直认为这类分子很不稳定,难以存在。德、美科学家制出了C60笼状分子为材料学领域解决了一个重要的研究课题。碳纳米材料中纳米碳纤维、纳米碳管等新型碳材料具有许多优异的物理和化学特性,被广泛地应用于诸多领域。 分类 (1)碳纳米管碳纳米管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体,一般可分为单壁碳纳米管、多壁碳纳米管和双壁碳纳米管。 (2)碳纤维分为丙烯腈碳纤维和沥青碳纤维两种。碳纤维质轻于铝而强力高于钢,它的比重是铁的1/4,强力是铁的10倍,除了有高超的强力外,其化学性能非常稳定,耐腐蚀性高,同时耐高温和低温、耐辐射、消臭。碳纤维可以使用在各种不同的领域,由于制造成本高,大量用于航空器材、运动器械、建筑工程的结构材料。美国伊利诺伊大学发明了一种廉价碳纤维,有高强力的韧性,同时有很强劲的吸附能力、能过滤有毒的气体和有害的生物,可用于制造防毒衣、面罩、手套和防护性服装等。 (3)碳球根据尺寸大小将碳球分为:(1)富勒烯族系Cn和洋葱碳(具有封闭的石墨层结构,直径在2—20nm之间),如C60,C70等;(2)未完全石墨化的纳米碳球,直径在50nm 一1μm之间;(3)碳微珠,直径在11μm以上。另外,根据碳球的结构形貌可分为空心碳球、实心硬碳球、多孔碳球、核壳结构碳球和胶状碳球等。 碳纳米材料的性质及相关应用 1.力学 (1)超强纤维碳纳米管具有弹性高、密度低、绝热性好、强度高、隐身性优越、红外吸收性好、疏水性强等优点,它可以与普通纤维混纺来制成防弹保暖隐身的军用装备。 (2)材料增强体用于增强金属、陶瓷和有机材料等。并且结合碳纳米管的导热导电特性,能够制备自愈合材料。

碳纳米管在电化学中的应用

碳纳米管在电化学中的应用 【摘要】对碳纳米管修饰电极的制备方法、应用以及碳纳米管修饰电极的发展趋势作比较全面的综述。 【关键词】碳纳米管;化学修饰电极 Application of the Carbon nanotube in electrochemistry Abstract The methods of preparation, applications and developing trends of carbon nanotube modified electrodes in the field of electrochemistry were reviewed. Key words Electrochemistry Carbon nanotube modified electrodes 碳纳米管,又名巴基管(buckytube),是1991年由日本科学家饭岛澄男(Sumio Iijima)在高分辨透射电镜(HRTEM)下发现的一种针状的管形碳单质。它以特有的力学、电学和化学性质,以及独特的准一维管状分子结构和在未来高科技领域中所具有的潜在应用价值,迅速成为化学、物理及材料科学等领域的研究热点。目前,碳纳米管在理论计算、制备和纯化生长机理、光谱表征、物理化学性质以及在力学电学、化学和材料学等领域的应用研究方兴未艾,在一些方面已取得重大突破。碳纳米管(CNT)的发现,开辟碳家族的又一同素异形体和纳米材料研究的新领域。 由于CNT具有良好的导电性、催化活性和较大的比表面积,可使过电位大大降低及对部分氧化还原蛋白质能产生直接电子转移现象,因此被广泛用于修饰电极的研究。碳纳米管在作为电极用于化学反应时能促进电子转移。碳纳米管的电化学和电催化行为研究已有不少报道。 1碳纳米管的分类 CNT属于富勒碳系,管状无缝中空,具有完整的分子结构,由碳六元环构成的类石墨平面卷曲而成,其中每个碳原子通过sp2杂化与周围3个碳原子发生完全键合,各单层管的顶端有五边形或七边形参与封闭。CNT的径向尺寸为纳米量级,轴向尺寸为微米量级,具有较大的长径比。由单层石墨片卷积而成的称为单壁碳纳米管(SWNT),制备时管径可控,一般在1~6 nm之间,当管径>6 nm后CNT 结构不稳定,易塌陷。SWNT轴向长度可达几百纳米甚至几个微米。由两层以上柱状碳管同轴卷积而成的称为多壁碳纳米管(MWNT),层间距约为0.34 nm。

碳纳米管制备及其应用

碳纳米管的制备及其应用进展 10710030133 周健波 摘要:本文通过对新型化工材料碳纳米管的结构以及制备方法的介绍,并说明了制备纳米管方法有石墨电弧法、激光蒸发法、催化热解法等技术。同时也叙述了碳纳米管在力学性能、光学性能、电磁学性能等性能的研究及其应用。 关键词:碳纳米管制备结构石墨电弧法应用 1.引言 1991年日本科学家IIJI MA发现了碳纳米管(Carbon nanotube , CNT), 开辟了碳科学发展的新空间. 碳纳米管具有机械强度高、比表面大、电导率高、界面效应强等特点,以及特殊的机械、物理、化学性能,在工程材料、催化、吸附分离、储能器件电极材料等诸多领域得到了广泛应用。 2.碳纳米管的结构 碳纳米管中碳原子以sp2杂化为主, 与相邻的3个碳原子相连,形成六角形网格结构,但此六角形网格结构会产生一定的弯曲, 可形成一定的sp3杂化键。 单壁碳纳米管( SW CNT )的直径在零点几纳米到几纳米之间,长度可达几十微米;多壁碳纳米管(MW CNT)的直径在几纳米到几十纳米之间长度可达几毫米,层与层之间保持固定的间距,与石墨的层间距相当,约为0 . 134 nm。碳纳米管同一层的碳管内原子间有很强的键合力和极高的同轴向性,可看作是轴向具有周期性的一维晶体,其晶体结构为密排六方, 被认为是理想的一维材料。 碳纳米管可看成是由石墨片层绕中心轴卷曲而成, 卷曲时石墨片层中保持不变的六边形网格与碳纳米管轴向之间可能会出现夹角即螺旋角.当螺旋角为零时, 碳纳米管中的网格不产生螺旋而不具有手性, 称之为锯齿型碳纳米管或扶手型碳纳米管;当碳纳米管中的网格产生螺旋现象而具有手性时,称为螺旋型碳纳米管。随着直径与螺旋角的不同, 碳纳米管可表现出金属性或半导体性。 3.碳纳米管的制备方法 3.1石墨电弧法

碳纳米管的性质与应用

碳纳米管的性质与应用 【摘要】 本文主要介绍了碳纳米管的结构特点,制备方法,特殊性质,由于碳纳米管独特性质而产生的广泛应用,并对其前景进行展望。 【关键词】 碳纳米管场发射复合材料优良性能 【前言】 自日本NEC科学家Lijima发现碳纳米管以来,碳纳米管研究一直是国际新材料领域研究的热点。由于碳纳米管具有特殊的导电性能、力学性质及物理化学性质等,故其在许多领域具有其广阔的应用前景,自问世以来即引起广泛关注。目前,国内外有许多科学家对碳纳米管进行研究,科研成果颇丰,尤其是碳纳米管在复合材料、储氢及催化等领域的应用。 【正文】 一、碳纳米管的结构 碳纳米管中碳原子以sp2杂化为主,同时六角型网格结构存在一定程度的弯曲,形成空间拓扑结构,其中可形成一定的sp3杂化键,即形成的化学键同时具有sp2和sp3混合杂化状态,而这些p 轨道彼此交叠在碳纳米管石墨烯片层外形成高度离域化的大π 键,碳纳米管外表面的大π 键是碳纳米管与一些具有共轭性能的大分子以非共价键复合的化学基础[1]。 对多壁碳纳米管的光电子能谱研究结果表明,不论单壁碳纳米管还是多壁碳纳米管,其表面都结合有一定的官能基团,而且不同制备方法获得的碳纳米管由于制备方法各异,后处理过程不同而具有不同的表面结构。一般来讲,单壁碳纳米管具有较高的化学惰性,其表面要纯净一些,而多壁碳纳米管表面要活泼得多,结合有大量的表面基团,如羧基等。以变角X 光电子能谱对碳纳米管的表面检测结果表明,单壁碳纳米管表面具有化学惰性,化学结构比较简单,而且随着碳纳米管管壁层数的增加,缺陷和化学反应性增强,表面化学结构趋向复杂化。内层碳原子的化学结构比较单一,外层碳原子的化学组成比较复杂,而且外层碳原子上往往沉积有大量的无定形碳。由于具有物理结构和化学结构的不均匀性,碳

碳纳米管材料的研究现状及发展展望

碳纳米管材料的研究现状及发展展望 摘要: 碳纳米管因其独特的结构和优异的物理化学性能,具有广阔的应用前景和巨大的商业价值。本文综述了碳纳米管的制备方法、结构性能、应用以及碳纳米管发展趋势。 关键词:碳纳米管;制备;性质;应用与发展 1、碳纳米管的发展历史 1985年发现了巴基球(C60);柯尔、克罗托和斯莫利在模拟宇宙长链碳分子的生长研 究中,发现了与金刚石、石墨的无限结构不同的,具有封闭球状结构的分子C60。(1996年获得诺贝尔化学奖) 1991年日本电气公司的S. Iijima在制备C60、对电弧放电后的石墨棒进行观察时,发现圆柱状沉积。空的管状物直径0.7-30 nm,被称为Carbon nanotubes (CNTs); 1992年瑞士洛桑联邦综合工科大学的D.Ugarte等发现了巴基葱(Carbon nanoonion); 2000年,北大彭练矛研究组用电子束轰击单壁碳纳米管,发现了Ф0.33 nm的碳纳米管,稳定性稍差; 2003年5月,日本信州大学和三井物产下属的公司研制成功Ф 0.4 nm的碳纳米管。 2004年3月下旬, 中国科学院高能物理研究所赵宇亮、陈振玲、柴之芳等研究人员,利用一定能量的中子与C70分子相互作用,首次成功合成、分离、表征了单原子数目富勒烯 分子C141。 2004 ,曼彻斯特大学的科学家发现Graphene(石墨烯)。进一步激发了人们研究碳纳米材料的热潮。 2、碳纳米管的分类 2.1碳纳米管 碳纳米管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体,一般可分为单壁碳纳 米管、多壁碳纳米管。 2.2纳米碳纤维 纳米碳纤维是由碳组成的长链。其直径约50-200nm,亦即纳米碳纤维的直径介于纳米碳 管(小于100 nm)和气相生长碳纤维之间。 2.3碳球 根据尺寸大小将碳球分为:(1)富勒烯族系Cn和洋葱碳(具有封闭的石墨层结构,直径在2—20nm之间),如C60,C70等;(2) 纳米碳粉。 2.4石墨烯 石墨烯(graphene)是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料,是构建其它维度碳质材料的基本单元。 3、碳纳米管的制备 3.1电弧法

相关文档