文档视界 最新最全的文档下载
当前位置:文档视界 › 21世纪前途无量的纳米技术

21世纪前途无量的纳米技术

21世纪前途无量的纳米技术
21世纪前途无量的纳米技术

21世纪前途无量的纳米技术

【摘要】纳米的功能和作用随着对超微颗粒功能优势的深入了解和生产及操作过程的日趋完善,纳米材料的前途无限光明。材料科学家和工程师们一度将从大处着眼奉为金科玉律,但是今天,通过在纳米尺度对物质的合成、表征和操作,他们正树立起从小处入手的新原则。他们在这一前景远大的科研领域所作出的巨大努力已经开始有所收获。

【关键词】纳米颗粒纳米技术纳米结构纳米复合材料纳米材料

一、纳米技术的由来和发展

纳米技术,首先要了解纳米这一长度单位。一纳米是十亿分之一米,或千分之一微米。直观上讲,人的头发直径一般为20-50微米,单个细菌用显微镜测出直径为5微米,而1纳米大体上相当于4个原子的直径。传统的特性理论和设备操作的模型和材料是基于临界范围普遍大于100纳米的假设,当材料的颗粒缩小到只有几纳米到几十纳米时,材料的性质发生了意想不到的变化。由于组成纳米材料的超微粒尺度,其界面原子数量比例极大,一般占总原子数的40%-50%左右,使材料本身具有宏观量子隧道、表面和界面等效应,从而具有许多与传统材料不同的物理、化学性质,这些性质不能被传统的模式和理论所解释。

纳米技术就是研究结构尺寸在0.1至100纳米(有些资料为1至100纳米)范围内材料的性质和应用。它的本质是一种可以在分子水平上,一个原子、一个原子地来创造具有全新分子形态的结构的手段,使人类能在原子和分子水平上操纵物质;它的目标是通过在原子、分子水平上控制结构来发现这些特性,学会有效的生产和运用相应的工具,合成这些纳米结构,最终直接以原子和分子来构造具有特定功能的产品。

因而,各个不同学科的科学家潜心研制和分析纳米结构,试图发现单个分子、原子在纳米级范围内不能被传统的模式和理论所解释的现象以及众多分子下这些现象的发展,他们的工作奠定了纳米技术的基础,推动了纳米技术的发展。

由于纳米技术不可估量的经济效益和社会效益,包括为信息产业的电子、光电子的继续发展和提高;为制造业、国防、航空和环境应用提供更物美价廉的材料;为医疗、医药和农业上加速生物进步将起的作用,人类可以预计到21世纪,纳米科学和技术将会改变人造物体的特性,产生工业革命。IBM的前首席科学家约翰·阿姆斯特朗在1991年写道"我相信纳米科学和技术将会是下一个信息时代中心,就像在七十年代的微米引起的革命一样"。

二、纳米技术的学科领域

纳米技术的发展使新名词、新概念不断涌现,象纳米材料学、纳米机械学、纳米生物学和纳米药物学、纳米电子学、纳米化学等等,而且仍在不断扩大。现将几个主要的学科领域介绍如下。

纳米材料学观测和研究纳米材料所具有的特殊结构,包括表面粗糙度、表面结构、颗粒大小、缺陷和材料制备。在纳米尺度下,物质中电子的量子力学性质和原子的相互作用将受到尺度大小的影响,从而使其具有许多与传统材料不同的物理、化学性质。科学实验证明一克具有纳米尺寸的微粒,其表面积可达几万平方米,由于表面积增大,活性就增强;五颜六色的金属,由于吸光能力增加而一律变成黑体,熔点也随之降低。而且纳米铁材料的断裂应力比常规材料高12倍;气体通过纳米材料的扩散速度比一般材料快几千倍;纳米铜材料比常规铜材料的热扩散增强了近一倍。铜到纳米级就不再导电,纳米铜的膨胀系数比普通铜成倍增加。绝缘的二氧化硅、晶体等,在20纳米就开始导电成为导体。

纳米动力学主要是微机械和微电机,或称为微型电动机械系统(MEMS),是指集微型传感器、微型执行器以及信号处理和控制电路、接口电路、通信和电源于一体的完整微型机电系统。用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等。微电子技术在许多领域引发了一场微小型化革命,以加工微米、纳米结构和系统为目的的微米、纳米技术在此背景下应运而生,人们利用精细加工手段加工出微米、纳米级

结构,组成MEMS,将电子系统和外部世界有机地联系起来,它不仅可以感受运动、光、声、热、磁等自然界信号,并将这些信号转换成电子系统可以认识的电信号,而且还可以通过电子系统控制这些信号,进而发出指令,控制执行部件完成所需要的操作。

纳米电子学包括基于量子效应的纳米电子器件,纳米结构的光、电性质,纳米电子材料的表征,以及原子操纵和原子组装等。当前电子技术的趋势要求器件和系统更小、更快、更冷,也就是说空间体积要小,响应速度要快,单个器件的功耗要少。扫描探针显微镜就是为实现这一目标而诞生的,作为一种简单、直接而强有力的观察工具,一经问世立即被用于微电子器件的制造过程中。尤其是扫描探针显微镜中的激光力显微镜,它能在不接触表面的情况下绘制出电子元件表面图象。基于扫描探针显微镜的纳米刻蚀技术,可以实现在纳米尺度上制备产品,应用于微电子的工作介质上就有可能制造出高密度的存储器,其记录密度为目前磁盘的数千倍至上亿倍。通过极小的晶体管和记忆芯片几百万倍的提高电脑速度和效率,使今天的奔腾Ⅲ处理器显得十分慢了。

三、纳米技术的产品领域

因纳米技术而得到发展和创新的领域和产品有:

1、电子和通讯:用纳米薄层和纳米记录点的全媒体存贮器;平板显示器;全频道通讯工程和计算机用的器件,信息存贮密度和运算速度都要比现在大3-6个数量级,且廉价而节能。

2、计算机:通过极小的晶体管和记忆芯片提高电脑速度和效率几百万倍,体积只有针头大小的计算机。

3、纳米医疗:新的纳米结构药物;可到达身体的指定部位的基因和药物传送系统;有生物相容性的器官和血液代用品;家用早期病情自诊系统;生物传感器;骨头和组织的自生长材料。

4、化学和材料:能提高化工厂燃烧效率,减少汽车污染的各种催化剂;超硬但不脆裂的钻研头及切削工具;用于真空封接和润滑的智能磁性液体;化学、生物载体的探测器和解毒剂。

5、能源:高电能存储量、体积和重量小且成本低的新型电池;使用人工光合作用的清洁能源;量子阱式太阳能电池。

6、制造工业;基于扫描隧道显微镜原理的一系列扫描探针显微镜和测量仪器的微细加工;新的操纵原子的工具和方法;渗有纳米粒子的块状材料;使用纳米粒子的化学/机械磨削。

7、飞机和汽车:由纳米粒子加强的轻质材料;由纳米粒子加强的轮胎,耐磨,可直接再生;不需要洗涤的外壳油漆;廉价的不燃塑料;有自修补功能的涂层和纤维;生产出比钢强度大10倍,而重量只有其几分之一的材料来制造各种更轻便,更省燃料的交通工具。

8、航天:轻型航天器;经济的能量发生器和控制器;微型机器人。

9、环境保护:工业废污处理;廉价的海水除盐膜;确定环境中纳米粒子的效应;从原子或分子做起的制造工艺,无切削、无化学处理,材料消耗最少。

当前世界纳米科学技术的发展呈现出以下特点:纳米科学技术向各个领域快速渗透,由单一技术向集成技术转变;多学科交叉,集中解决重大的科学挑战问题或孕育重大突破的应用技术;强调以应用为导向,形成基础研究-应用研究-技术转移的一体化研究模式;由基础研究向应用研究及产业化的转变,全球大型企业越来越重视纳米技术,产业化步伐明显加快。

“十一五”期间,我国在基础研究方面做出了一系列原创性的重要成果。发现了纳米金属铜的超延展性,以及通过纳米技术提高相关材料导电性的新方法;“拍摄”到能够清楚分辨碳原子间单键和双键的分子图像;碳纳米管器件研究进入国际半导体发展路线图;合成了碳材料“家族”的又一个新的成员——石墨炔;揭示了蜘蛛丝集水的“多尺度协同效应”机

制;提出了“纳米限域催化”的新概念,并应用于催化剂的创制,成功解决了重整氢气中微量CO造成燃料电池电极中毒失活的国际性难题;合成出新型纳米抗肿瘤药物,为肿瘤治疗提供了新的手段和策略。

针对国家重大战略需求,开展了一系列纳米科学技术战略高技术研究,取得了一批具有自主知识产权的研究成果,其中艾滋病的快速低成本定量检测、基于碳纳米管的手机触摸屏、电力绝缘子防污闪纳米涂层技术、煤制乙二醇关键催化剂、应用于锂离子电池的碳纳米管复合导电剂等纳米技术获得了规模化应用。

在纳米基础科学问题研究、先进功能纳米材料、纳米检测与加工方法及装备与标准、纳米信息材料与器件、纳米生物与纳米医学、环境纳米材料与技术、能源纳米材料与技术、纳米技术应用与开发、纳米技术安全性等方面进行了重点部署。

【参考文献】

1、李良训:纳米材料的特性及其应用

2、王广贺,张浩:纳米技术的应用及其发展

3、张小琴,谭镜明:纳米材料的应用进展

纳米技术发展史

纳米技术发展史 【摘要】纳米技术是21世纪科技发展的制高点,是新工业革命的主导技术,它将引起一场各个领域生产方式的变革,也将改变未来人们的生活方式和工作方式,使得我们有必要认识一下纳米技术的发展史。纳米技术的发展史是一个很长的过程,同时也是一个广泛应用的过程。 【关键词】发展纳米技术纳米材料 纳米技术基本概念 纳米技术是以纳米科学为基础,研究结构尺度在0.1~100nm范围内材料的性质及其应用,制造新材料、新器件、研究新工艺的方法和手 段。纳米技术以物理、化学的微观研究理论为 基础,以当代精密仪器和先进的分析技术为手 段,是现代科学(混沌物理、量子力学、介观物 理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)相结合的产物。在纳米领域,各传统学科之间的界限变得模糊,各学科高度交叉和融合。 纳米技术包含下列四个主要方面: 1、纳米材料:当物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。

过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于 自然界,只是以前没有认识到这个尺度 范围的性能。第一个真正认识到它的性 能并引用纳米概念的是日本科学家,他 们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。磁性材料也是如此,象铁钴合金,把它做成大约20—30纳米大小,磁畴就变成单磁畴,它的磁性要比原来高1000倍。80年代中期,人们就正式把这类材料命名为纳米材料。2、纳米动力学,主要是微机械和微电机,或总称为微型电动机械系统,用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等.用的是一种类似于集成电器设计和制造的新工艺。特点是部件很小,刻蚀的深度往往要求数十至数百微米,而宽度误差很小。这种工艺还可用于制作三相电动机,用于超快速离心机或陀螺仪等。在研究方面还要相应地检测准原子尺度的微变形和微摩擦等。虽然它们目前尚未真正进入纳米尺度,但有很大的潜在科学价值和经济价值。3、纳米生物学和纳米药物学,如在云母表面用纳米微粒度的胶体金固定dna的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,dna的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,

数控技术专业发展规划报告

数控技术专业“十三五”规划 一、发展环境 (一)主要成绩与经验 示范性建设结束以后,在学院的正确领导下,机电工程系数控技术专业按照学院的统一部署,狠抓课程建设和教学质量,在教学工作中取得一定成绩。 1.发挥长期积累优势,大幅提升课程建设水平 在人才培养方案的制订过程中,根据高职教育的特点,加大实践教学力度,使实践教学课时大于理论教学课时。 以技能竞赛零件为载体开展实训项目,创建河南省资源共享课,并在中央电化教学馆予以展示。 编著了2本河南省“十二五”规划教材。 2.借助河南省技能振兴工程,构建多轴加工实训室 在河南省技能振兴工程中,高级能人才培训基地项目,除了进行了各种技能培训,我们还新建了多轴加工实训室。其中包含5台DMG四轴加工中心,1台DMG五轴加工中心。 3.以学院技术创新团队项目为契机,大力开展创新教育 在原来兴趣小组的基础上,学院大力资助专业技术创新团队。数控技术专业获得学院大力支持,开展零件、部件等的创新设计,工艺及加工方法的创新。 4.在特色院校建设过程中,加大师资培训力度 目前本专业教师全部参加过国内、外各类师资培训,技能技术水平进一步提升。 5.借应用型本科的东风,开展本科教育

目前本专业与中原工学院合办一个本科班,教学运行良好。 (二)不足与存在问题 1.课程体系不利于职业能力的培养 在专业课程体系中,实践技能训练没有贯穿始终,只是作为一种课程类型存在于教学过程的某一阶段,专业理论教学与实践技能训练相对割裂,分别设置在不同地点、不同时间,由不同教师进行教学与指导,不利于职业技能的系统培养。 2.实践教学系统性、层次性不够 实践教学安排不成体系,不同岗位、不同技能的培养相对割裂,侧重于经验性技能,而缺乏对系统性、策略性技能的培养。培养高技能应用型人才,必须依靠有力而有效并贯穿于整个教育阶段的各种实践教学。对于每一专业按培养计划所确定的最终技术应用能力目标,并不是一蹴而就的,特别是应用性、实践性强的技能培养,需要进行不间断的训练。 3.过度夸大校外实训基地在学生技能训练中的作用 我们认为实践技能应该在企业进行学习和实践,因此,在设置课程体系时把第三学年甚至更长的时间放在企业进行顶岗实习,其实这种做法是不科学的。学校是以培养人才为目的,而企业是以创造经济效益为目的,如果把培养人才这一目标转嫁给企业,势必会造成企业的负担,或者使学生沦落为以重复性工作为主的操作工,达不到实践技能的培养目标。 二、面临的机遇和挑战 制造业是国民经济的主体,是立国之本、兴国之器、强国之基。打造具有国际竞争力的制造业,是我国提升综合国力、保障国家安全、建设世界强国的必由之路。市场和我国的国情要求,主动推进生产方式向小批量、多品种发展;另一

纳米科学与技术的发展历史

纳米科学与技术的发展历史 纳米科学与技术(简称纳米科技)是80年代后期发展起来的,面向21 世纪的综合交叉性学科 领域,是在纳米尺度上新科学概念和新技术产生的基础.它把介观体系物理、量子力学、混沌物理等为代表的现代科学和以扫描探针显微技术、超微细加工、计算机等为代表的高技术相结合, 在纳米尺度上到10nm之间)研究物质(包括原子、分子)的特性和相互作用,以及利用原子、分子及物质在纳米尺度上表现出来的特性制造具有特定功能的产品,实现生产方式的飞跃。 历史背景 对于纳米科技的历史, 可以追溯到30多年前着名物理学家、诺贝尔奖获得者Richard Feynman于美国物理学会年会上的一次富有远见性的报告 . 1959 年他在《低部还有很大空间》的演讲中提出:物理学的规律不排除用单个原子制造物品的可能。也就是说, 人类能够用最小 的机器制造更小的机器。直至达到分子或原子状态, 最后可以直接按意愿操纵原子并制造产品。他在这篇报告中幻想了在原子和分子水平上操纵和控制物质.他的设想包括以下几点: (1)如 何将大英百科全书的内容记录到一个大头针头部那么大的地方; (2) 计算机微型化; (3)重新 排列原子.他提醒到, 人类如果有朝一日能按自己的主观意愿排列原子的话, 世界将会发生什么? (4) 微观世界里的原子.在这种尺度上的原子和在体块材料中原子的行为表现不同.在原 子水平上, 会出现新的相互作用力、新颖的性质以及千奇百怪的效应. 就物理学家来说, 一个原子一个原子地构建物质并不违背物理学规律.这正是关于纳米技术最早的构想。20 世纪70 年代, 科学家开始从不同角度提出有关纳米技术的构想。美国康奈尔大学Granqvist 和Buhrman 利用气相凝集的手段制备出纳米颗粒, 提出了纳米晶体材料的概念, 成为纳米材料 的创始者。之后, 麻省理工学院教授德雷克斯勒积极提倡纳米科技的研究并成立了纳米科技研究小组。纳米科技的迅速发展是在20 世纪80 年代末、90 年代初。1981 年发明了可以直接观察和操纵微观粒子的重要仪器———扫描隧道显微镜(STM)、原子力显微镜(AFM), 为纳米科技的发展起到了积极的促进作用。1984 年德国学者格莱特把粒径6 nm 的金属粉末压成纳米块, 经研究其内部结构, 指出了它界面奇异结构和特异功能。1987 年, 美国实验室用同样的方法 制备了纳米TiO2 多晶体。1990 年7月第一届国际纳米科学技术会议与第五届国际扫描隧道显 微学会议在美国巴尔的摩举办, 同时《纳米技术》与《纳米生物学》这两种国际性专业期刊也相继问世。自1991 年, 中国开始热衷于纳米技术的研究, 到“十五”计划之后, 纳米科技呈现出快速发展的势头。1993年8月在俄罗斯,1994年11月在美国, 先后召开了第二届和第三届国际纳米科学与技术会议. 第四届国际纳米科技会议将于1996年在中国召开。1999 年上半年,

纳米技术在环境保护中的应用

纳米技术在环境保护中的应用 纳米技术具有极大的理论和应用价值,纳米材料被誉为“21世纪最有前途的材料”。 纳米技术研究在0.1.100nm尺度范围内物质具有的特殊性能及其应用。广义的纳米材料 是指在三维空间中,至少有一维达到纳米尺度范围。或以其为基本单位所构成的材料。纳米 材料具有辐射、吸收、杀菌、吸附等特性,众多研究表明这些新特性将在环境保护领域产生 深远的影响。 一.纳米技术在水处理中的应用 1)纳米催化剂 目前用于水处理的纳米催化剂,主要指光催化剂,如Ti02,Cd5,ZnO等,其中TiO:因其活性高、稳定性好、对人体无害而最受重视。Matthews等P1曾对水中34种有机污染物的光催化降解进行研究,结果表明该方法可将水中的烃类、卤代物、轻酸盐表面活性剂、染料、含氮有机物、有机磷杀虫剂等污染物转化成CO;和H2O等无害物质。利用纳米光催化剂光催化降解有机废水是其最重要的用途之一纳米TiO:玻璃薄膜光催化剂,可将玫瑰红B催化降解为C02,H 20及一些其它的简单无机物。用溶胶一箭胶法制备的8层粒径为21.2nm的锐钦矿T102(存在于玻璃薄膜中),在(28-0.5)℃和振摇条件下,可使初始浓度为9.87 x 10“一10.46‘10 6的玫瑰红B在150min内的降解率达到80%多(以高压汞灯为光源),反应速率对时间和浓度均为一级反应[21。用纳米二氧化钦粉末催化降解苯酚水溶液和十二烷基苯磺酸钠水溶液,在多云的条件下,光照12h,浓度为0.5mg/L的苯酚已降解为零,浓度为lmg几的十二烷基苯磺酸钠也基本降解137。采用纳米二氧化钦催化降解技术来处理纺织工业污水,省钱、高效、节能,最终能使有害有机物完全矿化,且不存在二次污染 2)处理无机污染废水 污水中的重金属对人体的危害很大,重金属的流失也是资源的浪费。纳米粒子能对水中的重金属离子通过光电子产生很强的还原能力同。如纳米TiO:能将高氧化态汞、银、铂等贵重金属离子吸附于表面,井将其还原为细小的金属晶体,既消除了废水的毒性,又回收了贵重金属。 3)处理有机污染废水 大量研究表明纳米TiO:等作为光催化剂,在阳光下催化氧化水中的有机污染物。使其迅速降解。至今为止己知纳米TiO:能处理80余种有毒污染物,它可以将水中的各种有机物很快完全催化氧化成水和CO等无害物质图。例如Pintar等在间歇式反应器中纳米Ru/TiO:作催化剂,对酸性或碱性牛皮纸漂白废水进行光催化降解,废水中的有机总碳TOC的去除率可达到99.6%,并使废水完全脱色。经光催化湿空气氧化处理后的工厂废水对弧菌的毒性的实验表明,用该方法处理后的工厂漂白废水完全可以进一步生物降解。 4)自来水的净化处理 新型纳米级净水剂r7的吸附能力和絮凝能力是普通净水剂AI:0,的10~20倍,能将污水中悬浮物完全吸附并沉淀,然后采用纳米磁性物质、纤维和活性炭净化装置,有效地除去水中的铁锈、泥沙以及异味等。再经过由带有纳米孔径的处理膜和带有不同纳米孔径的陶瓷小球组装的处理装置后,可以100%除去水中的细菌、病毒。得到高质量的纯净水。这是因为细菌、病毒的直径比纳米大,在通过纳米孔径的膜和陶瓷小球时,会被过滤掉,水分子及水分子直径以下的矿物质、元素则保留下来。 二。纳米材料在大气污染治理方面的应用 1)空气中硫氧化物的净化 二氧化硫、一氧化碳和氮氧化物是影响人类健康的有害气体,如果在燃料燃烧的同时加

数控技术发展前景

数控技术发展前景 近年来,国内经济飞速发展,随之对于生产设备的要求也越来越高。特别是对国内机械制造业的技术改革,已经成为国内社会普遍关注的问题。下面,小编就为大家讲讲数控技术的发展前景,快来看看吧! 我国数控技术的发展现状数控技术在我国发展的时间较短,从上个世纪五十年代末开始发展至今,基本掌握了现代化的数控技术,建立了一批具有我国自身特色的数控研发和生产的基地,培育了大批专业的数控人才,数控技术产业初具规模。特别是近几年,我国加大了对数控技术的研发力度,在诸多方面取得突破性进展,如可以供应集成化和网络化的制造装备;五轴联动技术逐步成熟;进入了世界高速、高精度、精密数控机床的生产国的行列等等,并且拥有自主知识产权[2]。 虽然我国数控技术发展较快,在一些先进领域取得了长足的进步,但同时我们也应该看到,我国的数控技术水平与国际先进水平相比还存在一定的差距,在发展中还存在着一定的问题。首先,我国数控技术的基础薄弱,对于许多先进的数控信息化技术主要依赖于对国外技术的引进,自主研发和创新能力较弱,缺乏生产高精度、高效率的数控机床的能力,大多采取进口,信息化的应用程度和水平偏低;其次是数控产品的稳定性和可靠性较低,还不是很成熟,与国外的数控系统的平均无故障时间相比相差很远;最后,国内的数控技术缺乏创新能力,虽然拥有众多的数控机床的生产企业,但许多企业的规模有限,信息化技术的应用程度低,缺乏技术创新的能力,生产出来的产品缺乏市场竞争力。 数控技术未来的发展趋势(1)结构体系方面的发展趋势 数控机床的种类繁多但批量很小,为了适应其这一特点,在数控技术的结构体系方面的发展趋势是机床结构的模块化、数控功能的专门

纳米科技的发展及未来的发展方向

纳米科技的发展及未来的发展方向 论文 理学院 08光信息科学与技术 张箐 0836017

纳米科技的发展及未来的发展方向 一:纳米科技的起源: 纳米是长度度量单位,一纳米为十亿分之一米。纳米科技这一初始概念是已故美国著名物理学家、诺贝尔物理学奖得主费恩曼(R.Feynman)于1959年在美国加州理工学院作题为“在低部还有很大空间”的讲演中提出的。费恩曼指出:如果人类能够在原子或分子尺度上来加工材料、制备装置,则将会有许多激动人心的新发现。他还强调:人们需要新型的微型化仪器来操纵纳米结构并测定其性质。费恩曼憧憬说:试想,如果有一天,人们可以按自己的意志来安排一个个原子,将会产生怎样的奇怪现象。 与所有的天才假想一样,费恩曼的科学思想起初并未被接受。然而科技的迅猛发展很快证明了费恩曼是正确的。继费恩曼之后,许多科学家又尽情发挥想像力,从不同角度继续编织纳米技术的神奇梦想。 纳米科技的迅速发展是在1980年代末1990年代初。1980年代初,宾尼希(C.Binnig)和罗雷尔(H.Rohrer)等人发明了费恩曼所期望的纳米科技研究的重要仪器--扫描隧穿显微镜(scanning tunneling microscopy,STM)。STM 不仅以极高的分辨率揭示出了“可见”的原子、分子微观世界,同时也为操纵原子、分子提供了有力工具,从而为人类进入纳米世界打开了一扇更加宽广的大门。 与此同时,纳米尺度上的多学科交叉迅速形成了一个有广泛学科内容和潜在应用前景的研究领域。1990年,纳米技术获得了重大突破。美国IBM公司阿尔马登研究中心(Almaden Research Center)的科学家使用STM把35个氙原子移动到各自的位置,组成了“IBM”三个字母,这三个字母加起来不到3纳米长。 1990年7月,第一届国际纳米科学技术大会和第五届国际扫描隧穿显微

数控机床的现状与发展

数控机床现状及发展趋势分析 数控机床的概念 数控机床就是在数字控制下,能在尺寸精度和几何精度两方面完成金属毛坯零件加工成所需要形状的工作母机的总称。数控机床通常由控制系统、伺服系统、检测系统、机械传动系统及其他辅助系统组成。 国产数控机床的发展现状 一、国产数控机床与国际先进水平差距逐渐缩小 数控机床是当代机械制造业的主流装备,国产数控机床的发展经历{HotTag}了30年跌宕起伏,已经由成长期进入了成熟期,可提供市场1,500种数控机床,覆盖超重型机床、高精度机床、特种加工机床、锻压设备、前沿高技术机床等领域,产品种类可与日、德、意、美等国并驾齐驱。特别是在五轴联动数控机床、数控超重型机床、立式卧式加工中心、数控车床、数控齿轮加工机床领域部分技术已经达到世界先进水平。其中,五轴(坐标)联动数控机床是数控机床技术的制高点标志之一。 它集计算机控制、高性能伺服驱动和精密加工技术于一体,应用于复杂曲面的高效、精密、自动化加工,是发电、船舶、航天航空、模具、高精密仪器等民用工业和军工部门迫切需要的关键加工设备。

五轴联动数控机床的应用,其加工效率相当于2台三轴机床,甚至可以完全省去某些大型自动化生产线的投资,大大节约了占地空间和工作在不同制造单元之间的周转运输时间及费用。国产五轴联动数控机床品种日趋增多,国际强手对中国限制的五轴联动加工中心、五轴数控铣床、五轴龙门铣床、五轴落地铣镗床等均在国内研制成功,改变了国际强手对数控机床产业的垄断局面。 二、国产数控机床存在的问题 由于中国技术水平和工业基础还比较落后,数控机床的性能、水平和可*性与工业发达国家相比,差距还是很大,尤其是数控系统的控制可*性还较差,数控产业尚未真正形成。因此加速进行数控系统的工程化、商品化攻关,尽快建成与完善数控机床和数控产业成为当前的主要任务。目前主要问题有: 三、核心技术严重缺乏 统计数据表明,数控机床的核心技术—数控系统,由显示器、控制器伺服、伺服电机和各种开关、传感器构成,中国90%需要国外进口。如在上海设厂的德国吉特迈集团和意大利利雅路机床集团,在烟台建厂的韩国大宇综合机械株式会社,所有的核心技术都被外方掌握。国内能做的中、高端数控机床,更多处于组装和制造环节,普遍未掌握核心技术。国产数控机床的关键零部件和关键技术主要依赖进口,国内真正大而强的企业并不多。目前世界最大的3家厂商是:日

纳米二氧化钛的现状与发展概要

纳米二氧化钛的现状与发展 作者:未知时间:2007-11-24 15:17:00 国外纳米TiO2的生产现状 20世纪80年代以前,纳米TiO2的研究开发目的主要是作为精细陶瓷原料、催化剂、传感器等,需求量不大,没有形成大的生产规模。80年代以后,开发的纳米TiO2用作透明效应和紫外线屏蔽剂,为纳米TiO2打开了市场,使纳米TiO2的生产和需求大大增加,成为钛白工业和涂料工业的一个新的增长点。 由于纳米TiO2在催化及环境保护等方面具有广阔的应用前景,并可用于日用产品、涂料、电子、电力等工业部门,因此,纳米TiO2展现出巨大的市场前景。日本、美国、英国、德国和意大利等国对纳米TiO2进行了深入的研究,并已实现纳米TiO2的工业化生产。目前全世界已经有十几家公司生产纳米TiO2,总生产能力估计在(6000~10000)t/a,单线生产能力一般为(400~500)t/a。 根据莎哈里本公司统计,2003年全球纳米TiO2销售量仅为1800t左右,其消费量与产品应用见表1。 表1 2003年全球纳米TiO2消费量与产品应用 近几年,有关纳米TiO2的新建装置已很少报道,主要是已建成装置的生产能力已远远超出市场的实际消费量,多数厂家处于开工不足或停产的状态。主要原因是目前国际上公认的纳米TiO2制备和应用技术还有待于提高,技术要点和难点主要表现在以下几个方面:①国际上纳米TiO2的价格为(30~40)万元/t,其成本大致是销售价格的2/5,原料和工艺路线的选择是降低生产成本的关键因素;②纳米TiO2的晶型和粒度控制技术;③金红石型纳米TiO2的表面处理技术;④纳米TiO2应用分散技术;⑤纳米TiO2应用功能的提升技

纳米技术的应用与前景展望

纳米技术的应用与前景展望 【摘要】纳米技术是二十一世纪最具潜力的学科分支,有可能成为下一世纪前二十年的主导技术。本文概述了纳米技术在陶瓷、电器、医学等方面的应用,并对纳米技术的发展进行了展望。 【关键词】纳米技术;应用;发展前景 0.引言 纳米技术是上世纪末出现的高技术,有科学家预言,在21世纪纳米材料将是“最有前途的材料”,纳米技术甚至会超过计算机和基因学,成为“决定性技术”.1990年,第一届国际纳米科学技术会议在美国巴尔的摩召开,《纳米技术》与《纳米生物学》这两种国际性专业期刊也相继问世.从此一个崭新的科学技术领域—纳米科技开始得到科技界的广泛关注。[1] 1.纳米技术 1.1纳米技术的发展现状 二十世纪90年代以后,纳米技术飞速发展。自首届国际纳米科学技术会议召开以后,世界各国的纳米技术研究风起云涌,各种形式的研究机构像雨后春笋遍布世界各地,纳米技术研究所涉及的科学领域及应用范围在不断扩大,各个领域都取得了可喜的进展,纳米技术研究获得了空前的快速发展。纳米材料是纳米技术的重要组成部分,在纳米材料领域,人们研究出了纳米金属、合金、陶瓷和有机高分子等复合型材料并在实际中应用,取得了明显的效果。[2] 1.2发展纳米技术的重要性 纳米技术的研究开发可能在精密机械工程、材料科学、微电子技术、计算机技术、光学、化工、生物和生命技术以及生态农业等方面产生新的突破。世界各国都给予极大的重视,美国国家关键技术委员会将纳米技术列为政府重点支持的22项关键技术之一,制定了投资2亿美元进行大规模开发纳米技术的10年计划。英国成立了纳米技术战略委员会,国家纳米技术计划已开始实施。科学家们认为,纳米技术的深远意义可与18世纪的工业革命相媲美,它的重要性非常大,表现在技术和科学方面,主要有以下几点: (1)纳米技术是一项交叉领域学科,对它的基础研究和应用研究是能否拥有国际竞争力的先决条件。 (2)由于它的交叉学科性能,决定了它不仅应用于一种技术领域,它为许多学科的发展奠定基础并起到推动的作用。

纳米光电子技术的发展及应用

纳米光电子技术的发展及应用 摘要:纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术,研究结构尺寸在0.1至100纳米范围内材料的性质和应用。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学和现代技术结合的产物,由纳米技术而产生一些先进交叉学科技术,本文主要讲述的纳米光电子技术就是纳米技术与光电技术的结合的一个实例,随着纳米技术的不断成熟和光电子技术的不断发展,两者的结合而产生的纳米光电子器件也在不断的发展,其应用也在不断扩大。 关键词:纳米技术纳米光电子技术纳米光电子器件应用 一、前言 纳米材料与技术是20世纪80年代末才逐步发展起来的前沿性,交叉性的学科领域,为21世纪三大高新科技之一。而如今,纳米技术给各行各业带来了崭新的活力甚至变革性的发展,该性能的纳米产品也已经走进我们的日常生活,成为公众视线中的焦点。[2 纳米技术的概念由已故美国著名物理学家理查德。费因曼提出,而不同领域对纳米技术的看法大相径庭,就目前发展现状而言大体分为三种:第一种,是美国科学家德雷克斯勒博士提出的分子纳米技术。而根据这一概念,可以制造出任何种类的分子结构;第二种概念把纳

米技术定位为微加工技术的极限,也就是通过纳米技术精度的“加工”来人工形成纳米大小的结构的技术;第三种概念是从生物角度出发而提出的,而在生物细胞和生物膜内就存在纳米级的结构 二、纳米技术及其发展史 1993年,第一届国际纳米技术大会(INTC)在美国召开,将纳米技术划分为6大分支:纳米物理学、纳米生物学、纳米化学、纳米电子学、纳米加工技术和纳米计量学,促进了纳米技术的发展。由于该技术的特殊性,神奇性和广泛性,吸引了世界各国的许多优秀科学家纷纷为之努力研究。纳米技术一般指纳米级(0.1一100nm)的材料、设计、制造,测量、控制和产品的技术。纳米技术主要包括:纳米级测量技术:纳米级表层物理力学性能的检测技术:纳米级加工技术;纳米粒子的制备技术;纳米材料;纳米生物学技术;纳米组装技术等。其中纳米技术主要为以下四个方面 1、纳米材料:当物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。 2、纳米动力学:主要是微机械和微电机,或总称为微型电动机械系统(MEMS),用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等. 3、纳米生物学和纳米药物学:如在云母表面用纳米微粒度的胶体金固定dna的粒子,在二氧化硅表面的叉指形电极做生物分

纳米材料的特性及其环境保护的应用

纳米材料的特性及其环境保护的应用 黄翔化学工程学院材料091 摘要概述纳米材料的特性及其环境保护的应用。纳米材料具有表面与界面效 应、量子尺寸效应和宏观量子隧道效应。根据纳米材料的吸附和光催化作用,综述了纳米材料在废水处理、废气处理、固体垃圾处理、环境监测等方面的应用。关键词纳米材料特性环境保护吸附 纳米技术是20 世纪80 年代迅速发展起来的一门交叉性综合学科,包括纳米材料和纳米结构两部分。纳米材料是指平均粒径在纳米量级(1~100nm)范围内的固体材料的总称。纳米材料又称为超微颗粒材料,由纳米粒子组成。纳米粒子的表面效应、小尺寸效应和量子尺寸效应影响物质的结构和性质。人们发现,当物质被粉碎到纳米微粒时,所得的纳米材料不仅光、电、磁特性发生变化,而且具有辐射、吸收、催化、杀菌、吸附等许多新的特性。发展纳米技术已成为世界性的重大科学技术活动。 Application of Nano-material in Environment Protection Abstract: The adsorption and ray catalyze performance of nano-material is briefly introduced.The application of nanomaterial in waste water disposal,air pollution,solid rubbish disposal and environment monitoring is stated.The development in application in environment protection is also proposed.、 keywords: nano-material; environment protection; adsorption; catalyze 1基本概念 纳米材料 1992年国际纳米材料会议对纳米材料定义如下:一相任一维的尺寸达到100 nm 以下的材料为纳米材料[1]。由此可知,纳米材料的几何形状既可以是粒径小于100 nm的零维纳米粉末,也可以是径向尺寸小于100 nm的一维纳米纤维或二维纳米膜、三维纳米块体等。纳米材料的材质可以是金属或非金属;相结构可以是单相或多相;原子排列可以是晶态或非晶态。当物质进入纳米级后,其在催化、光、电、热力学等方面都出现特异化,这种现象被称为“纳米效应”。橡胶工业常用的纳米材料以非金属类为主,可分为金属氧化物(如氧化锌、三氧化二铝、二氧化钛、三氧化二铁等)和无机盐类(如轻质碳酸钙和陶瓷)。 2纳米材料的特性

纳米科技的发展现状及前景

纳米技术(nanotechnology),也称毫微技术,是研究结构尺寸在0.1至100纳米范围内材料的性质和应用的一种技术。 1981年扫描隧道显微镜发明后,诞生了一门以0.1到100纳米长度为研究分子世界,它的最终目标是直接以原子或分子来构造具有特定功能的产品。因此,纳米技术其实就是一种用单个原子、分子射程物质的技术。纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。纳米科学与技术主要包括:纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学、纳米力学等。这七个相对独立又相互渗透的学科和纳米材料、纳米器件、纳米尺度的检测与表征这三个研究领域。纳米材料的制备和研究是整个纳米科技的基础。其中,纳米物理学和纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最重要的内容 从迄今为止的研究来看,关于纳米技术分为三种概念: 第一种,是1986年美国科学家德雷克斯勒博士在《创造的机器》一书中提出的分子纳米技术。根据这一概念,可以使组合分子的机器实用化,从而可以任意组合所有种类的分子,可以制造出任何种类的分子结构。这种概念的纳米技术还未取得重大进展。 第二种概念把纳米技术定位为微加工技术的极限。也就是通过纳米精度的"加工"来人工形成纳米大小的结构的技术。这种纳米级的加工技术,也使半导体微型化即将达到极限。现有技术即使发展下去,从理论上讲终将会达到限度,这是因为,如果把电路的线幅逐渐变小,将使构成电路的绝缘膜变得极薄,这样将破坏绝缘效果。此外,还有发热和晃动等问题。为了解决这些问题,研究人员正在研究新型的纳米技术。 第三种概念是从生物的角度出发而提出的。本来,生物在细胞和生物膜内就存在纳米级的结构。DNA分子计算机、细胞生物计算机的开发,成为纳米生物技术的重要内容1993年,第一届国际纳米技术大会(INTC)在美国召开,将纳米技术划分为6大分支:纳米物理学、纳米生物学、纳米化学、纳米电子学、纳米加工技术和纳米计量学,促进了纳米技术的发展。由于该技术的特殊性,神奇性和广泛性,吸引了世界各国的许多优秀科学家纷纷为之努力研究。纳米技术一般指纳米级(0.1一100nm)的材料、设计、制造,测量、控制和产品的技术。纳米技术主要包括:纳米级测量技术:纳米级表层物理力学性能的检测技术:纳米级加工技术;纳米粒子的制备技术;纳米材料;纳米生物学技术;纳米组装技术等。关键突破 1990年,IBM公司阿尔马登研究中心的科学家成功地对单个的原子进行了重排,纳米技术取得一项关键突破。他们使用一种称为扫描探针的设备慢慢地把35个原子移动到各自的位置,组成了IBM三个字母。这证明费曼是正确的,二个字母加起来还没有3个纳米长。不久,科学家不仅能够操纵单个的原子,而且还能够“喷涂原子”。使用分子束外延长生长技术,科学家们学会了制造极薄的特殊晶体薄膜的方法,每次只造出一层分子。目前,制造计算机硬盘读写头使用的就是这项技术。著名物理学家、诺贝尔奖获得者理查德· 费曼预言,人类可以用小的机器制作更小的机器,最后将变成根据人类意愿,逐个地排列原子,制造产品,这是关于纳米技术最早的梦想。 纳米技术包含下列四个主要方面:

纳米科学与技术的发展历史

纳米科学与技术的发展历史 物三李妍 1130060110 纳米科学与技术(简称纳米科技)是80年代后期发展起来的,面向21 世纪的综合交叉性 学科领域,是在纳米尺度上新科学概念和新技术产生的基础.它把介观体系物理、量子力学、混沌物理等为代表的现代科学和以扫描探针显微技术、超微细加工、计算机等为代表的高技术相结合, 在纳米尺度上(0.1nm到10nm之间)研究物质(包括原子、分子)的特性和相互 作用,以及利用原子、分子及物质在纳米尺度上表现出来的特性制造具有特定功能的产品,实现生产方式的飞跃。 历史背景 对于纳米科技的历史, 可以追溯到30多年前着名物理学家、诺贝尔奖获得者Richard Feynman于美国物理学会年会上的一次富有远见性的报告 . 1959 年他在《低部还有很大 空间》的演讲中提出:物理学的规律不排除用单个原子制造物品的可能。也就是说, 人类 能够用最小的机器制造更小的机器。直至达到分子或原子状态, 最后可以直接按意愿操纵原子并制造产品。他在这篇报告中幻想了在原子和分子水平上操纵和控制物质.他的设想 包括以下几点: (1)如何将大英百科全书的内容记录到一个大头针头部那么大的地方; (2) 计算机微型化; (3)重新排列原子.他提醒到, 人类如果有朝一日能按自己的主观意愿排列原子的话, 世界将会发生什么? (4) 微观世界里的原子.在这种尺度上的原子和在体块材 料中原子的行为表现不同.在原子水平上, 会出现新的相互作用力、新颖的性质以及千奇 百怪的效应. 就物理学家来说, 一个原子一个原子地构建物质并不违背物理学规律.这正 是关于纳米技术最早的构想。20 世纪70 年代, 科学家开始从不同角度提出有关纳米技术的构想。美国康奈尔大学Granqvist 和Buhrman 利用气相凝集的手段制备出纳米颗粒, 提出了纳米晶体材料的概念, 成为纳米材料的创始者。之后, 麻省理工学院教授德雷克斯勒积极提倡纳米科技的研究并成立了纳米科技研究小组。纳米科技的迅速发展是在20 世纪 80 年代末、90 年代初。1981 年发明了可以直接观察和操纵微观粒子的重要仪器——— 扫描隧道显微镜(STM)、原子力显微镜(AFM), 为纳米科技的发展起到了积极的促进作用。1984 年德国学者格莱特把粒径6 nm 的金属粉末压成纳米块, 经研究其内部结构, 指出了它界面奇异结构和特异功能。1987 年, 美国实验室用同样的方法制备了纳米TiO2 多晶体。1990 年7月第一届国际纳米科学技术会议与第五届国际扫描隧道显微学会议在美国巴尔

纳米技术与未来生活

纳米技术与未来生活 “正像七十年代微电子技术引发了信息革命一样,纳米科学技术将成 为下世纪信息时代的核心。” ——IBM的首席科学家Amotro ●纳米技术的起源与发展 1959年,著名物理学家、诺贝尔奖获得者理查德·费曼预言,人类可以用小的机器制作更小的机器,最后甚至可以根据人类的意愿,逐个排列原子或分子,制造超晶态产品,这是关于纳米技术最早的梦想。 七十年代,科学家开始从不同角度提出有关纳米技术的构想,1974年,科学家唐尼古奇最早使用纳米技术(Nano-technology)一词描述精密机械加工。1982年,科学家发明观察纳米结构的重要工具--扫描隧道显微镜(STM),揭示了一个可直接探测的原子、分子世界,对当时称为“介观物理”(Mesoscopic Physics)的研究和发展产生了积极的促进作用。并且,只有在介观体系中才显得那么重要的表面和界面问题也开始发展成为科学。1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生。 ●纳米与纳米技术 所谓纳米,它仅仅是一个长度单位,一个纳米相当于十亿分之一米,是人类毛发直径的一万分之一,是可见光最短波长的四百分之一。如果做一个纳米的小球,把它放在一个乒乓球上,就好像把乒乓球放在地球上。纳米一个比微观尺度(原子大小为0.1纳米)大,又比宏观尺度(光学显微镜分辨极限的微米尺度)小的世界。这个世界里的研究工作是从基础物理学对这个尺度上的结构(纳米结构——Nano-structure)所表现出的奇异特性开始的。如果考察电子通过纳米圆环所组成电路,它的行为将不遵守欧姆定律,而表现出彼此之间的关联性(AB效应)。在这个尺度上的物质,表面原子或分子占了相当大的比例,已经无法区分它们是长程有序(晶态)、短程有序(液态),还是完全无序(气态)了,而成为物质的一种新的状态——纳米态。并且,人们很早就注意到这种纳米态的性质不主要取决于其体内的原子或分子,而是主要取决于表面或界面上分子排列的状态。由于它们具有量子力学上的强关联性而表现出完全不同于宏观和微观世界的介观性质,这就是纳米材料。 而通常讲的纳米科技就是对待这样一个数量级的微观世界的科学技术。其精髓是从对原子分子的精确控制出发,构建具有全新分子、全新排列形式的人造结构。也就是说,纳米技术希望能够操纵一个一个原子、一个一个分子,并用这种办法来做成一些材料和器件。1959年,加州理工学院的一位教授就提出了这样一种设想:做一种万能制造机,一面放上各样的分子、原子,另一面想出来什么东西,就通过原子的组排,轻松实现。而从原理上讲,利用纳米技术,是有可能的。可见纳米技术的神奇了。 作为纳米技术,本身它并不神秘,实际上从微米技术到纳米技术,应该说啊是科学发展的一个自然的结果。我们现在生活在微米时代。在微米时代,我们用计算机,录像机、电视,都是微米技术的结晶。比如奔腾芯片已经做到了0.17-0.18个微米,相当于几百个纳米。也就是说,从尺度上来讲,微米技术已经逐渐进入到纳米尺度。所以从某种意义上讲,从诶米科技到纳米科技是科学发展的必然结果。 然而,纳米技术不仅仅是微米技术的简单延伸,实际上纳米技术是建立在人们对纳米世

机床数控技术的现状及未来发展趋势

机床数控技术的现状及未来发展趋势 一、数控机床的简单介绍 车、铣、刨、磨、镗、钻、电火花、剪板、折弯、激光切割等都是机械加工方法,所谓机械加工,就是把金属毛坯零件加工成所需要的形状,包含尺寸精度和几何精度两个方面。能完成以上功能的设备都称为机床,数控机床就是在普通机床上发展过来的,数控的意思就是数字控制。数控系统是由显示器、控制器伺服、伺服电机、和各种开关、传感器构成。当然,普通机床发展到数控机床不只是加装数控系统这么简单,例如:从铣床发展到加工中心,机床结构发生变化,最主要的是加了刀库,大幅度提高了精度。加工中心最主要的功能是铣、镗、钻的功能。我们一般所说的数控设备,主要是指数控车床和加工中心。 1、数控机床的特点如下: (1)加工精度高,具有稳定的加工质量; (2)可进行多坐标的联动,能加工形状复杂的零件; (3)加工零件改变时,一般只需要更改数控程序,可节省生产准备时间机床本身的精度高、刚性大,可选择有利的加工用量,生产率高(一般为普通机床的3~5倍); (4)机床自动化程度高,可以减轻劳动强度; (5)对操作人员的素质要求较高,对维修人员的技术要求更高。

2、数控机床的组成部分主机,他是数控机床的主题,包括机床身、立柱、主轴、进给机构等机械部件。他是用于完成各种切削加工的机械部件。数控装置,是数控机床的核心,包括硬件(印刷电路板、CRT显示器、键盒、纸带阅读机等)以及相应的软件,用于输入数字化的零件程序,并完成输入信息的存储、数据的变换、插补运算以及实现各种控制功能。驱动装置,他是数控机床执行机构的驱动部件,包括主轴驱动单元、进给单元、主轴电机及进给电机等。他在数控装置的控制下通过电气或电液伺服系统实现主轴和进给驱动。当几个进给联动时,可以完成定位、直线、平面曲线和空间曲线的加工。辅助装置,指数控机床的一些必要的配套部件,用以保证数控机床的运行,如冷却、排屑、润滑、照明、监测等。它包括液压和气动装置、排屑装置、交换工作台、数控转台和数控分度头,还包括刀具及监控检测装置等。编程及其他附属设备,可用来在机外进行零件的程序编制、存储等。数控技术,简称“数控”。英文:NumericalControl(NC)。是指用数字、文字和符号组成的数字指令来实现一台或多台机械设备动作控制的技术。 二、国内外机床数控技术的现状 1、国内数控机床技术现状我国数控机床制造业在80年代曾有过高速发展的阶段,许多机床厂从传统产品实现向数控化产品的转型。但总的来说,技术水平不高,质量不佳,所以在90年代初期面临国家经济由计划性经济向市场经济转移调整,经历了几年最困难的萧条时期,那时生产能力降到50%,库存超过4个月。

纳米技术的现状、应用、发展趋势及存在问题

纳米技术的现状、应用、发展趋势及存在问题 21世纪,信息科学技术、生命科学技术和纳米科学技术是科学技术发展的主流。人们普遍认为,纳米技术是信息和生命科学技术能够进一步发展的共同基础。纳米技术所带动的技术革命及其对人类的影响,远远超过电子技术。 纳米生物技术是国际生物技术领域的前沿和热点问题,在医药卫生领域有着广泛的应用和明确的产业化前景,特别是纳米药物载体、纳米生物传感器和成像技术以及微型智能化医疗器械等,将在疾病的诊断、治疗和卫生保健方面发挥重要作用。 目前,国际上纳米生物技术在医药领域的研究已取得一定的进展。美国、日本、德国等国家均已将纳米生物技术作为21世纪的科研优先项目予以重点发展。 纳米技术:于细微之处显神奇 纳米技术是在纳米尺度内,通过对物质反应、传输和转变的控制来实现创造新的材料、器件和充分利用它们的特殊的性能,并且探索在纳米尺度内物质运动的新现象和新规律。由于纳米正好处于原子、分子为代表的微观世界和以人类活动空间为代表的宏观世界的中间地带,被称为纳米世界,也是物理、化学、材料科学、生命科学以及信息科学发展的新领地。纳米材料中包含了若干个原子、分子,使得人们可以在原子层面上进行材料和器件的设计和制备。几十个原子、分子或成千个原子、分子"组合"在一起时,表现出既不同于单个原子、分子的性质,也不同于大块物体的性质,这种"组合"被称为"超分子"或"人工分子"。"超分子" ·石墨烯·分子筛·碳纳米管·黑磷·类石墨烯·纳米材料 江苏先丰纳米材料科技有限公司是国际上提供石墨烯产品很早的公司之一,现专注于石墨烯、

的性质,如它的熔点、磁性、电容性、导电性、发光性和颜色及水溶性都有重大变化。当"超分子"继续长大或以通常的方式聚集成大块材料时,奇特的性质又会失去。通俗来说,纳米材料一方面可以被当作一种"超分子",充分地展现出量子效应;而另一方面它也可以被当作一种非常小的"宏观物质",以至于表现出特性。同时,许多化学和生物反应的过程也发生在纳米尺度的层面上,因此探测纳米尺度内物理、化学和生物性质的变化,将加深对生命科学的理解。对由数量不多的电子、原子或分子组成的体系中新规律的认识和如何操纵或组合他们,是当今纳米科学技术的主要问题之一。当前纳米技术的研究和应用主要在材料和制备、微电子和计算机技术、医学与健康、航天和航空、环境和能源、生物技术和农业等方面。 在纳米材料制备科学和技术研究方面一个重要的趋势是加强控制工程的研究,这包括颗粒尺寸、形状、表面、微结构的控制。由于纳米颗粒的小尺寸效应、表面效应和量子尺寸效应都同时在起作用,它们对材料某一种性能的贡献大小、强弱往往很难区分,是有利的作用,还是不利的作用更难以判断,这不但给某一现象的解释带来困难,同时也给设计新型纳米结构带来很大的困难。如何控制这些效应对纳米材料性能的影响,如何控制一种效应的影响而引出另一种效应的影响,这都是控制工程研究亟待解决的问题。国际上近一两年来,纳米材料控制工程的研究主要有以下几个方面:一是纳米颗粒的表面改性,通过纳米微粒的表面做异性物质和表面的修饰可以改变表面带电状态、表面结构和粗糙度;二是通过纳米微粒在多孔基体中的分布状态(连续分布还是孤立分布)来控制量子尺寸效·石墨烯·分子筛·碳纳米管·黑磷·类石墨烯·纳米材料 江苏先丰纳米材料科技有限公司是国际上提供石墨烯产品很早的公司之一,现专注于石墨烯、

纳米技术的应用与前景

纳米技术的应用与前景 纳米技术作为一种高新科技,我认为其本质不亚于当年的电子与半导体科技,有着我们未所发掘到潜能与实用价值,在这个世代,各种技术的发展迅速,随着纳米技术的进一步发展,可以作为一种催化剂,促使各行各业的迅猛发展。 纳米技术是近年来出现的一门高新技术。“纳米”主要是指在纳米(一种长度计量单位,等于1/1000,000,000米)尺度附近的物质,其表现出来的特殊性能用于不同领域而称之为“纳米技术”,其具体定义见词条“纳米科技”。 纳米技术目前已成功用于许多领域,包括医学、药学、化学及生物检测、制造业、光学以及国防等等。本词条为纳米技术应用的总纲,包括如下领域: 1、纳米技术在新材料中的应用 2、纳米技术在微电子、电力等领域中的应用 3、纳米技术在制造业中的应用 4、纳米技术在生物、医药学中的应用 5、纳米技术在化学、环境监测中的应用 6、纳米技术在能源、交通等领域的应用 尽管从理论到实践是一个相当困难的过程,但纳米技术已经证明,可以利用扫描隧道电子显微镜等工具移动原子个体,使它们形成在自然界中永远不可能存在的排列方式,如IBM 公司的标志图案、比例为百亿分之一的世界地图、或一把琴弦只有50纳米粗的亚显微吉他。纳米材料的应用有着诱人的技术潜力,它的应用范围包括从制造工业、航天工业到医学领域等。美国全国科学基金会曾发表声明说:“当我们进入21世纪时,纳米技术将对世界人民的健康、财富和安全产生重大的影响,至少如同20世纪的抗生素、集成电路和人造聚合物那样。”科学家们预计,纳米技术在新世纪中的应用前景广阔,已经涵盖了材料、测量、机械、电子、光学、化学、生物等众多领域,信息技术与纳米技术的关系已密不可分。 从纳米科技发展的历史来看,人们早在1861年建立所谓肢体化学时即开始了对纳米肢体的研究。但真正对纳米进行独立的研究,则是1959年,这一年,著名美国物理学家、诺贝尔奖金获得者德·费曼在美国物理学年会上作了一次报告。他在报告中认为,能够用宏观的机器来制造比其体积小的机器,而这较小的机器又可制作更小的机器,这样一步步达到分子程度。费曼还幻想在原子和分子水平上操纵和控制物质。 在70年代末,美国MIT(麻省理工大学)的W.R.Cannon等人发明了激光气相法合成数十纳米尺寸的硅基陶瓷粉末。80年代初,德国物理学家H.Gleiter等人用气体冷凝发制备了具有清洁表面的纳米颗粒,并在超真空条件下原位压制了多晶纳米固体。现在看来,这些研究都属于纳米材料的初步探索。 科学家预言,尺寸为分子般大小、厚度只有一根头发丝的几百万分之一的纳米机械装置将在今后数年内投入使用。学术实验室和工业实验室的研究人员在开发分子马达、自组装材料等纳米机械部件方面取得了飞速进展。纳米机器具有可以操纵分子的微型“手指”和指挥这些手指如何工作、如何寻找所需原材料的微型电脑。这种手指完全可以由碳纳米管制成,碳纳米管是1991年发现的一种类似头发的碳分子,其强度是钢的100倍,直径只有头发的五万分之一。美国康奈尔大学的研究人员利用有机物和无机物组件开发出一个分子大小的马达,一些人称之为纳米技术领域的“T型发动机”。 纳米科技中具有主导或牵头作用的是纳米电子学,因为它是微电子学发展的下一代。纳米电子学是来自电子工业,是纳米技术发展的一个主要动力。纳米电子学立足于最新的物理理论和最先进的工艺手段,按照全新的理念来构造电子系统,并开发物质潜在的储存和处理

相关文档
相关文档 最新文档