文档视界 最新最全的文档下载
当前位置:文档视界 › 气相色谱分离技术题库

气相色谱分离技术题库

气相色谱分离技术题库
气相色谱分离技术题库

第三章气相色谱分离技术

第一节气相色谱系统

气相色谱法是一种很重要的,以气体为流动相,以液体或固体为固定相的色谱方法,气相色谱法(GC)有以下特点:

(1)高选择性GC能够分离分析性质极为相近的物质。如氢的同位素,有机物的异构体。

(2)高效GC可在较短的时间内同时分离分析极其复杂的混合物。如用空心毛细管柱一次可以分析轻油中的200个组分。

(3)高灵敏度由于使用了高灵敏度的检测器,可以检测10-11-10-13克物质。检测浓度可达到ppt级。

(4)分析速度快GC一般只要几到几十分钟的分析时间,某些快速分析,一秒可以分析十几个组分。

GC法的应用相当广泛,在一千万个化合物中,大约有20%的物质可以用GC方法进行分析,如:

生物化学分析:GC一开始就是用于生物化学领域,气-液GC的创始人Martin首先进行了脂肪酸和脂肪胺的分析。

石油化工分析:用200m的毛细管GC法一次可以分析200个化合物。

环境分析:如水中有机物分析。

食品分析:如粮食中残留农药的分析。

药物临床分析:氨基酸、兴奋剂的分析。

法庭分析:各种物证鉴定。

空间分析:如飞船中气氛分析。

军工分析:如火药、炸药分析。

图3-1是GC的流程示意图。

9

图3-1气相色谱流程示意图

1—高压瓶,2—减压阀, 3—净化器,4—气流调节阀,5—进样口,6—气化室,7—色谱柱,8—检测器, 9—记录仪

气相色谱仪的种类很多,但主要由分离系统和检测系统组成。

3.1.1 分离系统

分离系统主要由气路系统、进样系统和色谱柱组成,其核心为色谱柱。

1.气路系统

气路系统指流动相载气流经的部分,它是一个密闭管路系统,必须严格控制管路的气密性,载气的惰性及流速的稳定性,同时流量测量必须准确,才能保证结果的准确性。载气通常用N2,He,H2,Ar等。

2.进样系统

进样系统包括进样装置和气化室。气体样品可以用注射器进样,也可用旋转式六通阀进样。气化室必须预热至设定温度。

3.色谱柱

GC中常用的色谱柱有两种。一种是填充柱,有不锈钢、铜、玻璃等材料制成,可制成不同的形状,装填不同的填料,如担体(红色担体,白色担体,非硅藻土型担体)、固定液(角鲨烷,硅油,聚乙二醇,聚苯醚等)。另一种是毛细管柱,其材料多为石英,规格为内径0.1-0.5mm,柱长为10-300m, 其内壁可涂上固定液。空心毛细管柱渗透性能好,分离效率高。

3.1.2 检测系统

检测系统主要为检测器,检测器将色谱流出物转变为电信号,由数据记录部分将图谱记录下来,然后进行数据处理。

第二节气相色谱常用的检测器

气相色谱检测器研究过的有20多种,但常用的商品化的仅有6种。表3-1是6种检测器的性能比较。

表3-1 常用GC检测器的性能比较

检测器响应特性敏感度, g/s 响应时间, s 最小检测量, g TCD 浓度型10-6-10-10g/ml < 1 10-6

FID 质量型2×10-12<0.1 < 5×10-13

ECD 浓度型10-14g/ml < 1 10-14

FPD P,质量;S,浓度

平方P: 10-12;

S:10-11

<0.1 <10-10

TID 质量型N:10-13;P:10-14< 1 10-13

PID 质量型10-13<0.1 10-11

热导检测器(TCD);氢火焰离子化检测器(FID);电子捕获检测器(ECD);火焰光度检测器(FPD);热离子检测器(TID):光离子化检测器(PID)。

3.2.1 检测器的分类

(1)微分型和积分型

根据检测器输出信号的变化与组分在色谱流出物中含量之间的关系,检测器可以分为微分型和积分型两种。从前者得到的色谱图了反映组分流出色谱柱时的分布曲线,由一系列峰组成;从后者得到的曲线是阶梯型曲线。

(2)浓度型和质量型

检测器是利用组分的物理化学性质将组分的量与电量相关联的装置,所得到的电信号反映了组分的量。反映浓度与信号关系的检测器是浓度型检测器。例如利用物质的介电常数、气体密度、热导率、电极电位、电负性、光吸收和发射等性质进行分析的检测器就形成了浓度型检测器。

质量型检测器是根据组分与质量有关的物理化学性质而设计的,例如利用物质的质量、电离电流、震荡频率、热电子发射、质谱、C原子个数等原理设计的叫质量型检测器。载气的流速增加,峰高增加。

(3)通用型和专用型

通用型指对所有组分都有响应的检测器,如热导、氢火焰离子化检测器等。选择专用型指对专有组分才有响应的检测器,如电子捕获检测器、火焰光度检测器、光离子化检测器等。

(4)破坏型和非破坏型

热导是非破坏型、氢火焰离子化检测器是破坏型的典型代表。

3.2.2 检测器的一般要求

检测器一般都要求灵敏度高、检测限低、死体积小、响应快、线性范围宽、稳定性好。

(1)线性范围

线性范围是指仪器能检测到组分最大、最小量之比,在这个范围内,信号与浓度成正比,它表明了对样品准确定量的能力。氢火焰离子化检测器的线性范围高达107,电子捕获检测器为103,热导为103。

(2)稳定性

用基线噪音和漂移来表示,它包括了检测器本身、柱子状态、流动相的纯度等因素。

(3)响应时间、时间常数

色谱系统的响应时间主要由信号测量的电子系统和检测器本身的时间常数组成,现代电子系统的时间常数可以方便的做到毫秒级的水平,但传统的笔式记录仪的时间常数通常为1秒,它可用于填充色谱柱分离中,不能满足毛细管气相色谱的记录。

检测器本身的时间常数主要来源于死体积,它可以引起峰变宽,使检测器不能对组分量的变化作出快速响应。热导检测器的死体积通常为800微升,氢火焰离子化检测器的为0。检测器的时间常数

τ=V0(1-e-1)/F ( 3-1 )

式中V

0是死体积,F是流量。假设V

是0.5 ml,F为60ml/min,则

时间常数为0.3秒。一般要求检测器的τ/σ小于0.1,σ为标准高斯峰的标准偏差。

3.2.3 常用检测器

(1)热导检测器(TCD)

它是基于物质的热导系数而设计的检测器。用来测量气体热导的热导池一般是由热的良导体不锈钢制成。当流经热导池的气体的热导率发生?λ变化时,热导池池体发生?Q的热量变化,引起热敏元件?T的温度变化,从而使热敏丝的阻值变化?R,这种变化由惠斯顿电桥测定,最后反映出组分的浓度变化?C。

(2)氢火焰离子化检测器(FID)

1958年,J.Harley首先发展了这种检测器,它是GC中最常用的一种,特别适于毛细管GC。它有很多优点,比如通用性强,几乎对所有的样品都有响应,而对水、空气、惰性气体、不电离的物质则几乎没有响应;灵敏度高,线性范围宽,响应速度快。

不能用氢火焰离子化检测器检测的物质有:H

2、He、O

2

、N

2

、Ar、Xe、NO、NO

2

N

2O、NH

3

、CS

2

、COS、H

2

S、CO、CO

2

、H

2

O、HCHO、HCOOH、SiCl

2

、SiHCl

3

、SiF

4

等。

氢火焰离子化检测器的设计原理结构图见图3-2,

收集极

极化极

氢气

分离组分

图3-2 氢火焰离子化检测器的设计原理结构图

助燃气通过氢火焰离子化检测器的喷嘴周围,载气带着组分进入喷嘴与氢气混合后在喷嘴出口处燃烧,形成氢氧扩散焰。组分在火焰中离子化,在极化电压作用下,从收集极收集到离子流,经放大后,记录下来。

有机分子在火焰中进行的是化学电离。当载气中没有组分时,在火焰中生成大量的H.、OH.、O

2

H.等基团,当有机组分进入火焰后发生裂解,生成CH.、

CH

2.、CH

3

.、等自由基, CH.进一步与激发态的氧原子发生反应, CH + O* = CHO+ + e (3-2)

有机碳的电离效率很低,即生成CHO+的比例很小,但是生成CHO+的量

与进入火焰的碳原子总数成正比,此外CHO+与H

2O反应生成H

3

O+,

火焰中的OH.、O

2

等也会发生结合生成负离子,这些正负离子组成了被检测器收集的离子流。

氢气与载气(一般为氮气)混合形成燃气,其流量随载气流量增加而增

加,当氢气流量较小时,不能维持火焰点燃,通常将其维持在30-60ml/min 的水平上。一般情况下,氢气与载气的比例为1:1,氢气与空气的流量比为1:8—1:10,典型的空气流量为500 ml/min。

极化电压对灵敏度的影响并不明显,一般为150-300mV。

(3)电子捕获检测器(ECD)

是一种用63Ni或氚做放射源的选择性离子化检测器,它主要用于负电性物质的检测分析,如对含有卤素、S、O、硝基、羧基、氰基、共轭双键体系、有机金属化合物等有很高的灵敏度。它的结构原理图见图 3-3。

图 3-3 电子捕获检测器结构原理图

它包括两个电极和一个放射源,放射源通常为阴极,由放射源辐射出的β粒子,即初级电子,检测器中的载气在β射线的作用下,电离成正负离子和自由电子(次级电子),即,

Ar(或N

2) Ar + (或N

2

+) + e (3-3)

初级电子和次级电子在电场的作用下形成电流,称为基始电流I

e

。当样品组分

进入检测器时,自由电子被负电性物质捕获,电流减小到I,成为测量电流,

I=I

e

e-AεC (3-4)

A为仪器常数,ε为电子的吸收系数,C为组分的浓度。当样品的浓度很小时,

(I

e -I)/ I

e

= KC (3-5)

电子的吸收系数对灵敏度的影响较大,可以将样品转化为卤素化合物后进行分离检测。只要能使载气分子电离,产生足够大的基流,任何类型的放射源都可以用于电子捕获检测器,如63Ni、90Sr、266Ra等。

极化电压有两种供电方式,即直流与脉冲供电,电压幅度在2-100V之间。一般认为,加到检测器的极化电压以获得饱和基流的85%为宜。检测器的温度对灵敏度的影响较大,因此温度精度要达到0.1?C。载气的流速增加,灵敏度降低,实际上其有一个合适的流速值。

(4)火焰光度检测器(FPD)

1966年,Brody 和Chaney 提出了火焰光度检测器(FPD),它对S、P化合物有极高的选择性和灵敏度,选择比达到104-105,灵敏度达到2?10-12g/s。是大气污染和残留农药测定的有力工具。图3-4是其结构原理图。

载气+样品

图3-4火焰光度检测器结构原理图

当含S、P的化合物在富氢的火焰中燃烧时,会发出自己的特征光谱,含P 化合物的最强谱带波长为526nm,S化合物为394nm。让这些发射光谱透过干涉滤光片后,用光电倍增管接收这些特征谱线。

在燃烧的火焰中氢氧的比例为大于3:1。当温度足够高时,氢气分解成氢原子,S、P在火焰中生成氧化物,接着发生还原反应,

SO2 + 8H 4H2O +2S

S2*(化学发光)(3-6)

激发态S2* 发出394nm的特征光谱,反射光的强度I与化合物的S含量的关系为,

I=k[S2*]=k’[S]2(3-7)

由于检测器的响应R与I成正比,所以,

R=k”[S]2

或者logR=2log[S] +logk”(3-8)

对于P化合物,

logR=log[HPO] +logk”(3-9)

(5)热离子检测器(TID)

又称氮磷检测器,它是在FID的喷嘴和收集极间放置一个含有硅酸铷的玻璃珠,适于测定N、P化合物的检测器。其实质是在氢火焰离子化检测器的火焰上加碱金属盐,使之产生微弱的电流,电流的大小与温度有关,温度又与氢气流量有关,因此必须很好地选择和控制流量。此外载气的流量、极化电压、碱

金属盐的种类对检测灵敏度多有不同程度的影响。

(6)光离子化检测器(PID)

利用紫外光激发解离电位较低的化合物,使其电离而产生信号的检测器,其结构图见图3-5。

检流计

载气

图3-5 光离子化检测器示意图

光子的能量决定检测器的选择性,光子强度决定灵敏度。使用最多的是10.2 eV的紫外灯。

第三节气相色谱柱

气相色谱柱有两大类,一种是填充柱,一种是毛细管柱。大多数填充柱的内径为3-5mm,主要用不锈钢制成。毛细管柱为200-500微米内径的弹性石英制成,它分为空心和填充两种,空心柱的内壁被均匀地涂上了固定液来实现高效分离。

3.3.1 担体

气液色谱的固定相是由担体和固定液组成,担体是承担固定液的支架,又称为载体。担体一般要求比表面积大,有良好的缝隙结构(分布均匀),固定液能均匀地展成液膜;担体必须具有化学惰性,不与分离组分发生作用,不参与分配平衡;粒度均匀,成球型。

(1)常用的担体

硅藻土类:红色担体是用硅藻土粉碎后,经900度煅烧制成的,其主要成分为硅忽然铝的氧化物,其中的氧化铁使其成为红色。其比表面积为4 m2/g,平均孔径为1微米。其表面活性中心和催化性较强,使得色谱峰容易拖尾。商品化的产品有201、201、6201系列,美国的C-22、Chromosorb P、Gas Chrom R系列等。白色担体中因含有铁硅酸钠而成白色。其比表面积为1 m2/g,平均孔径为8-9微米,其表面活性中心较少,适合分析极性组分。商品化的产品有101、102系列,美国的Chromosorb 、Gas Chrom A、P、Q、S、Z系列等。

非硅藻土类:玻璃微珠、四氟乙烯微球等,她们的特点是耐腐蚀,涂布不匀,柱效低。

(2)担体的处理

由于硅藻土上含有类似硅醇基等氢键活性点,因此常常需要处理后应用。一般可采用酸洗、碱洗、硅烷化、釉化处理等。

在担体的选择上,酸性样品选择酸性担体,碱性样品选择碱性担体,对化

学活性较强和极性较强的样品最好选择聚四氟乙烯担体。

3.3.2 固定液

好的固定液要满足热稳定、化学稳定、选择性好等条件。

(1)固定液分类

烃类:角鲨烷(相对极性最小)、阿皮松真空酯类(Apezon 混合非极性)、芳烃类(苄基联苯)等。

聚硅氧烷类:稳定性好,可以在很宽的范围内使用。对大多数化合物都有很好的溶解度,而且这类化合物中的硅原子上可以引入各种基团,使其相对极性随之改变,从而得到各种不同极性的固定液。常见的品种有甲基硅油、硅橡胶、低、中、高苯基含量聚硅氧烷、氟、氰基聚硅氧烷等。

聚二醇类:含有羟基,易与醇、胺、酸、酚、酮、酯、醚类物质生成氢键,它的选择性主要考虑的就是氢键。常见的品种有PEG400、600、800、1500、4000、6000、20000等,使用温度在100-200度之间。

聚酯类:由多元酸、醇聚合而成,中等极性,它的选择性主要基于氢键作用,对醇、胺、酸、酚、酮、酯、醚类物质有较高的分离能力。

氰类:强极性固定液,与角鲨烷相对应,腈醚中的β,β-氧二丙腈是强极性标准固定液,对极性物质或易极化的物质有很高的选择性。

特殊种类的固定液:有机硅藻土、液晶等,液晶的平行分子排列有序,对组分分子有定向响应,对于能适合其形状的组分有特别的溶解度,对异构体有很好的分离效果。

另一种常见的分类方法是相对极性法。1959年Rohrschneider 提出用相对极性来表示固定液的分离特性,它规定角鲨烷的极性为0,β,β-氧二丙腈的极性为100,并选定正丁烷和丁二烯为确定极性大小的分离物质对,分别测定它们在这两种固定液和选定固定液上的相对保留值,并进行比较,得到被研究固定液的相对极性落在0-100之间。用这种方法将固定液分成5级,每增加20增

加一个等级,用+表示。只用正丁烷和丁二烯这两个非极性物质作为测定标准,只考虑了固定液与组分间的色散力与诱导力的作用,忽略了其他力的作用,因而这种方法存在一定的缺陷。因此1966年Rohrschneider又提出了改进,用苯(π键)、乙醇(质子给体,氢键)、甲乙酮(质子受体,氢键)、硝基甲烷(质子受体,特殊氢键)、吡啶(质子受体,大π键,)为确定极性大小的分离物质,用保留指数之差?I表示相对极性的大小。?I越大,表示固定液与组分之间的作用力越强,用下式表示,

?I i=I p+I s=aX (3-10)

式中I p、I s分别是给定5种样品中的一个在所研究的固定液和参比固定液(角鲨烷)上的保留指数,X表示固定液的极性,a=100,因此,

X= ?I i /100 (3-11)

例如,苯在SE-30上的?I i是15,那么,X=0.15;苯在PEG-4000上的?I i是325,那么,X=3.25。后者的极性比前者强。

当然,也可将5种的保留指数之差?I相加,得到固定液的总极性指标?I t,?I t =aX+bY+cZ+dU+eS (3-12)

X、Y、Z、U、S分别是规定的5种物质在所研究固定液的极性,a、b、c、d、e分别为常数100。

1974年McReynolds 用丁醇、2-戊酮、硝基丙烷代替乙醇、甲乙酮、硝基甲烷,并增加了五种新标准物质即2-甲基-2-戊基-2-戊醇、碘丁烷、2-辛炔、二氧六烷、顺八氢化茚。

3.3.3 固定液的选择原则

1.相似性原则

根据相似相溶的原则,为了获得较大的容量因子及较大的保留时间,对极性组分采用极性固定液,对非极性组分采用非极性固定液为宜。

2.混合固定液方法

将两种极性不同的固定液混合,可以混合制成极性范围很宽的固定液,可以使性质相近的组分实现高效分离。

3. 按照样品类型选择固定液

如醇类可用PEG、SE-30固定液;

醛类用PEG类固定液;

烃类可用角鲨烷类、硅胶、氧化铝、邻苯二甲酯类固定液;

甾类、氨基酸、生物碱可用硅油、OV-1、OV-17、SE-30等固定液。

3.3.4 气固色谱固定相

实际上是吸附GC,它的固定相是吸附剂,常用的吸附剂有以下碳黑、硅胶、氧化铝等几种。

1.碳黑:将碳黑在2000-3000度高温煅烧,使表面均匀化,有稳定的表面性质,重复性极好,对烷烃、脂肪酸、胺、酚有很好的分离效果。

2.分子筛:比表面积大,一般为内面积700-800m2/g,外面积1-3 m2/g,常用的有4A、5A和13X,对永久性和烃类气体有很好的分离效果。它的缺点是对二氧化碳和水产生不可逆失活。

3.高分子小球:GDX、Porapak和Chromosorb系列,组分的峰形好。

4.硅胶:比表面积大约100-200m2/g,活性点多,峰易拖尾。

5.氧化铝:主要用于气体和低级烃类的分离。

3.3.5色谱柱的制备

按照组分分离的需要,选好固定液后即可制备色谱柱,对气固色谱来说,可将担体直接装入色谱柱,对气液色谱而言,还需将固定液涂布后才能装柱。

1.固定液涂布:担体应过筛,使其颗粒均匀,选好适当的溶剂,按照固定液的配比称取固定液溶解,溶剂以刚好没过担体为度,为涂布均匀可先用真空泵将载体抽空,将气体排除,涂布后再脱气。干燥已涂布的固定液时,给热量

要小,速度要慢。

2.色谱柱的装填:采用手工操作,抽空或轻微震动方可装填致密均匀。

3.色谱柱的老化:色谱柱装入GC仪后,按固定相的要求,在高于色谱操作温度下,通入载气,空载运行数小时,除去溶剂和杂质,使固定液液膜进一步均匀化。

3.3.6操作条件优化

色谱分离的目的就是要将组分分开,对定量分析来说至少要将难分离物质对分离到半峰宽以下,要达到该目的,固定相的选择性和柱效率要足够高,才能实现分离目标。

1.色谱柱及其长度

除了要按难分裂物质对选择固定相和使柱子具有足够的理论板数之外,还要注意色谱柱装填的情况和色谱柱管所用的材料。

一般用途的色谱柱管用不锈钢制成。不锈钢对大多数样品有足够的惰性。对含有杂原子的有机化合物,需要用玻璃柱管,以减少金属表面的催化和吸附。在做痕量分析时,玻璃柱管应该首先硅作硅烷化处理,硅烷化处理过程按对载体处理的要求进行,以避免玻璃表面的硅醇基的影响。最好使用石英玻璃柱管,尽管聚四氟乙烯管对某些气体有渗透性,但在分析痕量含硫气体时仍然得到应用。

为了获得最好的分离分析效果,色谱柱长应以最难分离的物质对能达到所需的分离度为准(分离度与柱长平方根成正比)。过长的柱子一方面保留时间不必要地加长,峰形和峰高也会受到损失,并且对微量分析不利。

色谱柱的直径要与定性定量分析所需的样品量相适应。尽可能采用小内径柱管。小内径柱管的色谱柱有较高的线速有利于快速分析,适应高灵敏度检测器的分析,而且,在程序升温色谱分析时,柱温容易达到程序升温平衡。

2.载体及其粒度

载体在使用前应该过筛,使其颗粒度尽量均匀。选用的载体要和固定液匹配。普通色谱柱的载体一般为60-80目,球型的为100-120目,内径为2mm。

3.固定液配比

固定液的配比对分离度的影响较大,它决定的组分的k’,也决定了分析组分的大小。高配比,吸附性小,k’大,保留分析时间长,。低配比,吸附性大,k’小,保留分析时间短,色谱峰可能拖尾。合适的配比以获得合适的k’(2-8)为宜,一般配比为2-5%。

4.柱温

柱温主要影响K和k’、Dm、Ds等,降低T,K增加,Dm减小,保留时间增加;增加T,柱效会降低。柱温要根据固定液配比确定,配比高,则T要较高。

5.载气与流速

载气的选择要适合检测器和分析对象的需要,在流速较低时,分子扩散是柱效的控制因素,此时选择分子量较大的载气如N2可以提高柱效;在流速较高时,传质阻力是柱效的控制因素,此时选择分子量较小的载气如Ar可以提高柱效。

6.样品量0.1-1%

样品量的大小决定了原始带宽,样品量越小,峰越对称,分离度越高,样品量增加,色谱峰易发生歧变,保留时间变小。

色谱柱的最大样品量定义为,

V max=a n1/2(V G+KV L)(3-13)

V max是样品气化后,包括载气在内的样品体积,a为常数,V G、V L分别为一块塔板上气相和液相的体积,即一块塔板的体积。因V G、V L的计算不易,所以用另一个公式计算V max,

V max 0.5 n-1/2(V R)(3-14)

V R为第一个组分的保留值。

7.气化温度

气化温度要比组分的沸点高,组分的气化时间影响组分的峰宽,气化时间越短,峰越窄,柱效越高。样品体积较小时,气化的温度对柱效的影响较小。

第四节毛细管气相色谱

1958年Golay从理论与实践上提出了毛细管气相色谱法,它的柱内径为0.1-0.5mm,柱长为10-50m,固定液液膜厚度为0.3-1微米,柱效极高,达到100000。分为填充和空心柱两种。空心的又分为3种,即,

(1)涂壁空心柱(WCOT):直接在内壁涂敷固定液。

(2)涂渍载体空心柱(SCOT):在内壁沉积载体,再在载体上涂敷固定液。

(3)多孔层空心柱(PLOT):内壁因生成晶状沉积物或熔融石英而使内表面积增大,涂渍后形成多孔层固定相,其最大进样量V max得到提高。

3.4.1 毛细管柱速率理论方程

由于毛细管柱是空心的,所以其不存在涡流扩散项,即A=0,固定相对组分扩散的阻碍因子γ=1,由此,

H=2D m/u + ω[(1+6k’+11k’2)/24(k’+1)2] r2u/D m +(1/6 K2)[(k’3/(k’+1)2 )] r2u/D s (3-15)

Desty 对上式做了进一步的改进,结果,

k’=2Kd f/r (3-16)

代入式(3-13)后,

H=2D m/u + ω[(1+6k’+11k’2)/24(k’+1)2] r2u/D m+[(k’/3(k’+1)2)] d f u/D s (3-17)

这就是著名的Van Deemter-Goay方程。式中,d f是液膜厚度。

3.4.2 毛细管气相色谱最佳操作条件

(1)最佳流速

因为C s《C m,通过一些公式变换,

u opt=(4D m/r)[24(k’+1)2/(1+6k’+11k’2)]1/2(3-18)

u opt=10-15cm/s,相当于1-2ml/min。实际的流速要比该最佳流速大一些。

(2)理论塔板高度

同样地,因为C s《C m,通过一些公式变换,

H min=r[(1+6k’+11k’2) /24(k’+1)2]1/2= c’’r (3-19)

结果表明柱内径越小,柱效越高。当k’=0时,H min =0.58r;当k’=∞时,H min =1.9r。

(3)柱长

载气流过色谱柱时所受到的阻力可以间接地用渗透率K F来表示,

K F =2p0u0ηεT(p i2-p02)(3-20)

式中p i、p0、u0、εT、分别为进口、出口压力、流动相线速度、总孔隙率。对于规则装填,柱直径与粒径d p之比大于10,

K F =d p2ε2/180(1-ε)2(3-21)

对填充柱而言,ε一般为0.42,因此,

K F = d p2/1000 (3-22)

毛细管空心柱的K F为,

K F = r2/8 (3-23)

毛细管空心柱的渗透率比填充柱的大100倍,因此毛细管空心柱的柱长可以很长。

(4)液膜厚度

一般为0.2-0.5微米,大于0.5微米,液膜不能稳定地附着在管内壁上。

(5)尾吹

毛细管柱出口与检测器间连接的死体积是影响柱效降低和峰拖尾的重要因素,因此常常在柱的出口处补充额外的载气,叫尾吹。这种方法只适用于质量检测器。

3.4.3毛细管气相色谱柱制备

1.柱材料

常用的是熔融石英。在组分经过的管路中,应避免组分与石英以外的材料相接触,防止发生吸附、催化、分解等过程。密封材料通常为柔性石墨垫。

2.表面改性

(1)表面粗糙化

用HCl气体在350度处理几个小时,处理后的玻璃表面形成一层均匀的氯化钠结晶,增大了表面积。

用HF气体刻蚀:用HF气体或2-氯-1,1,2-三氟乙基甲醚在加热条件下产生的HF气体刻蚀玻璃,另外也可用5%的NH4HF2的甲醇溶液在450度下加热处理几个小时,处理后的玻璃表面呈乳白色,SiO2呈毛刷状,有更大的表面积。

表面沉积固体颗粒:将多孔材料沉积与玻璃管内,然后拉制成毛细管,最后在拉制毛细管内载体上涂上固定液即制成了SCOT柱。

(2)表面减活或硅烷化

在柱内表面涂硅烷化试剂在120度下处理、涂PEG在280度处理。

3.固定液涂渍

经清洗和内壁改性的毛细管可以进行固定液涂渍,常采用动态和静态两种方法涂渍。前者适于50m以上的毛细管,后者适于分子量较大的固定液涂渍。

(1)气吹动态法:用N2以0.2-1cm/s的线速度将固定液溶液推入毛细管内后,再用通气3-4小时即可。

(2)静态压力法:用压力将固定液溶液推入毛细管,然后用封胶封死一头,置于恒温器中,温度低于溶剂沸点10-15度为宜,另一端用机械泵抽气,将溶剂缓慢抽出(0.4-0.6m/h)。溶剂挥发后,老化处理。

4.柱老化

在低速氮气流中,将柱缓慢升温(1-2度/min),直到固定相的最高温度,保持数小时,然后自然冷却到室温即可。

3.4.4毛细管气相色谱分流进样

化工分离工程复习题及答案..

化工分离过程试题库(复习重点) 第一部分填空题 1、分离作用是由于加入(分离剂)而引起的,因为分离过程是(混合过程)的逆过程。 2、分离因子是根据(气液相平衡)来计算的。它与实际分离因子的差别用(板效率)来表示。 3、汽液相平衡是处理(汽液传质分离)过程的基础。相平衡的条件是(所有相中温度压力相等,每一组分的化学位相等)。 4、精馏塔计算中每块板由于(组成)改变而引起的温度变化,可用(泡露点方程)确定。 5、多组分精馏根据指定设计变量不同可分为(设计)型计算和(操作)型计算。 6、在塔顶和塔釜同时出现的组分为(分配组分)。 7、吸收有(轻)关键组分,这是因为(单向传质)的缘故。 8、对多组分吸收,当吸收气体中关键组分为重组分时,可采用(吸收蒸出塔)的流程。 9、对宽沸程的精馏过程,其各板的温度变化由(进料热焓)决定,故可由(热量衡算)计算各板的温度。 10、对窄沸程的精馏过程,其各板的温度变化由(组成的改变)决定,故可由(相平衡方程)计算各板的温度。 11、为表示塔传质效率的大小,可用(级效率)表示。 12、对多组分物系的分离,应将(分离要求高)或(最困难)的组分最后分离。 13、泡沫分离技术是根据(表面吸附)原理来实现的,而膜分离是根据(膜的选择渗透作用)原理来实现的。 14、新型的节能分离过程有(膜分离)、(吸附分离)。 15、传质分离过程分为(平衡分离过程)和(速率分离过程)两大类。 16、分离剂可以是(能量)和(物质)。 17、Lewis 提出了等价于化学位的物理量(逸度)。 18、设计变量与独立量之间的关系可用下式来表示( Ni=Nv-Nc即设计变量数=独立变量数-约束关系 ) 19、设计变量分为(固定设计变量)与(可调设计变量)。 20、温度越高对吸收越(不利) 21、萃取精馏塔在萃取剂加入口以上需设(萃取剂回收段)。 22、用于吸收过程的相平衡关系可表示为(V = SL)。 23、精馏有(两个)个关键组分,这是由于(双向传质)的缘故。 24、精馏过程的不可逆性表现在三个方面,即(通过一定压力梯度的动量传递),(通过一定温度梯度的热量传递或不同温度物流的直接混合)和(通过一定浓度梯度的质量传递或者不同化学位物流的直接混合)。 25、通过精馏多级平衡过程的计算,可以决定完成一定分离任务所需的(理论板数),为表示塔实际传质效率的大小,则用(级效率)加以考虑。 27、常用吸附剂有(硅胶),(活性氧化铝),(活性炭)。 28、恒沸剂与组分形成最低温度的恒沸物时,恒沸剂从塔(顶)出来。

气相色谱分离条件优化

气相色谱分离条件优化 一、实验目的 1.了解气相色谱仪的基本结构和工作原理。 2.学习气相色谱仪的使用。 3.体会气相色谱操作条件对分离结果的影响。 4.掌握色谱柱性能评价指标的测定及计算方法。 二、基本原理 气相色谱法是以气体作为流动相的一种色谱分析法,色谱分离条件对分析结果有着重要的影响。本实验的主要目标是通过对色谱分离条件进行优化,使被测混合样品中各组分之间的分离度大于1.5,峰形基本对称。 色谱柱是色谱仪的核心部件,其分离性能可通过塔板数、选择性因子和分离度来进行评价,本实验的另一个要求学会是对色谱柱的性能进行评价。 有效塔板数是评价色谱柱柱效的指标,其计算公式如下: 22 ''1/25.5416R R t t n Y Y ????== ? ????? 式中:t ’R 为组分的调整保留时间,Y 1/2为色谱峰的半峰宽度,Y 为色谱峰的峰底宽度。 选择性因子是评价色谱柱对两组分分离选择性的指标,其计算公式如下: R(2)R(1) t t α'=' 分离度是评价色谱柱分离总效能的指标,两个色谱峰的分离度可以通过下式计算: ()(2)(1) 1/2(1)1/2(2)-12R R t t R Y Y '=+ 三. 已具备的色谱仪器条件 1. 气相色谱仪:热导检测器。 载气:氮气 2. 填充色谱柱:2m ×3mm i.d.,5% SE-30,102硅烷化白色担体,100-120目 四、样品信息 1. 丁酮(56.1℃),环己烷(80.7℃),正庚烷(98.5℃),甲苯(110.6℃),乙酸正丁酯(126.1℃)混合试样(等体积比) 2. 上述五种物质的纯品 3. 空气

10级分离技术复习及思考题期末考试.doc

分离技术复习及思考题 1、角种分离技术的原理、应用(沉淀分高、溶剂莘取、离子交换、薄层层析、蒸偏、过 滤、离心、电泳、泡沫浮选、电解、固相莘取、超临界流体萃取膜分离、毛细管电泳、微波萃取) 2、什么情况下要进行样品预处理分离? 3、采样的基本原则是什么?简述土壤样品前处理的主要步骤。 有代表性均匀多次重复取样。 4、同体试样消解方式有哪些? 5、有机沉淀分离较无机沉淀分离的优点有哪些?何谓共沉淀分离,举例说明。 6、共沉淀与后沉淀对分析结果的影响的处理 7、晶型沉淀与无定型沉淀的沉淀条件选择 8、何谓均相沉淀,获得均相沉淀的方式有哪儿种? 均相沉淀是在均相溶液中,借助于适当的化学反应,有控制地产生为沉淀作用所需的离子,使在整个溶液中缓慢地析出密实而较至的无定形沉淀或大颗粒的品态沉淀的过程。控制溶液pH的均相沉淀酉旨类或其他化合物水解络合物分解以释出待沉淀离子氧化还原反应产生所需的沉淀离子合成螯合沉淀剂法酶化学反应 9、金属离了溶剂萃取分离的原理是什么?分配系数、分配比、分离系数、萃取率的概念及 相关计算 液-■萃取是指两个完全不互溶或部分互溶的液相接触后,一个液相中的溶质经过物理或化学作用另…个液相,或在两相中重新分配的过程. 指一定温度下,处于平衡状态时,--种溶质分肥在互不相溶的两种溶剂中的浓度比值. 有机相中被萃取物的总浓度与水相中被萃取物的总浓度之比 分离系数(separation coefficient)又称分离因「(separation factor)。表示某单元分囱操作或某分离流程将两种物质分离的程度。通常有两种定义:单级分离系数,表示物料中两种物质在某一单元分离操作(单级分离操作)前后相对含景的比值,流程分离系数,表示物料中两种物质在经过某一分离流程前后相对含量的比值。 100D E(%)=57* 式中,Vw——水相体积V—TT机相体积 萃取效率就等于A在有机相中的总含量比A在两相中的总含量的百分比 10、溶剂萃取体系中两种组分一次萃取完全分离的分配比成满足的条件是什么? 11、何谓逆流萃取?对萃取率比较低的萃取体系,应采取怎样的萃取方式? 其原理为利用螺旋柱在行星运动时产生的多维离心力场,使7[不相溶的两相不断混合,同时保留其中的-相(固定相),利用恒流亲连续输入另-相(流动相),随流动相进入螺旋柱的溶质在两相之间反夏分配,按分配系数的次序,被依次萃取分离出。在流动相中分配比例大的先被洗脱,反之,在固定相中分配比例大的后被洗脱,从而实现分离。 (@)①利用协同萃取:用两种或两种以上苹取剂组成的混合萃取剂革取某一金属高了或化合... %1反萃取:反萃取是用反萃取剂使被萃取物从负载有机相返叵I水相的过程。... %1改变元素价态和种类:金属高子的种类和价态对萃取过程也有较大影响。... %1选择合适掩蔽剂:出两种或多种金属离了与螯合剂均形成可萃取的螯合物时,W加入掩蔽剂使其中的一种或多种金属离子形成易溶于水的配合物而相互分离。这是提高溶剂萃取选择性的重要途径之一。 12、连续萃取的优越性有哪些?憧得连续萃取的萃取装置的使用。 萃取效率高——相平衡建立快,易于实现单级或多级串联逆流或错流洗涤和萃取,传质效率高,级效率接近100%,停车后不破坏所建立的各级浓度分布,可在各级随时取样,便

生化分离技术试题及答案word版本

生化分离技术试题及 答案

浙江理工成教院期终考试 《生化分离技术》试卷A试卷 教学站年级班级学号姓名 一、填空题(每空1分,共21分)。 1、生化分离是从生物材料、微生物的发酵液或动植物细胞的培养液中分离并纯化有关生化产品的过程,一般采用如下工艺流程:发酵液→()→细胞分离→(细胞破碎→细胞碎片分离)→()→()→成品加工。 2、提取的产物在细胞内,选用细胞破碎法;在细胞膜附近则可用细胞破碎法;提取的产物与细胞壁或膜相结合时,可选用机械法和化学法相结合的细胞破碎法。 3、发酵液的预处理目的主要包括改变和。 4、典型的工业过滤设备有和。 5、反萃取是将目标产物从转入的过程。 6、超临界流体萃取的溶剂可分为非极性和极性溶剂两种,常用的极性溶剂有和 、非极性有。 7、按膜的孔径的大小分类,可将膜分为、、 和等。 8、冻干操作过程包括:、和。 二、判断题(每题1分,共15分)

1、盐析是指向蛋白质溶液中加入某些浓的中性盐后,使蛋白质凝聚而从溶液中析出,以达到分离、提纯生物大分子的目的。() 2、常用的盐析剂有葡聚糖、琼脂糖、聚丙烯酰胺、明胶等。() 3、萃取是利用化合物在两种互不相容的溶剂中溶解度或分配系数的不同,使化合物从一种溶剂内转移到另一种溶剂中,经过反复多次的萃取,将绝大部分化合物提取出来的方法。 () 4、双水相萃取的体系的两相是不含有水分的。( ) 5、膜分离操作中,所有溶质均被透过液传送到膜表面上,不能完全透过膜的溶质受到膜的截留作用,在膜表面附近浓度升高,这种现象叫做浓差极化。 () 6、凝胶色谱是利用不同生物分子的电离能力不同而达到物质分离目的的。() 7、离子交换色谱是利用不同分子的大小不同而达到物质分离目的的。 () 8、亲和色谱是利用生物分子之间的亲和力的不同而达到物质分离目的的。() 9、要增加目的物的溶解度,往往要在目的物的等电点附近进行提取。 () 10、蛋白质类的生物大分子在盐析过程中,最好在高温下进行,因为温度高会增加其溶解度。 ()

气相色谱法分离苯和甲苯

气相色谱法分离苯和甲苯 姓名:曲连发学号:2011302110074 院系:动科动医学院 一.实验内容 1.熟悉气相色谱仪的构造; 2.了解HP-6890N型气相色谱仪的使用方法; 3.进行苯和甲苯的气相色谱分析,并通过保留时间对组分定性。 二.实验目的 1.通过实验熟悉气相色谱仪的主要构造,掌握基本使用方法,了解氢火焰例子化监测器的工作原理和应用范围,掌握利用保留时间对物质定性的方法; 2.掌握归一化法的原理以及定量分析方法; 3.掌握外标法和外标工作曲线法在气相色谱定量分析中的应用。 三.实验原理 ◆气相色谱仪的一般流程: 1.气路系统 由载气源、载气压力盒流速控制装置、载气压力盒流速显示三部分组成。 黑色外表的高压钢瓶内装氮气,作为载气; 绿色外表的高压钢瓶内装氢气、氧气,作为燃气。 转子流量计显示的是柱前流速,不能反映色谱柱内真实的流速。 2.进样系统 进样器:分为手动进样针和自动进样器。 气化室:“20℃法”即其内温度要高于样品沸点的20℃。 3.分离系统 分为填充柱和毛细管柱,现在多用弹性石英的毛细管柱,其渗透性大,速度快,柱效高。

4.检测系统 热导池检测器:通用型、浓度型; 氢火焰离子化检测器:通用型、质量型; 氮-磷检测器:选择型、质量型; 电子俘获检测器:选择型、质量型、 5.记录和数据处理 6.温度控制系统 ◆气相色谱分离原理: 试样中的各组分在色谱分离柱中的两相(固定相和流动相)间反复进行分配,由于各组分在性质和结构上的差异,使其被固定相保留的时间不同,随着流动相的移动,各组分按一定次序流出色谱柱。 四.色谱条件 仪器型号:Agilent 6890 N型气相色谱仪; 色谱柱:HP-5弹性石英毛细管柱(30mx0.32mmx0.5μm); 检测器:FID(氢火焰离子化检测器); 检测器温度:250℃; 进样口温度:200℃; 标温:程序升温60℃(5min)5℃/min 100℃(6min)10℃/min 150℃ (4min) 五.实验步骤 1.讲解HP-6890N型气相色谱仪的六大主要部件和各部件用途; 2.打开各气源,并打开HP-6890N型气相色谱仪和工作站; 3.设定分离甲苯和苯的气相色谱条件,包括进样口温度、检测器温度、柱温度、各种气体的流量比例、进样的分流比等; 4.待一起达到设定条件状态后,用微量注射器分别进1μL苯和甲苯样品,经检测器检测并经记录仪响应会出色谱图,从图中得出苯和甲苯的保留时间t1和t2;

气相色谱分离原理

色谱分离过程是被分离的样品(混合物),在两相间进行分配,其中一相固定不动的,称为固定相。另一相是流动的,称为流动相或移动相。混合物借助流动相的推动,顺流动相的流向而迁移。混合物各组分迁移的速度取决于各组分在固定相和流动相之间的分配系数(对气-液分配色谱)或吸附能(气-固吸附色谱)。分配系数大的或吸附能大的组分停留在固定相中时间长,从色谱柱中流出的时间晚。分配系数或吸附能小的组分在固定相中停留时间短,先从柱中流出。从而使混合物中各个组分得以分离。为此,分配系数或吸附能的差异是色谱分离的前提。在所确定的色谱体系,组分之间如果没有分配系数或吸附能的差异,这些组分就彼此不能分离。重叠流出柱(即为一个色谱峰)。各组分的分配系数或吸附能的差异越大,越容易分离,反之就难分离。 色谱方法的类型繁多,从流动相的状态分,可分为气相色谱和液相色谱两大类。气相色谱多以小分子量的惰性气体作为流动相(如氮、氦、氩)。固定相是液体或固体。无论液体或固体固定液都是以担载在多孔固体物质表面的形式存在。被分析样品在色谱柱迁移过程是气态或蒸气态。适合分析气体或低沸点化合物。采用适当的进样技术和程序升温技术,能分析较高沸点的化合物,配合裂解技术也可分析高聚物。性能好的色谱仪柱箱温度可达到450℃,只要在这个温度范围内,蒸气压不小于0.2毫米汞柱,热稳定性好的化合物多都可以用气相色谱法分析。从分离机理看又可以分为气-固吸附和气-液分配型两类。 液相色谱法的流动相是液体。不同的分离机理,可选用不同的液体作为流动相,如不同极性的有机溶剂。不同极性溶剂与水的混合溶液。不同pH值的缓冲溶液等。固定相有多孔吸附型固体、液体担载在固体基质或化学键合在固体基质微粒上、离子交换剂等微粒。液相色谱可分析各种有机化合物、离子型无机化合物及热不稳定具有生物活性的生物大分子。 总之,气相色谱是一种能够快速分离复杂混合物中各个组分的技术。分离过程是在气相中进行的,通过检测器将柱流出物转换成电信号,从这些电信号得到定性定量的信息。 本资料主要涉及气相色谱的有关问题。 为使初学者对色谱过程有一个感性的认识,让我们将色谱过程比拟为水上货运航行过程:假设有三艘载货船以河水流速,沿1000米长河床顺水航行,每艘船沿岸上卸货的任务不同,其中A船沿岸航行无上卸货任务,以河水流速航行至终点;B船只有两次靠岸卸货任务;C船沿岸上卸货最多,需停靠10次。假设河水流速50米/分,船每次停靠费时5分钟。很容易算出,A船20分钟后抵达终点; B船30分钟;C船70分钟才能达到终点。不难理解,三艘船虽然都以同样的速度航行,但它们花费在停靠岸的时间不同,所以到达时间不同。我们可以把1000米的河床比拟成色谱柱,沿岸堆放的货物好比固定液,水流就好比载气。(当然这样的比拟并不十分确切) 让我们联系这种比拟,了解气相色谱常见的几个术语即其关系。

化工分离工程Ⅰ期末复习试试题库及答案

分离工程复习题库 第一部分填空题 1、分离作用是由于加入(分离剂)而引起的,因为分离过程是(混合过程)的逆过程。 2、分离因子是根据(气液相平衡)来计算的。它与实际分离因子的差别用(板效率)来表示。 3、汽液相平衡是处理(汽液传质分离)过程的基础。相平衡的条件是(所有相中温度压力相等,每一组分的化学位相等)。 4、精馏塔计算中每块板由于(组成)改变而引起的温度变化,可用(泡露点方程)确定。 5、多组分精馏根据指定设计变量不同可分为(设计)型计算和(操作)型计算。 6、在塔顶和塔釜同时出现的组分为(分配组分)。 7、吸收有(轻)关键组分,这是因为(单向传质)的缘故。 8、对多组分吸收,当吸收气体中关键组分为重组分时,可采用(吸收蒸出塔)的流程。 9、对宽沸程的精馏过程,其各板的温度变化由(进料热焓)决定,故可由(热量衡算)计算各板的温度。 10、对窄沸程的精馏过程,其各板的温度变化由(组成的改变)决定,故可由(相平衡方程)计算各板的温度。 11、为表示塔传质效率的大小,可用(级效率)表示。 12、对多组分物系的分离,应将(分离要求高)或(最困难)的组分最后分离。 13、泡沫分离技术是根据(表面吸附)原理来实现的,而膜分离是根据(膜的选择渗透作用)原理来实现的。 14、新型的节能分离过程有(膜分离)、(吸附分离)。

15、传质分离过程分为(平衡分离过程)和(速率分离过程)两大类。 16、分离剂可以是(能量)和(物质)。 17、Lewis提出了等价于化学位的物理量(逸度)。 18设计变量与独立量之间的关系可用下式来表示(Ni-Nv-Nc 即设计变量数-独立变 量数-约束关系) 19、设计变量分为(固定设计变量)与(可调设计变量)。 20、温度越咼对吸收越(不利) 21、萃取精馏塔在萃取剂加入口以上需设(萃取剂回收段)。 22、用于吸收过程的相平衡关系可表示为(V - SL )。 23、精馏有(两个)个关键组分,这是由于(双向传质)的缘故。 24、精馏过程的不可逆性表现在三个方面,即(通过一定压力梯度的动量传递), (通过一定温度梯度的热量传递或不同温度物流的直接混合)和(通过一定浓度梯度 的质量传递或者不同化学位物流的直接混合) 25、通过精馏多级平衡过程的计算,可以决定完成一定分离任务所需的(理论板数), 为表示塔实际传质效率的大小,则用(级效率)加以考虑。 27、常用吸附剂有(硅胶),(活性氧化铝),(活性炭)。 28、恒沸剂与组分形成最低温度的恒沸物时,恒沸剂从塔(顶)出来。 29、分离要求越高,精馏过程所需的最少理论板数(越多)。 30、回流比是(可调)设计变量。 第二部分选择题 1下列哪一个是速率分离过程() a. 蒸馏 b.吸收 c.膜分离 d.离心分离

现代分离技术试题

填空部分: 1我们测定气相色谱仪灵敏度时,如果用102-白色担体,邻苯二甲酸二壬酯固定液, 此时按两相所处的状态属于(气一液)色谱;按固定相性质属于(填充柱)色谱; 按展示方式属于(冲洗)色谱;按分离过程所依据的物理化学原理属于(分配)色谱。 2、液相色谱分析中常用以低压汞灯为光源,波长固定式的紫外(UV )检测器,它是以低压 汞灯的最强发射线(253.8)nm做为测定波长。 3、根据分离原理的不同,液相色谱可分为(液一液):(液一固):(离子交换):(凝胶)色谱法。 4、固定相分为(液体)和(固体)固定相两大类。固体固定相可分为(吸附齐U _____ , (高分子多孔小球),(化学键合)固定相三类。 5、保留值大小反映了(组分)与(固定相)之间作用力的大小,这些作用力包括 (定向力),(诱导力),(色散力),(氢键作用力)等。 6、柱温选择主要取决于 样品性质。分析永久性气体,柱温一般控制在(50 C以上): 沸点在300C以下的物质,柱温往往控制在(150C以下):沸点300C以上的物质, 柱温最好能控制在(200C以下):高分子物质大多分析其裂解产物。若分析多组分 宽沸程样品,则可采用(程序升温):检测器可采用(FID )。 7、在气相色谱分析中,载气钢瓶内贮存气体都有明显的标记,如氮气,瓶外漆(黑色) _____ , 用黄色标写“氮”:氢气漆(深绿色),红色标写“氢”。 8、固定液按相对极性可粗分为(五)类,异三十烷是(非极性)固定液,属(0)级; 3,3,—氧二丙腈是(强极性)固定液,属(5)级。 9、采用TCD检测器时,要注意先(诵载气)后(加桥电流)并且(桥电流)不可过大, 否则易烧 损铼钨丝。 10、色谱基本参数测量与计算的关键是(控制色谱操作条件的稳定)。 11、气相色谱中,对硫、磷化合物有高选择性和高灵敏度的检测器是火焰光度检测器

气相色谱法的分离原理及理论基础

气相色谱法的分离原理及理论基础 气相色谱法的分离原理是利用要分离的诸组分在流动相(载气)和固定相两相间的分配有差异(即有不同的分配系数),当两相作相对运动时,这些组分在两相间的分配反复进行,从几千次到数百万次,即使组分的分配系数只有微小的差异,随着流动相的移动可以有明显的差距,最后使这些组分得到分离。 气相色谱法的理论基础主要表现在两个方面,即色谱过程动力学和色谱过程热力学,也可以这样说,组分是否能分离开取决于其热力学行为,而分离得好不好则取决于其动力学过程。 色谱过程动力学��发展高效色谱技术及色谱峰形预测的理论基础 色谱过程动力学是研究物质在色谱过程中运动规律的科学。其研究的主要目的是根据物质在色谱柱内运动的规律解释色谱流出曲线的形状;探求影响色谱区域宽度扩张及峰形拖尾的因素和机理,从而为获得高效能色谱柱系统提供理论上的指导,为峰形预测、重叠峰的定量解析以及为选择最佳色谱分离条件奠定理论基础。 在色谱发展过程中,用来描述色谱过程动力学的理论模型主要有:1940年提出的平衡色谱理论,解释了部分实验事实,但由于该理论忽略了传质速率有限性与物质分子纵向扩散性的影响,对一些现象不能解释;1941年Martin等人引入了理论塔板的概念,在该理论中,色谱过程被比拟为蒸馏过程,而色谱柱被视为一系列平衡单元-理论塔板的结合。在色谱柱足够长、理论塔板高度充分小,以及分配等温线呈线性的情况下,这一理论对色谱流出曲线分布和谱带移动规律,以及柱长与理论塔板高度H对区域扩张的影响等给予了近似的解释。但是塔板理论对影响理论塔板高度H的各种因素没有从本质上考虑,而色谱过程本质上并不是分馏过程,因而这一理论还只是半经验式的理论。 首先揭露影响色谱区域宽度内在因素的是纵向扩散理论和考察传质速率有 限性的的速率理论。在气相色谱中有同时考察传质速率和纵向扩散影响的van Deemter方程式,考察径向扩散的Golay毛细管色谱方程式。van Deemter方程式和Golay方程式分别描述了填充柱和毛细管柱两种色谱柱的理论塔板高度H的各种影响因素,两个公式综合到一起可简化如下: H=A+B/u+(Cg+Cl)u 色谱过程热力学��色谱定性及研究高选择性色谱方法和柱系统等的理论基础 由气相色谱的分离原理可知,实现气相色谱分离的基本条件是欲被分离的物质有不同的分配系数,而不同的分配系数也是气相色谱定性鉴别组分的基础。物

生物分离技术复习题培训资料

生物分离技术复习题

选择题: 1.HPLC是哪种色谱的简称()。 A.离子交换色谱 B.气相色谱 C.高效液相色谱 D.凝胶色谱 2.针对配基的生物学特异性的蛋白质分离方法是()。 A.凝胶过滤 B.离子交换层析 C.亲和层析 D.纸层析 3.盐析法沉淀蛋白质的原理是() A.降低蛋白质溶液的介电常数 B.中和电荷,破坏水膜 C.与蛋白质结合成不溶性蛋白 D.调节蛋白质溶液pH到等电点 4.从组织中提取酶时,最理想的结果是() A.蛋白产量最高 B.酶活力单位数值很大 C.比活力最高 D.Km最小 5.适合于亲脂性物质的分离的吸附剂是()。 A.活性炭 B.氧化铝 C.硅胶 D.磷酸钙 6.下列哪项酶的特性对利用酶作为亲和层析固定相的分析工具是必需的?() A.该酶的活力高 B.对底物有高度特异亲合性 C.酶能被抑制剂抑制 D.最适温度高 E.酶具有多个亚基 7.用于蛋白质分离过程中的脱盐和更换缓冲液的色谱是() A.离子交换色谱 B.亲和色谱 C.凝胶过滤色谱 D.反相色谱 8.适合小量细胞破碎的方法是() 高压匀浆法 B.超声破碎法 C.高速珠磨法 D.高压挤压法 9.盐析法沉淀蛋白质的原理是() A.降低蛋白质溶液的介电常数 B.中和电荷,破坏水膜 C.与蛋白质结合成不溶性蛋白 D.调节蛋白质溶液pH 到等电点 10.蛋白质分子量的测定可采用()方法。 A.离子交换层析 B.亲和层析 C.凝胶层析 D.聚酰胺层析 11.基因工程药物分离纯化过程中,细胞收集常采用的方法() A.盐析 B.超声波 C.膜过滤 D.层析 12.离子交换剂不适用于提取()物质。 A.抗生素 B.氨基酸 C.有机酸 D.蛋白质 13.人血清清蛋白的等电点为4.64,在PH为7的溶液中将血清蛋白质溶液通电,清蛋白质分子向() A :正极移动;B:负极移动;C:不移动;D:不确定。 14.蛋白质具有两性性质主要原因是() A:蛋白质分子有一个羧基和一个氨基;B:蛋白质分子有多个羧基和氨基;C:蛋白质分子有苯环和羟基;D:以上都对 15.使蛋白质盐析可加入试剂() A.氯化钠; B.硫酸; C.硝酸汞; D.硫酸铵 16.凝胶色谱分离的依据是()。 A、固定相对各物质的吸附力不同 B、各物质分子大小不同 C、各物质在流动相和固定相中的分配系数不同 D、各物质与专一分子的亲和力不同 17.非对称膜的支撑层()。 A、与分离层材料不同 B、影响膜的分离性能 C、只起支撑作用 D、与分离层孔径相同 18.下列哪一项是强酸性阳离子交换树脂的活性交换基团() A 磺酸基团(-SO3 H) B 羧基-COOH C 酚羟基C6H5OH D 氧乙酸基-OCH2COOH 19.依离子价或水化半径不同,离子交换树脂对不同离子亲和能力不同。树脂对下列离子亲和力排列顺序正确的有()。 A、Fe3+﹥Ca2+﹥Na+ B、Na+﹥Ca2+﹥Fe3+ C、Na+﹥Rb+﹥Cs+ D、Rb+﹥Cs+﹥Na+ 20.乳化液膜的制备中强烈搅拌()。

生物分离与纯化技术模拟试卷三答案培训讲学

生物分离与纯化技术模拟试卷三答案

精品资料 仅供学习与交流,如有侵权请联系网站删除谢谢2 生物分离与纯化技术模拟试卷三答案 一、名词解释(每小题3分,共15分) 1.CM-Sephadex C-50:羧甲基纤维素、弱酸性阳离子交换剂,吸水量为每克干胶吸水五克。 2.絮凝:指在某些高分子絮凝剂存在下,在悬浮粒子之间发生架桥作用而使胶粒形成粗大的絮凝团的过程 3.离心过滤:使悬浮液在离心力场作用下产生的离心力压力,作用在过滤介质上,使液体通过过滤介质成为滤液,而固体颗粒被截留在过滤介质表面,从而实现固液分离,是离心与过滤单元操作的集成,分离效率更高 4.膜分离:利用膜的选择性(孔径大小),以膜的两侧存在的能量差作为推动力,由于溶液中各组分透过膜的迁移率不同而实现分离的一种技术。 5.层析分离:是一种物理的分离方法,利用多组分混合物中各组分物理化学性质的差别,使各组分以不同的程度分布在两个相中。 二、单选题(每小题1分,共15分) 1.适合于亲脂性物质的分离的吸附剂是( B )。 A.活性炭 B.氧化铝 C.硅胶 D.磷酸钙 2.下列哪项酶的特性对利用酶作为亲和层析固定相的分析工具是必需的?( B ) A.该酶的活力高 B.对底物有高度特异亲合性 C.酶能被抑制剂抑制 D.最适温度高 E.酶具有多个亚基 3.盐析法沉淀蛋白质的原理是( B ) A.降低蛋白质溶液的介电常数 B.中和电荷,破坏水膜 C.与蛋白质结合成不溶性蛋白 D.调节蛋白质溶液pH到等电点 4.凝胶色谱分离的依据是(B)。 A、固定相对各物质的吸附力不同 B、各物质分子大小不同 C、各物质在流动相和固定相中的分配系数不同 D、各物质与专一分子的亲和力不同 5.如果要将复杂原料中分子量大于5000的物质与5000分子量以下的物质分开选用(D)。 A、Sephadex G-200 B、Sephadex G-150 C、Sephadex G-100 D、Sephadex G-50 6.工业上强酸型和强碱型离子交换树脂在使用时为了减少酸碱用量且避免设备腐蚀,一般先将其转变为(B)。 A、钠型和磺酸型 B、钠型和氯型 C、铵型和磺酸型 D、铵型和氯型 7.下面哪一种是根据酶分子专一性结合的纯化方法( A )。 A. 亲和层析 B. 凝胶层析 C. 离子交换层析 D. 盐析 8.以下哪项不是在重力场中,颗粒在静止的流体中降落时受到的力( B ) A.重力 B. 压力 C.浮力 D. 阻力 9.关于用氢键形成来判断各类溶剂互溶规律,下列(A)项是正确的叙述。 A、氢键形成是能量释放的过程,若两种溶剂混合后形成的氢键增加或强度更大,则有利于互溶。 B、氢键形成是能量吸收的过程,若两种溶剂混合后形成的氢键增加或强度更大,则有利于互溶。 C、氢键形成是能量释放的过程,若两种溶剂混合后形成的氢键增加或强度更大,则不利于互溶。 D、氢键形成是能量吸收的过程,若两种溶剂混合后形成的氢键增加或强度更大,则不利于互溶。 10.关于萃取下列说法正确的是(C) A. 酸性物质在酸性条件下萃取 B碱性物质在碱性条件下萃取 C. 两性电解质在等电点时进行提取 D. 两性电解质偏离等电点时进行提取 11.下列关于固相析出说法正确的是(B) A.沉淀和晶体会同时生成 B析出速度慢产生的是结晶 C.和析出速度无关 D.析出速度慢产生的是沉淀 12.那一种膜孔径最小(C) A.微滤 B超滤 C.反渗透 D. 纳米过滤 13.酚型离子交换树脂则应在(B )的溶液中才能进行反应 A. pH>7 B pH>9 C. pH﹤9 D. pH﹤7 14.一般来说,可使用正相色谱分离(B) A. 酚 B带电离子 C. 醇 D. 有机酸 15.离子交换层析的上样时,上样量一般为柱床体积的(C)为宜。 A. 2%-5% B1%-2% C. 1%-5% D. 3%-7% 三、判断题(每小题1分,共10分) 1.珠磨法中适当地增加研磨剂的装量可提高细胞破碎率。(×) 2.进料的温度和pH会影响膜的寿命。(√) 3.应用有机溶剂提取生化成分时,一般在较高温度下进行。(×) 4.溶剂的极性从小到大为丙醇>乙醇>水>乙酸。(√) 5.蛋白质为两性电解质,改变pH可改变其荷电性质,pH﹤pI蛋白质带正电。(√) 6.进行水的超净化处理、汽油超净、电子工业超净、注射液的无菌检查、饮用水的细菌检查使用孔径为0.2μm的膜。(×) 7.只有树脂对被交换离子比原结合在树脂上的离子具有更高的选择性时,静态离子交换操作才有可能获得较好的效果。(√) 8.制备型HPLC对仪器的要求不像分析型HPLC那样苛刻。(√) 9.Sephadex LH-20的分离原理主要是分子筛和正相分配色谱。(√) 10.水蒸气蒸馏法是提取挥发油最常用的方法。(√) 四、填空题(每小题1分,共15分) 1.常用的蛋白质沉析方法有(等电点沉淀),(盐析)和(有机溶剂沉淀)。 2.蛋白质分离常用的色谱法有(凝胶色谱法),(多糖基离子交换色谱法),(高效液相色谱法)和(亲和色谱法)。 3.离子交换树脂由(载体),(活性基团)和(可交换离子)组成。 4.膜分离过程中所使用的膜,依据其膜特性(孔径)不同可分为(微滤膜),(超滤膜),(纳滤膜)和(反渗透膜)。 五、简答题(每小题7分,共35分) 1.在色谱操作过程中为什么要进行平衡? 答:1、流速平衡:流速是柱层析操作当中的主要影响因素,流速的快慢直接影响着分离的效果,流速过快,混合物得不到完全的分离,流速过慢,整体分离的时间要延长,因此在分离前首先要确定留宿。

气相色谱的分离基本原理word精品

、气相色谱的分离基本原理是什么? 利用混合物中各组分在流动相和固定相中具有不同的溶解和解吸能力,或不同的吸附和 脱附能力或其他亲和性能作用的差异。当两相作相对运动时样品各组分在两相中反复多 次受到各种作用力的作用,从而使混合物中各组分获得分离。 二、简述气相色谱仪的基本组成。 基本部件包括5个组成部分。气路系统;2?进样系统;3.分离系统;4.检测系统;5.记录系统。 简述气相色谱法的特点?、高分离效能;、高选择性;、高灵敏度;、快速; 、应用广泛。 三、什么叫保留时间? 从进样开始至每个组分流出曲线达极大值所需的时间,可作为色谱峰位置的标志,此时间称 为保留时间,用t表示。 四、什么是色谱图? 进样后色谱柱流出物通过检测器系统时,所产生的响应信号时间或载气流出气体积的叫曲线 图称为色谱图。 五、什么是色谱峰?峰面积? 1色谱柱流出组分通过检测器系统时所产生的响应信号的微分曲线称为色谱峰。、出峰到峰回到基线所包围的面积,称为峰面积。 六、怎样测定载气流速? 高档色谱仪上均安装有自动测试装置,无自动测试装置可用皂膜流量计测, 将皂膜流量计连接在测检测出口(也可将色谱柱与检测器断开皂膜流量计测接在色谱柱一端),测试每分钟的流速。测完后色谱升温压力表指示会升高,原因是温度升高色谱柱对气体的阻力增加,不要把压力调下来,当色谱温度升高稳流指示不会改变。测试载气流速在室温下测试。 七、怎样控制载气流速? 载气流速的控制主要靠气路上高压钢瓶上的减压阀减压,然后经仪器的稳压阀稳压,再经稳 流阀以达到控制载气流量稳定,减压阀给出的压力要高出稳压后的压力。非程序升温色谱一 般没有稳流阀,只靠稳压阀控制流速。 八、气相色谱分析怎样测其线速度? 1 一般测定线速度实际上是测定色谱柱的死时间;、甲烷作为不滞留物,测定甲烷的保 留时间(TCD检测器以空气峰),、用色谱柱的长度除以甲烷的保留时间得到色谱柱的平均线速度。 九、气相色谱分析中如何选择载气流速的最佳操作条件? 在色谱分析中,选择好最佳的载气流速可获得塔板高度的最小值。因此,从速率理论关于峰 形扩张公式可求出最佳流速值。通常色谱柱内径4mm,可用流速为30ml/mi n 十、气相色谱分析中如何选择载气的最佳操作条件? 1载气的性质对柱效和分析时间有影响;、用相对分子质量小的载气时,最佳流速和最

色谱分析分离方法概述

色谱分析分离方法概述 本书是色谱世界《色谱技术丛书》的第一分册。全书共四章,主要说明了色谱法的发展及其在分析化学中的地位和作用,色谱法的特点、分类及性能比较,色谱法的原理,色谱模型理论等方面的内容。 第一章色谱法的发展及其在分析化学中的地位和作用 第一节色谱法发展简史 一、色谱法的出现 二、色谱法的发展 三、色谱法的现状和未来 第二节色谱法在工业生产和科学研究中的作用 一、色谱法在经济建设和科学研究中的作用 二、色谱法在分析化学中的地位和作用 第三节色谱法与其他方法的比较和配合 一、色谱法的特点和优点 二、色谱法和其他方法的配合 第二章色谱法的特点、分类及性能比较 第一节色谱法的定义与分类 一、按流动相和固定相的状态分类 二、按使用领域不同对色谱仪的分类 第二节现代色谱法的应用领域和性能比较 一、色谱法的应用领域

二、各种色谱方法的性能比较 第三章色谱法的原理 第一节色谱分析的基本原理 一、色谱分离的本质 二、色谱分离的塔板理论 第二节色谱法中常用的术语和参数 一、气相色谱中常用的术语和参数 二、液相色谱中常用的术语和参数 第三节色谱的速率理论 一、气相色谱速率理论 二、液相色谱速率理论 第四章色谱模型理论 第一节色谱模型概述 一、色谱模型理论的意义 二、色谱模型的建立 三、色谱模型的求解 第二节线性色谱 一、理想过程 二、反应色谱 三、扩散的影响 四、相间传质阻力的影响 五、同时含扩散与相同传质阻力的情形

第三节单组分理想非线性色谱 一、理想非线性色谱数学模型分析 二、谱带发展与流出曲线 三、理想非线性色谱间断解的数学意义———弱解 四、非线性反应色谱 第四节双组分理想非线性色谱 一、数学模型分析 二、情形 三、简单波的传播 四、激波 五、谱带的发展与保留值的计算 第一节色谱法发展简史 俄国植物学家茨维特于1903年在波兰华沙大学研究植物叶子的组成时,用碳酸钙作吸附剂,分离植物干燥叶子的石油醚萃取物。他把干燥的碳酸钙粉末装到一根细长的玻璃管中,然后把植物叶子的石油醚萃取液倒到管中的碳酸钙上,萃取液中的色素就吸附在管内上部的碳酸钙里,再用纯净的石油醚洗脱被吸附的色素,于是在管内的碳酸钙上形成三种颜色的6个色带。当时茨维特把这种色带叫作“色谱”.茨维特于1906年发表在德国植物学杂志上用此名,在这一方法中把玻璃管叫作“色谱柱”,碳酸钙叫作“固定相”,纯净的石油醚叫作“流动相”。把茨

生化分离技术 考试复习题库(含详细答案)

《生化分离》考试复习题库 一、选择题 1.下列不是超临界萃取工艺的方法是()。 A 等温法 B 等压法 C 吸附法 D 交换法 2.影响絮凝效果的因素有很多,但不包括()。 A 絮凝剂的浓度 B 溶液pH值 C 溶液含氧量 D 搅拌速度和时间 3.葡聚糖凝胶色谱属于排阻色谱,在化合物分离中,先被洗脱下来的为()。 A 杂质 B 小分子化合物 C 大分子化合物 D 两者同时下来 4.当向蛋白质纯溶液中加入中性盐时,蛋白质溶解度()。 A 增大 B 减小 C 先增大,后减小

D 先减小,后增大 5.下列不能提高发酵液过滤效率的措施是()。 A 增大滤过面积 B 降低料液温度 C 加压或减压 D 加入助滤剂 6.下列方法中,哪项不属于改善发酵液过滤特性的方法 A 调节等电点 B 降低温度 C 添加表面活性物质 D 添加助滤剂 7.助滤剂应具有以下性质() A 颗粒均匀、柔软、可压缩 B 颗粒均匀、坚硬、不可压缩 C 粒度分布广、坚硬、不可压缩 D 颗粒均匀、可压缩、易变形 8.在发酵液中除去杂蛋白质的方法,不包括() A 沉淀法 B 变性法 C 吸附法 D 萃取法 9.下列关于速率区带离心法说法不正确的是()

A 样品可被分离成一系列的样品组分区带 B 离心前需于离心管内先装入正密度梯度介质 C 离心时间越长越好 D 一般应用在物质大小相异而密度相同的情况 10.助滤剂是一种不可压缩的多孔微粒,它能使滤饼疏松,滤速增大。以下不属于助滤剂的是() A 氯化钙 B 纤维素 C 炭粒 D 硅藻土 11.细胞破碎的方法可分为机械法和非机械法两大类,下列不属于机械法的是() A 加入金属螯合剂 B 高压匀浆法 C 超声破碎法 D 珠磨法 12.萃取操作是利用原料液中各组分()的差异实现分离的操作。 A 溶剂中的溶解度 B 沸点 C 挥发度 D 密度 13.两相溶剂萃取法的原理为:

气相色谱法

气相色谱法测定丁醇中少量甲醇含量 一、实验目的 1. 掌握用外标法进行色谱定量分析的原理和方法。 2. 了解气相色谱仪氢火焰离子检测器FID的性能和操作方法。 3. 了解气相色谱法在产品质量控制中的应用。 4. 学习气相色谱法测定甲醇含量的分析方法。 二、实验原理 在丁醇生产的过程中,不可避免地有甲醇产生。甲醇是无色透明的具有高度挥发性的液体,是一种对人体有害的物质。甲醇在人体内氧化为甲醛、甲酸,具有很强的毒性,对神经系统尤其是视神经损害严重,人食入 5 g 就会出现严重中毒,超过 12. 5 g 就可能导致死亡,在白酒的发酵过程中,难以将甲醇和乙醇完全分离,因此国家对白酒中甲醇含量做出严格规定。根据国家标准(GB10343-89),食用酒精中甲醇含量应低于0.1g?L-1(优级)或0.6 g?L-1(普通级)。 气相色谱法是一种高效、快速而灵敏的分离分析技术,具有极强的分离效能。一个混合物样品定量引入合适的色谱系统后,样品被气化后,在流动相携带下进入色谱柱,样品中各组分由于各自的性质不同,在柱内与固定相的作用力大小不同,导致在柱内的迁移速度不同,使混合物中的各组分先后离开色谱柱得到分离。分离后的组分进入检测器,检测器将物质的浓度或质量信号转换为电信号输给记录仪或显示器,得到色谱图。利用保留值可定性,利用峰高或峰面积可定量。 外标法是在一定的操作条件下,用纯组分或已知浓度的标准溶液配制一系列不同含量的标准溶液,准确进样,根据色谱图中组分的峰面积(或峰高)对组分含量作标准曲线。在相同操作条件下,依据样品的峰面积(或峰高),从标准曲线上查出其相应含量。利用气相色谱可分离、检测丁醇中的甲醇含量,在相同的操作条件下,

生物分离技术题库(带答案)

题库名称:生物分离技术 一、名词解释 1.质量作用定律:化学反应得速率与参加反应得物质得有效质量成正比。 2.凝聚:在电解质作用下,破坏细胞菌体与蛋白质等胶体粒子得分散状态,使胶体粒子聚集得过程。 3.分配系数:在一定温度、压力下,溶质分子分布在两个互不相溶得溶剂里,达到平衡后,它在两相得浓度为一常数叫分配系数。 4.干燥速率:干燥时单位干燥面积,单位时间内漆画得水量。 5.CMSephadex C50:羧甲基纤维素、弱酸性阳离子交换剂,吸水量为每克干胶吸水五克。 6.絮凝:指在某些高分子絮凝剂存在下,在悬浮粒子之间发生架桥作用而使胶粒形成粗大得絮凝团得过程 7.过滤:就是在某一支撑物上放过滤介质,注入含固体颗粒得溶液,使液体通过,固体颗粒留下,就是固液分离得常用方法之一。 8.萃取过程:利用在两个互不相溶得液相中各种组分(包括目得产物)溶解度得不同,从而达到分离得目得 9.吸附:就是利用吸附剂对液体或气体中某一组分具有选择性吸附得能力,使其富集在吸附剂表面得过程。 10.反渗析:当外加压力大于渗透压时,水将从溶液一侧向纯水一侧移动,此种渗透称之为反渗透。 11.离心沉降:利用悬浮液或乳浊液中密度不同得组分在离心力场中迅速沉降分层,实现固液分离 12.离心过滤:使悬浮液在离心力场作用下产生得离心力压力,作用在过滤介质上,使液体通过过滤介质成为滤液,而固体颗粒被截留在过滤介质表面,从而实现固液分离,就是离心与过滤单元操作得集成,分离效率更高 13.离子交换:利用离子交换树脂作为吸附剂,将溶液中得待分离组分,依据其电荷差异,依靠库仑力吸附在树脂上,然后利用合适得洗脱剂将吸附质从树脂上洗脱下来,达到分离得目得。 14.固相析出技术:利用沉析剂(precipitator)使所需提取得生化物质或杂质在溶液中得溶解度降低而形成无定形固体沉淀得过程。 15.助滤剂:助滤剂就是一种具有特殊性能得细粉或纤维,它能使某些难以过滤得物料变得容易过滤 16.沉降:就是指当悬浮液静置时,密度较大得固体颗粒在重力得作用下逐渐下沉,这一过程成为沉降 17.色谱技术:就是一组相关分离方法得总称,色谱柱得一般结构含有固定相(多孔介质)与流动相,根据物质在两相间得分配行为不同(由于亲与力差异),经过多次分配(吸附解吸吸附解吸…),达到分离得目得。 18.有机溶剂沉淀:在含有溶质得水溶液中加入一定量亲水得有机溶剂,降低溶质得溶解度,使其沉淀析出。 19.等电点沉淀:调节体系pH值,使两性电解质得溶解度下降,析出得操作称为等电点沉淀。 20.膜分离:利用膜得选择性(孔径大小),以膜得两侧存在得能量差作为推动力,由于溶液中各组分透过膜得迁 移率不同而实现分离得一种技术。 21.化学渗透破壁法:某些化学试剂,如有机溶剂、变性剂、表面活性剂、抗生素、金属螯合剂等,可以改变细胞壁或细胞膜得通透性,从而使胞内物质有选择地渗透出来。 22.超临界流体:超临界流体就是状态超过气液共存时得最高压力与最高温度下物质特有得点——临界点后得流体。 23.临界胶团浓度:将表面活性剂在非极性有机溶剂相中能形成反胶团得最小浓度称为临界胶团浓度,它与表面活性剂种类有关。 24.反渗透:在只有溶剂能通过得渗透膜得两侧,形成大于渗透压得压力差,就可以使溶剂发生倒流,使溶液达到浓缩得效果,这种操作成为反渗透。 25.乳化液膜系统:乳化液膜系统由膜相、外相与内相三相组成,膜相由烷烃物质组成,最常见得外相就是水相,内相一般就是微水滴。 26.树脂工作交换容量:单位质量干树脂或单位体积湿树脂所能吸附得一价离子得毫摩尔数称为树脂交换容量,在充填柱上操作达到漏出点时,树脂所吸附得量称为树脂工作交换容量。 27.色谱阻滞因数:溶质在色谱柱(纸、板)中得移动速率与流动相移动速率之比称为阻滞因数,以Rf表示。 28.胶团:两性表面活性剂在非极性有机溶剂中亲水性基团自发地向内聚集而成得,内含微小水滴得,空间尺度仅为纳米级得集合型胶体。 29.膜得浓差极化:就是指但溶剂透过膜,而溶质留在膜上,因而使膜面浓度增大,并高于主体中浓度。 30.超滤:凡就是能截留相对分子量在500以上得高分子膜分离过程称为超滤,它主要就是用于从溶剂或小分子溶质中将大分子筛分出来。 31、生物分离技术:就是指从动植物与微生物得有机体或器官、生物工程产物(发酵液、培养液)及其生物化学产品中提取、分离、纯化有用物质得技术过程。 32、离心分离技术:就是基于固体颗粒与周围液体密度存在差异,在离心场中使不同密度得固体颗粒加速沉降得分离过程。 33.物理萃取:即溶质根据相似相溶得原理在两相间达到分配平衡,萃取剂与溶质之间不发生化学反应。 34.化学萃取:则利用脂溶性萃取剂与溶质之间得化学反应生成脂溶性复合分子实现溶质向有机相得分配。 35.盐析:就是利用不同物质在高浓度得盐溶液中溶解度得差异,向溶液中加入一定量得中性盐,使原溶解得物质沉淀析出得分离技术。

相关文档
相关文档 最新文档