文档视界 最新最全的文档下载
当前位置:文档视界 › 半导体纳米材料的制备

半导体纳米材料的制备

半导体纳米材料的制备
半导体纳米材料的制备

新型半导体纳米材料的制备

摘要: 简要论述了半导体纳米材料的特点,着重讨论了当前国内外主要的几种半导体纳米材料的制备工艺技术,包括溶胶一凝胶法、微乳液法、模板法、基于MBE 和MOCVD的纳米材料制备法、激光烧蚀法和应变自组装法等,并分析了以上几种纳米材料制备技术的优缺点及其应用前景。

关键词: 纳米材料;溶胶一凝胶法;分子束外延;金属有机物化学气相淀积;激光烧蚀淀积:应变自组装法;

Several Major Fabrication Technologies of Novel Semi conductor

Nanometer Materials

Abstract: The characteristics of semiconductor nanometer materials are introduced. Several major fabrication technologies of semiconductor nanometer materials are discussed,including sol-gel process,tiny-latex process,template process,based on MBE and MOCVD,laser-ablation and strain-induced self-organized process,their advantages and disadvantages and their prospects are analyzed.

Key words: nanometer material;sol-gel process; MBE; MOCVD: laser ablation deposition; strain-induced self-organized process;

1.引言

相对于导体材料而言,半导体中的电子动能较低,有较长的德布罗意波长,对空间限域比较敏感。半导体材料空间中某一方向的尺寸限制与电子的德布罗意波长可比拟时,电子的运动被量子化地限制在离散的本征态,从而失去一个空间自由度或者说减少了一维,通常适用体材料的电子的粒子行为在此材料中不再适用。这种自然界不存在,通过能带工程人工制造的新型功能材料叫做半导体纳米材料。现已知道,半导体纳米粒子结构上的特点(原子畴尺寸小于100 nm,大比例原子处于晶界环境,各畴之间存在相互作用等)是导致半导体纳米材料具有特殊性质的根本原因。半导体纳米材料独特的质使其将在未来的各种功能器件中发挥重要作用,半导体纳米材料的制备是目前研究的热点之一。本文讨论了半导体纳米材料的性质,综述了几种化学法制备半导体纳米材料的原理和特点。

2 .半导体纳米粒子的基本性质

2.1表面效应

表面效应是指纳米粒子的表面原子数与总原子数之比随粒子尺寸的减小而大幅度地增加(对于直径为10nm的粒子,表面原子所占百分数为20%;直径为1nm的粒子,表面原子所占百分数为100%),粒子的表面能和表面张力随之增加,材料的光、电、化学性质发生变化。表面原子的活性比晶格内的原子高,其构型也可能发生变化,因而表面状况也将对整个材料的性质产生显著影响。例如,吴晓春等人[1]制备了表面包覆有阴离子表面活性剂的SnO2纳米

纳米微粒的红外微粒,测定了裸露的和表面包覆有阴离子表面活性剂的SnO

2

纳米微粒形成宽的背景吸收吸收光谱。表面包覆有阴离子表面活性剂的SnO

2

表现为光吸收蓝移。前者表现出很强带,表现为光吸收边红移。裸露的SnO

2

的光致发光,后者只有微弱的荧光。因此想要获得发光效率高的纳米材料,采用适当的方法合成表面完好的半导体材料很重要。

2.2量子尺寸效应

当半导体材料从体相减小到某一临界尺寸(如与电子的德布罗意波长、电子的非弹性散射平均自由程和体相激子的玻尔半径相等) 以后,其中的电子、空穴和激子等载流子的运动将受到强量子封闭性的限制,同时导致其能

量的增加,与此相应的电子结构也从体相的连续能带结构变成类似于分子的准分裂能级,使原来的能隙变宽,即光吸收谱向短波方向移动,这就是量子尺寸效应。当热能、电场能或磁场能比平均的能级间距还小时,超微颗粒就会呈现一系列与宏观物体截然不同的特性,客观表现为光谱线会向短波方向移动,催化活性变化。Xu Sh-ming等[2]测定其合成的半导体纳米线阵列的紫外可见吸收光谱表明,随着半导体纳米线直径减小,其吸收边相对于体相蓝移的幅度增加,显示了明显的量子尺寸效应。量子尺寸效应是未来微电子、光电子器件的基础,当微电子器件进一步微小化时,必须考虑量子效应。

2.3 介电限域效应

当用电容率较小的材料修饰半导体纳米材料表面时,带电的半导体纳米粒子发出的电场线很容易穿过电容率比自己小的包覆层。因此,屏蔽效应减小,带电粒子间的库仑作用力增强,结果增强了激子的结合能和振子强度,引起量子点电子结构变化。量子点中的电子、空穴和激子等载流子受之影响,这种现象称为介电限域效应。对于超微粒子来说,随着粒径减小,和块体相比红移和蓝移同时起作用,一般导致蓝移的电子2空穴空间限域起主导作用,因而主要观察到的为量子尺寸效应。但是当对超微粒表面进行化学修饰后,如果半导体材料和包覆材料的介电常数相差较大,便产生明显的介电限域效应,屏蔽效应减弱,半导体材料和包覆材料的介电常数差值越大,则介电限域效应越强,红移越大。当表面效应引起的能量变化大于由于空间效应所引起的变化时,超微粒的表观带隙减小,反应到吸收光谱上就表现出明显的红移现象。刘成林等人[3]将制得的ZnO/ZnS胶体作为亚相,在亚相表面滴加硬脂酸氯仿溶液,形成ZnO/ZnS超微粒2硬脂酸复合单分子层。ZnO/ZnS超微粒表观带隙为4.04eV,对应的波长为308nm ,ZnO/ZnS超微粒2硬脂酸复合的表观带隙为3.14eV,对应的波长为361 nm ,相对于胶体的紫外2可见吸收光谱出现了“红移”现象,这种现象产生的原因是硬脂酸单分子膜对超微粒子起着表面修饰作用,从而出现了介电限域效应,引起了红移。这种变化对纳米粒子的应用产生重要影响。

3. 半导体纳米材料的性质

3.1特殊的光学、热学性质

纳米粒子具有大的比表面积,表面原子数、表面能和表面张力随粒径的下降急剧增加,小尺寸效应、表面效应、量子尺寸效应及宏观量子隧道效应等导致纳米微粒的热、磁、光、敏感特性和表面稳定性不同于常规粒子。纳米粒子的熔点低于体相材料的熔点,这是由于纳米粒子表面原子占总原子数的比例大,表面原子邻近配位不全,纳米粒子活性大而体积又远小于大块材料的粒子,熔化时所需增加的内能小得多。Goldstein等[4]由反胶束化学沉淀法制备的直径为2.4-7.6 nm的半导体原子簇,测得随粒子尺寸减小,材料熔点的降低是相当显著的。图1表明,最小的CdS半导体原子簇的熔点降到块体熔点的1000 K以下。

纳米粒子的高比表面导致不饱和键和悬键增多,在红外场作用下,纳米粒子红外吸收带宽化,对紫外光有强吸收作用,而且吸收带移向短波。纳米半导体的光谱蓝移现象已经有许多报道, Jiaxing Huang等[5]在CS2)水)乙(撑)二胺微乳液体系,利用超声辐射合成的纳米CdS相对于体相CdS的吸收光谱和光致发光光谱发生蓝移。

3.2 光电化学性质

对于电解质溶液中的半导体超微粒的悬浮液体系,当光照到微粒上时,产生电子-空穴对,它们流向粒子表面,与溶液中的氧化剂(ox)或还原剂(red)反应,生成相

应的产物。当极化电势有利于氧化光致还原产物,则产生阳极光电流;当极化电势有利于还原光致氧化产物,则可观察到阴极光电流。当极化电势不利于氧化或还原光致反应产物时,仍然可能检测到由于微粒中产生光生电子(e-)或光生空穴(h+)直接注入到电极里产生的较微弱的光电流。Zang Ling等人[6]在AOT/异辛烷反胶束中合成半导体纳米粒子CdS,以溶解在有机相中的pyrene作电子给体,在光激发下可以向CdS注入电子,观察到了阳极电流, CdS为n型半导体。

4. 半导体纳米材料的主要制备技术

4.1.1溶胶一凝胶法

在诸多纳米粉体的制备法中,溶胶一凝胶法因有独特的优点而被广泛应用。溶胶是固体颗粒分散于液体中形成的胶体,当移去稳定剂粒子或悬浮液时,溶胶粒子形成连续的三维网络结构。凝胶由固体骨架和连续相组成,除去液相后凝胶收缩为千凝胶,将干凝胶锻烧即成为均匀超细粉体。该方法的操作过程大致如下:先将金属醇盐或无机盐类协调水解得到均相溶胶后,加入溶剂、催化剂和鳌合剂等形成无流动水凝胶,再在一定的条件下转化为均一凝胶,然后除去有机物、水和酸根,最后进行干燥处理得到超细化粉体。

溶胶一凝胶法具有许多优点:由于反应在各组分的混合分子间进行,所以粉体的粒径小且均匀性高;反应过程易于控制,可获得一些其他方法难以得到的粉体;不涉及高温反应,能避免引入杂质,产品纯度高。但是溶胶一凝胶法在制备粉体过程中同样有许多因素影响到粉体的形成和性能。因为醇盐的水解和缩聚反应是均相溶液转变为溶胶的根本原因,故控制醇盐水解缩聚条件是制备高质量溶胶的关键。溶胶一凝胶法的另一主要问题是纳米粒子之间发生自团聚,进而形成较大的粒子。引起团聚的原因很多,国内外已有学者从热力学的角度探讨了溶胶不稳定性,认为高分子及表面活性剂是较好的纳米粒子稳定剂。

总起来说,溶胶一凝胶法制备设备简单、成本低,适宜大面积制膜和批量生产,有望成为开发新型纳米功能薄膜材料的方法。

4.1.2 微乳液法

微乳液是由油、水、乳化剂和助化剂组成各相同性、热力学性能稳定的

透明或半透明胶体分散体系,其分散相尺寸为纳米级。从微观的角度分析,用表面活性剂界面膜所稳定的微乳液制备超细颗粒,此超细颗粒的特点是:粒子表面包裹一层表面活性剂分子,使粒子间不易聚结;通过选择不同的表面活性剂分子可以对粒子表面进行修饰,并控制微粒的大小。制备纳米粒子的微乳液往往是W/O(油包水乳液)型体系,该体系的水核是一个“微型反应器”,水核内超细微粒的3种形成机理见表1。

微乳液法作为一种新的制备纳米材料方法,具有实验装置简单、操作方便、应用范围广和能够控制颗粒的粒度等优点。目前该方法逐渐引起人们的重视,因而有关微乳体系的研究日益增多,但研究尚处于初始阶段。诸如微乳反应器内的反应原理、反应动力学、热力学和化学工程等有关问题还有待解决,对微乳液聚合动力学的研究也缺乏统一的认识,对聚合工程设计和生产控制理论的研究还不够充分,并没有完全解决微乳液聚合中高乳化剂含量、低单体量这一根本问题[5]。

4.1.3模板法

模板法合成纳米材料是20世纪90年代发展起来的一项前沿技术。模板指含有高密度的纳米柱形孔洞、厚度为几十至几百微米厚的薄膜。常用的模板有:有序洞孔阵列氧化铝模板、含有洞孔无序分布的高分子模板、纳米洞孔玻璃模板。表2列举了应用模板法制备纳米材料的实例[6,7]。

模板法是合成纳米线和纳米管等一维纳米材料的有效技术,具有良好的可控性,利用其空间限制作用和模板剂的调试作用对合成材料的大小、形貌、结构和排列等进行控制;采用孔径为纳米级到微米级的多孔材料作为模板,结合电化学法、淀积法、溶胶一凝胶法和气相淀积等技术使物质原子或离子沉淀于模板孔壁上,形成所需的纳米结构体[8]。模板法制备纳米材料具有下列特点:薄膜易于制备,合成方法简单;能合成直径很小的管状材料;由于膜孔孔径大小一致,制备纳米材料同样具有孔径相同、单分散的结构;在膜孔中形成的纳米管和纳米纤维容易从模板中分离出来。

4.2基于MBE和MOCVO的制备方法

4.2.1分子束外延技术

MBE技术实际上是在超高真空条件下,对分子或原子束源和衬底温度施以精密控制的薄膜蒸发技术。运用MBE技术制备的超晶格和量子阱材料是近年来半导体物理学和材料学科中的一项重大突破。MBE制备法将所需外延的膜料放在射流单元中,在10一SPa数量级的超高真空环境下加热蒸发,并将这些膜料组分的原子(或分子)按一定的比例喷射到加热的衬底上外延淀积成薄膜。图2是MBE 系统示意图,该系统由压力维持在约1.33只10一SPa的淀积反应室组成。淀积反应室内是一个或多个射流单元,其中含有晶圆上所需材料的高纯度样品。射流单元上的快门把晶圆暴露在源材料面前,这样电子束直接撞击于源材的中心,将其加热成液体。在液态下,原子从材料中蒸发出来,从射流单元的开口处溢出,淀积在晶圆的表面上。

与其他制备技术相比,MBE制备法有以下特点:超高真空条件下残余气体杂质极少,可保持膜面清洁;在低温下(500~600OC)生长111一V族、H一VI族及W族元素化合物薄膜,生长速度极慢(1一10pm/h)因薄膜为层状生长,故可获得表面缺陷极少、均匀度极高的薄膜;由于其便于控制组分浓度和杂质浓度,所以可制备出急剧变化的杂质浓度和组分的器件;可以用反射式高能电子衍射仪器原位观察薄膜晶体的生长情况。

4.2.2 金属有机物化学气相淀积技术

MOCVD是复合材料化学气相淀积技术中最新的选择之一[9]。气相外延(VPE)为复合材料淀积系统,而MOCVD是指用于VPE系统中的源,见图3的MOCVD 系统示意图。该系统使用两种化学物质:卤化物和金属有机物。在vPE中砷化稼(GaAS)的淀积就是一种卤化物工艺,其热区由nl族卤化物(嫁)形成,冷区淀积11工一W族化合物。在GaAs的金属有机物工艺中,(CH3)3Ga与As进入反应室反应,形成GaAS,反应式为:(CH3)3Ga+AsH3一GaAS+3CH4。虽然MBE工艺过程较为缓慢,但MOCVD工艺能够满足批量生产的需要,且适合较大的片基。另外MOCVD还具有制备化学组分的不同多层膜的能力;MOCVD的薄膜组成元素均以气体形式进入反应室,通过控制载气流量和切换开关易于控制薄膜组分,薄膜污染程度较小;以金属有机物为源,低温沉积可降低薄膜中的空位密度和缺陷;能精确掌握各种气体的流量,控制外延层的成分、导电类型、载流子浓度、厚度等,从

而获得超晶格薄膜;

反应势垒低,制备外延膜时,对衬底的取向要求不高。此外,与MBE不同,MOCVD可以在如InGaAsP这样的器件中淀积磷。但是MOCVD也有缺陷,体现在所用原材料成本较高,毒性大,因此研究毒性较小的有机砷来代替原材料是一项急需解决的问题。

4.2.3 微结构材料生长和精细加工相结合的制备技术

利用MBE或MOCVD等技术一首先生长出半导体微结构材料,进而结合高空间分辨电子束曝光直写,湿法或干法刻蚀和聚焦离子束注入隔离制备纳米量子线和量子点,即所谓自上而下的制备技术。利用这一技术,原则上可产生最小特征宽度为10nm的结构,并可制成具有二维和三维约束效应的纳米量子线、量子点及其阵列。这种方法的优点是图形的几何形状和密度(在分辨率范围内)可控。其缺点是图形实际分辨率不高(因受电子束背散射效应的影响,一般在几十纳米),横向尺寸远比纵向尺寸大;损伤边墙(辐、刻蚀)、引入缺陷或沾污杂质,使器件性能变差及曝光时间过长等[1o]。

4.3 激光烧蚀法制备技术

激光烧蚀法是用一束高能脉冲激光辐射靶材,使靶材表面迅速加热从而融化蒸发,随后冷却结晶的一种纳米材料制备方法。该方法己被用来制备纳米粉末和薄膜。制备时先将混和有一定比例的催化剂靶材粉末压制成块,放入一个高温石英管真空炉中烘烤去气,预处理后将靶材加热到12000C左右,用一束激光消融靶材,同时吹入流量为50cm,/min左右的保护氨气,保持(400~700)x133.3Pa的气压,在出气口附近由水冷集合器收集所制备的纳米材料。激光烧蚀法制备纳米材料所用的激光器主要有固体钱(Nd)。当忆铝石榴石(YAG)激光倍频后得到532nm激光和准分子激光,一般出射单脉冲激光能量为200一50OmJ,脉冲宽度约几纳秒到几十纳秒,脉冲频率约为5一10Hz。在该方法中激光主要是作为热源,使靶材在激光下加热并融化蒸发。目前TakehitoYoshida和F.Kokai研究小组分别利用脉冲和连续C02激光烧蚀靶材进行了碳纳米管的制备实验,直接用激光的加热作用来提供一维纳米结构生长所需的温度条件[11]。

激光束具有高性能而非接触的优点,是一种干净的热源。激光烧蚀法在制备零维、一维、二维纳米材料方面有着一定的技术优势。但目前利用激光烧蚀法制

备纳米粉末时,多采用块状平面靶材为原料。由于靶材升温和导热消耗了大量的能量,纳米粒子蒸发一冷凝所消耗的有效能量所占比例很小,所以粉末的产出率很低口’〕,因此制约了该技术的研究进展。针对激光烧蚀法制备纳米粉末产出率低的缺点,美国Texas大学的H.Cai等人玻璃和金属小球为靶材,采用对激光束透明的石英板作为小球运动的导向板,且用高能激光束烧蚀一个个微米级小球,制备出纯度很高的纳米粉末。结果表明,激光烧蚀小球所需的最低能量值远低于烧蚀同样成分块状平板靶材时所需值[12]。但其粉末的产量仍无明显的增长,究其原因主要是小球运动的轨迹难以精确控制。

4.4 应变自组装制备量子点(线)法

在异质结外延生长过程中,根据异质结材料体系的晶格失配度和表面能与界面能的不同,存在着3种生长模式:晶格匹配体系的二维层状(平面)生长的Frank 一Vander Merwe模式;大晶格失配和大界面能材料体系的三维岛状生长的模式;大晶格失配和较小界面能材料体系的初层状进而过渡到岛状生长的stranski一Krastanow(SK)模式。应变自组装纳米量子点(线)结构材料的制备是利用SK生长模式,它主要用于描述具有较大晶格失配,而界面能较小的异质结构材料生长行为。SK生长模式的机制如下:对于晶格常数相差较大的半导体材料体制,在外延生长初期外延层材料在衬底表面上呈稳定平面(层)状生长。由于外延层厚度很薄,故它与衬底晶体之间的晶格失配为生长层本身的弹性畸变所缓解,晶体为鹰品结构生长。随着生长层厚度逐渐增加,晶体内部弹性畸变能量不断积累,当此能量值超过某个闽值后,生长的晶体会像地震释放地壳中积蓄的畸变能量一样,一刹那间二维的层状晶体会完全坍塌,只在原来衬底表面存留一薄层生长层(浸润层),其余的晶体材料在整个系统的表面能、界面能和畸变能的联合作用下,于浸润层表面上重新自动聚集,形成纳米尺度的三维无位错晶体“小岛”,使系统的能量最小。晶体“小岛”的生成是自发进行的,故被称为自动组装生长。纳米尺度的“小岛”(量子点)形成后,再用另外一种能带带隙较宽的半导体材料(如GaAS,AIGaAS等)将这些“小岛”覆盖,形成“葡萄干”分层夹馅饼干结构。这时“小岛”中的电子(或空穴)载流子,由于外面覆盖层材料高能量势垒的阻挡(限制)作用,只能被“囚禁在“小岛”中,这样就形成了应变自组装量子点结构材料。采用SK生长模式制备应变自组装量子点材料,是目前制备量子点材料最为成功的一项技术,该模式广

泛用来制备各种大失配半导体材料体系量子点[13]。

5.结束语

在21世纪这一信息时代中,新品IC芯片的原型集中于纳米组装体系中。尽管当前半导体纳米材料正处于初始研发阶段,但无论用哪种方法合成的纳米材料要达到实用化,都要符合表面完整、性能稳定和成本低廉等要求。制备半导体纳米器件依赖于微结构材料的生长和纳米加工技术的进步,而微结构材料的质量又在很大程度上取决于生长和制备技术水平,因此纳米材料制备技术的研究与进展将起着举足轻重的作用。

目前采用三维外延生长技术,在蓝宝石衬底上外延的氮化嫁(GaN)薄膜材料的缺陷密度已降低到1义108cm一‘,这是制各发光二极管的基本要求。现在半导体材料越做越细(纳米材料、微结构材料),pn结越做越浅(超浅结)。由于绝缘膜上硅(S01)技术的应用简化了布线和制备工艺,所以sol材料的优越性在于绝对电学隔离和减小面积,将电路密度提高30%,但速度却比普通的Si器件快两倍,目前己广泛用于制作抗核加固IC,VLSI,ULSI,三维IC和BICMOS等工艺中,满足了军事、航空航天、通信等尖端科学领域的需要。所有这些应用都得益于新型的半导体纳米材料制备技术的研究与发展。

参考文献

[1] 吴晓春,汤国庆,张桂兰,等.表面包覆的SnO2纳米微粒的红外振动特征[J].光学学报, 1995, 15(10):1 355 -1 358.

[2] XU Shi-min, XUE Kuan-hong, KONG Jing-lin, et al.Template synthesis and UV-Vis absorption spectra of the nanowire arrays of cadmium chalcogenides [ J ].Electrochemistry(电化学), 2000, 6(2).

[3] 刘成林,李远光,顾建华,等. ZnO/ZnS复合超微粒子有序组装的研究[J].半导体杂志, 1997, 22(4): 12 -16.

[4] Goldstein AN, Echer C M, Alivisatos A P. Melting in semiconductor nanocrystals [J]. Science, 1992, 256: 1 425-1 427.

[5] Huang Jiaxing, Yi Xie, Bin Li, et al. Ultrasound-induced formation of CdS nanostructures in oil-in-water microemulsions [J]. J. Colloid and Interface Science, 2001, 236: 382 -384.

[6] 栗野梅安茂忠.半导体纳米材料的性质及化学法制备[J]. 半导体光电,2003,24(6);382一385.

[7] 王占国.纳米半导体材料及其纳米器件研究进展[J]. 半导体技术,2001,26(3):13一16.

[8] 王占国.纳米半导体材料的制备技术汇J]、微纳电子技术,2002,39(l)9一14.

[9]马国华,彭同江.半导体量子线制备方法及研究动态[J]. 西南科技大学学报,2003,18〔l):73一78

[10] 吴旭啼,凌一鸣.激光烧蚀法制备半导体纳米丝的研究进展口.激光与红外,2002,32(2)67一69.

[11] 罗莹.半导体纳米材料一口〕.物理实验,200。,21(3):3-6.

[12] 张臣.纳米材料的一颗新星一半导体量子点材料[J]. 新材料产业,2003,5:65一69.

[13] 牛今书,刘艳丽,徐甲强.室温固相合成纳米ZnS及其气敏性能研究[J].无机材料学报, 2002, 17(4):817 -821.

纳米材料的制备方法

1化学气相沉积法 1.1化学气相沉积法的原理 化学气相沉积法(Chemical Vapour Deposition (CVD) )是通过气相或者在基板表面上的化学反应,在基板上形成薄膜。化学气相沉积方法实际上是化学反应方法,因此。用CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,而且即使是高熔点物质也可以在很低的温度下制备。 用化学气相沉积法可以制备各种薄膜材料、包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件——基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜构料。化学气相沉积的化学反应形式.主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。 化学气相沉积法制备纳米碳材料的原理是碳氢化合物在较低温度下与金属纳米颗粒接触时通过其催化作用而直接生成。化学气相沉积法制备碳纳米管的工艺是基于气相生长碳纤维的制备工艺。在研究气相生长碳纤维早期工作中就己经发现有直径很细的空心管状碳纤维,但遗憾的是没有对其进行更详细的研究[4]。直到Iijima在高分辨透射电子显微镜发现产物中有纳米级碳管存在,才开始真正的以碳纳米管的名义进行广泛而深入的研究。 化学气相沉积法制备碳纳米管的原料气,国际上主要采用乙炔,但也采用许多别的碳源气体,如甲烷、一氧化碳、乙烯、丙烯、丁烯、甲醇、乙醇、二甲苯等。在过渡金属催化剂铁钴镍催化生成的碳纳米管时,使用含铁催化剂,多数得到多壁碳纳米管;使用含钴催化剂,大多数的实验得到多壁碳纳米管;过渡金属的混合物比单一金属合成碳纳米管更有效。铁镍合金多合成多壁碳纳米管,铁钴合金相比较更容易制得单壁碳纳米管。此外,两种金属的混合物作为催化剂可以大大促进碳纳米管的生长。许多文献证实铁、钴、镍任意两种的混合物或者其他金属与铁、钴、镍任何一种的混合物均对碳纳米管的生长具有显著的提高作用,不仅可以提高催化剂的性能,而且可以提高产物的质量或者降低反应温度。催化裂解二甲苯时,将适量金属铽与铁混合,可以提高多壁碳纳米管的纯度和规则度。因而,包括像烃及一氧化碳等可在催化剂上裂解或歧化生成碳的物料均有形成碳纳米管的可能。Lee Y T 等[5]讨论了以铁分散的二氧化硅为基体,乙炔为碳源所制备的垂直生长的碳纳米管阵列的生长机理,并提出了碳纳米管的生长模型。Mukhopdayya K等[6]提出了一种简单而新颖的低温制备碳纳米管阵列的方法。该法以沸石为基体,以钴和钒为催化剂,仍是以乙炔气体为碳源。Pna Z W等[7]以乙炔为碳源,铁畦纳米复合物为基体高效生长出开口的多壁碳纳米管阵列。 1.2评价 化学气相沉积法该法制备的纳米微粒颗粒均匀,纯度高,粒度小,分散性好,化学反应活性高,工艺可控和连续,可对整个基体进行沉积等优点。此外,化学气相沉积法因其制备工艺简单,设备投入少,操作方便,适于大规模生产而显示出它的工业应用前景。因此,化学气相沉积法成为实现可控合成技术的一种有效途径。化学气相沉积法缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。化学气相沉积法是纳米薄膜材料制备中使用最多的一种工艺,广泛应用于各种结构材料和功能材料的制备。用化学气相沉积法可以制备几乎所有的金属,氧化物、氮化物、碳化合物、复合氧化物等膜材料。总之,随着纳米材料制备技术的不断完善,化学气相沉积法将会得到更广泛的应用。

半导体纳米材料的光学性能及研究进展

?综合评述? 半导体纳米材料的光学性能及研究进展Ξ 关柏鸥 张桂兰 汤国庆 (南开大学现代光学研究所,天津300071) 韩关云 (天津大学电子工程系,300072) 摘要 本文综述了近年来半导体纳米材料光学性能方面的研究进展情况,着重介绍了半导体纳米材料的光吸收、光致发光和三阶非线性光学特性。 关键词 半导体纳米材料;光学性能 The Optica l Properties and Progress of Nanosize Sem iconductor M a ter i a ls Guan B ai ou Zhang Gu ilan T ang Guoqing H an Guanyun (Institute of M odern Op tics,N ankaiU niversity,T ianjin300071) Abstract T he study of nano size sem iconducto r particles has advanced a new step in the understanding of m atter.T h is paper summ arizes the p rogress of recent study on op tical p roperties of nano size sem icon2 ducto r m aterials,especially emphasizes on the op tical2abso rp ti on,pho to lum inescence,nonlinear op tical p roperties of nano size sem iconducto r m aterials. Key words nano size sem iconducto r m aterials;op tical p roperties 1 引言 随着大规模集成的微电子和光电子技术的发展,功能元器件越来越微细,人们有必要考察物质的维度下降会带来什么新的现象,这些新的现象能提供哪些新的应用。八十年代起,低维材料已成为倍受人们重视的研究领域。 低维材料一般分为以下三种:(1)二维材料,包括薄膜、量子阱和超晶格等,在某一维度上的尺寸为纳米量级;(2)一维材料,或称量子线,线的粗细为纳米量级;(3)零维材料,或称量子点,是尺寸为纳米量级的超细微粒,又称纳米微粒。随着维数的减小,半导体材料的电子能态发生变化,其光、电、声、磁等方面性能与常规体材料相比有着显著不同。低维材料开辟了材料科学研究的新领域。本文仅就半导体纳米微粒和由纳米微粒构成的纳米固体的光学性能及其研究进展情况做概括介绍。2 半导体纳米微粒中电子的能量状态 当半导体材料从体块减小到一定临界尺寸以后,其载流子(电子、空穴)的运动将受限,导致动能的增加,原来连续的能带结构变成准分立的类分子能级,并且由于动能的增加使得能隙增大,光吸收带边向短波方向移动(即吸收蓝移),尺寸越小,移动越大。 关于半导体纳米微粒中电子能态的理论工作最早是由AL.L.Efro s和A.L.Efro s开展的[1]。他们采用有效质量近似方法(E M A),根据微粒尺寸R与体材料激子玻尔半径a B之比分为弱受限(Rμa B,a B=a e+ a h,a e,a h分别为电子和空穴的玻尔半径)、中等受限(a h

常见纳米材料的制备技术

东华大学研究生课程论文封面 教师填写: 本人郑重声明:我恪守学术道德,崇尚严谨学风。所呈交的课程论文,是本人独立进行研究工作所取得的成果。除文中已明确注明和引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的作品及成果的内容。论文为本人亲自撰写,我对所写的内容负责,并完全意识到本声明的法律结果由本人承担。 论文作者签名: 注:本表格作为课程论文的首页递交,请用水笔或钢笔填写。

常见纳米材料的制备技术 1 概述 纳米材料是指材料的任何至少有一个维度的尺寸小于100nm或由小于100nm的基本单元组成的材料,广义来讲,数百纳米的尺度亦可称为纳米材料。由于纳米尺寸的物质具有与宏观物质所迥异的表面效应、小尺寸效应、宏观量子隧道效应和量子限域效应,因而纳米材料具有异于普通材料的光、电、磁、热、力学、机械等性能,纳米材料的性能往往由量子力学决定。按照纳米材料的空间形态可以将其分为4类:三维尺寸均为纳米量级的纳米粒子或人造原子被称为零维纳米材料;纳米纤维为一维纳米材料;纳米膜(片、层)可以称为二维纳米材料;而有纳米结构的材料可以称为三维纳米材料。目前只有纳米粉末实现了工业化生产(如碳酸钙、氧化锌等),静电纺纳米纤维的产量能够满足实验的需求,其它纳米材料基本上还处于实验室研究阶段[1]。 2 常见的纳米材料 2.1 零维纳米材料 指空间中三个维度的尺寸均在纳米尺度,如纳米尺度颗粒、原子团簇等。纳米球全称“原子自组装纳米球固体润滑剂”,是具有二十面体原子团簇结构的铝基合金,是一种新型纳米/非晶合金固体抗磨自修复剂,采用急冷方法制备抗磨剂粉体,在合金从液体到固体的凝固过程中,形成纳米晶/非晶的复合结构,利用粒度控制的方法对抗磨剂粉末进行超微细化处理而成。该材料具有高硬度、高强度,并具有一定的韧性等性能,在多种减摩自修复机制的综合作用下呈现优良的减摩和抗磨性能,可以起到节省燃油、修复磨损表面、增强机车动力、降低噪音、减少污染物排放、保护环境的作用。 2.2 一维纳米材料 一维纳米材料指空间中有二维处于纳米尺度的材料,如纳米纤维、纳米棒、碳纳米管等。 静电纺纳米纤维是目前唯一一种能够连续制备纳米纤维的技术,它是利用高压电场力将纤维从导电溶液中抽拔出来,在抽拔过程中纤维被拉伸变细、溶剂挥

TiO2半导体纳米材料

材料学《第二课堂》课程论文题目:TiO2半导体纳米材料姓名: 学号:

目录 1. 课程设计的目的 (1) 2. 课程设计题目描述和要求 (1) 3. 课程设计报告内容 (1) 3.1 TiO2半导体纳米材料的特性 (1) 3.2 TiO2半导体纳米材料的制备方法 (3) 3.3 TiO2半导体纳米材料的表征手段 (3) 3.4 TiO2半导体纳米材料的发展现状与趋势 (4) 4. 结论 (5)

1.课程设计的目的 本课程论文的主要目的是论述TiO2半导体纳米材料,通过简要概述TiO2半导体纳米材料的特性、制备方法、表征手段及发展现状与趋势等相关方面的内容。通过这次课设,了解TiO2半导体纳米材料,巩固课堂上所学的有关纳米材料的有关知识,提高自己应用所学知识和技能解决实际问题的能力。 2.课程设计的题目描述及要求 课程设计的题目:TiO2半导体纳米材料 TiO2半导体纳米材料由于它具有不同于体材料的光学非线性和发光性质,在未来光开关、光存储、光快速转换和超高速处理等方面具有巨大的应用前景。本文就TiO2半导体纳米材料的主要制备方法与表征手段做一全面总结。 3.课程设计报告内容 3.1 TiO2半导体纳米材料的特性 1、光学特性 TiO2半导体纳米粒子(1~ 100 nm ) [2]由于存在着显著的量子尺寸效应, 因此它们的光物理和光化学性质迅速成为目前最活跃的研究领域之一, 其中TiO2半导体纳米粒子所具有的超快速的光学非线性响应及(室温) 光致发光等特性倍受世人瞩目。通常当半导体粒子尺寸与其激子玻尔半径相近时, 随着粒子尺寸的减小, 半导体粒子的有效带隙增加, 其相应的吸收光谱和荧光光谱发生蓝移, 从而在能带中形成一系列分立的能级[1]。 2、光电催化特性 1)TiO2半导体纳米粒子优异的光电催化活性 近年来, 对纳米TiO2半导体粒子研究表明: 纳米粒子的光催化活性均明显优于相应的体相材料。我们认为这主要由以下原因所致: ①TiO2半导体纳米粒子所具有的量子尺寸效应使其导带和价带能级变成分立的能级, 能隙变宽, 导带电位变得更负, 而价带电位变得更正。[1]这意味着TiO2半导体纳米粒子获得了更强的还原及氧化能力, 从而催化活性随尺寸量子化程度的提高而提高[5]。 ②对于TiO2半导体纳米粒子而言, 其粒径通常小于空间电荷层的厚度, 在离开粒子中心L距离处的势垒高度可以表述为[1]: 公式(1) 这里LD是半导体的Debye 长度, 在此情况下, 空间电荷层的任何影响都可忽略, 光生载流子可通过简单的扩散从粒子内部迁移到粒子表面而与电子给体或受体发生还原或氧化反应。计算表明: 在粒径为1Lm 的T iO 2 粒子中, 电子从体内扩散到表面的时间约为100n s, 而在粒径为10 nm 的微粒中只有10 p s。因此粒

纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法

纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中

纳米材料的制备方法及其研究进展

纳米材料的制备方法及其研究进展纳米材料的制备及其研究进展 摘要:综述了纳米材料的结构、性能及发展历史;介绍了纳米材料的制备方法及最新进展;概述了纳米材料在各方面的应用状况和前景;讨论了目前纳米材料制备中存在的问题。 关键词:纳米材料;结构与性能;制备技术;应用前景;研究进展 1 引言 纳米微粒是由数目极少的原子或分子组成的原子群或分子群,微粒具有壳层结构。由于微粒的表面层占很大比重,所以纳米材料实际是晶粒中原子的长程有序排列和无序界面成分的组合,纳米材料具有大量的界面,晶界原子达15%-50%。 这些特殊的结构使得纳米材料具有独特的体积效应、表面效应,量子尺寸效应、宏观量子隧道效应,从而使其具有奇异的力学、电学、磁学、热学、光学、化学活性、催化和超导性能等特性,使纳米材料在国防、电子、化工、冶金、轻工、航空、陶瓷、核技术、催化剂、医药等领域具有重要的应用价值,美国的“星球大战计划”、“信息高速公路”,欧共体的“尤里卡计划”等都将纳米材料的研究列入重点发展计划;日本在10年纳米微粒的制备方法 1 纳米微粒的制备方法一般可分为物理方法和化学方法。制备的关键是如何控制颗粒的大小和获得较窄且均匀的粒度分布。 1.1 物理方法 1.1.1 蒸发冷凝法

又称为物理气相沉积法,是用真空蒸发、激光、电弧高频感应、电子束照射等方法使原料气化或形成等离子体,然后在介质中骤冷使之凝结。特点:纯度高、结晶组织好、粒度可控;但技术设备要求高。根据加热源的不同有: (1)真空蒸发-冷凝法其原理是在高纯度惰性气氛(Ar,He)下,对蒸发物质进行真空加热蒸发,蒸气在气体介质中冷凝形成超细微粒。1984年Leiter[2]等首次用惰性气体沉积和原位成型方法,研制成功了Pd、Cu、Fe 等纳米级金属材料。1987 年Siegles[3]采用该法又成功地制备了纳米级TiO2 陶瓷材料。这种方法是目前制备纳米微粒的主要方法。特点:粒径可控,纯度较高,可制得粒径为5~10nm的微粒。但仅适用于制备低熔点、成分单一的物质,在合成金属氧化物、氮化物等高熔点物质的纳米微粒时还存在局限性。 (2)激光加热蒸发法是以激光为快速加热源,使气相反应物分子是利用高压气体雾化器将-20~-40OC的氦气和氩气以3倍于音速的速度射入熔融材料的液流是以高频线圈为热源,使坩埚是用等离子体将金属等的粉末熔融、蒸发和冷凝以获得纳米微粒。特点:微粒纯度较高,粒度均匀,是制备氧化物、氮化物、碳化物系列、金属系列和金属合金系列纳米微粒的最有效的方法,同时为高沸点金属纳米微粒的制备开辟了前景。但离子枪寿命短、功率小、热效率低。目前新开发出的电弧气化法和混合等离子体法有望克服以上缺点。 (6)电子束照射法1995年许并社等人[4]利用高能电子束照射母材,成功地获 得了表面非常洁净的纳米微粒,母材一般选用该金属的氧化物,如用电子束照射 Al2O3 后,表层的Al-O 键被高能电子“切断”,蒸发的Al原子通过瞬间冷凝,形核、长大,形成Al的纳米微粒,但目前该方法获得的纳米微粒限于金属纳 米微粒。 1.1.2 物理粉碎法

纳米材料制备方法综述

纳米材料制备方法综述 摘要:纳米材料由于其特殊性质,近年来受到人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。纳米材料的制备方法按物态一般可归纳为气相法、液相法、固相法。目前,各国科学家在纳米材料的研究方面已取得了显著的成果。纳米材料将推动21世纪的信息技术、医学、环境、自动化技术及能源科学的发展, 对生产力的发展产生深远的影响。 关键字:纳米材料,制备,固相法,液相法,气相法 近年来,纳米材料作为一种新型的材料得到了人们的广泛关注。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料,具有表面与界面效应,量子尺寸效应,小尺寸效应和宏观量子隧道效应,因而纳米具有很多奇特的性能,广泛应用于各个领域。为此,本文综述了纳米材料制备的各种方法并说明其优缺点。 目前纳米材料制备采用的方法按物态可分为:气相法、液相法和固相法。 一、气相法 气相法是将高温的蒸汽在冷阱中冷凝或在衬底上沉积和生长低维纳米材料的方法。气相法主要包括物理气相沉积(PVD)和化学气相沉积(CVD),在某些情况下使用其他热源获得气源,如电阻加热法,高频感应电流加热法,混合等离子加热法,通电加热蒸发法。 1、物理气相沉积(PVD) 在PVD过程中没有化学反应产生,其主要过程是固体材料的蒸发和蒸发蒸气的冷凝或沉积。采用PVD可制备出高质量的纳米材料粉体。PVD可分为制备出高质量的纳米粉体。PVD可分为蒸气-冷凝法和溅射法。 1.1蒸气-冷凝法 此种制备方法是在低压的Ar、He等惰性气体中加热物质(如金属等),使其蒸发汽化, 然后在气体介质中冷凝后形成5-100 nm的纳米微粒。通过在纯净的惰性气体中的蒸发和冷凝过程获得较干净的纳米粉体。此方法制备的颗粒表面清洁,颗粒度整齐,生长条件易于控制,但是粒径分布范围狭窄。 1.2溅射法 用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar气(40~250Pa),两电极间施加的电压范围为0.3~1.5kv。由于两极间的辉光放电使Ar离子形成,在电场的作用下Ar离子冲击阴极靶材表面,使靶材原产从其表面蒸发出来形成超微粒子.并在附着面上沉积下来。用溅射法制备纳米微粒有许多优点:可制备多种纳米金属,包括高熔

半导体纳米材料的制备方法

摘要:讨论了当前国内外主要的几种半导体纳米材料的制备工艺技术,包括物理法和化学法两大类下的几种,机械球磨法、磁控溅射法、静电纺丝法、溶胶凝胶法、微乳液法、模板法等,并分析了以上几种纳米材料制备技术的优缺点关键词:半导体纳米粒子性质;半导体纳米材料;溶胶一凝胶法;机械球磨法;磁控溅射法;静电纺丝法;微乳液法;模板法;金属有机物化学气相淀积引言 半导体材料(semiconductormaterial)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)。相对于导体材料而言,半导体中的电子动能较低,有较长的德布罗意波长,对空间限域比较敏感。半导体材料空间中某一方向的尺寸限制与电子的德布罗意波长可比拟时,电子的运动被量子化地限制在离散的本征态,从而失去一个空间自由度或者说减少了一维,通常适用体材料的电子的粒子行为在此材料中不再适用。这种自然界不存在,通过能带工程人工制造的新型功能材料叫做半导体纳米材料。现已知道,半导体纳米粒子结构上的特点(原子畴尺寸小于100nm,大比例原子处于晶界环境,各畴之间存在相互作用等)是导致半导体纳米材料具有特殊性质的根本原因。半导体纳米材料独特的质使其将在未来的各种功能器件中发挥重要作用,半导体纳米材料的制备是目前研究的热点之一。本文讨论了半导体纳米材料的性质,综述了几种化学法制备半导体纳米材料的原理和特点。

2.半导体纳米粒子的基本性质 2.1表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径变小,比表面积将会显著增大,说明表面原子所占的百分数将会显著地增加。对直径大于0.1微米的颗粒表面效应可忽略不计,当尺寸小于0.1微米时,其表面原子百分数激剧增长,甚至1克超微颗粒表面积的总和可高达100平方米,这时的表面效应将不容忽略。 随着纳米材料粒径的减小,表面原子数迅速增加。例如当粒径为10nm 时,表面原子数为完整晶粒原子总数的20%;而粒径为1nm时,其表面原子百分数增大到99%;此时组成该纳米晶粒的所有约30个原子几乎全部分布在表面。由于表面原子周围缺少相邻的原子:有许多悬空键,具有不饱和性,易与其他原子相结合而稳定下来,故表现出很高的化学活性。随着粒径的减小,纳米材料的表面积、表面能及表面结合能都迅速增大。 超微颗粒的表面与大块物体的表面是十分不同的,若用高倍率电子显微镜对金超微颗粒(直径为2*10-3微米)进行电视摄像,实时观察发现这些颗粒没有固定的形态,随着时间的变化会自动形成各种形状(如立方八面体,十面体,二十面体多李晶等),它既不同于一般固体,又不同于液体,是一种准固体。在电子显微镜的电子束照射下,表面原子仿佛进入了“沸腾”状态,尺寸大于10纳米后才看不到这种颗粒结构的不稳定性,这时微颗粒具有稳定的结构状态。 因此想要获得发光效率高的纳米材料,采用适当的方法合成表面完好的半导体材料很重要。 2.2量子尺寸效应 量子尺寸效应--是指当粒子尺寸下降到某一数值时,费米能级附近的电子能级由准连续变为离散能级或者能隙变宽的现象。当能级的变化程度大于热能、光能、电磁能的变化时,导致了纳米微粒磁、光、声、热、电及超导特性与常规材料有显著的不同。当半导体材料从体相减小到某一临界尺寸(如与电子的德布罗意波长、电子的非弹性散射平均自由程和体相激子的玻尔半径相等)以后,其中的电子、空穴和激子等载流子的运动将受到强量子封

纳米材料论文:纳米材料的应用分析

纳米材料论文: 纳米材料的应用分析 摘要: 充满生机的二十一世纪,以知识经济为主旋律和推动力正引发一场新的工业革命,节省资源、合理利用能源、净化生存环境是这场工业革命的核心,纳米技术在生产方式和工作方式的变革中正发挥重要作用,它对化工行业产生的影响是无法估量的。主要介绍纳米材料在化工领域中的几种应用。 关键词: 纳米材料;化工领域;应用 纳米材料(又称超细微粒、超细粉末)是处在原子簇和宏观物体交界过渡区域的一种典型系统,其结构既不同于体块材料,也不同于单个的原子。其特殊的结构层次使它具有表面效应、体积效应、量子尺寸效应等,拥有一系列新颖的物理和化学特性,在众多领域特别是在光、电、磁、催化等方面具有非常重大的应用价值。 1 纳米材料的特殊性质 力学性质。高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳 迷材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。 磁学性质。当代计算机硬盘系统的磁记录密度超过cm2,在这情况下,感应法读出磁头和普通坡莫合金磁电阻磁头的磁致电阻效应为3%,已不能满足需要,而纳米多层膜系统的巨磁电阻效应高达50%,可以用于信息存储的磁电阻读出磁头,具有相当高的灵敏度和低噪音。 电学性质。由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。 热学性质。纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。 2 纳米材料在工程上的应用 纳米材料的小尺寸效应使得通常在高温下才能烧结的材料如Si C,BC等在纳米尺度下在较低的温度下即可烧结,另一方面,纳米材料作为烧结过程中的活性添加剂使用也可降低 烧结温度,缩短烧结时间。由于纳米粒子的尺寸效应和表面效应,使得纳米复相材料的熔点和相转变温度下降,在较低的温度下即可得到烧结性能良好的复相材料。由纳米颗粒构成的纳米陶瓷在低温下出现良好的延展性。纳米Ti O2陶瓷在室温下具有良好的韧性,在180°C下经受弯曲而不产生裂纹。纳米复合陶瓷具有良好的室温和高温力学性能,在切削刀具、轴承、汽车发动机部件等方面具有广泛的应用,在许多超高温、强腐蚀等许多苛刻的环境下起着其它材料无法取代的作用。随着陶瓷多层结构在微电子器件的包封、电容器、传感器等方面的应用,利用纳米材料的优异性能来制作高性能电子陶瓷材料也成为一大热点。有人预计纳米陶瓷很可能发展成为跨世纪新材料,使陶瓷材料的研究出现一个新的飞跃。纳米颗粒添加到玻璃中,可以明显改善玻璃的脆性。无机纳米颗粒具有很好的流动性,可以用来制备在某些特殊场合下使用的固体润滑剂。 3 纳米材料在在催化方面的应用 催化剂在许多化学化工领域中起着举足轻重的作用,它可以控制反应时间、提高反应效率和反应速度。大多数传统的催化剂不仅催化效率低,而且其制备是凭经验进行,不仅造成生产原料的巨大浪费,使经济效益难以提高,而且对环境也造成污染。纳米粒子表面活性中心多,

纳米半导体材料在微电子技术中的应用探究

纳米半导体材料在微电子技术中的应用探究 摘要 本文先简短介绍了纳米材料的几种量子效应,而后根据半导体发展国际技术路线图(ITRS)所提出的特征尺度减小给微电子技术带来的问题,重点介绍了碳纳米管和石墨烯两种有望突破物理极限束缚的新型纳米半导体材料。作为科普性的探究论文,本文没有深究物理、化学机理,而是将重点放在两者在后摩尔时代的微电子技术应用上,指出了两者在集成电路、纳电子器件甚至太赫兹技术、量子信息学中的可能应用。 关键词:碳纳米管石墨烯纳米材料微电子技术 Abstract This paper briefly introduces the quantum mechanism of nano-semiconductor-materials, and then introduces particularly Carbon Nanotube and Graphene as two possible solutions to the physical limitations to the microelectronics, proposed by the International Technology Roadmap for Semiconductors. As a paper aimed at introduction, we focus on the applications of the two materials rather than their theoretical principles and points out their possible prospects in integrated circuits, nano-microelectronic devices, Terahertz technology, and quantum information. Key words: Carbon Nanotube Graphene Nano-materials microelectronics

半导体纳米材料研究进展与应用

半导体纳米材料研究进展与应用 摘要: 介绍了半导体纳米材料的研究进展、制备方法的若干进展和应用前景。 关键词: 半导体纳米材料研究进展应用 1引言 20 世纪是物理学推动高新技术飞速发展的世纪, 人类已从控制与利用大量微观粒子系统的时代进入了控制与利用单个微观粒子的时代。纳米技术是世纪之交发展起来的新技术, 是在0.1~100nm 尺度空间内, 研究电子、原子和分子运动规律和特性的崭新的高技术科学Z。它的目标是人类按照自己的意志直接操纵单个电子、原子等粒子, 制造出具有特定功能的产品.目前, 人们已制造了各种各样的纳米材料, 例如: 纳米金属材料、纳米半导体材料、纳米氧化物材料、纳米陶瓷材料、纳米有机材料等. 其中半导体纳米材料对未来社会信息化的产生有至关重要的影响. 2半导体纳米材料 相对于金属材料而言, 半导体中的电子动能较低, 有较长的德布罗意波长, 因而对空间的限制比较敏感. 电子的德布罗意波长入与其动能 E 的关系为入=h^2/在纸上(其中m*是半导体中电子的有效质量, h 是普朗克常量) 。当空间某一方向的尺度限制与电子的德布罗意波长可比拟时, 电子的运动就会受限, 而被量子化地限制在离散的本征态, 从而失去一个空间自由度或者说减少了一维。因此, 通常在体材料中适用的电子的粒子行为在此材料中不再适用, 这种新型的材料称为半导体低维结构, 也称为半导体纳米材料【1】。 1966 年, Fuou ler 等人[2]首次令人们信服地证实了在Si/S iO 2 界面处存在二维电子气,从此拉开了半导体低维结构研究的序幕. Si-MO SFET[3]可以认为是对载流子实现一个维度方向限制最早的固体结构.在这个系统中, 由于Si 和SiO 2 界面导带的不连续, 形成一个三角势阱, 将电子限制在其中, 使其既不能穿过氧化层, 也不能进入Si 的体内, 电子的运动被限制在二维界面内. 随着微加工技术的发展和分子束外延技术(MBE )、金属有机物化学气相沉积技术(MOCVD)、液相外延(L PE)、气相外延(V PE)等技术的应用, 人们可以制造出更多的二维电子气系统Z 它是由两种具有不同带隙的半导体材料构成, 一般要求这两种材料结构相同, 并且晶格常量接近, 以获得原子级光滑的界面。MBE 和MOCVD 的一个重要特征是可以制备量子尺寸的多层结构, 其控制精度可达单原子层量级〔4〕。这些结构可分为量子阱(QW ) 和超晶格(SL ) 。1970 年, Esak i 和T su 〔5〕在寻找具有负微分电阻的新器件时, 提出了全新的“半导体超晶格”概念Z 如果势垒层厚度足够宽, 使得相邻阱内电子波函数没有相互作用, 即被称为量子阱.反之, 如果相邻阱内电子波函数有较强的相互作用, 即相当于在晶格周期场上叠加一个多层结构的超晶格周期场, 则被称为超晶格。从此, 对半导体量子阱和超晶格等半导体微结构的材料和器件的研究成为近20 多年来半导体物理学中最重要、最活跃的研究领域之一。 1978 年D ingle〔6〕等人对异质结中二维电子气沿平行于界面的输运进行了研究, 发现了电子迁

半导体纳米材料的的光学性能

半导体纳米材料的的光学性能 随着大规模集成的微电子和光电子技术的发展,功能元器件越来越微细,人们有必要考察物质的维度下降会带来什么新的现象,这些新的现象能提供哪些新的应用。八十年代起,低维材料已成为倍受人们重视的研究领域。 当半导体材料从体块减小到一定临界尺寸以后,其载流子(电子,空穴)的运动将受限,导致动能的增加,原来连续的能带结构变成准分立的类分子能级,并且由于动能的增加使得能隙增大,光吸收带边向短波方向移动(即吸收蓝移),尺寸越小,移动越大。 由于量子尺寸效应导致能隙增大,半导体纳米材料的吸收光谱向高能方向移动,即吸收蓝移。同时,由于电子和空穴的运动受限,他们之间的波函数重叠增大,激子态振子强度增大,导致激子吸收增强,因此很容易观察到激子吸收峰,导致吸收光谱结构化. 通常通过吸收光谱来研究半导体纳米微粒的量子尺寸效应和激子能级结构,近年来,研究较多的有[14~20]:Ⅲ-Ⅴ族半导体GaAs、InSb和GaP;Ⅱ-Ⅵ族半导体ZnS、CdS、CdSe和CdTe;Ⅰ-Ⅶ族半导体Cu-Cl、CuBr和CuI;PbS、PbI和间接带隙半导体材料Ag-Br;过渡金属氧化物Fe2O3、Cu2O、ZnO和非过渡金属氧化物SnO2、In2O3、Bi2O3等。余保龙等人[21]研究发现,SnO2纳米微粒用表面活性剂分子包覆时,由于表面的介电限域效应其吸收带边发生红移,而且随着表面包覆物与SnO2的介电常数差值增大和包覆物的浓度增大,其红移量增大。

半导体纳米微粒受光激发后产生电子-空穴对(即激子),电子与空穴复合的途径有 (1)电子和空穴直接复合,产生激子态发光。由于量子尺寸效应的作用,发射波长随着微粒尺寸的减小向高能方向移动(蓝移)。 (2)通过表面缺陷态间接复合发光[9,22]。在纳米微粒的表面存在着许多悬挂键、吸附类等,从而形成许多表面缺陷态。微粒受光激发后,光生载流子以极快的速度受限于表面缺陷态,产生表面态发光。微粒表面越完好,表面对载流子的陷获能力越弱,表面态发光就越弱。 (3)通过杂质能级复合发光。 对半导体纳米材料的研究开辟了人类认识世界的新层次,也开辟了材料科学研究的新领域。总的看来,半导体纳米材料的光学性能研究已取得了很大进展,人们已建立起了半导体纳米微粒中电子能态的理论模型,在材料的线性和非线性光学性能方面都开展了大量的工作,获得了很多有重要意义的成果。但是还有许多问题需要进一步深入研究,例如半导体纳米材料激子能级的理论结果与实验数据之间仍有差距,间接带隙半导体纳米材料的发光机理还有待研究,非线性光学性能的实验工作所涉及纳米材料的范围不够广,掺杂半导体纳米体系中杂质离子与基质间的相互作用还有许多新的物理内容需要揭示和探索等等。随着研究的进一步深入,一些与传统材料物理不同的新现象、新概念还会不断

纳米材料的制备及应用

本科毕业论文(设计) 题目:纳米材料的制备及应用 学院:物理与电子科学学院 班级: XX级XX班 姓名: XXX 指导教师: XXX 职称: 完成日期: 20XX 年 X 月 XX 日

纳米材料的制备及应用 摘要:近几年来,由于纳米材料有众多特殊性质,人们越来越关注纳米材料。科技的迅猛发展使纳米材料的制备变得更加成熟。本论文讲述纳米材料的制备,以及纳米技术在将来的应用。 关键词:纳米材料物理方法化学方法应用前景

目录 引言 (1) 1.纳米材料的物理制备方法 (1) 1.1物理粉碎法 (1) 1.2球磨法 (2) 1.3.蒸发—冷凝法 (2) 1.3.1.激光加热蒸发法 (2) 1.3.2.真空蒸发—冷凝法 (4) 1.3.3.电子束照射法 (4) 1.3.4.等离子体法 (5) 1.3.5.高频感应加热法 (5) 1.4.溅射法 (6) 2.纳米材料的化学制备方法 (7) 2.1化学沉淀法 (8) 2.2化学气相沉积法 (8) 2.3化学气相冷凝法 (10) 2.4溶胶--凝胶法 (10) 2.5水热法 (11) 3.纳米材料的其他制备方法 (12) 3.1分子束外延法 (12) 3.2静电纺丝法 (13) 4.纳米材料的应用前景 (14) 5.总结 (14) 参考文献 (15) 致谢 (16)

引言 纳米材料是指任一维空间尺度处于1—100nm之间的材料。它有着不同寻常的性质,如小尺寸效应可引起物理性质的突变,从而具有独特的性能;量子尺寸效应和表面与界面效应使其具有了一般大颗粒物不具备的性质,如对红外线、紫外线有很强的反射作用,应用到纺织品中有抗紫外线,隔热保温作用。纳米材料的这些特性使其在化工、物理、生物、医学方面都有非常重要的价值]1[。多年以来,通过科学家们的潜心研究,使纳米材料在其制备及其应用中得到了很大的发展。纳米材料将逐渐进入人们的日常生活,并将成为未来新工业革命的必备材料。 1.纳米材料的物理制备方法 1.1物理粉碎法 物理粉碎法就是用机械粉碎和电火花爆炸等方法得到纳米微粒]2[。此方法操作简单,成本较低,但得到的纳米微粒纯度不高,分布也不均匀。 图1. 机械粉碎法仪器图

半导体纳米晶

第一章绪论 近数十年以来,纳米科学技术得到了极为迅速的兴起和发展,并越来越受 到各界科学家和科研工作者的关注,逐渐成为目前最为活跃的前沿学科领域之 一。最近几年来,由于不断深入的理论支持研究和各种各样的制备与表征手段 的改进发展,以及扫描电子显微镜(SEM)、高分辨透射电子显微镜(HRTEM)等高 端测试仪器的广泛使用,纳米材料的许多奇异的性质逐渐显露在人们面前,展 现出它在化工环保方面、医药健康方面、电子信息方面、能源动力方面等诸多 方面的广阔的应用前景,纳米科学技术已经发展成为21世纪的占据主导地位的 新型技术之一。 1.1半导体纳米晶简介 纳米材料,又常常被人们所称之为纳米结构材料,我们一般可以从两个不 同的角度和方面,对该材料进行定义:从第一方面来说,当一种材料的尺寸, 处于纳米的尺度范围内,即1到100纳米之间,并且在三维空间中,至少在一 个维度上是这样的;从另外一个方面来看,该材料因为其物理尺度上尺寸的减 小,从而使该材料与之对应的物理性能和化学性质,相对于同材料的块体材料 而言,发生了显著变化。其实,从十九世纪60年代,"胶体化学"诞生的时期 开始,许多的科学工作者便开始了对纳米材料的探讨和研究,只是在那时,尺 寸为一到一百纳米的弥散粒子,被称之为胶体。而纳米科学技术的正式提出, 是直到二十世纪的1959年时,在美国的物理学会曾经一次召开的会议上[1]。之后,扫描隧道电子显微镜(STM),在1982年时,被G. Buning和H. Robrer所发 明创造出来了。由于扫描隧道电子显微镜(STM)的出现和使用,使人们能够在纳 米的尺度范围内,直接的观察和操纵原子的功能得到了实现,而该项发明也极 大的推动了纳米科学技术的快速的发展与兴起。综上所述,纳米科学技术的研 讨和探究,使人们能够通过直接的作用于原子和分子的排布,从而创造出具有 全新的功能性新物质,并且,这将同时、同样的标志着,人类改造自然的能力 己经拓展到了原子和分子的水平[1]。 纳米材料中,纳米晶材料是不可忽视的一员。当一种金属或半导体的颗粒 粒度半径小于该材料的激子的玻尔半径时,我们将之称为纳米晶体材料.通常 情况下,对于半导体材料而言,我们也习惯将之称之为半导体纳米颗粒,或者 半导体纳米晶。在过去,很多时候也曾存在着纳米量子点、纳米超微粒、纳米 量子球或者纳米微晶等等各种不同的称呼和定义[2]。由于纳米晶材料拥有比较特殊的结构、异于寻常的物理性能和化学性质,所以,在今天,纳米晶材料在光 电器件生产应用领域、生物医药生产应用领域、信息技术生产应用领域以及化 工生产应用领域等诸多方面都具有着非常重要的、不可小觑的应用前景,而越 来越多的广大科学工作者也对其显现出极大的科研兴趣,纳米晶材料已经成为 物理领域、化学领域、生物领域和材料等领域的研究热点之一。时至今日,已 研究的纳米晶材料,涵盖了磁性型纳米晶材料(Co, Fe304)、贵金属型纳米晶材 料(Au, Pt)、半导体型纳米晶材料(CdSe, ZnS)、金属单质型纳米晶材料(Fe, Ni) 和氧化物型纳米晶材料(Ti02, Zr02)等诸多类型。在以上诸多类型的材料之中, 半导体纳米晶材料,也可以被称之为半导体量子点材料,在众多纳米材料中, 尤为引起诸多科研工作者的注意。迄今为止,经过诸多科学家的努力,己经成 功的制备出了各种形貌的半导体纳米材料,其中包括半导体纳米点型材料、半 导体纳米带型材料、半导体纳米线型材料、半导体纳米管型材料、半导体纳米 薄层型材料等等,通过各种验证,发现了半导体纳米材料的、许多的、与常规

纳米材料的制备方法与应用要点

纳米材料的制备方法与应用 贾警(11081002) 蒙小飞(11091001) 1引言 自从1984年德国科学家Gleiter等人首次用惰性气体凝聚法成功地制得。铁纳米微粒以来,由于纳米材料有明显不同于体材料和单个分子的独特性质—小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子轨道效应等,以及其在电子学、光学、化工、陶瓷、生物和医药等诸多方面的重要价值。引起了世界各国科学家的浓厚兴趣。几十年来,对纳米材料的制备、性能和应用等各方面的研究取得了丰硕的成果。纳米材料指其基本组成颗粒尺寸为纳米数量级,处于原子簇和宏观物体交接区域的粒子。颗粒直径一般为1~100nm之间。颗粒可以是晶体,亦可以是非晶体。由于纳米材料具有其特殊的物理、机械、电子、磁学、光学和化学特性,可以预见,纳米材料将成为21世纪新一轮产业革命的支柱之一。 2纳米材料的制备方法 纳米材料有很多制备方法,在此只简要介绍其中几种。 2.1溶胶-凝胶法 溶胶-凝胶法是材料制备的是化学方法中的较为重要的一种,它提供一种再常温常压下合成无机陶瓷、玻璃、及纳米材料的新途径。溶胶-凝胶法制备纳米材料的主要步骤为选择要制备的金属化合物,然后将金属化合物在适当的溶剂中溶解,然后经过溶胶-凝胶过程而固化,在经过低温处理而得到纳米粒子。 2.2热合成法 热合成法制备纳米材料是在高温高压下、水溶液中合成,在经过分离和后续处理而得到纳米粒子,水热合成法可以制备包括金属、氧化物和复合氧化物在内的产物。主要集中在陶瓷氧化物材料的制备中。 2.3有机液相合成 有机液相合成主要采用在有机溶剂中能稳定存在金属、有机化合物及某些具有特殊性质的无机化合物为反应原料,在适当的反应条件下合成纳米材料。通常这些反应物都是对水非常敏感,在水溶剂中不能稳定存在的物质。最常用的反应方式就是在有机溶剂中进行回流制备。 2.4惰性气体冷凝法 惰性气体冷凝法是制备清洁界面的纳米粉体的主要方法之一。其主要过程是在真空蒸发室内充入低压惰性气体,然后对蒸发源采用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体。原料气体分子与惰性气体分子碰撞失去能量,凝集形成纳米尺寸的团簇,然后骤冷。该方法制备的纳米材料纯度高,工艺过程中无其它杂质污染,反应速度快,结品组织好,但技术设备要求高。 2.5反相胶束微反应器法

相关文档