文档视界 最新最全的文档下载
当前位置:文档视界 › 碳纳米管及其应用

碳纳米管及其应用

碳纳米管及其应用
碳纳米管及其应用

碳纳米管纳米材料的应用要点

碳纳米管及其复合材料在储能电池中的应用 摘要碳纳米管具有良好的机械性能和导电性、高化学稳定性、大表面积以及独特的一维结构,选择合适的方法制备出碳纳米管复合材料,可以使其各种物理化学性能得到增强, 因而在很多领域有着极大的应用前景,尤其是在储能电池中的应用。本文分析了碳纳米管及其复合材料的特点,总结了碳纳米管的储锂机理,对其发展趋势作了展望。 关键词碳纳米管复合材料储能电池应用 Abstract carbon nanotubes(CNTs) are nanometer-sized carbon materials with the characteristics of unique one-dimensional geometric structure,large surface area,high electrical conductivity,elevated mechanical strength and strong chemical inertness. Selecting appropriate methods to prepare carbon nanotube composites can enhance physical and chemical properties , and these composites have a great future in many areas,especially in energy storage batteries . In this paper, based on the analysis and comparison of the advantages and disadvantages of carbon nanotube composites,the enhancement mechanisms of the CNTs catalysts are introduced. Afterward,the lithium ion storage properties are summarized according to the preparation methods of composite materials. Finally, the prospects and challenge for these composite materials are also discussed. Keywords carbon nanotube; composite; energy storage batteries; application 1 引言 碳纳米管(CNTs)在2004 年被人们发现,是一种具有特殊结构的一维量子材料, 它的径向尺寸可达到纳米级, 轴向尺寸为微米级, 管的两端一般都封口, 因此它有很大的强度, 同时巨大的长径比有望使其制作成韧性极好的碳纤维。碳纳米管由于其独特的一维纳米形貌被作为锂离子电池负极材料广泛研究,通过对碳纳米管进行剪切,官能化及掺杂等方法进行改性处理,能有效的减少碳纳米管的首次不可逆容量,增加可逆的储锂比容量。此外,碳纳米管的中空结构也成为抑制高容量金属及金属氧化物体积膨胀理想复合基体。本文中,我们研究了碳纳米管的储锂性能,考察了碳纳米管作为锡类复合材料基体,其内部限域空间对高容量金属及金属氧化物的储锂性能促进的具体原因。该研究结果为碳纳米管以及其他具有限域空间的结构在锂离子电池中的应用提供了参考。 2 碳纳米管的储锂机理和应用 相比广泛应用的石墨类材料,碳纳米管在锂离子电池负极材料中有其独特的应用优势。首先,碳纳米管的尺寸在纳米级,管内及间隙空间也都处于纳米尺寸级,因而具有纳米材料的小尺寸效应,能有效的增加锂离子在化学电源中的反应活性空间;其次,碳纳米管的比表面积较大,能增加锂离子的反应活性位,并且随着

碳纳米管的性质性能及其应用前景

碳纳米管的性质性能其应用前景 The Properties and Applications of Carbon Nano-Tubes 张雅坤北京师范大学化学学院201411151935 摘要:从1991年被正式认识并命名至今,碳纳米管凭借其特殊的结构及异常的力学、电学和化学性能获得了材料、物理、电子及化学界的广泛关注。近些年随着碳纳米管及纳米材料研究的深入,其广阔的应用前景也不断地展现出来。本文主要对碳纳米管目前的性质性能及其应用前景进行了系统详细的介绍【8】。 关键词:碳纳米管、无机化学、性质性能、应用前景 一、综述 1.发展历史与研究进程 在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛(Lijima)在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。 1993年,S. Lijima等和D. S. Bethune等同时报道了采用电弧法,在石墨电极中添加一定的催化剂,可以得到仅仅具有一层管壁的碳纳米管,即单壁碳纳米管产物。

1997年,A. C. Dillon等报道了单壁碳纳米管的中空管可储存和稳定氢分子,引起广泛的关注。相关的实验研究和理论计算也相继展开。据推测,单壁碳纳米管的储氢量可达10%(质量比)。此外,碳纳米管还可以用来储存甲烷等其他气体。但该猜测在后来被证实是错误的,碳纳米管无法用于储氢的主要问题有两个:一是假如作为容器进行储氢,则无法对其进行可控的封闭和开启;二是假如用于氢气吸附,则其吸附率不超过1%(质量分数)。 能否控制单壁碳纳米管的生长是近二十余年来一直困扰着碳纳米管研究领域科学家们的难题,能否找到控制方法也成为碳纳米管应用的瓶颈。2014年,这道世界性难题被北京大学李彦教授研究团队攻克,该团队在全球首次提出单壁碳纳米管生长规律的控制方法,研究成果已于2014年6月26日发表在国际权威学术期刊《自然》杂志上,这是碳纳米管研究方面的又一大突破。 2.碳纳米管的制备方法 常用的碳纳米管制备方法主要有:电弧放电法、激光烧蚀法、化学气相沉积法(碳氢气体热解法)、固相热解法、辉光放电法、气体燃烧法以及聚合反应合成法等。 2.1电弧放电法 电弧放电法是生产碳纳米管的主要方法。1991年日本物理学家饭岛澄男就是从电弧放电法生产的碳纤维中首次发现碳纳米管的。电弧放电法的具体过程是:将石墨电极臵于充满氦气或氩气的反应容器中,在两极之间激发出电弧,此时温度可以达到4000度左右。在这种条件下,石墨会蒸发,生成的产物有富勒烯(C60)、无定型碳和单壁或多壁的碳纳米管。通过控制催化剂和容器中的氢气含量,可以

碳纳米管的性质与应用

碳纳米管的性质与应用 【摘要】 本文主要介绍了碳纳米管的结构特点,制备方法,特殊性质,由于碳纳米管独特性质而产生的广泛应用,并对其前景进行展望。 【关键词】 碳纳米管场发射复合材料优良性能 【前言】 自日本NEC科学家Lijima发现碳纳米管以来,碳纳米管研究一直是国际新材料领域研究的热点。由于碳纳米管具有特殊的导电性能、力学性质及物理化学性质等,故其在许多领域具有其广阔的应用前景,自问世以来即引起广泛关注。目前,国内外有许多科学家对碳纳米管进行研究,科研成果颇丰,尤其是碳纳米管在复合材料、储氢及催化等领域的应用。 【正文】 一、碳纳米管的结构 碳纳米管中碳原子以sp2杂化为主,同时六角型网格结构存在一定程度的弯曲,形成空间拓扑结构,其中可形成一定的sp3杂化键,即形成的化学键同时具有sp2和sp3混合杂化状态,而这些p 轨道彼此交叠在碳纳米管石墨烯片层外形成高度离域化的大π 键,碳纳米管外表面的大π 键是碳纳米管与一些具有共轭性能的大分子以非共价键复合的化学基础[1]。 对多壁碳纳米管的光电子能谱研究结果表明,不论单壁碳纳米管还是多壁碳纳米管,其表面都结合有一定的官能基团,而且不同制备方法获得的碳纳米管由于制备方法各异,后处理过程不同而具有不同的表面结构。一般来讲,单壁碳纳米管具有较高的化学惰性,其表面要纯净一些,而多壁碳纳米管表面要活泼得多,结合有大量的表面基团,如羧基等。以变角X 光电子能谱对碳纳米管的表面检测结果表明,单壁碳纳米管表面具有化学惰性,化学结构比较简单,而且随着碳纳米管管壁层数的增加,缺陷和化学反应性增强,表面化学结构趋向复杂化。内层碳原子的化学结构比较单一,外层碳原子的化学组成比较复杂,而且外层碳原子上往往沉积有大量的无定形碳。由于具有物理结构和化学结构的不均匀性,碳

碳纳米管的现状和前景

碳纳米管的现状和前景 信息技术更新日新月异,正如摩尔定律所言,集成电路的集成度每隔18 个月翻一番,即同样的成本下,集成电路的功能翻一倍。这些进步基于晶体管的发展,晶体管的缩小提高了集成电路的性能。 在硅基微电子学发展的过程中,器件的特征尺寸随着集成度的越来越高而日益减小,现在硅器件已经进入深微亚米阶段,也马上触及到硅器件发展的瓶颈,器件将不再遵从传统的运行规律,具有显著的量子效应和统计涨落特性. 为了解决这些问题,人们进行了不懈地努力,寻找新的材料和方法,来提高微电子器件的性能。研究基于碳纳米管的纳电子器件就是其中很有前途的一种方法。 碳纳米管简介 一直以来都认为碳只有两种形态——金刚石和石墨。直至1985年发现了以碳60为代表的富勒烯、从而改变了人类对碳形态的认识。1991年,日本筑波NEC研究室内科学家首次在电子显微镜里观察到有奇特的、由纯碳组成的纳米量级的线状物。此类纤细的分子就是碳纳米管 碳纳米管有许多优异的性能,如超高的反弹性、抗张强度和热稳定性等。被认为将在微型机器人、抗撞击汽车车身和抗震建筑等方面有着极好的应用前景。但是碳纳米管的第一个获得应用的领域是电子学领域、近年来,它已成为微电子技术领域的研究重要方面。 研究工作表明,在数十纳米上下的导线和功能器件可以用碳纳米管来制造,并连接成电子电路。其工作速度将过高于已有的产品而功率损耗却极低! 不少研究组已经成功地用碳纳米管制成了电子器件。例如IBM 的科学家们就用单根半导体碳纳米管和它两端的金属电极做成了场效应管(FETs)。通过是否往第三电极施加电压,可以成为开关,此器件在室温下的工作特性和硅器件非常相似,而导电性却高出许多,消耗功率也小。按理论推算,纳米级的开关的时钟频率可以达到1太赫以上,比现有的处理器要快1000倍。 碳纳米管的分类 石墨烯的碳原子片层一般可以从一层到上百层,根据碳纳米管管壁中碳原子层的数目被分为单壁和多壁碳纳米管。 单壁碳纳米管(SWNT)由单层石墨卷成柱状无缝管而形成是结构完美的单分子材料。SWNT 的直径一般为1-6 nm,最小直径大约为0.5 nm,与C36 分子的直径相当,但SWNT 的直径大于6nm 以后特别不稳定,会发生SWNT 管的塌陷,长度则可达几百纳米到几个微米。因为SWNT 的最小直径与富勒烯分子类似,故也有人称其为巴基管或富勒管。 多壁碳纳米管MWNT可看作由多个不同直径的单壁碳纳米管同轴套构而成。其层数从2~50 不等,层间距为0.34±0.01nm,与石墨层间距(0.34nm)相当。多壁管的典型直径和长度分别为2~30nm 和0.1~50μm。多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常

碳纳米管薄膜制备及应用研究进展

1 碳纳米管薄膜的制备 1.1 高密度高取向碳纳米管膜的制备 由浮动催化化学气相沉积制备方法(FCCVD)所制备的薄膜具有良好的取向性,但密度较低。然而,制备出的碳纳米管的丝带聚集在一起用乙醇溶液进行喷雾致密,当乙醇蒸发后形成一层疏松的碳纳米管膜,然后将疏松的碳纳米管薄膜从主轴上剥离出来放在两个光滑的压力为100N的压力板之间挤压,即可以获得高取向、高密度的CNT薄膜[1-2]。如图1所示,为高密度、高取向碳纳米管薄膜的制备过程。其中,图1(a)为高密度高取向碳纳米管薄膜的制备过程,图1(b)、图1(c)、图1(d)分别为碳纳米管丝带、疏松碳纳米管薄、高密度高取向碳纳米管薄膜膜宏观图像。 图1 高密度高取向碳纳米管薄膜的制备过程 1.2 浮动化学气相沉积法制备高强度薄膜 王健农教授课题组创新性地利用浮动化学气相沉积法连续制备出碳纳米管宏观筒状物,并在开放大气环境下将 CNT 薄膜,图2(b)为拉伸曲线,图2(c)为端口形貌。 图2 所制备CNT薄膜、拉伸曲线和端口形貌综上所述可以看出,直接合成机械性能优异、高密度、高取向度的碳纳米管薄膜的研究工作还处于实验研究阶段。要想获得可应用的具有优越性能的碳纳米管纤维和早日将其应用于实际生活,还需要做很多研究工作。 2 碳纳米管薄膜的应用 2.1 碳纳米管长度优化制备透明导电薄膜基板 初始长度为10~15μm多壁碳纳米管经过30min、60min和120min的回流,其长度分别降低到1200nm、205nm、168nm。然后,将多壁纳米管分别在285℃退火24小时,所得碳纳米管薄膜的电气和光学性能将大大提高。薄膜的光学和电气性能强烈依赖于碳纳米管的长度。制备薄膜的多壁碳纳米管回流30min所得到的薄膜光学透过率分别高于回流60min和120min薄膜的2.6%和6.6%。多壁碳纳米管回流30min所得的样品薄膜的薄层电阻也降低了45%和80%。此时,薄膜还具有最小粗糙度[5-10]。图3为透明导电薄膜基板。 2.2 碳纳米管薄膜在应力传感器中的应用 单壁碳纳米管兼具极优异的导电性、稳定性、柔韧性以及拉伸强度,因此在应力传感器方面有着巨大的应用潜力。传统的碳纳米管应力传感器基于碳纳米管的电阻值变化监测外部应力的大小。国家纳米科学中心孙连峰研究员小组的刘政在攻读博士期间发现,基于单壁碳纳米管薄膜两端的开路电压可以构建成功高性能的应力传感器。他们利用极性液滴在悬空碳纳米管薄膜和液滴之间产生毛细管 摘 要:膜状碳纳米管保留了碳纳米管微观性状,也保留了优异的导电能力。它具有良好的机械性能、独特的形貌与结构特征,在储能电池技术、人工肌肉、智能材料以及电子显示屏中的应用越来越普遍。本文介绍碳纳米管薄膜的特点,对几种碳纳米管薄膜制备方法做了简要介绍说明。通过对当前碳纳米管薄膜几大应用方向如超级电容、柔性电池以及场发射装置等的分析,展示了碳纳米管薄膜的巨大应用潜力。 关键词:碳纳米管薄膜 制备 超级电容 柔性电池

碳纳米管的结构_制备_物性和应用

第14卷 第2期邵阳高等专科学校学报Vol.14.No.2 2001年6月Journal of Shaoyang College J un.2001文章编号:1009-2439(2001)02-0081-10 碳纳米管的结构、制备、物性和应用 唐东升1 唐成名2 刘朝晖3 解思深1 (①中国科学院物理研究所与凝聚态中心,北京 100080) (② 邵阳高等专科学校,湖南邵阳 422004) (③ 南华大学现代教育技术中心,湖南衡阳 430000) 摘要:综述了碳纳米管的研究进展,简单地介绍了单层碳纳米管和多层碳纳米管的基本形貌、结构及其表征,列举了几种主要的制备方法以及特点,介绍了碳纳米管优异的物理化学性质,以及在各个领域中潜在的应用前景. 关键词:碳纳米管;结构;制备;应用;透射电子显微镜;扫描电子显微镜 中图分类号:O469 文献标识码:A 碳是自然界中性质最为独特的一种元素,它通过不同的成键方式所形成结构和性质迥异的同素异形体(石墨和金刚石),在很久以前就被人类所认识:当碳原子与四个近邻原子以共价键结合(sp3杂化)时,形成各向同性坚硬的金刚石,而当碳原子在同一平面内与三个近邻原子以共价键结合而第四个价电子成为共有化电子(sp2杂化)时,形成各向异性柔软的石墨.以sp2杂化模式成键的石墨具有六角网格的层状结构,层内是通过强共价键相互作用,而层与层之间是通过弱范德瓦耳斯键相互作用.在常压下石墨一直到很高的温度仍是碳的热力学稳定的体相(金刚石仅仅是动力学稳定的体相).然而随着人类对物质世界的认识深入到介观层次(~100nm)时,这种古老的元素呈现出全新的结构和物性,比如当石墨微晶的尺寸很小(比如纳米量级)时,情况就和体相很不一样了,因为此时每个石墨微晶中只有有限数目的碳原子,具有悬挂键的碳原子的密度会很大,这时石墨的层状结构就会弯曲封闭,以至边缘的具有悬挂键的碳原子相互结合成键使得系统的能量最低.这种由石墨原于层弯曲构成的闭合的壳层结构就是我们所要讨论的富勒烯和碳纳米管. 1984年爱克森(Exxon)石油公司一个小组在研究碳团簇时得到了如下结论[1]对于1≤n≤30奇数与偶数的C n都是存在的;(2)对于20≤n≤90只有C2n形式存在.他们认为碳原子链可以达到24个原子.遗憾的是他们并没有对较大的团簇做进一步的研究.一年之后英国Sussex大学的克罗托教授到美国Rice大学与柯尔(R.F.Curl)和斯莫利(R.E.Smalley)进行合作研究.他们认为宇宙空间存在的反常红外吸收可能与空间存在的碳团簇有关.于是他们利用一台激光蒸发团簇束的实验设备来制备长链碳分子.在对合成的所谓长链碳分子进行测量时,出人意料的结果出现了,在碳原子簇的质谱图上质量数为720的地方存在一个强峰,其强度为其它峰强度的30倍[3].在对实验结果的反复论证和分析后,他们提出了由60个碳原子组成的具有类似于足球形状的截角二十面体的完美对称性结构.在这个结构中60个碳原子位于此截面体的60个顶点上.而32个面分别由20个六面体及12个五面体组成,五面体各不相邻.在此笼状结构中碳原子没有悬键,因而能量低结构稳定.各个原子成键情况完全相同.随后的一系列实验证实了这些设想.这样,在碳的家族中,又增加了新的一员-C60[2~5],三位教授因此获得了1996年诺贝尔化学奖. 此后两项工作引起了世界范围内研究富勒烯(C60)的热潮:(1)1990年,德国马普研究所的克莱希墨(W. Kratschmer)教授和美国亚历桑那大学的霍夫曼(D.R.Huffman)教授从石墨棒电弧放电产生的烟灰中分离出毫克级的C60,并得到了C60单晶[6].这一重大进展为进一步研究C60的性质和应用打下了坚实的基础.(2)海顿(R. C.Haddon)教授等人发现碱金属掺杂后形成的M3C60具有较高的超导转变温度(T c~33K)[7].于是大家纷纷用与克莱希墨类似的方法从放电烟灰中制备C60[8~12],并进行掺杂研究,但很少有人对放电过程中阴极上形成的沉积物产生兴趣.碳的管状物虽然早有报道,但由于管径较大没有受到人们的重视[13,14].日本NEC公司的饭岛(S.Iijima)教授是一名杰出的电镜专家,在对碳材料的研究方面具有相当丰富的经验[15].他第一个对石墨棒放电所形成的阴极沉积物仔细地进行了电镜研究,他发现有一种针状物,这种针状物的直径为4~30nm,长度约为 收稿日期:2001-01-15

碳纳米管材料的研究现状及发展展望

碳纳米管材料的研究现状及发展展望 摘要: 碳纳米管因其独特的结构和优异的物理化学性能,具有广阔的应用前景和巨大的商业价值。本文综述了碳纳米管的制备方法、结构性能、应用以及碳纳米管发展趋势。 关键词:碳纳米管;制备;性质;应用与发展 1、碳纳米管的发展历史 1985年发现了巴基球(C60);柯尔、克罗托和斯莫利在模拟宇宙长链碳分子的生长研 究中,发现了与金刚石、石墨的无限结构不同的,具有封闭球状结构的分子C60。(1996年获得诺贝尔化学奖) 1991年日本电气公司的S. Iijima在制备C60、对电弧放电后的石墨棒进行观察时,发现圆柱状沉积。空的管状物直径0.7-30 nm,被称为Carbon nanotubes (CNTs); 1992年瑞士洛桑联邦综合工科大学的D.Ugarte等发现了巴基葱(Carbon nanoonion); 2000年,北大彭练矛研究组用电子束轰击单壁碳纳米管,发现了Ф0.33 nm的碳纳米管,稳定性稍差; 2003年5月,日本信州大学和三井物产下属的公司研制成功Ф 0.4 nm的碳纳米管。 2004年3月下旬, 中国科学院高能物理研究所赵宇亮、陈振玲、柴之芳等研究人员,利用一定能量的中子与C70分子相互作用,首次成功合成、分离、表征了单原子数目富勒烯 分子C141。 2004 ,曼彻斯特大学的科学家发现Graphene(石墨烯)。进一步激发了人们研究碳纳米材料的热潮。 2、碳纳米管的分类 2.1碳纳米管 碳纳米管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体,一般可分为单壁碳纳 米管、多壁碳纳米管。 2.2纳米碳纤维 纳米碳纤维是由碳组成的长链。其直径约50-200nm,亦即纳米碳纤维的直径介于纳米碳 管(小于100 nm)和气相生长碳纤维之间。 2.3碳球 根据尺寸大小将碳球分为:(1)富勒烯族系Cn和洋葱碳(具有封闭的石墨层结构,直径在2—20nm之间),如C60,C70等;(2) 纳米碳粉。 2.4石墨烯 石墨烯(graphene)是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料,是构建其它维度碳质材料的基本单元。 3、碳纳米管的制备 3.1电弧法

碳纳米管的研究进展及应用

碳纳米管的研究进展及应用 一引言 1.1 纳米材料 纳米材料是近年来受到人们极大关注的新型领域,纳米材料的概念形成于20世纪80年代,在上世纪90年代初期取得较大的发展。 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料[1]。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。 纳米材料具有四大特点: 尺寸小、比表面积大、表面能高、表面原子比例大。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在国防、电子、化工、催化剂、医药等各种领域具有重要的应用价值。 1.2 碳纳米管 碳是自然界分布非常普遍的一种元素。碳元素的最大的特点之一就是存在多种同素异形体,形成许许多多的结构和性质完全不同的屋子。长期以来,人们一直以为碳的晶体只有两种:石墨和金刚石。直到1985年,英国科学家Kroto 和美国科学家Smalley在研究激光蒸发石墨电极时发现了碳的第三种晶体形式 C60[2],从此开启了人类认识碳的新阶段。 1991年,日本NEC公司基础研究实验室的电子显微镜专家饭岛(Iijima)发现了多壁碳纳米管(MultiWalled Carbon Nanotubes ,MWNTs),直径为4-30nm,长度为1um。,最初称之为“Graphite tubular”。 1993年单壁碳纳米管也被发现(Single-Walled Carbon Nanotubes ,SWNTs),直径从0.4nm到3-4nm,长度可达几微米。碳纳米管(CNT)[3]又名巴基管,是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料。 它是由单层或多层石墨片围绕中心轴按一定的螺旋角卷绕而成的无缝、中空的“微管”,每层由一个碳原子通过sp2杂化与周围3个碳原子完全键合后所构成的六边形组成的圆柱面。根据形成条件的不同,碳纳米管存在多壁碳纳米管(MWNTs)和单壁碳纳米管(SWNTs) 两种形式。

德国碳纳米管及石墨烯的发展概况

德国碳纳米管及石墨烯的发展概况 碳纳米管和石墨烯是世界材料行业飞速发展的产物,因为它们代表着更高的性能,更轻的质量,更可靠的环保责任。德国在该领域的研究虽然起步较晚,但随着其后续大量的投入,已经让它成为世界上相关产品研发的领跑者。碳纳米管和石墨的发展前景虽被看好,但高昂的制备成本和较低的产量却严重遏制其大规模应用。 图为:单壁碳纳米管(左),多壁碳纳米管(右) 随着行业对于材料性能的要求越来越高,传统材料的发展占空间逐渐走向萎缩,而高新科技材料将会取而代之成为行业选择的未来之路。众所周知,碳纳米管(CNTs)和石墨烯(graphene)及其复合材料因其卓越的电气及机械特性,已经在诸多领域,如光电,传感器,半导体器件,显示器,指挥,智能

纺织品和能量转换装置(例如,燃料电池,收割机和电池)等,显示出巨大的应用潜能。 从化学结构看,碳纳米管(CNTs)可以用作有机或无机半导体的替代物,但高昂的成本是目前限制其广泛用的最大难题。然而,碳纳米管作为一种新型材料有望在不久的将来实现成本低廉化大规模生产。 在电子学应用领域(电磁屏蔽除外),碳纳米管最大的用途是导体。它不仅具有高电导率,其材料还能呈现透明状,使用起来非常灵活便于拉伸。因此可以取代ITO,用于制作显示器,触摸屏,光电与显示母线和其他产品。经实验证明,碳纳米管的迁移率高于硅,这就意味着碳纳米管可以用于制造快速转换晶体管。此外,碳纳米管能够用于制备高性能的大面积加工设备,如印刷设备,从而帮助提高生产工艺,并显著降低生产成本。碳纳米管还适用于制造超级电容器,其原理是通过利用电容和晶体管的功率密度来平衡电池的能量密度,从而达到弥合电池和电容器的差距的目的。 从目前发展程度来看,碳纳米管的最大挑战是材料纯度,设备制造,以及对其他设备材料(如适当的电介质)的需要。但毋庸置疑的是其无法超越的性能优点(比如高性能,灵活

碳纳米管及其应用新领域

碳纳米管及其应用新领域摘要:综述了碳纳米管材料独特性能及其应用潜力,详细说明了碳纳米管材料在各种应用领域中的巨大应用前景,包括高强度复合材料、微机械、信息存储、纳米电子器件等。关键词:碳纳米管的性能,碳纳米管的应用新领域,储氮材料,复合材料,信息存储,碳纳米电子学 前言:碳纳米管具有典型的层状中空结构特征,构成碳纳米管的层片之间存在一定的夹角碳纳米管的管身是准圆管结构,并且大多数由五边形截面所组成。管身由六边形碳环微结构单元组成, 端帽部分由含五边形的碳环组成的多边形结构,或者称为多边锥形多壁结构。是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料。由于其独特的结构,碳纳米管的研究具有重大的理论意义和潜在的应用价值。 一、碳纳米管的性能 碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能。近些年随着碳纳米管及纳米材料研究的深入其广阔的应用前景也不断地展现出来。力学性能 由于碳纳米管中碳原子采取SP2杂化,相比SP3杂化,SP2杂化中S轨道成分比较大,使碳纳米管具有高模量、高强度。 碳纳米管具有良好的力学性能,碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸。碳纳米管的结构虽然与高分子材料的结构相似,但其结构却比高分子材料稳定得多。碳纳米管是目前可制备出的具有最高比强度的材料。若将以其他工程材料为基体与碳纳米管制成复合材料,可使复合材料表现出良好的强度、弹性、抗疲劳性及各向同性,给复合材料的性能带来极大的改善。 导电性能 碳纳米管上碳原子的P电子形成大范围的离域n键,由于共轭效应显著,碳纳米管具有一些特殊的电学性质。 碳纳米管具有良好的导电性能,由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能。对于一个给定的纳米管,在某个方向上表现出金属性,是良好的导体,否则表现为半导体。对于这个的方向,碳纳米管表现出良好的导电性,电导率通常可达铜的1 万倍。传热性能 碳纳米管具有良好的传热性能,CNTs 具有非常大的长径比,因而其沿着长度方向的热交换性能很高,相对的其垂直方向的热交换性能较低,通过合适的取向,碳纳米管可以合成高各向异性的热传导材料。另外,碳纳米管有着较高的热导率,只要在复合材料中掺杂微量的碳纳米管,该复合材料的热导率将会可能得到很大的改善。 二、碳纳米管电子学的应用 碳纳米电子管(eNTs是一种具有显著电子、机械和化学特性的独特材料。其导电能力不同于普通的导体。性能方面的区别取决于应用,也许是优点,也许是缺点,也许是机会。在一理想纳米碳管内,电传导以低温漂轨道传播的,如果电子管能无缝交接,低温漂是计算机芯片的优点。诸如电连接等的混乱极大地修改了这—行为。对十较慢的模拟信号的处理速度,四周环绕着平向球分子的碳纳米管充当传播者已被实验让实。在后门将有碳的纳米管穿过两根金导线证明了场效应分子晶体管,近来证实逻辑电路的难题 遇到了静电掺杂碳纳米管。碳纳米管的掺杂质可使用化学方法来完成。CMOS类型变极器有 n型和p型掺杂两种。这项工作用达到10A5的开关比率且具有高增益的晶体管电阻逻辑以实验证明了变极器和或非电路的性能。显然,通过适当地排列碳纳米管晶体管顺序可实现与、

碳纳米管制备及其应用

碳纳米管的制备及其应用进展 10710030133 周健波 摘要:本文通过对新型化工材料碳纳米管的结构以及制备方法的介绍,并说明了制备纳米管方法有石墨电弧法、激光蒸发法、催化热解法等技术。同时也叙述了碳纳米管在力学性能、光学性能、电磁学性能等性能的研究及其应用。 关键词:碳纳米管制备结构石墨电弧法应用 1.引言 1991年日本科学家IIJI MA发现了碳纳米管(Carbon nanotube , CNT), 开辟了碳科学发展的新空间. 碳纳米管具有机械强度高、比表面大、电导率高、界面效应强等特点,以及特殊的机械、物理、化学性能,在工程材料、催化、吸附分离、储能器件电极材料等诸多领域得到了广泛应用。 2.碳纳米管的结构 碳纳米管中碳原子以sp2杂化为主, 与相邻的3个碳原子相连,形成六角形网格结构,但此六角形网格结构会产生一定的弯曲, 可形成一定的sp3杂化键。 单壁碳纳米管( SW CNT )的直径在零点几纳米到几纳米之间,长度可达几十微米;多壁碳纳米管(MW CNT)的直径在几纳米到几十纳米之间长度可达几毫米,层与层之间保持固定的间距,与石墨的层间距相当,约为0 . 134 nm。碳纳米管同一层的碳管内原子间有很强的键合力和极高的同轴向性,可看作是轴向具有周期性的一维晶体,其晶体结构为密排六方, 被认为是理想的一维材料。 碳纳米管可看成是由石墨片层绕中心轴卷曲而成, 卷曲时石墨片层中保持不变的六边形网格与碳纳米管轴向之间可能会出现夹角即螺旋角.当螺旋角为零时, 碳纳米管中的网格不产生螺旋而不具有手性, 称之为锯齿型碳纳米管或扶手型碳纳米管;当碳纳米管中的网格产生螺旋现象而具有手性时,称为螺旋型碳纳米管。随着直径与螺旋角的不同, 碳纳米管可表现出金属性或半导体性。 3.碳纳米管的制备方法 3.1石墨电弧法

碳纳米技术发展综述

碳纳米管技术发展概况 学院:电子信息工程学院 专业:通信工程 姓名:彭昱 学号:3013204217 【摘要】随着社会经济的飞速发展,碳纳米材料的应用日趋广泛,以富勒烯、石墨烯和碳纳米管为代表的碳纳米材料。在经历20世纪90年代的研究高潮后,如今也已经进入了平稳扎实的研究阶段。随着研究的不断深入,碳纳米材料在人类生产生活中显示出越来越多不可替代的重要作用。碳纳米管(CNT)也是“纳米世界”中的重要一员,因其独特的结构和优异的物理化学性能,具有广阔的应用前景和商业价值。本文综述了碳纳米管的发展历程、结构性能,应用及其发展前景及展望。 【关键词】碳纳米管;发展历程;结构;特性;应用;前景 碳纳米管的发展历程 1985 年英国萨塞克斯大学的波谱学家Kroto 教授与美国莱斯大学的Smalley和Curl 两教授在合作研究中,发现碳元素可以形成由60 个或70 个碳原子构成的高度对称性笼状结构的C60和C70分子,被称为巴基球(Buckyballs);1991 年,日本NEC 科学家Iijima 在制取C60的阴极结疤中首次采用高分辨隧道电子显微镜发现一种外径为515nm、内径为213nm,仅由两层同轴类石墨圆柱面叠而成的碳纳米管;1992年,科研人员发现碳纳米管壁曲卷结构不同而呈现出半导体或良导体的特异导电性;1995年,科学家研究并证实其优良的场发射性能;1996年,我国科学家实现碳纳米管大面积定向生长;1998年,科研人员应用碳纳米管作电子管阴极,同年,科学家使用碳纳米管制作室温工作的场效应晶体管;1999年,韩国一个研究小组制成碳纳米管阴极彩色显示器样管;2000年,日本科学家制成高亮度的碳纳米管场发射显示器样管。 碳纳米管的结构 碳纳米管是由单层或多层石墨片绕中心按一定角度卷曲而成的无缝、中空纳米管。按照所含石墨片层数的不同,碳纳米管可分为:单壁碳纳米管和多壁碳纳米管。单壁管典型直径在0.6-2nm,多壁管最内层可达0.4nm,最粗可达数百纳米,但典型管径为2-100nm。下图为常见的碳纳米管结构图。虽然从本质上讲,碳纳米管都是有相同的石墨层构成的但它们的导电特性却并不一样,具体情况取决于起的是金属还是半导体的作用。 碳纳米管的特性 碳纳米管的独特结构决定了它具有许多特殊的物理和化学性质。组成碳纳米管的C=C 共价键是自然界最稳定的化学键,所以使得碳纳米管具有非常优异的力学性能。理论计算表明,碳纳米管具有极高的强度和极大的韧性。其理论值估计杨氏模量可达5TPa,强度约为钢的100 倍,而重量密度却只有钢的1/6。Treacy 等首次利用了TEM 测量了温度从室温到800 度变化范围内多壁碳纳米管的均方振幅,从而推导出多壁碳纳米管的平均杨氏模量约为1.8Tpa。而Salvetat 等测量了小直径的单壁碳纳米管的杨氏模量,并导出其剪切模量为1Tpa。Wong 等用原子力显微镜测量多壁碳纳米管的弯曲强度平均值为14.2±10.8GPa,而碳纤维的弯曲强度却仅有1GPa。碳纳米管无论是强度还是韧性,都远远优于任何纤维,被认为是未来的“超级纤维”。直径、螺旋角以及层间作用力等存在的差异是碳纳米管兼导体和半导体的特性;独特的螺旋分子结构使碳纳米管构筑的吸波材料具有比一般吸收材料高的吸收率。此外,碳纳米管还具有独特的光学性能,良好的热传导性,极高的耐酸、碱性和热稳定性。

碳纳米管纳米材料的应用要点

碳纳米管及其复合材料在储能电池中的应用摘要碳纳米管具有良好的机械性能和导电性、高化学稳定性、大表面积以及独特的一维结构,选择合适的方法制备出碳纳米管复合材料,可以使其各种物理化学性能得到增强,因而在很多领域有着极大的应用前景,尤其是在储能电池中的应用。本文分析了碳纳米管及其复合材料的特点,总结了碳纳米管的储锂机理,对其发展趋势作了展望。 关键词碳纳米管复合材料储能电池应用 Abstract carb on nano tubes(CNTs) are nano meter-sized carb on materials with the characteristics of unique one-dimensional geometric structure large surface area high electrical conductivity,elevated mechanical strength and strong chemical inertn ess. Selecti ng appropriate methods to prepare carb on nano tube composites can enhance physical and chemical properties , and these composites have a great future in many areas especially in energy storage batteries . In this paper, based on the analysis and comparis on of the adva ntages and disadva ntages of carb on nano tube composites the enhan ceme nt mecha ni sms of the CNTs catalysts are in troduced. Afterwardthe lithium ion storage properties are summarized according to the preparation methods of composite materials. Finally, the prospects and challenge for these composite materials are also discussed. Keywords carb on nano tube; composite; en ergy storage batteries; applicati on 1引言 碳纳米管(CNTs)在2004年被人们发现,是一种具有特殊结构的一维量子材料,它 的径向尺寸可达到纳米级,轴向尺寸为微米级,管的两端一般都封口,因此它有很大的强度,同时巨大的长径比有望使其制作成韧性极好的碳纤维。碳纳米管由于其独特的一维纳米形貌被作为锂离子电池负极材料广泛研究,通过对碳纳米管进行剪切,官能化及掺杂等方法进行改性处理,能有效的减少碳纳米管的首次不可逆容量,增加可逆的储锂比容量。此外,碳纳米管的中空结构也成为抑制高容量金属及金属氧化物体积膨胀理想复合基体。本文中,我们研究了碳纳米管的储锂性能,考察了碳纳米管作为锡类复合材料基体,其内部限域空间对高容量金属及金属氧化物的储锂性能促进的具体原因。该研究结果为碳纳米管以及其他具有限域空间的结构在锂离子电池中的应用提供了参考。 2碳纳米管的储锂机理和应用 相比广泛应用的石墨类材料,碳纳米管在锂离子电池负极材料中有其独特的应用优势。首先,碳纳米管的尺寸在纳米级,管内及间隙空间也都处于纳米尺寸级,因而具有纳米材料的小尺寸效应,能有效的增加锂离子在化学电源中的反应活性空间;其次,碳纳米管的比表面积较大,能增加锂离子的反应活性位,并且随着碳纳米管的管径减小其表现出非化学平衡或整数配位数的化合价,储锂的容量增大;第三,碳纳米管具有良好的导

综述:碳纳米管材料的发展、性能与应用”

大连东软信息学院电子工程系《微电子发展前沿技术》期末大作业 项目一二三四总分 分数 综述:碳纳米管材料的发展、性能与应用 姓名刘胜 班级微电子11001班 学号11160600113 专业电子信息工程(微电子制造方向) 2014年5月18日

目录 第1章前言 (1) 1.1碳纳米管简介 (1) 1.2碳纳米管的发展 (1) 1.3碳纳米管现状 (3) 第2章碳纳米管的优秀性能 (4) 2.1电学性能 (4) 2.2力学性能 (4) 2.3热学性能 (4) 2.4复合材料性能 (4) 第3章碳纳米管的应用及前景 (5) 3.1碳纳米管的应用 (5) 3.2碳纳米管的前景 (6) 参考文献 (8)

第1章前言 1.1碳纳米管简介 碳纳米管,是一种具有特殊结构( 径向尺寸为纳米量级, 轴向尺寸为微米量级、管子两端基本上都封口) 的一维量子材料, 可看作是由片层结构的石墨卷成的无缝中空的纳米级同轴圆柱体, 两端由富勒烯半球封帽而成。按片层石墨层数分类, 可分为单壁碳纳米管和多壁碳纳米管。单壁碳纳米管可看成是由单层片状石墨卷曲而成, 而多壁碳纳米管可理解为不同直径的单壁碳纳米管套装而成, 层与层之间距离约0.3 4 n m 。碳纳米管因其小尺寸效应和独特的分子结构,具有优异的物理化学性能。一维分子材料和六边形完美连接结构使碳纳米管具有质量轻、强度高的特点;较大长径比及sp2、sp3杂化几率不同使碳纳米管具有优良的弹性;直径、螺旋角以及层间作用力等存在的差异使碳纳米管兼具导体和半导体的特性;独特的螺旋状分子结构使碳纳米管构筑的吸波材料具有比一般吸收材料高得多的吸收率。 碳纳米管具有最简单的化学组成及原子结合形态, 却展现了最丰富多彩的结构以及与之相关的物理、化学性能。由于它可看成是片状石墨卷成的圆筒, 因此必然具有石墨优良的本征特性, 如耐热、耐腐蚀、耐热冲击、传热和导电性好、有自润滑性和生体相容性等一系列综合性能。但纳米碳管的尺度、结构、碳原子相结合又赋予了碳纳米管极为独而有广阔应用前景的性能。 1.2碳纳米管的发展 1991年日本NEC公司基础研究实验室的科学家饭岛澄男(Iijima)在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。是一种外径为515nm、内径213nm、仅由两层同轴类石墨圆柱面叠合而成的碳结构。进一步的分析表明,这种管完全由碳原子构成,并看成是由单层石墨六角网面以其上某一方向为轴,卷曲360°而形成的无缝中空管。相邻管子之间的距离约为0.34nm,与石墨中碳原子层与层之间的距离0.335nm相近[1],所以这种结构一般被称为碳纳米管,这是继C60之后发现的碳的又一同素异形体,是碳团簇领域的又一重大科研成果。 1993年,S.Iijima等和DS.Bethune等同时报道了采用电弧法,在石墨电极中添加一定的催化剂,可以得到仅仅具有一层管壁的碳纳米管,即单壁碳纳米管产物[2]。

碳纳米管及其应用的研究现状

文章编号:1001-9731(2000)-0119-02 碳纳米管及其应用的研究现状Ξ 朱绍文1,贾志杰2 (1.华中师范大学应用物理研究所,湖北武汉,430079;2.清华大学机械工程系,北京100084) 摘 要: 在世界范围内,碳纳米管及其应用的研究成为当前材料研究的热点。通过最近数年的研究,科技界对于碳纳米管的特性及应用前景有了深刻的认识。目前研究的重点集中在较大批量生产(公斤级/日)和全面应用方面。 关键词: 碳纳米管;电子器件;纳米复合材料 中图分类号: T B383 1 引 言 自K roto和Smalley于1985年发现碳纳米管(获得1996年诺贝尔化学奖)[1,2],以及NEC公司电镜专家I ijima在用电弧法制作C60时生产出第一根碳纳米管以来[3],在世界范围内掀起一股碳纳米管热。其中美国居于领先水平,从医学到电子、复合材料等领域,高投入、全方位地开展研究。日本紧随其后。我国也在几年前开始这方面的研究,并有重点地(电子领域)加强力量,进行应用开发研究。到目前,关于碳纳米管本身特性及生产方法的研究已取得重大进展,开始进入到碳纳米管批量生产及碳纳米管应用方面。碳纳米管是一种主要由碳六边形(弯曲处为碳五边形和碳七边型)组成的单层或多层纳米级管状材料,由自然界最强的C—C共价键结合而成,因此具有非常高的强度(理论值是钢的100多倍,碳纤维的近20倍),同时还具有很高的韧性、硬度和导电性能[4~8]。目前研究的重点己经转移到碳纳米管的较大批量生产及其应用领域。应用领域里最具潜力的应用是在电子和复合材料领域。 2 碳纳米管的制备 碳纳米管的制备包括碳纳米管的生产及处理。碳纳米管虽然具有很好特性及诱人的应用前景,但首先只有碳纳米管的生产实现了规模化生产才有意义。碳纳米管的生产开始采用石墨-电弧法,后来发展到具有较大产量的化学气相沉积(CVD)法[10~14]。催化剂一般采用铁基、钴基或镍基催化剂。各种催化剂各有其优点,用得较多的是镍基催化剂。实验室产量从每炉次10毫克级发展到10克级(国内己达到的水平),己经具备工业化生产条件。当然,要真正实现工业化生产,还需要进一步研究和优化碳纳米管的生产工艺,设计出相应的能够实现连续合成碳纳米管的生产设备。 由于CVD法生产的碳纳米管粗产物里含有许多杂质,如SiO2、Fe、Co、Ni等金属颗粒,需要进行净化处理[15,16]。由于碳纳米管具有很高的结构稳定性,耐强酸、强碱腐蚀,故碳纳米管的净化处理一般采用酸浸泡或酸煮的方式,然后用蒸馏水清洗。另外,由于CVD法生产的碳纳米管缠绕成微米级大团,需要进行分散处理,以利于与其它材料进行复合制作纳米复合材料。碳纳米管的分散处理采用浓硝酸或浓硫酸较长时间煮的方式或高速球磨机球磨的方式。 3 电子应用领域 由于碳纳米管具有很高的导电性能,特别是经高温退化处理后(消除碳五边形和碳七边形结构)的碳纳米管,因此,目前碳纳米管应用研究的最大领域是在电子学领域。第一,利用碳纳米管本身结构特点,研究新型电子器件。如:利用碳纳米管的激发电压与钼针相比有大幅度降低,并具有自修补功能的特性,加之其纳米级尺寸,若用于研制场发射器件,可制成超大规模视屏系统[21]。通过控制生产工艺,使碳纳米管中缺陷(碳五边形和碳七边形)集中于碳纳米管中部,制成电子纳米电子开关和纳米二极管[18]。目前美国科学家正利用碳纳米管研制纳米三极管,如若成功,就可将集成电路尺寸降低两个数量级以上[19]。根据这个思路,还有很多纳米电子器件的研究在进行中。第二,利用碳纳米管导电性能好的特点,研制其它电子器件。如:利用碳纳米管研制高能微型电池,用于计算机起动电源和汽车电子打火,具有体积小,能量高,使用寿命长的特点[17]。将一定量的碳纳米管压成薄片,制成高能电容,能量比一般的电容高两个数量级(国家“九五”计划)[26,27]。在一些器件表面镀上碳纳米管,制成导电膜,其导电性能提高很多[23,24]。加碳纳米管加入到金属Al 中(少量),可明显提高其导电性。在高分子材料中加入少量碳纳复米管,降低其电阻3个数量级以上,使其具有抗静电功能[17],等等。 4 复合材料领域 由于碳纳米管具有非常高的强度[8],且耐强酸、强碱,600℃以下基本不氧化,又具有纳米级尺寸,若与工程材料复合,可起到强化作用。因此关于碳纳米管复合材料的研究也成为其应用研究的一个重要领域。用碳纳米管制作复合材料研究,首先在金属基上进行,如:Fe/碳纳米管、Al/碳纳米管、Ni/碳纳米管、Cu/碳纳米管等[28~31]。复合方法一般有快速凝固法和粉末冶金法。由于碳纳米管的尺寸与金属晶格相比显得太大,无法进入,被排斥在晶界上。因而,当碳纳米管加入量超过一定值(一般为3%)时,就在晶界上集聚成团,削弱晶格间连接力,反而降低基体的强度。另外,如Fe/碳纳米管、Al/碳纳米管、Ni/碳纳米管,在复合过程中部分碳纳米管与高温液态金属化合形成金属 Ξ基金来源:湖北省科委重大科研攻关项目收稿日期:1998-12-10

相关文档