文档视界 最新最全的文档下载
当前位置:文档视界 › 经典液相色谱法习题

经典液相色谱法习题

经典液相色谱法习题
经典液相色谱法习题

第10章经典液相色谱法习题

(一)选择题

单选题

1.组分在固定相中的质量为m A(g),在流动相中的质量为m B(g),而该组分在固定相中的浓度为c A(g/mL),在流动相中的浓度为C B(g/mL),则此组分的分配系数是( )。

A m A/m

B B m B/m A

C m A/(m A +m B)

D C A/C B

2.在柱色谱法中,可以用分配系数为零的物质来测定色谱柱中的( )。

A 流动相的体积(相当于死体积)

B 填料的体积

C 填料孔隙的体积

D 总体积

3.在以硅胶为固定相的吸附柱色谱中,正确的说法是( )。

A 组分的极性越强.被固定相吸附的作用越强

B 物质的相对分子质量越大,越有利于吸附

C 流动相的极性越强,组分越容易被固定相所吸附

D 吸附剂的活度级数越小,对组分的吸附力越大

4.纸色谱法与薄层色谱法常用正丁醇-乙酸-水(4:1:5,体积比)作为展开剂,正确的操作方法是( )。

A 三种溶剂混合后直接用作展开剂

B 三种溶剂混合、静置分层后,取上层作展开剂

C 三种溶剂混合,静置分层后,取下层作展开剂

D 依次用三种溶剂作展开剂

5.离子交换色谱法中,对选择性无影响的因素是( ).

A 树脂的交联度

B 树脂的再生过程

C 样品离子的电荷

D 样品离子的水合半径

6.下列说法错误的是( )。

A 用纸色谱分离时,样品中极性小的组分R f值大

B 用反相分配薄层时,样品中极性小的组分R f值小

C 用凝胶色谱法分离,样品中相对分子质量小的组分先被洗脱下来

D 用离子交换色谱时,样品中高价离子后被洗脱下来

7.在一硅胶薄板上用不同的溶剂系统分离咖啡碱和氯原酸,结果如下,从中选出最好的溶剂系统是( )。

A 氯仿-丙酮(8:2):咖啡碱的R f为0.1,氯原酸的R f为0.0

B 氯仿-丙酮-甲醇-乙酸(7:2:1.5:0.5):咖啡碱的R f为0.48,氯原酸的R f为O.05

C 正丁醇-乙酸-水(4:1:1):咖啡碱的R f为0.68,氯原酸的R f为0.42

D 正丁醇-乙酸-甲醇(4:1:2):咖啡碱的R f为0.43,氯原酸的R f为0.40

8.假如一个溶质的容量因子为0.1,则它在色谱柱的流动相中的百分率是( ) A9.1%B10%C9 0% D 91%

9. 在液相色谱中,某组分的保留值大小实际反映了哪些部分的分子间作用力( )

A 组分与流动相

B 组分与固定相

C 组分与流动相和固定相

D 组分与组分

10. 在液相色谱中梯度洗脱最宜于分离( )

A 几何异构体

B 沸点相近、官能团相同的试样

C 沸点相差大的试样

D 容量因子(分配比)变化范围宽的试样

11. 指出哪个参数的改变会引起容量因子的增大( )

A流动相速度减小B柱长增加 C 相比增大 D 固定相量增加

12. 在氢型阳离子交换树脂上,对下列离子的选择性大小顺序为( )

A Ce3+> Ca2+>Na+>Th4+

B Th4+ > Ce3+> Ca2+> Na+

C Na+> Ca2+> Ce3+>Th4+

D Ca2+> Na+> Ce3+> Th4+

13. 下列哪种氧化铝适于分离碱性成分( )

A碱性氧化铝 B 酸性氧化铝 C 中性氧化铝 D 以上三种

14. 硅胶是一个略显酸性的物质,通常用于以下哪种物质的分离( )

A 酸性

B 中性

C A和B

D 碱性

15. 在正相液固色谱中,下列化合物的保留值顺序是( )

A 醚<酯<酮<醛

B 酮<醛<醚<酯

C 醛<酮<酯<醚

D 酮<酯<醛<醚

16. 在正相液固色谱中,下列哪个溶剂的洗脱强度最大( )

A 正己烷

B 甲醇

C 四氢呋喃

D 二氯甲烷

17. 色谱过程中,固定相对物质起着下列哪种作用( )

A运输作用B滞留作用C平衡作用 D 分解作用

18. 样品在分离时,要求其R f值住( )之间

A 0~0.3

B 0.7~1.0

C 0.2~0.

8 D 1.0~1.5

19. 在用薄层吸收扫描法测定斑点的吸光度时,直线式扫描适用于以下哪种色谱斑点的定量

分析( )

A凹形斑点B矩形斑点 C 拖尾斑点 D 规则圆形

20. 薄层层析中,软板是指( )

A 塑料板

B 铝箔

C 将吸附剂直接铺于板上制成薄层

D 在吸附剂中加入粘合剂制成薄层

21. 在纸色谱法中,将适量水加到滤纸上为固定相展开剂的色谱分析方法属于下列哪一范畴( )

A吸附色谱B分配色谱C离子交换色谱 D 凝胶色谱

多选题

22. 分配色谱中,对支持剂的要求是( )

A化学惰性B多孔性 C 具一定极性

D 与固定相之间有着较大吸附力

E 对被测物有一定吸附能力

23. 色谱柱的柱效率可以用下列何者表示( )

A 理论塔板数

B 分配系数

C 保留值

D 塔板高度

E 容量因子

24. 在色谱分析中,对担体的要求是( )

A表面应是化学惰性的B多孔性 C 热稳定性好

D 粒度均匀而细小

E 吸附性强

25. 液液分配色谱中,固定液和组分分子间的作用力有( )

A 静电力

B 诱导力

C 色散力

D 氢键力

E 化学键

26. 下列担体,能用于液相色谱的是( )

A 硅藻土

B 氟担体

C 玻璃微球

D 高分子多孔微球

E 薄壳型微珠

27. 要使分离因子增加,可以( )

A 减小流动相对组分的亲和力

B 增加柱长

C 采用高选择性固定相

D 增加理论塔板数

E 采用细颗粒载体

28. 下列哪些物质在薄层色谱中用作吸附剂( )

A 硅胶

B 塑料板

C 氧化铝

D 纤维素

E 聚酰胺

29. 在薄层色谱分析中,采用以下哪些办法减少边缘效应()

A 层析槽有较好的气密性

B 在层析槽的内壁上悬挂一些浸满展开剂的滤纸条

C 减小吸附剂的活度

D 在层析槽内放置一些装有展开剂的辅助容器

E 减小薄层的厚度

30. 在分配色谱中.对载体的要求是( )

A 化学情性及多孔性

B 表面积要小

C 与固定液的液膜有较强的吸附力

D 机械强度小

E 不具吸附力

31. 如何减少TLC中的边缘效应( )

A 用大的层析

B 用小体积层析槽并使溶剂饱和

C 层析槽内贴上滤纸条

D 用大层析板

E 尽量多点几个斑点

配伍题

32. A 吸附色谱法 B 分配色谱法 C 离子交换色谱法

D 凝胶色谱法

E 亲和色谱法

①以固体吸附剂为固定相,以液体溶剂为流动相的色谱分离方法,称( )

②以固定在载体上的液体为固定相.以液体溶剂为流动相的色谱分离方法,称( )

33. A 静电力 B 诱导力 C 色散力 D 氢键力

E 化学键

①用极性固定液分离极性组分时,分子间的作用力主要是( )

②用非极性固定液分离非极性组分时,分子间的主要作用力是( )

34. A 水 B 硅胶 C 硅油 D 玻璃板

E 硫酸

①在液液分配色谱中。常用作正相分配色谱的固定液是( )

②在液液分配色谱中。常用作反相分配色谱的固定液是( )

35.A纤维素B聚酰胺C淀粉D

水 E 液状石蜡

①纸色谱分析的机理属于液液分配色谱的范畴,构成固定相的载体是( )

②反相纸色谱分析中,作为固定相的是( )

36. A 硅胶 B 碱性氧化铝 C 聚酰胺 D 活性炭 E 硅藻土

①薄层色谱中,酸性物质的分离,吸附剂应选用( )

②薄层色谱中,分离黄酮时,吸附剂应选用( )

37. A 二乙胺 B 甲酸 C 石油醚 D 正己烷 E 乙醇

①用薄层分离生物碱时,有拖尾现象,可加入少量( )

②用薄层分离有机酸时,一般加入少量( )

(二)填空题

1.色谱分离过程是溶质在______与_______两相之间的分布,并发生一系列连续的平衡转移。

2.吸附过程的色谱分离可用吸附等温线加以描述。常见的吸附等温线有三种类型:_____ _ 、______、______。通常在 ______ 浓度时,每种等温线均呈线性,而在______浓度时,等温线呈______或______。

3.直线形等温线是______的等温线,所得的色谱峰为______。

4.纸色谱法是以______为载体,以构成滤纸的纤维素所结合水分为______,以______为展开剂的色谱分离方法。

5.一个组分的色谱峰,其峰位置(即保留值)可用于______分析,峰高或峰面积可用于____ __分析,峰宽可用于衡量______。

6.表示试样中各组分在色谱拄中停留时间的数值,称为______。

7.物质在固定相和流动相之间发生的吸附、脱附或溶解、挥发的过程,称为______。8.在一定温度下,组分在两相之间的分配达到平衡时的浓度比,称为______ 。

9.______是某组分在固定相和流动相中的分配量之比。

10. ______是两个组分保留值之差与两个组分色谱峰宽总和之半的比值。

11.两组分保留值差别的大小,反映了色谱柱______的高低。

12.最大允许进样量应控制在______或______与______呈______关系的范围内。13.固定液的选择,一般认为可以基于______原则。

14.在液相色谱中,液固色谱的分离机理是 ______ 。

15.在液相色谱中,液液色谱的分离机理是 ______ 。

16.在液相色谱中,改变相对保留值是通过选择合适的 ______ 来实现的。

17.在液相色谱中,凝胶色谱的分离机理是______。

18.在液相色谱中,除有机溶剂外,______也是常用的溶剂和流动相。

19.在液相色谱中,常用作固定相,又可作键合固定相基体的物质是______ 。

20.用一种能交换离子的材料为______,利用它在水溶液中能与溶液中离子进行______的性质,来分离______化合物的方法,称为离子交换色谱法。

21.在吸附薄层色谱中,当固定相与待分离成分给定后,若R f值太小时,应______展开剂_ _____性。

22.在正相分配色谱中,当固定相与待分离成分给定后,若R f值太小时,应______待测组分在展开剂中的______。

23.在吸附薄层色谱中,当固定相与展开剂给定后,待测组分A、B、C、D,(其极性顺序为A﹥B﹥C﹥D)的R f值从小到大的顺序为______。

(三)名词与术语

1.固定相

2.流动相

3.吸附色谱法

4.分配色谱法

5.吸附等温线

6.薄层色谱法

7.正相分配色谱法

8.反相分配色谱法

9.纸色谱法

10.离子交换色谱法

11.边缘效应

(四)判断题

1.在色谱法中.待分离组分不必溶于流动相。 ( )

2.所有液相色谱法都是用液体作流动相。 ( )

3.对于线性等温线,分配系数与浓度无关,色谱带呈高斯分布。()

4.若固定相是极性的,流动相是非极性的,或者流动相的极性比固定相小,这种色谱体系统为正相色谱。( )

5.在正相色谱中,溶剂极性增加,保留值增加。( )

6.反相色谱中,极性弱的组分先出峰。 ( )

7.在固色谱最适合于分离可溶于有机溶剂的样品,样品极性可从非极性到中等极性。

8.液固色谱适宜于强极性的或离子型的样品的分离。( )

9.在凝胶色谱中,从组分A和B的Vm和Vs,求得它们的分配系数分别为0.5和1.5。( )

10.若某一凝胶色谱柱的Vs为 2.1ml, Vm为0.6ml,现测得组分的保留体积为 4.0mI。( )

11.树脂交联度越大,则选择系数也越大。( )

12.在稀溶液情况下,树脂对离子的选择性随价态增加而减小。( )

13.在稀溶液中,相同价态的选择系数随水合离子半径的减小而增大。( ) 14.在纸色谱中,对于分配在特定的二液相中各物质的比移值,不管单独测定或者与其它混合物测定时,只要条件相同,它都是恒定不变的。 ( )

15.在纸色谱中,物质的极性越大则比移值越大。 ( )

(五)简答题

1.什么是正相色谱和反相色谱?

2.对离子交换色谱的分离来说,哪几个参数是比较重要的?

3.在薄层色谱中,“活性吸附剂”和“吸附剂的活化”这两个概念各有什么含义?

4.薄层色谱中影响值的因素有哪些?

5.吸附色谱与分配色谱有何相同与不同?

6.柱色谱与薄层色谱的异同点各是什么?

7. 正相色谱中如何判断各组分的出柱顺序?与流动相极性大小的关系?

(六)计算题

1.今有两种性质相似的组分A和B,共存于同一溶液中。用纸色谱分离时,它们的比移值分别为0.45、0.63。欲使分离后两斑点中心间的距离为2c m,问滤纸条应为多长?(至少7cm)

2.已知某组分A在纸色谱上的分配系数为0.5,所需流动相与固定相的体积之比为。试计算该组分的比移值。(0.87)

3.已知某特定的薄层条件是:固定相体积比流动相体积为0.1:0.33,为获得最佳展开效果,要求样品值在何范围为宜?(3. 3~7.7)

4.经薄层分离后,组分A的R f值为0.35,组分B的R f值为0.56,展开距离为10.0cm,求组分A和B两组分色谱斑点之间的距离。(1.9cm)

5.某组分在薄层色谱体系中的分配比k=3,经展开后样品斑点距原点3.0cm,组分的R f值为多少?此此时溶剂前沿距原点多少厘米?(12.0cm)

6.用薄层荧光扫描法测定黄连中小檗碱的含量时,实验工作曲线基本通过原点。现进行如下实验,在同一薄层板上,分别取浓度为0.50μg/μL,1.00μg/μL的标准溶液及黄连提取液点样,点样体积为1

μL,扫描测得黄连提取液中小檗碱斑点的峰面积为:(A)检=2532.4AU,标准溶液斑点的峰面积(A)1=1942.285AU,(A)2=3173.664AU,试求小檗碱的含量及浓度。(0.739mg/mL)

如有侵权请联系告知删除,感谢你们的配合!

色谱论文

高效液相色谱法在分析化学中的应用 摘要:高效液相色谱(HPLC)是现代分析化学中最重要的分离方法之一。本论文介绍了高效液相色谱的发展、组成、特点及其分离原理,概述了高效液相色谱法在环境分析、食品分析、药物分析中的应用。 关键词:高效液相色谱食品分析环境分析药物分析 1.前言 当代分析仪器发展的方向是高速,高灵敏度,高精确度,自动化和省力。在色谱法领域中,二十世纪60年代后半期,气相色谱法理论的应用使柱色谱法得到了显著发展,而柱色谱中开发的技术和方法又被薄层色谱法和液相色谱法所采有,从而使色谱法的功能大大提高,应用领域日益扩大。为了把这些现代色谱法和过去的方法相区别,把它们称为高效色谱法[1]。高效色谱法的建立,使色谱法在分析化学中的地位得到了提高。如今,色谱法在分析组成复杂的物质和多组分混合物时,是极为重要的分析方法。应用色谱法的目的是进行定量分析和单个分离出纯物质。实际上,可根据分析目的,采用气相色谱法、液相色谱法和薄层谱法中的一种或相互联用之。液相色谱法和薄层色谱法中,所有可溶于流动相的物质均可作为分析对象。由于液相色谱在高效、简便、快速方面倍受分析工作者推崇,使用较为广泛,而薄层色谱则因分析时间较长,定量精确度觉差而作为高效液相色普预实验方法[2]。 高效液相色谱法(HPLC)是20世纪60年代发展起来的一种新型分析、分离技术。它是在经典液相色谱法的基础上,引入气相色谱法的理论和技术,以高压输送流动相,采用高效固定相及高灵敏度检测器发展而成的现代液相色谱分析方法。现代HPLC采用了小口径柱(约1~3mm)和极细小的高效色谱填料(粒径<5μm),用高压输液泵使溶剂以高流速(1~10cm/s)通过色谱柱,分离速度比经典柱色谱法快100~1000倍,分离效率已接近毛细管柱气相色谱法。因此,HPLC具有高压、高速、高效、高灵敏度四大特点。HPLC与GC比较,虽然需要解决延长使用寿命的问题,但专家们普遍认为在众多分析领域中HPLC比GC

高效液相色谱法简介

高效液相色谱法简介 “色谱”一词是由俄国科学家斯威特提出的。色谱法是基于补充物质在相对运动物的两相之间分布时,物理或物理化学性质的微小的差异而使混合物相互分离的一类分离或分析方法。发展与上世纪初,飞速发展于五十年代,有超过30位科学家家因为它而获得诺贝尔奖,其有自己的理论和研究方法,同时也有众多的应用领域。 色谱法常见的方法有:柱色谱法、薄层色谱法、气相色谱法、高效液相色谱法等。 柱色谱:柱色谱法是最原始的色谱方法,这种方法将固定相注入下端塞有棉花或滤纸的玻璃管中,将被样品饱和的固定相粉末摊铺在玻璃管顶端,以流动相洗脱。常见的洗脱方式有两种,一种是自上而下依靠溶剂本身的重力洗脱,一种是自下而上依靠毛细作用洗脱。收集分离后的纯净组分也有两种不同的方法,一种方法是在柱尾直接接受流出的溶液,另一种方法是烘干固定相后用机械方法分开各个色带,以合适的溶剂浸泡固定相提取组分分子。柱色谱法被广泛应用于混合物的分离,包括对有机合成产物、天然提取物以及生物大分子的分离。 薄层色谱:薄层色谱法是应用非常广泛的色谱方法,这种色谱方法将固定相图布在金属或玻璃薄板上形成薄层,用毛细管、钢笔或者其他工具将样品点染于薄板一端,之后将点样端浸入流动相中,依靠毛细作用令流动相溶剂沿薄板上行展开样品。薄层色谱法成本低廉操作简单,被用于对样品的粗测、对有机合成反应进程的检测等用途。

气相色谱:GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离。待分析样品在汽化室汽化后被惰性气体(即载气,也叫流动相)带入色谱柱,柱内含有液体或固体流动相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。但由于载气是流动的,这种平衡实际上很难建立起来。也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解吸附,结果是在载气中浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。当组分流出色谱柱后,立即进入检测器。检测器能够将样品组分的与否转变为电信号,而电信号的大小与被测组分的量或浓度成正比。当将这些信号放大并记录下来时,就是气相色谱图了。气相色谱被广泛应用于小分子量复杂组分物质的定量分析。 高效液相色谱:高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9-107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。高效液相色谱(HPLC)是目前应用最多的色谱分析方法,高效液相色谱系统由流动相储液体瓶、输液泵、进样器、色谱柱、检测器和记录器组成,其整体组成类似于气相色谱,但是针对其流动相为液体的特点作出很多调整。HPLC的输液泵要求输液量恒定平稳;进样系统要求进样便利切换严密;由于液体流动相粘度远远高于气体,为了减低柱压高效

2015年版药典高效液相色谱法、质谱法.doc

2015 年版药典高效液相色谱法、质谱法

2015 版药典 --- 高效液相色谱法、质谱法 0512 高效液相色谱法 高效液相色谱法系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。 注入的供试品,由流动相带入色谱柱内,各组分在柱内被分离,并进入检测器检测,由积分仪或数据处理系统记录和处 理色谱信号。 1.对仪器的一般要求和色谱条件 高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据处理系统组成。色谱柱内径一般为 3.9 ~ 4.6mm,填充剂粒径为 3~lOμm。超高效液相色谱仪是适应小粒径(约 2μm)填充剂的耐超高压、小进样量、低死体积、高灵敏度检测的高效液相色谱仪。 (1)色谱柱 反相色谱柱:以键合非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合物复合硅胶和聚合物 等;常用的填充剂有十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。 正相色谱柱:用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。常见的填充剂有硅胶、氨基键合硅胶和氰 基键合硅胶等。氨基键合硅胶和氰基键合硅胶也可用作反相色谱。 离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。 手性分离色谱柱:用手性填充剂填充而成的色谱柱。 色谱柱的内径与长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残 留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分离物质的性质来选择合适的色谱柱。 温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。为改善分离效果可适当 提高色谱柱的温度,但一般不宜超过 60℃。 残余硅羟基未封闭的硅胶色谱柱,流动相 pH 值一般应在 2~8 之间。残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚 合物色谱柱可耐受更广泛 pH值的流动相,适合于 pH 值小于 2 或大于 8 的流动相。 (2)检测器最常用的检测器为紫外 - 可见分光检测器,包括二极管阵列检测器,其他常见的检测器有荧光检测器、 蒸发光散射检测器、示差折光检测器、电化学检测器和质谱检测器等。 紫外- 可见分光检测器、荧光检测器、电化学检测器为选择性检测器,其响应值不仅与被测物质的量有关,还与 其结构有关;蒸发光散射检测器和示差折光检测器为通用检测器,对所有物质均有响应,结构相似的物质在蒸发光散射 检测器的响应值几乎仅与被测物质的量有关。 紫外 - 可见分光检测器、荧光检测器、电化学检测器和示差折光检测器的响应值与被测物质的量在一定范围内呈 线性关系,但蒸发光散射检测器的响应值与被测物质的量通常呈指数关系,一般需经对数转换。 不同的检测器,对流动相的要求不同。紫外 - 可见分光检测器所用流动相应符合紫外 - 可见分光光度法(通则 0401)项下对溶剂的要求;采用低波长检测时,还应考虑有机溶剂的截止使用波长,并选用色谱级有机溶剂。蒸发光散射检测 器和质谱检测器不得使用含不挥发性盐的流动相。 (3)流动相反相色谱系统的流动相常用甲醇 - 水系统和乙腈 - 水系统,用紫外末端波长检测时,宜选用乙腈 - 水系统。流动相中应尽可能不用缓冲盐,如需用时,应尽可能使用低浓度缓冲盐。用十八烷基硅烷键合硅胶色谱柱时,流动 相中有机溶剂一般不低于 5%,否则易导致柱效下降、色谱系统不稳定。

浅谈高效液相色谱的应用与发展

浅谈高效液相色谱的应用与发展 Peishan Zou 摘要:高效液相色谱分析是一种高效、快速、准确的分离分析方法。本文旨在从仪器原理、仪 器结构、应用范围、检测效率、检测准确度等方面简要介绍液相色谱分析法,及在不同领域的 应用情况和本领域分析方法中的重要性等角度进行阐述。着重对高效液相色谱的发展现状进行 总结,并根据发展趋势而延伸,预测未来液相色谱仪的技术发展路线。 关键词:高效液相色谱;应用;发展现状;发展趋势 1. 高效液相色谱的发展历史简况 色谱法最早是由俄国植物学家茨维特(Tswett)在1906年研究用碳酸钙分离植物色素时发现的,色谱法(Chromatography)因之得名。 液相色谱法开始阶段是用大直径的玻璃管柱在室温和常压下用液位差输送流动相,称为经典液相色谱法,此方法柱效低、时间长(常有几个小时)。 高效液相色谱法(High performance Liquid Chromatography,HPLC)是在经典液相色谱法的基础上,于60年代后期引入了气相色谱理论而迅速发展起来的。它与经典液相色谱法的区别是填料颗粒小而均匀,小颗粒具有高柱效,但会引起高阻力,需用高压输送流动相,故又称高压液相色谱法(High Pressure Liquid Chromatography,HPLC)。 高效液相色谱法是目前各种色谱模式中应用最广的一个领域,在化合物的分析方面,世界上约有80% 的化合物,如括高分子化合物、离子型化合物、热不稳定化合物以及有生物活性的化合物都可以用不同模式的HPLC(如正相 HPLC、反相 HPLC、离子交换色谱和离子色谱、体积排除色谱、亲合色谱等等)进行分离分析[1]。 站在当今世界科技前沿的液相色谱用户现在又有了新的需求。首先是改进生产力的需求,因为大量的样品需要在很短的时间内完成;其次是在生化样品及天然产物样品的分析中,样品的复杂性对分离能力提出了更高的要求;第三是在与质谱等检测技术联用时,也提出了更高的要求。由此,UPLC(超高效液相色谱)概念得以提出,将HPLC的极限作为自己的起点。 2.高效液相色谱仪的原理与构造

经典液相色谱法习题

第10章经典液相色谱法习题 (一)选择题 单选题 1.组分在固定相中的质量为 m A (g ),在流动相中的质量为 m B (g ),而该组分在固定相中的浓 度为C A (g /mL ),在流动相中的浓度为 C B (g /mL ),则此组分的分配系数是( ) 。 A m A / m B m B / m A C m A / (m A +m ) D C A / C B 2?在柱色谱法中,可以用分配系数为零的物质来测定色谱柱中的 ( )。 A 流动相的体积(相当于死体积) B 填料的体积 C 填料孔隙的体积 D 总体积 3?在以硅胶为固定相的吸附柱色谱中,正确的说法是 ( )。 A 组分的极性越强?被固定相吸附的作用越强 B 物质的相对分子质量越大,越有利于吸附 C 流动相的极性越强,组分越容易被固定相所吸附 D 吸附剂的活度级数越小,对组分的吸附力越大 4.纸色谱法与薄层色谱法常用正丁醇 -乙酸-水(4:1:5 ,体积比)作为展开剂,正确的操作方 法是( )。 A 三种溶剂混合后直接用作展开剂 作展开剂 C 三种溶剂混合,静置分层后,取下层作展开剂 剂 5 .离子交换色谱法中,对选择性无影响的因素是 A 树脂的交联度 C 样品离子的电荷 6.下列说法错误的是( )。 A 用纸色谱分离时,样品中极性小的组分 R f 值大 B 用反相分配薄层时,样品中极性小的组分 R f 值小 C 用凝胶色谱法分离,样品中相对分子质量小的组分先被洗脱下来 D 用离子交换色谱时,样品中高价离子后被洗脱下来 7?在一硅胶薄板上用不同的溶剂系统分离咖啡碱和氯原酸,结果如下,从中选出最好的溶 剂系统是( )。 B 三种溶剂混合、静置分层后,取上层 D 依次用三种溶剂作展开 ( ). B 树脂的再生过程 D 样品离子的水合半径

超高效液相色谱仪技术参数

超高效液相色谱仪技术参数 原装进口 1. 工作条件 1.1 电源:220V,50Hz 1.2 操作环境 15?C-28?C 1.3 湿度:20-80% 2.技术参数 *2.1 二元高压泵结构:四压力传感器,数控直线驱动色谱双泵。四个压力传感器能够准确的监控泵系统的压力,并对泵做出相应调整,保证流量精度的重复性和稳定性。(需在投标文件中提供泵结构示意图予以证明并加盖仪器制造商公章,并标明四压力传感器示意图位置和真实位置)。 2.1.1 泵类型:数控直线驱动色谱双泵 2.1.2 泵输出压力:≥20000 psi *2.1.3 泵驱动马达:≥4 2.1.4 柱塞杆与马达联接方式:刚性直连 *2.1.5 泵压力传感器数量:≥4 2.1.6 1-4路溶剂任意混合 2.1.7可配内置溶剂选择阀,扩展到9路溶剂 #2.1.8 真空脱气:六通道在线真空脱气机 #2.1.9 流量:最小流量范围≥0.0100,最大流量范围≤2.000mL/min,以0.001mL/min 为增量 *2.1.10 最大操作压力:≥17,800psi(须提供厂家英文官方原版指标及应用证明文件,并加盖仪器制造商公章。 #2.1.11 梯度模式:线性、步进、凹线、凸线四种类型 2.1.12 柱塞清洗:自动,可编程 2.1.13 流量精度:+/-0.02min SD,(全流速范围内),不随反压变化 2.1.14 流速准确度:±1.0% 2.1.15 梯度准确度:± 0.5%,不随反压变化 2.1.16 梯度精度:±0.15%RSD,不随反压变化

#2.1.17缓冲盐浓度和pH值调节:自动配置缓冲盐浓度和自动调节pH值2.1.17.1配置方式:自动比例混合 2.1.17.2计算方式:梯度曲线 2.1.17.3 pH精度: ±0.01 2.2 自动进样器系统 2.2.1密封在线针进样 2.2.2 耐压: 18,000psi 2.2.3 进样模式:任意体积直接注射进样 2.2.4 样品瓶数:≥90 位 2.2.5 进样精度:<0.3%RSD #2.2.6 样品交叉污染度:<0.001% 2.2.7 进样体积:0.1-50μL,以 0.1μL 为增量 2.2.8 进样线性度:>0.999 2.2.9 自动进样循环时间:<30 秒 2.3 柱温箱及色谱柱 2.3.1 温度范围:室温以上 5℃-90℃,增量:0.1℃ 2.3.2加热方式:电加热 2.3.3 预热方式:主动式 2.3.4 色谱柱颗粒度:≤1.7 um 2.3.5 色谱柱与柱温箱上带有使用信息记录装置 2.4紫外/可见光检测器 *2.4.1波长范围:190~700nm 2.4.2波长准确度:±1nm 2.4.3测量范围:0.0001~4.0000AUFS 2.4.4基线噪音:6.0×10-6 AU, 2.4.5基线漂移: ≤5.0x10-4AU/hr/℃ 2.4.6线性范围:2.5AU 2.4.7吸收范围:0.0001 to 4.0000 AUFS 2.4.8光源:氘灯,寿命2000小时

浅析高效液相色谱在药物分析中的应用_论文

浅析高效液相色谱在药物分析中的应用 班级10级生物技术学号110122801252 姓名冯越越 摘要高效液相色谱技术是现在检测防腐剂的常用技术,通过此技术同时检测多种防腐剂,不仅省时而且省力。本实验的难点就是确定流动相的组成、配比、流速以及检测波长,以求同时检测出以上四种防腐剂。确定方案之后,本实验的重点就是样品的前处理,样品的检测,检测方法的稳定性与准确性。本论文的目的旨在准确测定防腐剂的含量,并希望引起广大消费者的关注。 关键词液相色谱;气相色谱;药物分析 引言 HPLC近年来在食品分析检测上应用后,扩大了分析检测范围,提高了分析水平,尤其对食品中残留的微量,痕量有毒有害物质,能快速,准确的分析出来,进一步提高了食品卫生质量,保障了食品安全和人民身体健康,促进了食品出口。HPLC法在食品分析检测中有广泛的应用前景。 1高效液相色谱的简介 高效液相色谱简称HPLC,又称高速或高压液相色谱。该法吸收了普通液相层析和气相色谱的优点,经过适当改进发展起来的,既有普通液相层析的功能,又有气相色谱的特点(即高压,高速,高分辨和高灵敏度)。HPLC是近年来迅速发展起来的一项新颖的分离技术,不仅适用于很多不易挥发,难热分解物质(如蛋白质,肽类,氨基酸及其衍生物等)的定性定量分析,而且也适用于上述物质的制备和分离。HPLC法由于兼备液相和气相两种色谱分析方法的优点,近年来在食品检测和分析上应用并飞速发展。 1.1HPLC与气相柱色谱法(GC)相比较,主要有以下几点优势: (1) GC的分析对象仅限于蒸汽压低、沸点低的样品(仅占有机物总数的20%),不适于分析高沸点有机物、高分子化合物、热稳定性差的有机物及生物活性物质。而HPLC不受此限制,能对80%的有机物进行分离与分析。 (2)GC流动相为惰性气体,不能与待测组分发生作用。HPLC流动相选择余地大,可与待测组分发生作用,而且通过改变流动相的组成,可改善分离的选择性(相当于增加了一个控制和改进分离条件的参数)。 (3)GC通常在高温下进行,HPLC可以室温下进行分离与分析。 (4)非破坏性检测器在HPLC中的使用,可使样品回收(特别是少量珍贵样品)或样品的纯化制备成为可能。 1.2HPLC的特点 (1)分离效能高。由于高效微粒固定相的使用,使理论塔板数可达到103~104块/m,远远高于GC的103左右(填充柱)。 (2)选择性高。因为流动相可与样品组分发生相互作用,所以,通过改变流动相的组成,可以达到控制和改善分离过程选择性的目的。因此,HPLC不仅可以分析不同类型的有机物及其同分异构体,而且已在合成药物和生化药物的生产与控制分析中发挥了重要作用。

高效液相色谱法(HPLC)的概述

此帖与GC版的对应,是为了让大家更好的学习和了解LC 主要内容包括: 1.高效液相色谱法(HPLC)的概述 2. 高效液相色谱基础知识介绍(1——13楼) 3. 高压液相色谱HPLC发展概况、特点与分类 4. 液相色谱的适用性 5.应用 高效液相色谱法(HPLC)的概述 以高压液体为流动相的液相色谱分析法称高效液相色谱法(HPLC)。其基本方法是用高压泵将具有一定极性的单一溶剂或不同比例的混合溶剂泵入装有填充剂的色谱柱,经进样阀注入的样品被流动相带入色谱柱内进行分离后依次进入检测器,由记录仪、积分仪或数据处理系统记录色信号或进行数据处理而得到分析结果。 由于高效液相色谱法具有分离效能高、选择性好、灵敏度高、分析速度快、适用范围广(样品不需气化,只需制成溶液即可)、色谱柱可反复使用的特点,在《中国药典》中有5 0种中成药的定量分析采用该法,已成为中药制剂含量测定最常用的分析方法。 高效液相色谱法按固定相不同可分为液-液色谱法和液-固色谱法;按色谱原理不同可分为分配色谱法(液-液色谱)和吸附色谱法(液-固色谱)等。 目前,化学键合相色谱应用最为广泛,它是在液-液色谱法的基础上发展起来的。将固定液的官能团键合在载体上,形成的固定相称为化学键合相,不易流失是其特点,一般认为有分配与吸附两种功能,常以分配作用为主。C18(ODS)为最常使用的化学键合相。 根据固定相与流动相极性的不同,液-液色谱法又可分为正相色谱法和反相色谱法,当流动相的极性小于固定相的极性时称正相色谱法,主要用于极性物质的分离分析;当流动相

的极性大于固定相的极性时称反相色谱法,主要用于非极性物质或中等极性物质的分离分析。 在中药制剂分析中,大多采用反相键合相色谱法。 系统组成: (一)高压输液系统 由贮液罐、脱气装置、高压输液泵、过滤器、梯度洗脱装置等组成。 1.贮液罐 由玻璃、不锈钢或氟塑料等耐腐蚀材料制成。贮液罐的放置位置要高于泵体,以保持输液静压差,使用过程应密闭,以防止因蒸发引起流动相组成改变,还可防止气体进入。2.流动相 流动相常用甲醇-水或乙腈-水为底剂的溶剂系统。 流动相在使用前必须脱气,否则很易在系统的低压部分逸出气泡,气泡的出现不仅影响柱分离效率,还会影响检测器的灵敏度甚至不能正常工作。脱气的方法有加热回流法、抽真空脱气法、超声脱气法和在线真空脱气法等。 3.高压输液泵 是高效液相色谱仪的关键部件之一,用以完成流动相的输送任务。对泵的要求是:耐腐蚀、耐高压、无脉冲、输出流量范围宽、流速恒定,且泵体易于清洗和维修。高压输液泵可分为恒压泵和恒流泵两类,常使用恒流泵(其压力随系统阻力改变而流量不变)。 (二)进样系统 常用六通阀进样器进样,进样量由定量环确定。操作时先将进样器手柄置于采样位置(L OAD),此时进样口只与定量环接通,处于常压状态,用微量注射器(体积应大于定量环体积)注入样品溶液,样品停留在定量环中。然后转动手柄至进样位置(INJECT),使定量环接入输液管路,样品由高压流动相带入色谱柱中。 (三)色谱柱 由柱管和填充剂组成。柱管多用不锈钢制成。柱内填充剂有硅胶和化学键合固定相。在化学键合固定相中有十八烷基硅烷键合硅胶(又称ODS柱或C18柱)、辛烷基硅烷键合硅

经典液相色谱法习题.docx

第 10 章 经典液相色谱法习题 一)选择题 单选题 1.组分在固定相中的质量为 m A (g) ,在流动相中的质量为 m B (g) ,而该组分在固定相中的浓 度为C A (g /mL),在流动相中的浓度为 Q(g /mL),则此组分的分配系数是( ) 。 A m A /m B B m B / m A C m A /(m A +m B ) D C A / C B 2.在柱色谱法中,可以用分配系数为零的物质来测定色谱柱中的 ( )。 A 流动相的体积 (相当于死体积 ) B 填料的体积 C 填料孔隙的体积 D 总体积 3.在以硅胶为固定相的吸附柱色谱中,正确的说法是 ( )。 A 组分的极性越强.被固定相吸附的作用越强 B 物质的相对分子质量越大,越有利于吸附 C 流动相的极性越强,组分越容易被固定相所吸附 D 吸附剂的活度级数越小,对组分的吸附力越大 4.纸色谱法与薄层色谱法常用正丁醇 -乙酸-水(4:1:5 ,体积比)作为展开剂, 正确的操作方 法是 ( ) 。 A 三种溶剂混合后直接用作展开剂 作展开剂 C 三种溶剂混合, 静置分层后, 取下层作展开剂 剂 5.离子交换色谱法中,对选择性无影响的因素是 A 树脂的交联度 C 样品离子的电荷 6.下列说法错误的是 ( )。 A 用纸色谱分离时,样品中极性小的组分 R f 值大 B 用反相分配薄层时,样品中极性小的组分 R f 值小 C 用凝胶色谱法分离,样品中相对分子质量小的组分先被洗脱下来 D 用离子交换色谱时,样品中高价离子后被洗脱下来 7.在一硅胶薄板上用不同的溶剂系统分离咖啡碱和氯原酸,结果如下,从中选出最好的溶 剂系统是 ( )。 A 氯仿 - 丙酮 (8:2) :咖啡碱的 R f 为 0.1 ,氯原酸的 R f 为 0.0 B 氯仿-丙酮-甲醇-乙酸(721.5:0.5):咖啡碱的R f 为0.48 ,氯原酸的R 为0.05 B 三种溶剂混合、静置分层后,取上层 D 依次用三种溶剂作展开 ( ). B 树脂的再生过程 D 样品离子的水合半径

通则0512高效液相色谱法

高效液相色谱法: 系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。 注入的供试品,由流动相带入色谱柱内,各组分在柱内被分离,并进入检测器检测, 由积分仪或数据处理系统记录和处理色谱信号。 1.对仪器的一般要求和色谱条件 高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据处理系统组成。 色谱柱内径一般为3.9~4.6mm,填充剂粒径为3~10μm。 超高液相色谱仪:是适应小粒径(约2μm)填充剂的耐超高压、小进样量、低死体积、 高灵敏度检测的高效液相色谱仪。 (1)色谱柱 反相色谱柱: 以键和非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合物复合硅胶和聚合物等;常用的填充剂优十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。 正相色谱柱: 用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。常见的填充剂有硅胶、氨基键合硅胶 和氰基键合硅胶等。氨基键合硅胶和氰基键合硅胶也可用作反向色谱。 离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。 手性分离色谱柱:用手性填充剂填充而成的色谱柱。

色谱柱的内径和长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分离物质的性质来选择合适的色谱柱。 温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。为改善分离效果可适当提高色谱柱的温度,但一般不宜超过60℃。 残余硅羟基未封闭的硅胶色谱柱,流动相的pH值一般应在2~8之间。残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值的流动相,适合于pH值小于2或大于8的流动相。 (2)检测器 最常用的检测器为紫外-可见分光检测器,包括二极管阵列检测器, 其他常见的检测器有荧光检测器、蒸发光散射检测器、示差折光检测器、电化学检测器和质谱检测器等。 紫外-可见分光检测器、荧光检测器、电化学检测器为选择性检测器, 其响应值不仅与被测物质的量有关,还与其结构有关; 蒸发光散射检测器和示差折光检测器为通用型检测器, 对所有物质均有响应,结构相似的物质在蒸发光散射检测器的响应值几乎仅与被测物质的量有关。 紫外-可见分光检测器、荧光检测器、电化学检测器和示差折光检测器的响应值与被测物质的量在一 定范围内呈线性关系, 但蒸发光散射检测器的响应值与被测物质的量通常呈指数关系,一般需经对数转换。 不同的检测器,对流动相的要求不同。 紫外-可见分光检测器所用流动相应符合紫外-可见分光光度法(通则0401)项下对溶剂的要求; 采用低波长检测时,还应考虑有机溶剂的截止使用波长,并选用色谱级有机溶剂。 蒸发光散射检测器和质谱检测器不得使用含不挥发性盐的流动相。 (3)流动相

论文 高效液相色谱在药物分析中的应用

高效液相色谱法在药物分析中的应用与发展 摘要:色谱分析作为重要的分离分析技术,已成为药物研制开发、生产单位、药品检验部门及医院临床检验等各个领域中药物质量控制必不可少的方法和技术。高效液相色谱法是20世纪60年代末70年代初出现的分析速度快、分离效率高、操作自动化的新型色谱分析方法。它已逐渐成为药物分析领域中重要的分析手段及主要制备方式之一。 关键词:高效液相色谱法药物分析 1.前言 高效液相色谱法(High Performance Liquid Chromatography , HPLC),又称“高压液相色谱法”或“高速液相色谱法”,是20世纪60年代末,在经典液相色谱的基础上引入气相色谱的理论与实验方法,并加以改进而发展起来的一种重要分离分析方法。HPLC采用了高压输液泵,高效固定相和高灵敏度在线检测器等技术,具有分离效能高、分析速度快、灵敏度高、色柱可以反复使用、流动相可选择范围宽、流出组容易收集、适用范围广和安全等优点,特别适合挥发性低、热稳定性差、分子量大的高分子化合物以及离子型化合物的分离分析测试,广泛应用于医学、药学、化学、生化、工业、农业、环保、商检和法检等科学领域错误!未找到引用源。。近年来,高效液相色谱法在药物分析中发挥着越来越重要的作用,主要是鉴别相关物质、检查药物中有关物质的含量限度以及测定有效成分或主要成分含量,世界各国已将该法收载于药典。本文就高效液相色谱法在药物分析研究中的应用和发展综述如下。

2.高效液相色谱法在药物分析中的应用 2.1高效液相色谱法在药物鉴别中的应用 在HPLC法中,保留时间与组分的结构和性质有关,是定性的参数,可用于药物的鉴别。如中国药典收载的药物头孢羟氨苄的鉴别项下规定:在含量测定项下记录的色谱图中,供试品主峰的保留时间应与对照品主峰的保留时间一致。头孢拉定、头孢噻酚钠等头孢类药物以及地西泮注射液、曲安奈德注射液等多种药物均采用HPLC法进行鉴别。王维剑[7]王维剑,张军仁,庞华.替莫唑胺含量测定方法的研究[J].药物分析杂志,2003 ,23 (5) :344.等以ODS柱,甲醇-0.5%乙酸(1:9)为流动相,DVD检测器,波长329 nm测定了一种新型抗肿瘤药替莫唑胺(temzolo-mide),为申报新药提供了数据。崔静茹[8]崔静茹,杜智敏.半夏止咳糖浆的制备与鉴别[J].实用新闹肺血管病杂志. 2008, 16(7): 61-63.等以十八烷基硅烷键合硅胶为填充剂,分别以甲醇-冰乙酸-水(30∶4∶66)和以乙腈-0·1%磷酸液(9∶91)为流动相,检测波长分别为283 nm、207 nm,对半夏止咳糖浆中的陈皮、麻黄进行鉴别,方法简便准确,专属性强,重复性好,可用于控制此中药制剂的内在质量。王小平[9]王小平,林励,白吉庆.HPLC指纹图谱法鉴别蜂胶和树胶[J].陕西农业科学,2009,55(3):133—135.等还采用HPLC 指纹图谱法对蜂胶和树胶进行鉴别。这些应用无疑为进一步完善、开发药物鉴别的方法提供了一种新的思路。 2.2高效液相色谱法在含量测定中的应用 用高效液相色谱法测定含量可以消除药物中的杂质,制剂中的附加剂及共存的药物对测定的干扰,因此药物成分含量测定中HPLC法应用广泛。杜洪光[10] 杜洪光,赖宇宏,王丽等. HPLC法测定苯甲酸

高效液相色谱仪简介

高效液相色谱仪简介 系统组成、工作原理 高效液相色谱仪的系统由储液器、泵、进样器、色谱柱、检测器、记录仪等几部分组成。储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相) 内, 由于样品溶液中的各组分在两相中具有不同的分配系数, 在两相中作相对运动时, 经过反复多次的吸附- 解吸的分配过程, 各组分在移动速度上产生较大的差别, 被分离成单个组分依次从柱内流出, 通过检测器时, 样品浓度被转换成电信号传送到记录仪,数据以图谱形式打印出来。 高效液相色谱 (high performance liquid chromatography, HPLC)也叫高压液相色谱(high pressure liquid chromatography)、高速液相色谱(high speed liquid chromatography)、高分离度液相色谱(high resolution liquid chromatography)等。是在经典液相色谱法的基础上,于60年代后期引入了气相色谱理论而迅速发展起来的。它与经典液相色谱法的区别是填料颗粒小而均匀,小颗粒具有高柱效,但会引起高阻力,需用高压输送流动相,故又称高压液相色谱。又因分析速度快而称为高速液相色谱。 高效液相色谱是目前应用最多的色谱分析方法,高效液相色谱系统由流动相储液体瓶、输液泵、进样器、色谱柱、检测器和记录器组成,其整体组成类似于气相色谱,但是针对其流动相为液体的特点作出很多调整。HPLC的输液泵要求输液量恒定平稳;进样系统要求进样便利切换严密;由于液体流动相粘度远远高于气体,为了减低柱压高效液相色谱的色谱柱一般比较粗,长度也远小于气相色谱柱。HPLC应用非常广泛,几乎遍及定量定性分析的各个领域。 使用高效液相色谱时,液体待检测物被注入色谱柱,通过压力在固定相中移动,由于被测物种不同物质与固定相的相互作用不同,不同的物质顺序离开色谱柱,通过检测器得到不同的峰信号,最后通过分析比对这些信号来判断待侧物所含有的物质。高效液相色谱作为一种重要的分析方法,广泛的应用于化学和生化分析中。高效液相色谱从原理上与经典的液相色谱没有本质的差别,它的特点是采用了高压输液泵、高灵敏度检测器和高效微粒固定相,适于分析高沸点不易挥发、分子量大、不同极性的有机化合物。 发展历史

分析化学答案第18章 经典液相色谱法

第18章 经典液相色谱法 思考题 3. 已知某混合物试样A 、B 、C 三组分的分配系数分别为440、480、520,三组分在薄层色谱上R f 值的大小顺序如何? 解: ∵m s f V V K R +=11 ,Vs 、Vm 一定,K 越大,R f 越小。 ∴ R fA > R fB > R Fc 习题 1. 假如一个溶质的分配比为0.2,求它在色谱流动相中的百分率是多少。 解:∵ 2.0==m s W W k %3.83%1002 .011%100=?+=?+=s m m W W W A 2. 一根色谱柱长10cm,流动相流速为0.01cm/s ,组分A 的洗脱时间为40min ,A 在流动相 中消耗多少时间? 解:min 7.1660 01.0100=?==u L t 即A 在流动相中消耗的时间为16.7min. 3. 已知A 与B 物质在同一薄层板上的相对比移值为1.5。展开后,B 物质色斑距原点9cm , 此时溶剂前沿到原点的距离为18cm, 求A 物质的展距和R f 。 解:5.19 )() (====A B A B f A f t l l l R R R l a = 9×1.5 = 13.5 cm 75.018 5.130===l l R A fA 4. 今有两种性质相似的组分A 和B ,共存于同一溶液中。用纸色谱分离时,它们的比移值 R f 分别为0.45和0.63。欲使分离后两斑点中心间的距离为2cm ,滤纸条应取用多长? 解:设A 组分的展距为l A , 则B 组分的展距为l A +2 , 45.00== l l R A fA 63.020=+=l l R A fB cm l 1.1145 .063.020=-=

色谱分析(中国药科大学)超高效液相色谱(UPLC)

超高效液相色谱(UPLC) 超高效液相色谱技术(ultra performance liquid chcromatography,简称UPLC)是一种综合了小颗粒填料、非常低系统体积(死体积)及快速检测手段等全新的检测技术。在全面提升HPLC的速度、灵敏度及分离度的同时,保留其原有的实用性及原理。基于小颗粒技术的UPLC,并非普通HPLC系统改进而成。它不但需要耐压、稳定的小颗粒填料(可达1.7μm),而且需要耐压的色谱系统(>15,000psi)、最低交叉污染的快速进样器、快速检测器及优化的系统体积等诸多方面的保障,以充分发挥小颗粒技术优势。这就需要对系统所有硬件和软件的进行全面创新。世界第一个商品化UPLC产品是Waters ACQUITY UPLC TM超高效液相色谱系统,它于2004年3月投入市场。 图1:填料技术的沿革 1.小颗粒填料改善分离的理论与科学基础 液相色谱30年的发展史是颗粒技术的发展史。颗粒大小的改变直接影响到柱效,从而对分离结果产生直接影响。由上图可知:随着颗粒度的不断降低,色谱分

离度不断提高。事实上,上述规律的理论基础是著名的Van Deemeter方程。Van Deemeter方程是色谱科学家预测颗粒度变化而引起的色谱变化的根本依据。Van Deemeter曲线(见图2)预测最佳柱效与相应的流动相流速。由Van Deemeter方程得知:随着颗粒度减小,相应的理论塔板高度(HETP)也下降,得到的柱效会更高。还应该注意到1.7 μm颗粒的HETP最小值区域扩大了(见图2),这表明可以在比大颗粒更宽的流量范围内得到最高的柱效,结果可以不损失高分离度的同时来适当提高流动相的流速(分析速度)。小颗粒填料为色谱分离带来如此的高柱效和速度优势,使得利用小颗粒技术成为色谱科学家梦寐以求的目标。然而HPLC系统的设计,一直难于发挥出最小颗粒的优点。小颗粒技术的运用,不但要求仪器在超出目前限度(6000 psi/ 400 bar)的压力下工作,同时要求仪器系统的死体积要更小,以便不影响梯度性能,而且还要检测器能高速检测出峰宽只有几秒的色谱峰。 在利用杂化颗粒技术合成出耐压的新一代小颗粒色谱填料之后,UPLC超高效液相色谱系统的设计,充分利用了小颗粒填料的所有优点,弥补传统HPLC系统的不足。

液相色谱仪的原理和分析方法

液相色谱仪的原理及分析方法 高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9′107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。 特点: 1.高压:液相色谱法以液体为流动相(称为载液),液体流经色谱柱,受到阻力较大,为了迅速地通过色谱柱,必须对载液施加高压。一般可达150~350×105Pa。 2. 高速:流动相在柱内的流速较经典色谱快得多,一般可达1~10ml/min。高效液相色谱法所需的分析时间较之经典液相色谱法少得多,一般少于1h 。 3. 高效:近来研究出许多新型固定相,使分离效率大大提高。 4.高灵敏度:高效液相色谱已广泛采用高灵敏度的检测器,进一步提高了分析的灵敏度。如荧光检测器灵敏度可达10-11g。另外,用样量小,一般几个微升。 5.适应范围宽:气相色谱法与高效液相色谱法的比较:气相色谱法虽具有分离能力好,灵敏度高,分析速度快,操作方便等优点,但是受技术条件的限制,沸点太高的物质或热稳定性差的物质都难于应用气相色谱法进行分析。而高效液相色谱法,只要求试样能制成溶液,而不需要气化,因此不受试样挥发性的限制。对于高沸点、热稳定性差、相对分子量大(大于400 以上)的有机物(这些物质几乎占有机物总数的75% ~80% )原则上都可应用高效液相色谱法来进行分离、分析。据统计,在已知化合物中,能用气相色谱分析的约占20%,而能用液相色谱分析的约占70~80%。 高效液相色谱按其固定相的性质可分为高效凝胶色谱、疏水性高效液相色谱、反相高效液相色谱、高效离子交换液相色谱、高效亲和液相色谱以及高效聚焦液相色谱等类型。用不同类型的高效液相色谱分离或分析各种化合物的原理基本上与相对应的普通液相层析的原理相似。其不同之处是高效液相色谱灵敏、快速、分辨率高、重复性好,且须在色谱仪中进行。 高效液相色谱法的主要类型及其分离原理

高效液相色谱测定法标准操作规程

标准操作规程 1目的:建立高效液相色谱测定法操作规程,以使检验操作规化。 2适用围:适用于高效液相色谱测定法检验操作全过程。 3责任:QC人员对本SOP实施负责。 4容 高效液相色谱法系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。注入的供试品,由流动相带入色谱柱,各组分在柱被分离,并进入检测器检测,由积分仪或数据处理系统记录和处理色谱信号。 4.1.对仪器的一般要求和色谱条件 高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据处理系统组成。色谱柱径一般为3.9~4.6mm,填充剂粒径为3~10μm。超高效液相色谱仪是适应小粒径(约2μm)填充剂的耐超高压、小进样量、低死体积、高灵敏度检测的高效液相色谱仪。 4.1.1.色谱柱 反相色谱柱:以键合非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合物复合硅胶和聚合物等;常用的填充剂有十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。 正相色谱柱:用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。常用的填充剂有硅胶、氨基键合硅胶和氰基键合硅胶等。氨基键合硅胶和氰基键合硅胶也可用作反相色谱。离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。 手性分离色谱柱:用手性填充剂填充而成的色谱柱。 色谱柱的径与长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分

离物质的性质来选择合适的色谱柱。 温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。为改善分离效果可适当提高色谱柱的温度,但一般不宜超过60℃。 残余硅羟基未封闭的硅胶色谱柱,流动相pH值一般应在 2?8之间。残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值的流动相,适合于pH 值小于2或大于8 的流动相。 4.1.2.检测器 最常用的检测器为紫外-可见分光检测器,包括二极管阵列检测器,其他常见的检测器有荧光检测器、蒸发光散射检测器、示差折光检测器、电化学检测器和质谱检测器等。 紫外-可见分光检测器、荧光检测器、电化学检测器为选择性检测器,其响应值不仅与被测物质的量有关,还与其结构有关;蒸发光散射检测器和示差折光检测器为通用检测器,对所有物质均有响应。结构相似的物质在蒸发光散射检测器的响应值几乎仅与被测物质的量有关。 紫外-可见分光检测器、荧光检测器、电化学检测器和示差折光检测器的响应值与被测物质的量在一定围呈线性关系,但蒸发光散射检测器的响应值与被测物质的量通常呈指数关系,一般需经对数转换。 不同的检测器,对流动相的要求不同。紫外-可见分光检测器所用流动相应符合紫外-可见分光光度法(通则0401)项下对溶剂的要求;采用低波长检测时,还应考虑有机溶剂的截止使用波长,并选用色谱级有机溶剂。蒸发光散射检测器和质谱检测器不得使用含不挥发性盐的流动相。 4.1.3.流动相 反相色谱系统的流动相常用甲醇-水系统和乙腈-水系统,用紫外末端波长检测时,宜选用乙腈-水系统。流动相中应尽可能不用缓冲盐,如需用时,应尽可能使用低浓度缓冲盐。用十八烷基硅烷键合硅胶色谱柱时,流动相中有机溶剂一般不低于5%,否则易导致柱效下降、色谱系统不稳定。 正相色谱系统的流动相常用两种或两种以上的有机溶剂,如二氯甲烷和正己烷等。 品种正文项下规定的条件除填充剂种类、流动相组分、检测器类型不得改变外,其余如色谱柱径与长度、填充剂粒径、流动相流速、流动相组分比例、柱温、进样量、检测器灵敏度等,均可适当改变,以达到系统适用性试验的要求。调整流动相组分比例时,当小比例组分的百分比例X小于等于33%时,允许改变围为0.7X?1.3X;当X大于33%时,允许改变围为X—10%?X+10% 。

高效液相色谱法论文

高效液相色谱法论文 液相色谱法流动 摘要:介绍高效液相色谱仪的流动相的调制方法。 关键词:高效液相色谱仪缓冲液流动相调制 液相色谱法的流动相主要用水性溶剂、有机溶剂,或它们的混合液。另外,水性溶剂也常用于缓冲液。有的资料[1]介绍了用于高效液相色谱法的代表性缓冲液的具体调制方法,但通常对缓冲液的解释往往含糊不清。因此,常因资料上表示的内容与实际的配置方法的不同,而产生流动相的差异,影响色谱图和分析结果。而且,不仅缓冲液,有时还要考虑到溶剂的混合方法等流动相调制方法方面的漏洞等因素[2]。本文以具体的事例,研究流动相调制方法对分析结果的影响。 1)缓冲液的调制 例如,写的是“20mM磷酸缓冲液(PH2.5)”在实际中该怎样调制?不妨举几个能想到的情况。首先,可以确定是使用磷酸的缓冲液,但是,是什么离子不明确。即使就以钠离子而言,“20mM”的浓度弄不清是指磷酸,还是指磷酸钠的浓度。若认为是“20mM”磷酸(钠)缓冲液,“20mM”可看作是磷酸的浓度。另一方面,若把“20mM”看作是钠

的浓度,也可以认为是“20mM磷酸二氢钠水溶液调整PH后的缓冲液(而且, 20mM磷酸钠水溶液的PH在5.0附近,只要稍用一点酸就可以调到PH2.5)”,这时,由于调整PH用的酸,产生离子对的效果,或者也许会对分析结果有影响。从上述考虑,会产生对缓冲液有多种解释的可能性。 上述例,具体有3种解释。对分析结果会产生多大影响,见图1所示。上段是“20mM”作为磷酸浓度的解释,将作为“20mM磷酸(钠)缓冲液(PH2.5)”调制的溶液用于流动相的结果。中段和下段“20mM”作为磷酸二氢钠的浓度解释,分别加磷酸和高氯酸调整PH为2.5时的结果。像此例中的二氢可待因那样对保留时间有明显的影响时,给分析方法造成困难。对缓冲液应尽量明确溶液的特性和调制方法,以免产生不同的解释。(如图1) 2)有机溶剂和水性溶剂的混合方法 有机溶剂和水性溶剂的混合液作为流动相是经常的,但是由于混合方法的不同,有时分析结果相关很大。作为一例,20mM磷酸(钠)缓冲液(PH2.5)90%与乙腈10%的混合时,混合比为9:1的话,20mM磷酸(钠)缓冲液(PH2.5)与乙腈的体积比为9:1,也就是可以解释为各自按体积比率的相当量称取后进行混合。另外,按10%乙腈解释的话,解释为用

相关文档