文档视界 最新最全的文档下载
当前位置:文档视界 › 高效液相色谱二极管阵列检测器联用仪技术参数

高效液相色谱二极管阵列检测器联用仪技术参数

高效液相色谱二极管阵列检测器联用仪技术参数
高效液相色谱二极管阵列检测器联用仪技术参数

高效液相色谱-二极管阵列检测器联用仪技术参数

1、二元泵主机

*两个双活塞串联泵,具有独特的伺服控制可变冲程(100ul)驱动、浮动活塞设计。

*可设置的流速范围:0.001~10mL/min, 增量为0.001mL/min

*流速精密度:≤0.070%RSD或≤0.02min SD

流速准确度:±1%或10uL/min

*压力范围:0~600bar

压力脉动:< 2%

pH范围:1.0~12.5

梯度形成:高压二元混合

梯度延迟体积:600~800μL(与反压相关);

梯度组成比例范围:0-100%

混合准确度:<0.2%RSD或<0.04min SD

*集成的脱气元件:通道个数:2通道;每个通道的内部体积:1.5mL

2、集成真空脱气机

*二通路在线真空膜过滤技术,内置真空泵,压力传感器,实时监控真空腔压力变化,保证及时高效的脱气操作。

最大流速(每一通路):10mL/min

内体积(每一通路):12mL

pH耐受范围:1~14

3、标准自动进样器

自动进样器具独特的流路设计,采用高压、阀进样技术。

进样范围:0.1~100uL,增量为0.1uL;安装多次进样组件,最大进样体积可达1800uL 进样精密度:< 0.25% RSD(进样体积5~100uL)

< 1% RSD (进样体积1~5uL)

< 0.5% RSD (进样体积达1500uL,安装多次进样套件)最快进样速度:1000uL/min

样品粘度范围:0.2~5cp

pH范围:1.0~9.5

*样品容量≥130位2mL样品瓶

交叉污染:<0.004%

*操作压力范围:最高800bar

4、柱温箱

*半导体温控设计,流动相柱前预加热,有效防止流动相在色谱柱内的热交换,有利于色谱柱内快速温度平衡,及两相间的物质分配平衡。

控温范围:室温下10℃~80℃,宏命令可控制至90℃

控温速率:室温加热至40℃,5min;40℃降温至20℃,10min

控温精度:±0.15℃

控温准确度:±0.5℃

最大柱容量:9.4mm ID × 30cm × 2

*内体积:左控温模块3μL,右控温模块6μL

5、二极管阵列检测器

检测器类型:1024个二极管元件

光源:氘灯和钨灯

信号数量:8

*最大采集速率:120Hz

基线噪音:±0.7?10-5AU at 254nm

基线漂移:<0.9?10-3mAU/h at 230nm

线性范围:>2.0AU

*波长范围:190~950nm

二极管宽度<1nm

波长聚束:可编程,1-400nm,增量1nm

*波长准确度:±1nm氘灯和内置氧化钬滤光片自动校正

*流通池:光程10mm,最大压力120bar;

光谱工具:数据分析软件,用于光谱评估,包括谱库和峰纯度分析功能

6、仪器控制及数据处理系统

参数输入:仪器控制参数,数据采集及计算处理参数的设定;工作站系统通过LAN接口控制泵系统和检测器并可进行快速采集数据,进行色谱定性、量分析。

报告:内置多种报告格式,可自动生成系统适应性报告、峰纯度报告、光谱检索报告等;

用户也可编辑个性化的报告模板;

早期维护预警(EMF):提供消耗元件累计使用情况,以便及时进行系统预防性维护;

安装验证(IQ):仪器软、硬件的自动认证;

电子日志:实时记录仪器使用操作情况,随时查阅仪器状态。GLP功能

7、工作条件:

工作电压:220+5% V

环境温度:4~55?C

环境湿度:<95%相对湿度(不冷凝)

8、技术资料:

供货方提供产品样本、中英文操作手册各壹套

9、技术服务和培训

仪器制造商授权的技术人员到现场免费进行安装调试该系统,确保仪器技术指标验收合格,并在用户实验室免费培训操作技术人员。

仪器制造商在中国境内提供培训中心, 免费培训用户的操作技术人员(贰人次/四天/壹台) ,差旅费自理。

*在中国有完备的售后服务和技术支持,通过ISO9001售后服务质量体系认证,并提供认证证书。

10、质量保证期:

按技术指标进行验收,验收合格后12个月为质保期。

11、配置清单

1)二元泵600bar液相色谱主机1台2)系统工具包1套3)集成在线脱气机无需对进样清洗液脱气1套4)至少130位以上自动进样器1套

5)主动密封垫清洗1套

6)主动阀1套7)柱温箱1套8)二极管阵列检测器及流通池1套

9)液相色谱软件及光谱软件1套10)手拧PEEK接头10个11)PEEK管线1套12)过滤白头10个13)螺纹口样品瓶盖、垫及样品瓶200个14)分析型色谱柱 2 根15)国内采购电脑及打印机1套

雪崩光电二极管的特性

雪崩光电二极管的介绍 及等效电路模拟

雪崩光电二极管的介绍及等效电路模拟 [文档副标题] 二〇一五年十月 辽宁科技大学理学院 辽宁省鞍山市千山中路185号

雪崩光电二极管的介绍及等效电路模拟 摘要:PN结有单向导电性,正向电阻小,反向电阻很大。当反向电压增大到一定数值时,反向电流突然增加。就是反向电击穿。它分雪崩击穿和齐纳击穿(隧道击穿)。雪崩击穿是PN 结反向电压增大到一数值时,载流子倍增就像雪崩一样,增加得多而快,利用这个特性制作的二极管就是雪崩二极管。雪崩击穿是在电场作用下,载流子能量增大,不断与晶体原子相碰,使共价键中的电子激发形成自由电子-空穴对。新产生的载流子又通过碰撞产生自由电子-空穴对,这就是倍增效应。1生2,2生4,像雪崩一样增加载流子。 关键词:雪崩二极管等效电路 1.雪崩二极管的介绍 雪崩光电二极管是一种p-n结型的光检测二极管,其中利用了载流子的雪崩倍增效应来放大光电信号以提高检测的灵敏度。其基本结构常常采用容易产生雪崩倍增效应的Read二极管结构(即N+PIP+型结构,P+一面接收光),工作时加较大的反向偏压,使得其达到雪崩倍增状态;它的光吸收区与倍增区基本一致(是存在有高电场的P区和I区)。 P-N结加合适的高反向偏压,使耗尽层中光生载流子受到强电场的加速作用获得足够高的动能,它们与晶格碰撞电离产生新的电子一空穴对,这些载流子又不断引起新的碰撞电离,造成载流子的雪崩倍增,得到电流增益。在0.6~0.9μm波段,硅APD具有接近理想的性能。InGaAs(铟镓砷)/InP(铟磷)APD是长波长(1.3μn,1.55μm)波段光纤通信比较理想的光检测器。其优化结构如图所示,光的吸收层用InGaAs材料,它对1.3μm和1.55μn 的光具有高的吸收系数,为了避免InGaAs同质结隧道击穿先于雪崩击穿,把雪崩区与吸收区分开,即P-N结做在InP窗口层内。鉴于InP材料中空穴离化系数大于电子离化系数,雪崩区选用n型InP,n-InP与n-InGaAs异质界面存在较大价带势垒,易造成光生空穴的陷落,在其间夹入带隙渐变的InGaAsP(铟镓砷磷)过渡区,形成SAGM(分别吸收、分级和倍增)结构。 在APD制造上,需要在器件表面加设保护环,以提高反向耐压性能;半导体材料以Si 为优(广泛用于检测0.9um以下的光),但在检测1um以上的长波长光时则常用Ge和InGaAs(噪音和暗电流较大)。这种APD的缺点就是存在有隧道电流倍增的过程,这将产生较大的散粒噪音(降低p区掺杂,可减小隧道电流,但雪崩电压将要提高)。一种改进的结构是所谓SAM-APD:倍增区用较宽禁带宽度的材料(使得不吸收光),光吸收区用较窄禁带宽度的材料;这里由于采用了异质结,即可在不影响光吸收区的情况下来降低倍增区的掺杂浓度,使得其隧道电流得以减小(如果是突变异质结,因为ΔEv的存在,将使光生

服务器RAID知识介绍

服务器RAID知识介绍 第一章RAID知识介绍 RAID的全称是廉价磁盘冗余阵列(Redundant Array of Inexpensive Disks),于1987年由美国Berkeley 大学的两名工程师提出的RAID出现的,最初目的是将多个容量较小的廉价硬盘合并成为一个大容量的“逻辑盘”或磁盘阵列,实现提高硬盘容量和性能的功能。 随着RAID技术的逐渐普及应用,RAID技术的各方面得到了很大的发展。现在,RAID从最初的RAID0-RAID5,又增加了RAID0+1和RAID0+5等不同的阵列组合方式,可以根据不同的需要实现不同的功能,扩大硬盘容量,提供数据冗余,或者是大幅度提高硬盘系统的I/0吞吐能力。 RAID技术主要有三个特点: 第一、通过对硬盘上的数据进行条带化,实现对数据成块存取,减少硬盘的机械寻道时间,提高数据存取速度。 第二、通过对一阵列中的几块硬盘同时读取,减少硬盘的机械寻道时间,提高数据存取速度。 第三、通过镜像或者存储奇偶校验信息的方式,实现对数据的冗余保护。 经常应用的RAID阵列主要分为RAID 0,RAID 1,RAID 5和RAID 0+1。 1.1 RAID0:条带化 RAID 0 也叫条带化,它将数据象条带一样写到多个磁盘上,这些条带也叫做“块”。条带化实现了可以同时访问多个磁盘上的数据,平衡I/O负载,加大了数据存储空间和加快了数据访问速度。 RAID 0是唯一的一个没有冗余功能的RAID技术,但RAID0 的实现成本低。如果阵列中有一个盘出现故障,则阵列中的所有数据都会丢失。如要恢复RAID 0,只有换掉坏的硬盘,从备份设备中恢复数据到所有的硬盘中。 硬件和软件都可以实现RAID0。实现RAID0最少用2个硬盘。对系统而言,数据是采用分布 方式存储在所有的硬盘上,当某一个硬盘出现故障时数据会全部丢失。RAID 0 能提供很高的 硬盘I/O性能,可以通过硬件或软件两种方式实现。 1.2 RAID1 也被称为磁盘镜像。系统将数据同时重复的写入两个硬盘,但是在操作系统中表现为一个逻辑盘。所以如果一个硬盘发生了故障,另一个硬盘中仍然保留了一份完整的数据,系统仍然可以照常工作。系统可以同时从两个硬盘读取数据,所以会提高硬盘读的速度;但由于在系统写数据需要重复一次,所以会影响系统写数据的速度。硬盘容量的利用率只有50%。 1.3 RAID0+1 对RAID0阵列做镜像。这是一种Dual Level RAID,也有人称之为RAID level 10。是两组硬盘先做RAID0,组成两颗大容量的逻辑硬盘,再互相为“镜像”。在每次写入数据,磁盘阵列控制器会将资料同时写入该两组“大容量数组硬盘组”内。 同RAID level 1 一样,虽然其硬盘使用率亦只有50%,但它却是最具高效率的规划方式。 1.4 RAID5 是在RAID3和RAID4的基础上发展来的,它继承了它们的数据冗余和条带化的特点,并将数据校验信息均匀保存在阵列中的所有硬盘上。系统可以对阵列中所有的硬盘同时读写,减少了由硬盘机械系统引起的时间延迟,提高了磁盘系统的I/O能力;当阵列中的一块硬盘仿生故障,系统可以使用保存在其它硬盘上的奇偶校验信息恢复故障硬盘的数据,继续进行正常工作。

蔡司光电二极管阵列光谱仪模块(diodearrayspectromete

蔡司光电二极管阵列光谱仪模块(diode array spectrometer module) 发展外况 由于光学技术、材料技术、电子技术、计算机技术的迅速发展,蔡司于十年已开始光电二极管阵列光谱仪模块的生产及应用推广。现今这类产品已成为测量和分析的基本单元。只要在进行系统设计的基础上,配以相应的辅助部件、电路、计算机、软件等,能够研制出满足各种需求的精密仪器设备。 以光電二极管阵列光谱仪模块为核心的设备能够测量的参数:发光辐射度、荧光发射度、波长测量、颜色测量、膜层厚度测量、温度测量、浓度测量、气体成分测量等;能够测量的光谱达到的范围:紫外、可见、近红外和红外波段;能够测量的对象:激光、照明光源、发光管、液体、织物、宝石等;模块广泛应用于环境监测、工业分析、缺陷检测、化学分析、食品品质检测、材料分析、医学诊断、临床检验、航空航天、遥感等领域。 模块结构 光電二极管阵列光谱仪模块,具有一个设计极佳的结构组成,主体机壳全封闭式的将传送光的光纤(OPTICAL FIBRE)、光纤截面转换器(CROSS SECTION CONVERTER)、凹面成像光栅(CONCAVE GRATING)、二极管阵列紧凑(DIODE ARRAY)、永久的粘在一起,并有相应的电路(CIRCUIT BOARD),构成尽可能小的单元模块。两种模块形式如图1、图2所示。 模块的集成和微型是随着光纤技术、光栅技术、二极管阵列检测技术、电子元器件技术、材料技术的进步和发展而来,更多地成为现场检测和实时监控仪器的首选单元。 图1 光電二极管阵列光谱仪模块(微型,内置控制电路和前置放大器)

图2 光电二极管阵列光谱仪模块(分辨率高,外置控制电路和前置放大器) 产品特点 1.工艺先进:紧凑的机械结构;全封闭;光学部件永久定位;没有机械调整;具有对机 械冲击高度的非敏感性;从而导致非常高的可靠性。 2.仅需要成像光栅,省掉了常规光谱仪中的透镜、凹面镜、平面镜等多个部件。 3.体积小;结构完全免维护;不需重新校正;结实耐用;热稳定性好。 4.可以选择较宽的动态范围和波长范围。 5.高感旋光性;高光谱分辨率;高灵敏度;高效率。 6.良好的波长重复性和波长准确性,结果完全可信。 7.用于各种测量目的,同时多波长测量;完整的多成分分析;测量简单可靠。 8.技术先进:能够连续、稳定、快速的采集光谱数据;测量速度之快,可以用于在线 分析。 单元模块 单元模块的大小是由光纤狭缝、成像光栅、检测器件等部件尺寸决定的。参见图1、图2。从物理光学的角度看,部件尺寸仅由所需要的分辨率决定。由于在许多应用中只需很高的重现性,因此在满足一定分辨率的情况下,采用尽量小的部件。 光电二极管阵列光谱仪模块系列的设计理念是:在硬件上尽量简化光、机结构设计,在尽量减少部件数量的同时,不同型号的模块中尽量使用相同部件。 模块主体 在光电二极管阵列光谱仪模块内部,主体是由UBK7玻璃制成,成像光栅直接贴在玻璃体上,这样光栅是完全固定的,能够理想地防止灰尘和气体的侵蚀。使用高光学密度的材料以及更大的光学孔径,可以使用很小的光栅,从而达到更小的失真。 为了达到更好的传输效果,对于紫外波段的模块,固体玻璃主体被换为中空主体并与

磁盘阵列管理的小技巧

磁盘阵列管理的小技巧 磁盘阵列(Redundant Array of Inexpensive,简称RAID)作为数据存储的一种主要方式在许多企业中被大量采用。磁盘阵列是一种安全可靠的数据存储备份方式,但是磁盘阵列系统本身也存在着安全性的问题,也需要对其本身进行管理维护。若管理不到位,系统一旦出问题,很难用手工方式恢复,会给企业带来不必要的损失。因此根据不同的业务数据量、不同的数据安全性要求,并结合使用的磁盘阵列产品技术支持情况,制定适合的管理维护措施,可以避免系统出错,保证整个网络系统中数据的安全。 注意检查运行日志文件 磁盘阵列的日志文件详细记录了磁盘阵列内部运行情况,包括发生的每个事件序列号、严重级别、相关的服务器IP地址、有关设备的具体位置及事件发生的时间等内容,这些信息对于诊断和排除磁盘阵列故障十分有用。做好日志文件的日常管理工作,往往能起到防患与未然的作用。采用RAID数据冗余技术,即使有一个物理磁盘损坏,也不会影响系统正常运行和数据的I/O,用户也仍能够正常访问服务器,这时故障不易被察觉,但阵列实际上已处于安全临界状态,下一步就会面临着突然宕机和存储数据随时丢失的危险,日志文件及时将这一情况记录在册,损坏的磁盘记录为下线(off line),其所在阵列记录为临界状态(critical),通过检查日志就能够及时发现阵列运行中存在的这个错误和隐患,迅速排除故障,保证阵列始终处于安全运行状态。 注意备份系统配置参数 建立磁盘阵列系统后,要及时记录磁盘阵列的逻辑配置、物理配置、状态配置等参数,具体包括使用的每个逻辑盘大小、RAID类型、条带容量、数据写入磁盘方式、由哪些物理磁盘组成,每个物理磁盘的通道号、目标序列号、生产厂家、型号、容量、阵列控制器的型号、固件(Firmware)版本,处于后备待机状态(Hot Spare)还是在线状态(On Line)等。上述配置参数在磁盘阵列或操作系统崩溃后,在紧急重建阵列、恢复存储数据的过程中是必不可少的。一般阵列控制器BIOS 芯片装载了阵列配置软件,管理员以文件形式备份上述参数。 定时备份重要数据 配备了磁盘阵列并不意味着可以高枕无忧了,由于考虑设备投入成本、技术复杂性等因素,不可能同时采用阵列控制器冗余、磁盘冗余、热备用磁盘、备用电池或双UPS电源供电等技术,所以,对于重要业务数据一定要备份。在美国“9·11”事件中,正是靠磁带备份和远程容灾系统挽救了金融界巨头摩根斯坦利公司,由此可见数据备份工作的重要性。数据备份的介质可以是磁带、可读写光盘,也可以还是磁盘。备份方式可以是通过操作系统本地备份或通过网络系统远程备份。 建立热备用磁盘 热备用磁盘也是RAID技术的又一项技术,当磁盘阵列中一个正在使用的物理磁盘发生故障后,一个待机的磁盘会立刻上线,代替此故障盘,阵列控制器根据逻辑驱动器上的冗余数据,通过校验算法把原来存储在故障盘上的数据重建到热备用磁盘上。成为热备用磁盘必须有三个条

二极管_正负极_型号大全

二极管 一、二极管的种类 二极管有多种类型:按材料分,有锗二极管、硅二极管、砷化镓二极管等;按制作工艺可分为面接触二极管和点接触二极管;按用途不同又可分为整流二极管、检波二极管、稳压二极管、变容二极管、光电二极管、发光二极管、开关二极管、快速恢复二极管等;接构类型来分,又可分为半导体结型二极管,金属半导体接触二极管等;按照封装形式则可分为常规封装二极管、特殊封装二极管等。下面以用途为例,介绍不同种类二极管的特性。 1.整流二极管 整流二极管的作用是将交流电源整流成脉动直流电,它是利用二极管的单向导电特性工作的。 因为整流二极管正向工作电流较大,工艺上多采用面接触结构。南于这种结构的二极管结电容较大,因此整流二极管工作频率一般小于3kHz。 整流二极管主要有全密封金属结构封装和塑料封装两种封装形式。通常情况下额定正向T作电流LF在l A以上的整流二极管采用金属壳封装,以利于散热;额定正向工作电流在lA以下的采用全塑料封装。另外,由于T艺技术的不断提高,也有不少较大功率的整流二极管采用塑料封装,在使用中应予以区别。 由于整流电路通常为桥式整流电路(如图1所示),故一些生产厂家将4个整流二极管封 装在一起,这种冗件通常称为整流桥或者整流全桥(简称全桥)。常见整流二极管的外形如图2所示。 选用整流二极管时,主要应考虑其大整流电流、大反向丁作电流、截止频率及反向恢复时间等参数。

万联芯城https://www.docsj.com/doc/da3978808.html,是国内优秀的电子元器件采购网,电子元器件供应商,万联芯城专业供应终端工厂企业原装现货电子元器件产品,所售电子元器件有IC集成电路,二三极管,电阻电容等多种类别主动及被动类元器件,可申请样片,长久合作可申请账期,万联芯城为客户提供方便快捷的一站式电子元器件配套服务,提交物料清单表,当天即可获得各种元件的优势报价,整单付款当天即可发货,物料供应全国,欢迎广大客户咨询,点击进入万联芯城

雪崩光电二极管在相位式激光测距仪中的应用

可编程器件应用 电 子 测 量 技 术 EL ECTRONIC M EASUREM EN T TEC HNOLO GY 第30卷第2期2007年2月  雪崩光电二极管在相位式激光测距仪中的应用 孙懋珩 丁 燕 (同济大学电子与信息工程学院 上海 200092) 摘 要:雪崩光电二极管作为光敏接收器件,特别适合用于微弱信号的接收检测,它在相位式激光测距系统中用来接收经过漫反射后微弱的激光信号。针对雪崩二极管反向偏压电路中高纹波的问题,本文设计和分析了一种高效的低纹波偏压电路,实验结果表明,该方法有效抑制了纹波电压。针对雪崩二极管温度漂移的问题,本文设计和分析一种新型的温度补偿电路,使雪崩二极管达到了最佳雪崩增益。针对雪崩二极管噪声问题,分析了主要噪声源,设计了一个低噪声的前置放大电路,实验结果表明,该电路有效地提高了信噪比。综合实验结果表明,这些电路设计对于提高相位式激光测距仪的测量精度是有效的。 关键词:雪崩光电二极管;相位式激光测距;纹波;温度补偿;前置放大电路 中图分类号:TN710.2 文献标识码:A Study on application of avalanche photodiode in phase laser distance measurement Sun Maoheng Ding Yan (School of Electronic and Information Engineering,Tongji University,Shanghai200092) Abstract:As a light2sensitive device,avalanche photodiode is particularly suitable for the receiving and detection of weak signal.Therefore,it is always used to receive weak laser signal in the phase laser distance measuring system.To solve the problem of high ripple in the bias voltage circuit,a high efficient circuit with low ripple is designed and analyzed which restrains the ripple effectively.To solve the problem of temperature drift,a new circuit with temperature compensation is designed and analyzed which enables A PD to reach the optimal avalanche gain.To solve the problem of noise,the major noises of A PD are analyzed and a preamplifier circuit with low noise is designed which raise the signal2 to2noise ratio effectively.The results of the experiment indicate that these circuit designs raise the measuring accuracy of the phase laser distance measuring system effectively. K eyw ords:avalanche photodiode;phase laser distance measurement;ripple;temperature compensation;preamplifier 0 引 言 在相位式激光测距仪的激光接收部分中,雪崩二极管作用非常关键。在激光测距仪中,激光从发射到接收,由于经过目标的漫反射以及衰减,接收到的激光信号非常微弱,使得接收检测相对较为困难,所以一般都用雪崩光电二极管作为光敏接收器件[1]。雪崩二极管具有很高的内部增益,响应速度非常快,但要使雪崩二极管发挥其优异的特性,必须给它提供一个较高的反向偏置电压(一般在几十伏以上甚至几百伏。一般的开关电源可以达到这么高的电压要求,但伴随着会有相对较大纹波电压,电源的纹波电压变化范围越大,对雪崩二极管的影响就越大,它会严重影响到雪崩二极管的最佳增益。针对这一情况,本文提出的一种高效的低纹波偏压电路是通过从高压输出端引出一个反馈电路,直接反馈到高压电路的电源端,通过改变电源电压来改变高压输出。在实验中测得的输出高压的纹波与之前未经低纹波设计的高压电路相比,纹波电压得到了很好的抑制。对于雪崩二极管来说,一个小小的温度变化就能引起增益的很大变化,为了保证温度变化时增益值不变,就必须改变PN结倍增区的电场,因此必须接入一个温度补偿电路,在温度变化时来调整光检测器的偏置电压。本文设计了一个新型的温度补偿电路,用一个模拟温度传感器及一个运放,通过简单的计算公式进行参数配置,最终得出一条与A PD最佳增益非常匹配的反向高压输出曲线。雪崩二极管在倍增过程中产生的附加噪声会大大降低测量的性能,为达到最大信噪比,提高相位式激光测距仪的测量精度,本文对其噪声进行了分析并且设计了一个有效的前置放大电路。实验结果表明,该电路有效地提高了信噪比。将这些电路在相位式激光测距仪接收模块中应用,结果表明,它们对于提高相位式激光测

整流二极管工作原理

整流二极管工作原理 二极管又称晶体二极管,简称二极管(diode),另外,还有早期的真空电子二极管;它是一种具有单向传导电流的电子器件。在半导体二极管内部有一个PN结两个引线端子,这种电子器件按照外加电压的方向,具备单向电流的转导性。一般来讲,晶体二极管是一个由p型半导体和n型半导体烧结形成的p-n结界面。在其界面的两侧形成空间电荷层,构成自建电场。当外加电压等于零时,由于p-n 结两边载流子的浓度差引起扩散电流和由自建电场引起的漂移电流相等而处于电平衡状态,这也是常态下的二极管特性。 外加正向电压时,在正向特性的起始部分,正向电压很小,不足以克服PN结内电场的阻挡作用,正向电流几乎为零,这一段称为死区。这个不能使二极管导通的正向电压称为死区电压。当正向电压大于死区电压以后,PN结内电场被克服,二极管导通,电流随电压增大而迅速上升。在正常使用的电流范围内,导通时二极管的端电压几乎维持不变,这个电压称为二极管的正向电压。 反向性 外加反向电压不超过一定范围时,通过二极管的电流是少数载流子漂移运动所形成反向电流,由于反向电流很小,二极管处于截止状态。这个反向电流又称为反向饱和电流或漏电流,二极管的反向饱和电流受温度影响很大。 击穿 外加反向电压超过某一数值时,反向电流会突然增大,这种现象称为电击穿。引起电击穿的临界电压称为二极管反向击穿电压。电击穿时二极管失去单向导电性。如果二极管没有因电击穿而引起过热,则单向导电性不一定会被永久破坏,在撤除外加电压后,其性能仍可恢复,否则二极管就损坏了。因而使用时应避免二极管外加的反向电压过高。 二极管是一种具有单向导电的二端器件,有电子二极管和晶体二极管之分,电子二极管现已很少见到,比较常见和常用的多是晶体二极管。二极管的单向导电特性,几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常广泛。 二极管的管压降:硅二极管(不发光类型)正向管压降0.7V,锗管正向管压降为0.3V,发光二极管正向管压降会随不同发光颜色而不同。主要有三种颜色,具体压降参考值如下:红色发光二极管的压降为2.0--2.2V,黄色发光二极管的压降为1.8—2.0V,绿色发光二极管的压降为3.0—3.2V,正常发光时的额定电流约为20mA。 二极管的电压与电流不是线性关系,所以在将不同的二极管并联的时候要接相适应的电阻。 二极管的特性曲线 与PN结一样,二极管具有单向导电性。硅二极管典型伏安特性曲线(图)。在二极管加有正向电压,当电压值较小时,电流极小;当电压超过0.6V时,电流开始按指数规律增大,通常称此为二极管的开启电压;当电压达到约0.7V时,二极管处于完全导通状态,通常称此电压为二极管的导通电压,用符号UD表示。对于锗二极管,开启电压为0.2V,导通电压UD约为0.3V。 在二极管加有反向电压,当电压值较小时,电流极小,其电流值为反向饱和电流IS。当反向电压超过某个值时,电流开始急剧增大,称之为反向击穿,称此电压为二极管的反向击穿电压,用符号UBR表示。不同型号的二极管的击穿电压UBR值差别很大,从几十伏到几千伏。 二极管的反向击穿 齐纳击穿 反向击穿按机理分为齐纳击穿和雪崩击穿两种情况。在高掺杂浓度的情况下,因势垒区宽度很小,反向电压较大时,破坏了势垒区内共价键结构,使价电子脱离共价键束缚,产生电子-空穴对,致使电流急剧增大,这种击穿称为齐纳击穿。如果掺杂浓度较低,势垒区宽度较宽,不容易产生齐纳击穿。雪崩击穿另一种击穿为雪崩击穿。当反向电压增加到较大数值时,外加电场使电子漂移速度加快,从而与共价键中的价电子相碰撞,把价电子撞出共价键,产生新的电子-空穴对。新产生的电子-空穴被电场加速后又撞出其它价电子,载流子雪崩式地增加,致使电流急剧增加,这种击穿称为雪崩击穿。无论哪种击穿,若对其电流不加限制,都可能造成PN结永久性损坏。

雪崩光电二极管的特性

雪崩光电二极管工作特性及等效电路模型 一.工作特性 雪崩光电二极管为具有内增益的一种光生伏特器件,它利用光生载流子在强电场内的定向运动产生雪崩效应,以获得光电流的增益。在雪崩过程中,光生载流子在强电场的作用下 进行高速定向运动,具很高动能的光生电子或空穴与晶格院子碰撞,使晶格原子电离产生二次电子---空穴对;二次电子---空穴对在电场的作用下获得足够的动能,又是晶格原子电离产生新的电子----空穴对,此过程像“雪崩”似的继续下去。电离产生的载流子数远大于光激发产生的光生载流子,这时雪崩光电二极管的输出电流迅速增加,其电流倍增系数定义为: 0/M I I = 式中I 为倍增输出电流,0I 为倍增前的输出电流。 雪崩倍增系数M 与碰撞电离率有密切关系,碰撞电离率表示一个载流子在电场作用下 ,漂移单位距离所产生的电子----空穴对数目。实际上电子电离率n α 和空穴电离率p α是不完全一样的,他们都与电场强度有密切关系。由实验确定,电离率α与电场强度E J 近似有以下关系: ( ) m b E Ae α-= 式中,A ,b ,m 都为与材料有关的系数。 假定n p ααα==,可以推出 0 1 1D X M dx α= - ? 式中, D X 为耗尽层的宽度。上式表明,当 1D X dx α→? 时,M →∞。因此称上式为发生雪崩击穿的条件。其物理意义是:在电场作用下,当通过耗尽区的每个载流子平均能产生一对电子----空穴对,就发生雪崩击穿现象。当 M →∞时,P N 结上所加的反向偏压就是雪崩击穿电压B R U . 实验发现,在反向偏压略低于击穿电压时,也会发生雪崩倍增现象,不过这时的M 值较小,M 随反向偏压U 的变化可用经验公式近似表示为 11() n BR M U U = - 式中,指数n 与P N 结得结构有关。对N P +结,2n ≈;对P N + 结,4n ≈。由上式可见, 当BR U U →时,M →∞,P N 结将发生击穿。 适当调节雪崩光电二极管的工作偏压,便可得到较大的倍增系数。目前,雪崩光电二

RAID基本概念..

RAID基本概念,专用术语介绍 我们提供的 RAID 卡支持各种常用 RAID级别,如 0,1,5,10,50 等,您可以根据数据的重要性来选择。在开始使用 RAID 卡之前,我们希望您能够对下面的概念有较深的理解,从而更好的配置和使用您的服务器。 RAID 0 是无数据冗余的存储空间条带化,具有低成本、极高读写性能、高存储空间利 用率的RAID级别,适用于Video / Audio存储、临时文件的转储等对速度要求极其严格 的特殊应用。但由于没有数据冗余,其安全性大大降低,构成阵列的任何一块硬盘损 坏都将带来数据灾难性的损失。 RAID1 使用磁盘镜像(disk mirroring)的技术,是两块硬盘数据完全镜像,安全性好, 技术简单,管理方便,读写性能均好。但其无法扩展(单块硬盘容量),数据空间浪 费大。 RAID 5 是目前应用最广泛的RAID技术。各块独立硬盘进行条带化分割,相同的条带区 进行奇偶校验(异或运算),校验数据平均分布在每块硬盘上。以n块硬盘构建的RAID 5 阵列可以有n-1 块硬盘的容量,存储空间利用率非常高。RAID 5 具有数据安全、较 好的读写速度,空间利用率高等优点,应用非常广泛,但不足之处是 1 块硬盘出现故 障以后,整个系统的性能大大降低。 RAID10 是RAID1 和RAID0的结合,RAID50 是RAID5和RAID0 的结合。鉴于RAID0、RAID1 和RAID5 的优缺点,RAID10 与RAID 50成为它们之间最好的平衡点。如果您的配置中 硬盘数目超过 6 块,我们强烈建议您选择RAID10 或RAID 50。 总的来说,RAID0及 RAID1 最适合PC服务器及图形工作站的用户,提供最佳的性能及最便 宜的价格。RAID5 适合于银行、金融、股市、数据库等大型数据处理中心 OLTP 应用,同时提供数据的安全性与较高读写性能。 MegaRAID BIOS Configuration Utility配置介绍 当系统开机引导检测到Lsilogic megaraid 控制器时,系统会显示RAID

半导体雪崩光电二极管(精)

半导体雪崩光电二极管 半导体雪崩光电二极管 semiconductor avalanche photodiode 具有内部光电流增益的半导体光电子器件,又称固态光电倍增管。它应用光生载流子在二极管耗尽层内的碰撞电离效应而获得光电流的雪崩倍增。这种器件具有小型、灵敏、快速等优点,适用于以微弱光信号的探测和接收,在光纤通信、激光测距和其他光电转换数据处理等系统中应用较广。 当一个半导体二极管加上足够高的反向偏压时,在耗尽层内运动的载流子就可能因碰撞电离效应而获得雪崩倍增。人们最初在研究半导体二极管的反向击穿机构时发现了这种现象。当载流子的雪崩增益非常高时,二极管进入雪崩击穿状态;在此以前,只要耗尽层中的电场足以引起碰撞电离,则通过耗尽层的载流子就会具有某个平均的雪崩倍增值。 碰撞电离效应也可以引起光生载流子的雪崩倍增,从而使半导体光电二极管具有内部的光电流增益。1953年,K.G.麦克凯和K.B.麦卡菲报道锗和硅的PN结在接近击穿时的光电流倍增现象。1955年,S.L.密勒指出在突变PN结中,载流子的倍增因子M随反向偏压V的变化可以近似用下列经验公式表示 M=1/[1-(V/VB)n] 式中VB是体击穿电压,n是一个与材料性质及注入载流子的类型有关的指数。当外加偏压非常接近于体击穿电压时,二极管获得很高的光电流增益。PN结在任何小的局部区域的提前击穿都会使二极管的使用受到限制,因而只有当一个实际的器件在整个PN结面上是高度均匀时,才能获得高的有用的平均光电流增益。因此,从工作状态来说,雪崩光电二极管实际上是工作于接近(但没有达到)雪崩击穿状态的、高度均匀的半导体光电二极管。1965年,K.M.约翰逊及L.K.安德森等分别报道了在微波频率下仍然具有相当高光电流增益的、均匀击穿的半导体雪崩光电二极管。从此,雪崩光电二极管作为一种新型、高速、灵敏的固态光电探测器件渐渐受到重视。 性能良好的雪崩光电二极管的光电流平均增益嚔可以达到几十、几百倍甚至更大。半导体中两种载流子的碰撞离化能力可能不同,因而使具有较高离化能力的载流子注入到耗尽区有利于在相同的电场条件下获得较高的雪崩倍增。但是,光电流的这种雪崩倍增并不是绝对理想的。一方面,由于嚔随注入光强的增加而下降,使雪崩光电二极管的线性范围受到一定的限制,另一方面更重要的是,由于载流子的碰撞电离是一种随机的过程,亦即每一个别的载流子在耗尽层内所获得的雪崩增益可以有很广泛的几率分布,因而倍增后的光电流I比倍增前的光电流I0有更大的随机起伏,即光电流中的噪声有附加的增加。与真空光电倍增管相比,由于半导体中两种载流子都具有离化能力,使得这种起伏更为严重。一般将光电流中的均方噪声电流〈i戬〉表示为 〈i戬〉=2qI0嚔2F(嚔)B

常用二极管型号及参数手册范本

查询>> 二极管资料>> 二极管资料大全 硅双向触发二极管参数 二极管资料大全 常用快速恢复二极管资料稳压二极管参数 变容二极管参数 电视机\VCD\DVD用二极管发光二极管参数 发光二极管符号显示 圆形发光二极管参数 激光二极管参数 特殊模型发光二极管 光电二极管参数 七段发光二极管参数 九段发光二极管参数 字母发光二极管参数 4×4圆矩发光二极 5×7圆矩发光二极 5×8圆矩发光二极 6×8圆矩发光二极 8×8圆矩发光二极 16×16圆矩发光 装饰式七段发光二极 裸发光二极管灯参数 裸发光二极管显示器 圆形发光二极管参数 闪烁圆形发光二极管 通用激光二极管参数 带监视器激光二极管 圆形发光二极管参数 金属封装发光二极管 圆柱平顶发光二极管 1.塑封整流二极管 序号型号 I F V RRM V F Trr 外形 A V V μs 1 1A1-1A7 1A 50-1000V 1.1 R-1 2 1N4001-1N4007 1A 50-1000V 1.1 DO-41 3 1N5391-1N5399 1.5A 50-1000V 1.1 DO-15 4 2A01-2A07 2A 50-1000V 1.0 DO-15 5 1N5400-1N5408 3A 50-1000V 0.95 DO-201AD 6 6A05-6A10 6A 50-1000V 0.95 R-6 7 TS750-TS758 6A 50-800V 1.25 R-6 8 RL10-RL60 1A-6A 50-1000V 1.0 9 2CZ81-2CZ87 0.05A-3A 50-1000V 1.0 DO-41 10 2CP21-2CP29 0.3A 100-1000V 1.0 DO-41 11 2DZ14-2DZ15 0.5A-1A 200-1000V 1.0 DO-41 12 2DP3-2DP5 0.3A-1A 200-1000V 1.0 DO-41 13 BYW27 1A 200-1300V 1.0 DO-41 14 DR202-DR210 2A 200-1000V 1.0 DO-15 15 BY251-BY254 3A 200-800V 1.1 DO-201AD 16 BY550-200~1000 5A 200-1000V 1.1 R-5 17 PX10A02-PX10A13 10A 200-1300V 1.1 PX 18 PX12A02-PX12A13 12A 200-1300V 1.1 PX 19 PX15A02-PX15A13 15A 200-1300V 1.1 PX 20 ERA15-02~13 1A 200-1300V 1.0 R-1 21 ERB12-02~13 1A 200-1300V 1.0 DO-15 22 ERC05-02~13 1.2A 200-1300V 1.0 DO-15 23 ERC04-02~13 1.5A 200-1300V 1.0 DO-15 24 ERD03-02~13 3A 200-1300V 1.0 DO-201AD 25 EM1-EM2 1A-1.2A 200-1000V 0.97 DO-15 26 RM1Z-RM1C 1A 200-1000V 0.95 DO-15 27 RM2Z-RM2C 1.2A 200-1000V 0.95 DO-15 28 RM11Z-RM11C 1.5A 200-1000V 0.95 DO-15 29 RM3Z-RM3C 2.5A 200-1000V 0.97 DO-201AD 30 RM4Z-RM4C 3A 200-1000V 0.97 DO-201AD

磁盘阵列的关键技术

磁盘阵列的关键技术 黄设星 存储技术在计算机技术中受到广泛关注,服务器存储技术更是业界关心的热点。一谈到服务器存储技术,人们几乎立刻与SCSI(Small Computer Systems Interface)技术联系在一起。尽管廉价的IDE硬盘在性能、容量等关键技术指标上已经大大地提高,可以满足甚至超过原有的服务器存储设备的需求。但由于Internet的普及与高速发展,网络服务器的规模也变得越来越大。同时,Internet不仅对网络服务器本身,也对服务器存储技术提出了苛刻要求。无止境的市场需求促使服务器存储技术飞速发展。而磁盘阵列是服务器存储技术中比较成熟的一种,也是在市场上比较多见的大容量外设之一。 在高端,传统的存储模式无论在规模上,还是安全上,或是性能上,都无法满足特殊应用日益膨胀的存储需求。诸如存储局域网(SAN)等新的技术或应用方案不断涌现,新的存储体系结构和解决方案层出不穷,服务器存储技术由直接连接存储(DAS)向存储网络技术(NAS)方面扩展。在中低端,随着硬件技术的不断发展,在强大市场需求的推动下,本地化的、基于直接连接的磁盘阵列存储技术,在速度、性能、存储能力等方面不断地迈上新台阶。并且,为了满足用户对存储数据的安全、存取速度和超大的存储容量的需求,磁盘阵列存储技术也从讲求技术创新、重视系统优化,以技术方案为主导的技术推动期逐渐进入了强调工业标准、着眼市场规模,以成熟产品为主导的产品普及期。 磁盘阵列又叫RAID(Redundant Array of Inexpensive Disks——廉价磁盘冗余阵列),是指将多个类型、容量、接口,甚至品牌一致的专用硬磁盘或普通硬磁盘连成一个阵列,使其能以某种快速、准确和安全的方式来读写磁盘数据,从而达到提高数据读取速度和安全性的一种手段。因此,磁盘阵列读写方式的基本要求是,在尽可能提高磁盘数据读写速度的前提下,必须确保在一张或多张磁盘失效时,阵列能够有效地防止数据丢失。磁盘阵列的最大特点是数据存取速度特别快,其主要功能是可提高网络数据的可用性及存储容量,并将数据有选择性地分布在多个磁盘上,从而提高系统的数据吞吐率。另外,磁盘阵列还能够免除单块硬盘故障所带来的灾难后果,通过把多个较小容量的硬盘连在智能控制器上,可增加存储容量。磁盘阵列是一种高效、快速、易用的网络存储备份设备。 回顾磁盘阵列的发展历程,一直和SCSI技术的发展紧密关联,一些厂商推出的专有技术,如IBM的SSA(Serial Storage Architecture)技术等,由于兼容性和升级能力不尽如人意,在市场上的影响都远不及SCSI技术广泛。由于SCSI技术兼容性好,市场需求旺盛,使得SCSI技术发展很快。从最原始5MB/s传输速度的SCSI-1,一直发展到现在LVD接口的160MB/s传输速度的Ultra 160 SCSI,320MB/s传输速度的Ultra 320 SCSI接口也将在2001年出现(见表1)。从当前市场看,Ultra 3 SCSI技术和RAID(Redundant Array of Inexpensive Disks)技术还应是磁盘阵列存储的主流技术。 1SCSI技术 SCSI本身是为小型机(区别于微机而言)定制的存储接口,SCSI协议的Version 1 版本也仅规定了5MB/s传输速度的SCSI-1的总线类型、接口定义、电缆规格等技术标准。随着技术的发展,SCSI协议的Version 2版本作了较大修订,遵循SCSI-2协议的16位数据带宽,高主频的SCSI存储设备陆续出现并成为市场的主流产品,也使得SCSI技术牢牢地占

磁盘阵列教程

EonStor S16S-G1030磁盘阵列白皮书 V1.1 北京联创信安科技有限公司 2008年3月

EonStor S16S-G1030磁盘阵列正视图 EonStor S16S-G1030磁盘阵列后视图 一、产品概述 EonStor SAS-to-SAS 系列磁盘阵列采用了高容量、高性能的SAS硬盘以及SAS主机通道,具有高性能、大容量的特点。该系列中的EonStor S16S-G1030磁盘阵列不仅在性能和容量上兼有出色表现,同时还具备1个高速的SAS扩展接口以连接SAS扩展柜,从而轻松实现大幅度扩容。另外,EonStor S16S-G1030磁盘阵列还具备主机链路容错功能,更好地保证了业务的连续性和数据的可用性。

二、产品优势 z独立ASIC400硬件校验芯片 z DDR控制器高速缓存,带有ECC功能,可升级至2GB z提供2个SAS 4× 高速主机通道 z提供1个SAS扩展接口,最多支持80颗SAS硬盘 z支持硬件RAID 6 z支持在线容量扩展 z支持在线RAID级别变更 z支持热备援盘类型:本地、全局、箱体热备 z支持智能磁盘扫描功能,最大限度保护用户数据 z支持自动RAID重建 z支持写策略自动调整 z支持多种主流操作系统 z支持多种方式管理 z选配锂电池保护模块 三、产品特性 高可用 -存储密度大,3U机架式标准机柜可容纳16颗3.5英寸SAS硬盘 - 多种连接方式,适用于不同应用环境各种存储架构

EonStor S16S-G1030磁盘阵列主机连接图 EonStor S16S-G1030磁盘阵列连接图2

高性能 - 2条SAS 4×主机通道,每个通道传输速率最高可达12Gbps - 控制器CPU采用高性能的64位 Power PC750GL芯片,主频为800MHz,带有1024KB二级缓存 - 提供2个主机端口, 最大数据传输率24Gbps 高可靠 - 系统内部采用Cableless结构的全冗余模块化设计,支持热插拔 - 冗余主机通道保证系统的可靠运行 - 冗余模块化设计 - 可选锂电池保护模块,确保控制器高速缓存内的数据在掉电72小时内不丢失 - 智能反应及预防机制 自动缓存清理 自动介质扫描 自动热备援盘RAID重建 自动缓存模式转换

磁盘阵列入门

磁盘阵列入门:组建raid(1) 最近,刚刚帮朋友装了一台电脑,朋友选择了160GB的SATA硬盘。之前,朋友有一台老的电脑,由于经常在网上下载影片和游戏,因此对硬盘进行了几次升级,分几次购买了几块80GB PATA硬盘。由于朋友的那台旧电脑实在没法再用,因此打算把几块硬盘组合起来,装进新配的电脑中使用。因此朋友想组成RAID磁盘阵烈进行使用,以提高机器性能和增大磁盘的容量。那么什么是RAID呢?如何实现RAID功能?PATA与SATA硬盘能组建RAID 磁盘阵列吗?于是笔者进行了整理搜集,得文如下: 一、什么是RAID?其具备哪些常用的工具模式? 即然提到了RAID磁盘阵列,那么我们就先来了解一下什么是RAID?所谓的RAID,是Redundant Arrays of Independent Disks的简称,中文为廉价冗余磁盘阵列。由1987年由加州大学伯克利分校提出的,初衷是为了将较廉价的多个小磁盘进行组合来替代价格昂贵的大容量磁盘,希望单个磁盘损坏后不会影响到其它磁盘的继续使用,使数据更加的安全。RAID 作为一种廉价的磁盘冗余阵列,能够提供一个独立的大型存储设备解决方案。在提高硬盘容量的同时,还能够充分提高硬盘的速度,使数据更加安全,更加易于磁盘的管理。 了解RAID基本定义以后,我们再来看看RAID的几种常见工作模式。 1、RAID 0 RAID 0是最早出现的RAID模式,即Data Stripping数据分条技术。RAID 0是组建磁盘阵列中最简单的一种形式,只需要2块以上的硬盘即可,成本低,可以提高整个磁盘的性能和吞吐量。RAID 0没有提供冗余或错误修复能力,是实现成本是最低的。 RAID 0最简单的实现方式就是把N块同样的硬盘用硬件的形式通过智能磁盘控制器或用

磁盘阵列技术参数要求

磁盘阵列技术参数要求 推荐品牌:EMC, 宝德,OKSTOR 带“★”为必须满足的技术参数 技术参数要求 存储阵列支工业化标准的系统平台,Windows Server 2008 / 2008 R2 /2012,Windows Hyper-V, Red Hat EnterpriseLinux, SUSE Linux Enterprise, Sun Solaris, Mac OS X, HP-UX, IBM AIX, VMware, Citrix XenServer ★存储系统必需采用全新的并发结构(网格结构),即每存储模块或节点都必须自带控制器。所有老式的中央控制器管理整套存储系统所有盘柜和功能的存储系统,一概不会考虑。 ★标配16个SAS/SATA/SSD磁盘通道,最大扩展数量316 ★控制器采用64bit高性能存储冗余控制器,支持Active/Active、故障复原/自动恢复、多路径负载均衡机制,弹性化的控制器工作状态,采用XOR硬件校验芯片和带有ECC数据校验功能的高速缓存 单柜支持16盘位,最大裸容量支持64TB SAS存储空间 ★存储阵列必须同时支持2.5寸、3.5寸的SAS、SATA、SSD三种硬盘 存储阵列必须支持精简配置(thin provisioning),实现空间利用的高效性,该功能无容量的限制 ★自动重建、在线添加驱动器和更换大容量驱动器复制和替换源驱动器来扩充存储空间、 存储阵列在进行容量扩展、节点增加时,无需为数据存储配置任何额外收费的软件许可 针对企业数据中心以及具备大量、高成长性数据的存储应用环境,提供弹性化的数据管理、保护、扩充性及安全性 存储阵列要求无单点故障,包括存储节点/控制器 为确保性能,存储阵列确保每个控制器控制的硬盘数量不超过12块,每控制器包含两个iSCSI端口 ★RAID Level 0, (0+1), 3, 5, 6, 10, 30, 50, 60,全局、本地、箱体热备模式;在线增加新硬盘,复制、更换大容量硬盘;RAID迁移和自动降级 存储阵列提供数据快照与克隆技术,提供全容量的软件许可,当存储空间增加时,无需对快照和克隆软件增加许可 ★存储系统必需内含不低于2TB eMLC级别 SSD盘,并内含SSD到HDD的热点数据迁移软件,如自动分层等,来达到提高IOPS的目标 存储阵列提供的虚拟克隆技术无需占用额外存储空间,同时支持基于精简配置(Thinprovisioning)的数据快照与克隆技术 每个卷支持创建超过1000个数据快照 存储阵列支持同步和异步数据复制,并且数据复制功能为全容量的免费使用 提供基于存储阵列的原卷到目标卷的远程数据容灾,数据复制时目标端占用的空间为真实的数据空间,无需额外对目标卷进行空间划分 支持端口整合(Link Aggregation)、巨型封包功能(Jumbo Frames)、SMB/CIFS、NFS、FTP、Microsoft ADS,内建I/O效能及电源使用量监视功能 存储阵列支持与服务器之间进行远程复制,提供远程分支机构的数据保护能力 ★内置WebGUI、LCD、串口、Telnet、SSH、第三方的SNMP及CIM管理软件 ★本次配置容量:12* 2TB SATA 7,200转3.5寸硬盘 ★原厂3年质保,需原厂针对本项目授权书和售后服务器承诺函 ★免费安装调试 备份软件技术参数要求 推荐品牌:Time Navigator,Acronis, EMC 带“★”为必须满足的技术参数 ★备份软件的备份服务器端(Server端)支持多种主流操作系统,包括:HP-UX、Tru64、IBM AIX、SUN

相关文档