文档视界 最新最全的文档下载
当前位置:文档视界 › 2--泊松过程--beamer

2--泊松过程--beamer

费马猜想之证明.

费马猜想之证明 景光庭 引言:20世纪60年代初,笔者首次接触“费马猜想”。在以后的岁月中,笔者断断续续地研究它。直至1992年,才有机会在《潜科学》上相继发表过三篇论文,这次是最终的证明。 虽然美国数学家怀尔斯因发表论证“费马猜想”的文章,并于1997年荣膺国际上的沃尔夫斯克尔数学大奖,但并没有推开蒙在世界数学家心头上的阴云。笔者曾通过《美国教育交流中心》向怀尔斯寄去了总长仅一页的论文复印件,并明确指出,他在证明中将“费马方程”转化为椭圆曲线,而笔者转化为抛物线,这是不能共存的。何况笔者的转化过程,浅显得连中学生都能读懂,无懈可击,百分之百的正确。怀尔斯巨著难道不是沙滩上的一座摩天大厦?我也向德国马克斯普朗克研究所的学者法尔廷斯寄去了论文复印件,亦表述了上述观点,因为他是少数几个通读怀尔斯论文,并唯一肯定和帮助怀尔斯将论文从二百多页化减到一百三十页的学者 。遗憾的是至今未复。 如果怀尔斯不屑回答一个业余数学爱好者提出的疑问,对他就是一个绝妙的讽刺,因为他以毕生精力研究攻克和使他一举成名的“费马猜想”提出者费马是律师,而不是法兰西学院的院士。恰恰相反,数学只是他的业余爱好。他与人交流数学心得,往往是在通信中进行的,并不象今天这样只有在学术界认可的刊物上发表的文章才能被专家认可。如果当年的学术界也对费马这样苛求,那么今天根本不存在什么“费马猜想”这个问题了。 定理:2>p P P P Z Y X =+ (1) 中,p 为奇素数,X ,Y ,Z 无正整数解。 证:假设X ,Y ,Z 均有正整数解。 令 X=x ,Z = x +a (a 为正整数), Y = y 0+a (y 0为正整数),约定(x ,y 0,a )=1 ,则有: p p p a x a y x )()0+=++( (2) 即: 0 (1) 12221101120221010=----++++--------x a c x a c ax c y a c y a c ay c y p p p p p p p p p p p p p p p (3) 不失一般性,可设1),(0≥=d y x 1),(,,11101===y x dy y dx x ,以d 除 (3)式, 并令:10-=p d b ,,2 1 1-=p p ad c b ……,1 11---=p p p p a c b , 于是:0 (11212111111) 1 110=----+++-----x b x b x b y b y b y b p p p p p p 11 1 123122111 1 211110............s y b x b x b x b x b y b y b p p p p p p p =++++= +++------- 11221111011.......----=----p p p p b y b y b y b x s 11231221111.......----=----p p p p b x b x b x b y s

随机过程poisson过程 中科大

Poisson 过程 1.考虑电子管中的电子发射问题.设单位时间内到达阳极的电子数目N 服从参数为λ的Poisson 分布,而每个电子携带的能量各自不相关且与N 独立,并均服从于区间[1,2]上的均匀分布.记单位时间内阳极接收的能量为S .求S 的期望和方差. 2.设{X (t ),t ≥0}为一个独立增量过程,且X (0)=0,分别记V (t ),R (t,s )为{X (t ),t ≥0}的方差函数和协方差函数,证明:R (t,s )=V (min {t,s }). 3.设N (t )是一强度为λ的Poisson 过程,s,t >0,试求: (a)P(N (s )=k |N (s +t )=n )=?k =1,...,n ; (b)E[N (s )N (s +t )]=? (c)Cov(N (s ),N (s +t ))=? (d)E[N (s +t )|N (s )]的期望和分布; (e)E[W k |N (t )=n ]=?E[W k ]=?(W k 为第k 个事件发生的时刻) 4.某路口蓝车,白车和黄车的到达分别为强度λ1,λ2和λ3的Poisson 过程,且相互独立.试求:(a)第一辆蓝车到达的平均时间和第一辆车到达的平均时间; (b)蓝车首先到达的概率; (c)蓝车先于黄车但落后于白车的概率; (d)在相继到达的两辆蓝车之间,恰有k 辆车到达的概率以及数学期望; (e)在t 0处观察到一辆黄车,在接下来恰有k 辆蓝车连续到达的概率以及数学期望. 5.设要做的试验的次数服从参数为λ的Poisson 分布,试验有n 个可能的结果,每次试验出现第j 个结果的概率为p j ,∑n j =1p j =1.若各次试验相互独立,并以X j 记第j 个结果发生的次数,试求E[X j ]、Var[X j ],j =1,...,n .又问X j 服从什么分布?且X 1,...,X n 是否相互独立?为什么? 6.某人甲负责订阅杂志.设前来订阅杂志的人数服从强度为6的Poisson 过程,每人分别以概率1/2,1/3,1/6订阅1季,2季,3季杂志,且各人的选择相互独立.现以N i (t )表示(0,t ]时段内订阅i 季杂志的人数,i =1,2,3. 1

复合泊松过程应用问题

课程名称:《随机过程》 课程设计(论文) 题目: 复合泊松过程应用问题 学院:理学院 专业:数学与应用数学 班级:数学11-1班 学生姓名: abc 学生学号: abc 指导教师: abc 2013 年 12 月 9 日

目录 任务书 (3) 摘要 (4) 第一章绪论 (5) 第二章复合泊松过程的基本理论 (5) 2.1 复合泊松过程的定义及物理意义 (5) 2.2 复合泊松过程的实例 (5) 2.3 与复合泊松过程有关的的命题 (6) 2.4 复合泊松过程恒等式 (8) 2.5复合泊松过程的可加性及证明 (8) 第三章问题描述及分析计算 (10) 3.1 以复合泊松过程为模型的问题 (10) 3.2典型例题的具体分析 (10) 第四章MATLAB程序及运行结果 (11) 4.1 典型1,2的matlab程序 (11) 4.2 问题小结 (13) 第五章结论 (13) 第六章参考文献 (13) 评阅书 (14)

课程设计任务书

摘要 泊松过程是由法国著名数学泊松(Poisson, Simeon-Denis)(1781—1840)证明的。1943年 C.帕尔姆在电话业务问题的研究中运用了这一过程,后来Α.Я.辛钦于50年代在服务系统的研究中又进一步发展了它。现在泊松过程在物理学、地质学、生物学、医学、天文学、金融、服务系统和可靠性理论等领域中都有广泛的应用。非齐次泊松过程和复合泊松过程作为泊松过程推广的一种,其应用更是广泛,那么本文主要讲的是复合泊松过程的应用及其推广。 本文通过应用复合泊松过程的定义、基本理论,及其可加性的重要定理分析生活中的实际问题,并模拟复合泊松过程的模型,利用MATLAB软件进行求解,最后进行问题的分析,给出合理总结及误差分析。在实际问题中,通过结合复合泊松过程的性质,定理和概率论,各种模型的分布等知识去更好的解决,提出实用性建议。 关键字:复合泊松过程 MATLAB软件概率论模型分布

(完整版)布朗运动以及维纳过程学习难点总结

1、引言 布朗运动的数学模型就是维纳过程。布朗运动就是指悬浮粒子受到碰撞一直在做着不规则的运动。我们现在用)(t W 来表示运动中一个微小粒子从时刻0=t 到时刻0>t 的位移的横坐标,并令0)0(=W 。根据Einstein 的理论,我们可以知道微粒之所以做这种运动,是因为在每一瞬间,粒子都会受到其他粒子对它的冲撞,而每次冲撞时粒子所受到的瞬时冲力的大小和方向都不同,又粒子的冲撞是永不停息的,所以粒子一直在做着无规则的运动。故粒子在时间段],(t s 上的位移,我们可把它看成是多个小位移的总和。我们根据中心极限定理,假设位移)()(s W t W -服从正态分布,那么在不相重叠的时间段内,粒子碰撞时受到的冲力的方向和大小都可认为是互不影响的,这就说明位移)(t W 具有独立的增量。此时微粒在某一个时段上位移的概率分布,我们便能认为其仅仅与这一时间段的区间长度有关,而与初始时刻没有关系,也就是说)(t W 具有平稳增量。 2.维纳过程 2.1独立增量过程 维纳过程是典型的随机过程,属于所谓的独立增量过程,在随机过程的理论和应用中起着很重要的作用。现在我们就来介绍独立增量过程。 定义:}0),({≥t t X 是二阶矩过程, 那么我们就称t s s X t X <≤-0),()(为随机过程在区间],(t s 上的增量。 若对任意的n )(+∈N n 和任意的n t t t <<<≤Λ100,n 个增量 )()(,),()(),()(11201----n n t X t X t X t X t X t X Λ 是相互独立的,那么我们就称}0),({≥t t X 为独立增量过程。 我们可以证明出在0)0(=X 的条件下,独立增量过程的有限维分布函数族可由增量)0(),()(t s s X t X <≤-的分布所确定。 如果对R h ∈和)()(,0h s X h t X h t h s +-++<+≤与)()(s X t X -的分布是相同的,我们就称增量具有平稳性。那么这个时候,增量)()(s X t X -的分布函数只与时间差)0(t s s t <≤-有关,而与t 和s 无关(令s h -=便可得出)。值得注意的是,我们称独立增量过程是齐次的,此时的增量具有平稳性。

安德鲁怀尔斯的证明比我复杂一百倍

安德鲁怀尔斯的证明比我复杂一百倍 安德鲁怀尔斯的证明用了130页,并利用了连费马都没接触的理论来证明,充分说明他的证明并没有揭开费马所说的美妙证明的历史真相。真正理解费马原始思想的人是我。我只用了一页的版面通俗地透彻地严格地证明了这一结论。是真金还是铜大家可以验证。 揭开费马大定理真相 当整数n大于2时X n +Y n=Z n 没有正整数解。显然X、Y、Z都不会是零。 证明方法: 由于当n为大于2质数时证明X n +Y n=Z n 没有正整数解。与证明X1n+X2n+X3n =0没有非零的整数解道理一样。又由于当n=ab时X1 +X2n+X3n =0可写成(X1a)b+(X2a)b+(X3a)b=0; 因此只要证明当整数n为大于2的质数X1n+X2n+X3n =0没有非零的整数解,可类推X n +Y n=Z n 没有正整数解,而n=4没有整数解早已被人证明。现在我们需要证明当当n为大于2质数时X1n+X2n+X3n =0没有非零的整数解。 假设存在有整数解,会不会出现冲突呢,会的。 如果X1n+X2n+X3n =0存在有整数解,而n为大于2质数,因此必存: X1X2+X2X3+X3X1=d (d为整数更是有理数);X1X2X3=c(c为整数更是有理数)也就是说必存在这样的方程组; X1n+X2n+X3n =0 (1) X1X2+X2X3+X3X1=d (d为整数更是有理数) (2) X1X2X3=c(c为整数更是有理数) (3) 由方程组必可合成关于X的一元n次方程,又由于若X1=X2或X1=X3或X2=X3均不存在整数解,原因是2X1n+X3n=0没有非零整数解,因此倘若有非零整数解也只能是X1、X2、X3 互不相等。由于作为底的仅有X1、X2、X3且均要同时有理地合成为【f(X)】n 的形式现在的问其题在于,关于X的一元n次方程(n为质数)既要把未知数都配方成n次方内,又要表示出三个解的不相等。而d、b均为有理数,能做得到吗?做不到的,我们知道,当n 为质数时若将方程有理化成【f(X)】n =P;只能反映有一个实数解,其他是虚数解。说明X1、X2、X3取有理数解是不相容的。更谈不上整数解。也就是说要符合费马所规定条件的方程是不存在,因此我的假设是不成立的。 由于当n为大于2质数时证明X n +Y n=Z n 没有正整数解。与证明X1n+X2n+X3n =0没有非零的整数解道理一样。 当n为合数时,n可分解成质因素,可将一个质因数写成括号外的方次来证明,如果n 只含质因素2,n必可写成4m的形式,可当成4次方程来证明。而n=4时,费马本人已证明。至此费马定理证明完毕。

费马大定理的美妙证明

费马大定理的美妙证明 成飞 中国石油大学物理系 摘要:1637年左右,法国学者费马在阅读丢番图(Diophatus)《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。” 0、费马大定理: 当n>3时,X n +Y n=Z n,n次不定方程没有正整数解。 1、当n=1,X+Y=Z,有任意Z≥2组合的正整数解。任意a.b.c;只要满足方程X+Y=Z;a,b.c 由空间平面的线段表示,有 a b c 可见,线段a和线段b之和,就是线段c。 2、当n=2,X2+Y2=Z2,有正整数解,但不任意。 对于这个二次不定方程来说,解X=a,Y=b,Z=c,在空间平面中,a,b,c不能构成两线段和等于另外线段。 又因为,解要满足二次不定方程,解必然a+b>c且c>a,b。 可以知道,二次不定方程的解,a,b,c在空间平面中或许可以构成三角形, B c A 根据三角形余弦定理,有 c2=a2+b2-2ab× cosɑ( 0<ɑ< π)

此时,a,b,c,即构成了三角形,又要满足二次不定方程X2+Y2=Z2 ,只有当且仅当ɑ=900,cosɑ=0,a,b,c构成直角三角形时c2=a2+b2,既然X=a,Y=b,Z=c,那么二次不定方程X2+Y2=Z2有解。 3、当n=3,X3+Y3=Z3,假设有正整数解。a,b,c就是三次不定方程的解,即X=a,Y=b,Z=c,a+b>c,且c>a,b。 此时,a,b,c也必构成三角形, B A 根据三角形余弦定理,有 c2 = a2+b2-2ab× cosɑ( 0<ɑ< π) 因为,a,b,c是三次不定方程X3+Y3=Z3的正整数解,cosɑ是连续函数,因此在[-1,1]内取值可以是无穷个分数。根据大边对大角关系,ɑ角度取值范围(60o,180o),由此我们cosɑ的取值分成两部分,(-1,0]和[0,?)范围内所有分数;而a+b>c,且c>a,b, 1、当cosɑ=(-1,0],三角形余弦定理关系式得到, c2 = a2+b2+mab m=[0,1)内正分数; 等式两边同乘以c,有 c3 = a2c + b2c + mabc 因为c>a,b,那么 c3 > a3+ b3 2、当cosɑ=?,三角形余弦定理关系式得到, c2 = a2+b2-ab 等式两边同乘以a+b,有 (a+b)c2 = a3+ b3 又因为a+b>c, 所以,c3 < a3+ b3 (根据三角形大角对大边,c>a,b,即ɑ不可能等于600) 那么,cosɑ=[0,?)时,更加满足c3 < a3+ b3 既然,a,b,c是三次不定方程X3+Y3=Z3的解,又a3+ b3≠ c3, 那么,X3+Y3≠Z3,得到结果与原假设相矛盾,所以,假设不成立。 即,n=3时,X3+Y3=Z3 ,三次不定方程没有正整数解。 4、n>3, X n +Y n=Z n,假设有正整数解。a,b,c就是n次不定方程的解,即X=a,Y=b,Z=c,a+b>c,且c>a,b。此时,a,b,c构成三角形,根据三角形余弦定理有,

泊松过程与泊松分布的基本知识

泊松过程与泊松分布的基本知识泊松过程是随机过程的一个经典模型,是一种累积随机事件的发生次数的独立增量过程。也就是说,每次事件的发生是相互独立的。那么泊松分布和泊松过程又什么关系呢?可以说泊松分布是描述稀有事件的统计规律,即可以描述一段时间内发生某个次数的概率。而泊松过程呢,就适合刻画“稀有事件流”的概率特性。 比较:泊松分布 泊松过程的主要公式: 其实没多少不一样对不对?不一样的是泊松过程是一个可以查看在时间t内发生次数的概率,这个t是可变的。泊松分布则是给定了时间。 泊松过程的关键在于,它的到达间隔序列Tn,即每两次发生的时间是服从的独立同指数分布的。如果每次发生的间隔时间不服从指数分布,那么这个随机过程就会更一般化,我们成为是更新过程,这也是随机过程的推广。 泊松过程分为齐次泊松过程和非齐次泊松过程,齐次的意思很简单,就是说过程并不依赖于初始时刻,强度函数是一个常数,从上面的公式也看得出来。而非齐次则是变成了,这意味着什么呢?这以为着随着与时间的改变,强度是会改变的,改变服从强度函数,说了这

么久,强度究竟是个什么概念?强度的意思就是泊松过程的该事件发生的频率,或者说快慢,泊松分布中我们知道期望就是,实际含义就是,在一段时间内,发生的次数平均水平是次。 复合泊松过程:泊松过程我们已经知道,用描述一段时间累积发生的次数,但是如果每次发生带来的后果都是不一样的,我们怎么描述这个过程呢?比如,火车站到达的乘客是服从泊松过程的,但是每个乘客携带有不同重量的行李,我们如何刻画在[0,t]时间内行李总重量呢,这个过程就是复合泊松过程。复合泊松过程的均值函数和方差函数一般可以用全期望和全方差公式进行计算,因为简单泊松过程的期望很容易求。 更新过程: 上文已经说到,更新过程作为泊松过程的推广,更具有一般性,那么在讨论更新过程时,我们更多地讨来更新函数,更新函数是更新过程的均值函数m(t)=E[N(t)],怎么理解呢,就是说需要用t时刻的累积计数的期望特性来表达更新过程。有一条定理: 这个定理是可以证明的,Fn(t)是分布函数,就是说:在t时刻,更新函数值就是在这个时刻,n取遍所有值的分布之和。 那么是否可以这样理解,更新过程和泊松过程的区别就是更新间隔序列不同,那么如果已知了更新间隔序列的概率密度函数,就可以求解该过程的更新函数了,详细的推导就不写了。扔结论出来:对间隔序列概率密度函数做拉氏变换得到Lf(s),然后求 Lm(s)=Lf(s)/s(1-Lf(s)),再对Lm(s)进行逆变换,就得到了m(t),这就是更新函数。

我用概率证明了费马大定理

我用概率证明了费马大定理 章丘一职专马国梁 1637年,法国业余数学家费马在一本著名的古书——丢番图的《算术》中的一页上写了如下一段文字: “分解一个立方为两个立方之和,或分解一个四次方为两个四次方之和,或更一般地分解任一个高于二次方的幂为两个同次方的幂之和均不可能。对此我发现了一个奇妙的证明,但此页边太窄写不下。” 用数学语言表达就是说,当指数n > 2时,方程x^n + y^n = z^n 永远没有整数解。这就是著名的连小学生都能看懂的费马猜想。 可是在这个猜想提出后,那个重要的“奇妙证明”不论在费马生前还是死后始终没有被人见到,且后人也再没有找到,所以人们怀疑那个证明根本就不存在或者是在什么地方搞错了。费马生前只是证明了n = 4 的情况;直到1749年,才被欧拉证明了n = 3 的情况。 这个猜想看上去是如此的简单,让局外人根本无法想象证明它的艰难,所以曾经让不少人跃跃欲试。他们搜肠刮肚,绞尽脑汁,耗费了无数的精力。三百多年来,虽然取得了很大进展,显示了人类的智慧,但问题总是得不到彻底解决。直到1995年,才由英国数学家怀尔斯宣称完成了最后的证明。从此费马猜想变成了真正的“费马定理”。 对费马定理的证明之所以艰难,是因为在整数内部有着极其复杂微妙的制约机制,要想找到这些制约关系,必须深入到足够的程度进行细致的分析才行。所以三百多年来,虽然有不少数学大家还有广大业余爱好者不畏艰难,前赴后继,顽强奋斗,但怎奈山高路远,歧途太多,终归难免失败。 在这样的现实下,笔者明白自己也是局外之人,所以不可能去钻这个无底的黑洞。但是作为一种乐趣,我们不妨另外开辟一条渠道,进行旁证和展望。试用概率计算一下:看看费马猜想是否成立,又成立到什么程度。虽然这在数学界难以得到公认,但是我们歪打正着,乐在其中。因为对于决定性的现象,如果其决定因素和控制过程过于复杂,那么其结果是可以用概率理论进行推算的。 但是要证明费马猜想究竟应该从何处下手呢?对此笔者心中一直有一个强烈的直觉。 我们知道:当n = 1 时,x + y = z 可有无数组解。在正整数中,任何两个整数相加的结果必然也还是整数。 但是当n = 2 时,方程x^2 + y^2 = z^2 的解就没有那么随便了,它们必须是特定的一组组的整数。其组数大大减少。 而当n = 3 时,方程x^3 + y^3 = z^3 则根本就没有整数解了。那么其原因是什么呢? 对此笔者曾经思考了多年。但没想到只是在近几天才一下子开了窍,找到了问题的关键。原来是:指数越大,整数的乘幂z^n在数轴上的坐标点就越稀疏,从而使任意两整数的同次方幂之和x^n + y^n 落在坐标点上成为整数的可能性就越小。其概率是z^n 的导数的倒数。即每组x^n + y^n 能够成为整数的可能性只有 η= 1/[n z^(n-1)] = 1/ [n (x^n + y^n )^(1-1/n) ] 当x、y在平面直角坐标系的第一区间随意取值时,我们可以用积分的办法算出其中能够让z成为整数的组数。其公式为 N =∫∫ηdx dy =∫∫[(dx dy) / (n (x^n + y^n )^(1-1/n))] 因为在平面直角坐标系上,当z 一定时,由方程x^2 + y^2 = z^2 所决定的曲线是个正圆; 而由方程x^n + y^n = z^n 所决定的曲线则是一个近似的圆; 只有当n 趋于无穷大时,它的曲线才能成为一个正方形。 所以当n较小时,我们是可以把方程的曲线当作一个圆来处理的。这样以来,N的积分公式就变成了 N =∫[(0.5πz dz ) / (n z^(n-1))] ①当n = 1 时,由方程x + y = z 所决定的曲线是一条斜的直线。它在第一象限的长度是sqrt(2) z ,此时能够成为整数的概率是100%,即η= 1/[n z^(n-1)] = 1 所以N =∫sqrt(2) z dz = [1/sqrt(2)] z^2 即与z的平方成正比,这意味着在坐标系的第一象限中,遍地都是解。仔细想想这也可以理解。因为不论x还是y,都是可以取任意整数的;而正整数的数量是无穷多,所以它们的组合数将是无穷多的平方,为高一级的无穷多。 ②当n = 2 时,由方程x^2 + y^2 = z^2 所决定的曲线是一个正圆。在第一象限是一段1/4 的圆周,其长度是0.5πz ;此时η= 1/[2 z ] 所以N =∫(0.5πz dz / (2 z) ) = (π/4) z

复合泊松过程的实现

电子信息与通信工程学院 实验报告 实验名称非其次泊松过程课程名称随机信号分析 姓名顾康学号U201413323 日期 6.13 地点南一楼 成绩教师董燕

1.题目 Consider the nonhomogeneous Poisson process with its intensity function spectified in Example2.3.6. (a) Write a MATLAB program to generate (stimulate) the first eighty arrival times. (b) Given t=8(hours),write a Matlab program to generate N(8) and then the arrival times in the interval(0,8],draw the respective histograms showing hour5y arrival counts. (a) 由定理设λ(t)≤λ,其中λ为一常数,而s1,s2,…,sn,…为参数λ的齐次泊松过程的事件发生的时刻,对每个si,以概率λ(si)/λ进行保留,以概率1-λ(si)/λ舍弃,由此得到的序列s(1),s(2),…,s(n),…是强度为λ(t)的非齐次泊松过程事件发生的时刻。 证明显然,s(1),s(2),…,s(n),…是s1,s2,…,sn,…的稀疏。 设A={非齐次泊松过程N(t)在(t,t+h]中有一个事件发生}, B={齐次泊松过程N(t)在(t,t+h]中有一个事件发生}, 则有P(AB)=P(B)P(A|B)=(λh+o(h))λ(t)/λ= λ(t)h+o(h),

a第7讲-第8讲第3章 泊松过程

一.假定某天文台观察到的流星流是一个泊松过程, 据以往资料统计为每小时平均观察到 3 颗流星.试求: ( 1 ) 在上午 8 点到 12 点期间, 该天文台没有观察到流星的概率 . ( 2 ) 下午( 12 点以后)该天文台观察到第一颗流星的时间的分布函数 . 二.设电话总机在] X是具有强度 ,0(t内接到电话呼叫数) (t λ的泊松过程,求 (每分钟)2 = (1)两分钟内接到2次呼叫的概率; (2)“第二分钟内收到第2次呼叫”的概率。

维纳过程 如果它满足 给定实随机过程,}0),({≥t t W ; )2(是平稳的独立增量过程;0)),(,0()()( ,0 )3(2 >??≥>σσ且~增量 对任意的s t N s W t W s t . 0)0()1(=W 则称此过程为维纳过程.

3. 维纳过程的特征 ). ,min(),(),(2t s t s R t s B W W σ==; 0),,0()( 2>σσ且~t N t W ). ,min()]()()(()([(2 a t a s a W s W a W s W E ??=??σ, ,0+∞<<≤?t s a (1)(2))] ()())(()([(a W t W a W s W E ??, t s <令))]()()()())(()([(a W s W s W t W a W s W E ?+??=))] ()())(()([(s W t W a W s W E ??=))]()())(()([(a W s W a W s W E ??+).(2a s ?=σ

五.平稳过程 定义2.12,,,,,21T t t t N n n ∈∈L )) (,),(),((21n t X t X t X n L 变量维随机)) (,),(),((21h t X h t X h t X n +++L 和具有相同的分布函数, 则称随机过程}),({T t t X ∈具有平稳性, 并同时称此过程为严平稳随机过程,(或狭义平稳过程). 与 常数若对为随机过程设τ?∈,}),({T t t X ,,,,21时当T t t t n ∈+++τττL 严平稳过程的任意有限维概率分布不随时间的推移而改变.

《费马大定理》读后感800字

《费马大定理》读后感800字 费马大定理是17世纪法国数学家费马留给后世的一个不解之谜。即:当整数n>2时,关于x,y,z的不定方程x^n+y^n=z^n.无正整数解。 为证明这个命题,无数的大数学家们都在不懈努力,孜孜不倦的力求攻克。该问题的提出还在于毕达哥拉斯定理(在一个直角三角形中,斜边的平方等于两直角边的平方之和)的存在。而后欧拉用他的方式证明了x^3+y^3=z^3无正整数解。同理3的倍数也无解。费马也证明了n为4时成立。这样使得待证明的个数大大减少。终于在“谷山——志村猜想” 之后,被安德鲁·怀尔斯完全证明。 看过该书以后,一方面是对于费马大定理的证明过程的惊叹。这是一个如此艰辛的过程。阿瑟·爱丁顿爵士曾说,证明是一个偶像,数学家在这个偶像面前折磨自己。值得解决的问题会以反击来证明他的价

值。费马大定理的成功证明的实现在是它被提出后的300多年。经典数学的证明办法是从一系列公理、陈述出发,然后通过逻辑论证,一步接着一步,最后就可能得到某个结论。数学证明依靠这个逻辑过程,一经证明就永远是对的。数学证明是绝对的。也是一环扣一环的,没有索菲·热尔曼,柯西,欧拉等人在之前的研究,该定理并非能在个人的一次研究中就能得到证明。对于数学的研究是永无止境的。另一方面,我也认识到寻找一个数学证明就是寻找一种认识,这种认识比别的训练所积累的认识都更不容置疑。最近两千五百年以来,驱使着数学家们的正是这种以证明的方法发现最终真理的欲望。数学家有着不安分的想象与极具耐心的执拗。虽说当今计算机已经发展到一定地步了,它的计算速度再快,但是无法改变数学证明的需要。数学证明不仅回答了问题,还使得人们对为什么答案应该如此有所了解。 学数学能干什么?曾经也有学生这样问过欧拉,欧拉给他一些钱以后就让学生走了。培根也说过,数学使人周密。数学的证明最能培养严谨的态度。

泊松过程

泊松过程 泊松过程是随机过程的一个经典模型,是一种累积随机事件的发生次数的独立增量过程。也就是说,每次事件的发生是相互独立的。那么泊松分布和泊松过程又什么关系呢?可以说泊松分布是描述稀有事件的统计规律,即可以描述一段时间内发生某个次数的概率。而泊松过程呢,就适合刻画“稀有事件流”的概率特性。 比较:泊松分布 泊松过程的主要公式: 其实没多少不一样对不对?不一样的是泊松过程是一个可以查看在时间t内发生次数的概率,这个t是可变的。泊松分布则是给定了时间。 泊松过程的关键在于,它的到达间隔序列Tn,即每两次发生的时间是服从的独立同指数分布的。如果每次发生的间隔时间不服从指数分布,那么这个随机过程就会更一般化,我们成为是更新过程,这也是随机过程的推广。

泊松过程分为齐次泊松过程和非齐次泊松过程,齐次的意思很简单,就是说过程并不依赖于初始时刻,强度函数是一个常数,从上面的公式也看得出来。而非齐次则是变成了,这意味着什么呢?这以为着随着与时间的改变,强度是会改变的,改变服从强度函数,说了这么久,强度究竟是个什么概念?强度的意思就是泊松过程的该事件发生的 频率,或者说快慢,泊松分布中我们知道期望就是,实际含义就是,在一段时间内,发生的次数平均水平是次。 复合泊松过程:泊松过程我们已经知道,用描述一段时间累积发生的次数,但是如果每次发生带来的后果都是不一样的,我们怎么描述这个过程呢?比如,火车站到达的乘客是服从泊松过程的,但是每个乘客携带有不同重量的行李,我们如何刻画在[0,t]时间内行李总重量呢,这个过程就是复合泊松过程。复合泊松过程的均值函数和方差函数一般可以用全期望和全方差公式进行计算,因为简单泊松过程的期望很容易求。 更新过程: 上文已经说到,更新过程作为泊松过程的推广,更具有一般性,那么在讨论更新过程时,我们更多地讨来更新函数,更新函数是更新过程的均值函数m(t)=E[N(t)],怎么理解呢,就是说需要用t时刻的累积计数的期望特性来表达更新过程。有一条定理:

费马大定理的3次、4次不可能的证明

A 试证:试证:x x 4+y 4=z 4在xy xy≠ ≠0时无整数解。证:假设原命题成立,则有: z 4-x 4=(z -x)(z 3+z 2x+z x 2+x 3)=(z -x)(z +x)(z 2+x 2)=y 4由x 、y 、z 都是大于0的正整数,所以有z >x 得:得:z z -x -x<<z +x +x< <z 2+x 2(其中若z +x +x≥≥z 2+x 2,则x(1-x)x(1-x)≥ ≥z (z -1)负数大于正数,不成立。)分两种情形讨论: ①y 是质数,得:是质数,得:y=z y=z -x y=z +x y 2=z 2+x 2由前两式得x =0(不成立)②y 是合数,得:是合数,得:(z (z -x)a=y (z -x)b=y z 2+x 2=aby 2稍微变换一下就可以得到:((a a 2b 2-1-1) )z 2=(a 2b 2+1)x 2即:即:a a 2 b 2-1=k 12a 2b 2+1=k 22但是在整数里,但是在整数里,m m 2-n 2≠1。故这种情形不成立。∴x 4+y 4=z 4在xy xy≠ ≠0时无整数解。B 试证:试证:x x 3+y 3=z 3在xy xy≠ ≠0时无整数解。证:假设原命题成立,则有: z 3-x 3=(z -x)-x)( (z 2+xz +x 2)=y 3>0则有:则有:z z >x z 2+xz +x 2>z -x 分两种情形讨论: ①y 是质数,得:是质数,得:y=z y=z -x y 2=z 2+xz +x 2即:即:z z 2+xz +x 2=y 2=(z -x)2整理得到:整理得到:xz xz =-2xz (不成立不成立) )②y 是合数,则有:是合数,则有:(z (z -x)a=y z 2+xz +x 2=ay 2整理得到:((a a 3-1-1) )z 2-(a 3+1)xz +(a 3-1)x 2=0若z 有解,需有解,需△≥△≥△≥00即:即:a a 3≤3由于a 是大于0的正整数,故a =1即:即:z z -x=y 回到第回到第① ①种情形,结果仍是不成立。 ∴x 3+y 3=z 3在xy xy≠ ≠0时无整数解。另外根据我的推到出勾股方程的满足条件或生成方法是: ((e 2-f 2)/2)2+(ef)2=((e 2+f 2)/2)2 其中e 、f 取大于0的同时为奇或偶的正整数(的同时为奇或偶的正整数(e e ≠ f )但是我在一本介绍数论的书上看到已经被人家找出来,只是形式和我的有点差异。故我通过上述方法找到了勾股方程成立的充足理由,及同样找到了其满足条件。乐哉!

费马大定理的证明

学院 学术论文 论文题目:费马大定理的证明 Paper topic:Proof of FLT papers 姓名 所在学院 专业班级 学号 指导教师 日期 【摘要】:本文运用勾股定理,奇偶性质的讨论,整除性的对比及对等式有解的分析将费马大

定理的证明由对N>2的情况转换到证明n=4,n=p 时方程n n n x y z +=无解。 【关键字】:费马大定理(FLT )证明 Abstract : Using the Pythagorean proposition, parity properties, division of the contrast and analysis of the solutions for the equations to proof of FLT in N > 2 by the situation to prove N = 4, N = p equation no solution. Keywords: Proof of FLT (FLT) 引言: 1637年,费马提出:“将一个立方数分为两个立方数,一个四次幂分为两个四次幂,或者一般地将一个高于二次的幂分为两个同次的幂,这是不可能的。”即方程 n n n x y z +=无正整数解。 当正整数指数n >2时,没有正整数解。当然xyz=o 除外。这就是费马大定理(FLT ),于1670年正式发表。费马还写道:“关于此,我确信已发现一种奇妙的证法,可惜这里的空白太小,写不下”。[1] 1992年,蒋春暄用p 阶和4n 阶复双曲函数证明FLT 。 1994年,怀尔斯用模形式、谷山—志村猜想、伽罗瓦群等现代数学方法间接证明FLT ,但是他的证明明显与费马设想的证明不同。 据前人研究,任何一个大于2的正整数n ,或是4的倍数,或是一个奇素数的倍数,因此证明FLT ,只需证明两个指数n=4及n=p 时方程没有正整数解即可。方程 444x y z +=无正整数解已被费马本人及贝西、莱布尼茨、欧拉所证明。方程 n n n x y z +=无正整数解,n=3被欧拉、高斯所证明;n=5被勒让德、狄利克雷所证明;n=7被拉梅所证明;特定条件下的n 相继被数学家所证明;现在只需继续证明一般条件下方程n n n x y z +=没有正整数解,即证明FLT 。[2] 本文通过运用勾股定理,对奇偶性质的讨论,整除性的对比及对等式有解的分析证明4n =,n p =时n n n x y z +=无正整数解。

泊松过程

第二讲 泊松过程 1.随机过程和有限维分布族 现实世界中的随机过程例子: 液体中,花粉的不规则运动:布朗运动;股市的股票价格; 到某个时刻的电话呼叫次数; 到某个时刻服务器到达的数据流数量,等。 特征:都涉及无限多个随机变量,且依赖于时间。 定义(随机过程) 设有指标集T ,对T t ∈都有随机变量)(t X 与之对应,则称随机变量族 }),({T t t X ∈为随机过程。 注 一个随机过程是就是一个二元函数E T t X →?Ωω:),(。固定ω,即考虑某个事件相 应的随机变量的值,得到函数R T t X →:),(ω称为样本函数或轨道或一个实现。映射的值域空间E 称为状态空间。 例 随机游动(离散时间,离散状态) 质点在直线上每隔单位时间位置就发生变化,分别以概率p 或概率p -1向正或负向移动一个单位。如果以n S 记时刻n 质点所处的位置,那么就得到随机过程{,0}n S n ≥。这里指标集},1,0{ =T ,状态空间},1,0,1,{ -=E 。 如果记n X 为时刻n ,质点的移动,那么{,1}n X n ≥也是随机过程。 两个过程的区别:{}n S 不独立;{}n X 独立; 两个过程的关系:01 n n k k S S X ==+ ∑ 习题 计算n ES 和n DS (设00S =)。 提示 利用∑== n k k n X S 1 ,其中k X 是时刻k 的移动方式。 习题 设从原点出发,则()/2()/2()/2 ,2()0, 21n k n k n k n n C q p n k i P S k n k i +-+?+===?+=-?。 例 服务器到达的数据流(连续时间,离散状态) 在],0[t 内,到达服务器的数据包个数记为)(t N ,那么}0),({≥t t N 也是个随机过程, 其指标集}{+ ∈=R t T ,状态空间},1,0{ =E 。

费马大定理的简单证明

费马大定理的简单证明 李联忠 (营山中学 四川 营山 637700) 费马大定理:一个正整数的三次以上的幂不能分为两正整数的同次幂之和。即不定方程n n n y x z +=当n ≥3时无正整数解。 证明: 当n=2时,有 222y x z += ∴ ))((222y z y z y z x +-=-= (1) 令 22)(m y z =- 则 22m y z += 代入(1)得 222222222222)(2)22(2l m m y m m y m y z x =+=+=-= ∴ ml x 2= 22m l y -= 22m l z += 当n=3时,有 333y x z += ∴ ))((22333y zy z y z y z x ++-=-= (2) 令 323)(m y z =- 则 323m y z +=代入(2)得 ] [23223232333)3()3(3y y m y m y m y z x ++++=-= )3333(36432232m y m y m +?+=)33(36332233m y m y m ++= 若方程333y x z +=有正整数解,则)33(63322m y m y ++为某正整数的三次幂,即 363322)33(l m y m y =++ ∴ )33)(3(3)3(4222263332m l m l m l m l m y y ++-=-=+ 则必有 )33(3)3(4222322m l m l m y m l y ++=+-=和,而y,m,l 都取正整数时,这两等式是不可能同时成立的。所以363322)33(l m y m y =++不成立。即x 不可能取得正整数。所以,当n=3时,方程333y x z +=无正整数解。 当n>3时,同理可证方程n n n y x z +=无正整数解。 定理得证。

费马大定理是怎么证明的

费马大定理是怎么证明的 已故数学大师陈省身说道,20世纪最杰出的数学成就有两个,一个是阿蒂亚—辛格指标定理,另一个是费马大定理。当然,20世纪的重大数学成就远不止这两个,不过这两大成就却颇具代表性,特别是从科普的角度来看。 说实在的,数学虽然总是居于科学之首,可是一般人对数学可以说几乎一无所知,尤其是说到数学有什么成就、有什么突破的时候。理、化、天、地、生,门门都有很专门的概念、知识、技术,可不久之前的大成绩很容易就可以普及到寻常百姓家。激光器制造出来还不到50年,激光唱盘早已尽人皆知了,克隆出现不到10年,克隆这字眼已经满天飞了。即使人们不太懂黑洞的来龙去脉,一般人理解起来也不会有太大障碍。可是有多少人知道最新的数学成就呢?恐怕很难很难。数学隔行都难以沟通,更何况一般人呢。正因为如此,99%的数学很难普及,成百上千的基本概念就让人不知所云,一些当前的热门,如量子群、非交换几何、椭圆上同调,听起来就让人发晕。幸好,还有1%的数学还能对普通的人说清楚,费马大定理就是其中的一个。 费马大定理在世界上引起的兴趣就正如哥德巴赫猜想在中 国引起的热潮差不多。之所以受到许多人的关注,关键在于它们不需要太多的准备知识。对于费马大定理,人们只要知道数学中头一个重要定理就行了。这个定理在中国叫勾股定

理或商高定理,在西方叫毕达哥拉斯定理。它的内涵丰富,从数论的角度看就是求不定方程(即变元数多于方程数的方程)X2+Y2=Z2的正整数解。中国在很早已知(3,4,5)是这个方程的一个解,也就是32+42=52,其后也陆续得到其他解,最后知道它的所有解。这样,一个不定方程的问题得到圆满解决。 数学家的思想方向是推广,这个问题到了17世纪数学家费马的手中,就自然问,当指数变是3,4……时,又会怎样?这样费马的问题就变成不定方程Xn+Yn=Znn=3,4,……是否有正整数解的问题。费马误以为自己证明了对于所有n≥3的情形,这个方程(不妨称为费马方程)都没有正整数解,实际上,他的方法只证明n=4的情形。不过,这个他没有证明的定理还是被称为费马大定理。 这样一个叙述简单易懂的定理对于后来的数学家是一大挑战,其后200多年,数学家只是部分地解决了这个问题,可是却给数学带来丰富的副产品,最重要的是代数数论。原来的问题却成为一个难啃的硬骨头。20世纪初,有人悬赏10万德国马克,征求费马大定理的证明,成千上万的错误证明寄到评审机构那里,其中几乎没有什么真正的数学家。本书的第四章生动地描写了其中的故事。 有时我们把这些人称为业余数学爱好者,近来称之为民间科

费马最后的定理:费马大定理

费马最后的定理 费马大定理,又被称为“费马最后的定理”,由17世纪法国数学家皮耶·德·费玛提出。 它断言当整数n >2时,关于x, y, z的方程x^n + y^n = z^n 没有正整数解。 德国佛尔夫斯克曾宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。 被提出后,经历多人猜想辩证,历经三百多年的历史,最终在1995年被英国数学家安德鲁·怀尔斯彻底证明。 大约1637年左右,法国学者费马在阅读丢番图(Diophatus)《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。” (拉丁文原文: "Cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.") 毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。数学家们的有关工作丰富了数论的内容,推动了数论的发展。 证明完成

定理到了最后攻关阶段,并且这刚好是他的研究领域,他开始放弃所有其它活动,精心疏理有关领域的基本理论,为此准备了一年半时间把椭圆曲线与模形式通过伽罗瓦表示方法“排队”。接下来的要将二种“排队”序列对应配对,这一步他二年无进展。此时他读博时学的岩泽理论一度取得实效,到1991年他之前的导师科茨告诉他有位叫弗莱切的学生用苏联数学家科利瓦金的方法研究椭圆曲线,这一方法使其工作有重大进展。 1993年6月在剑桥牛顿学院要举行一个名为“L函数和算术”的学术会议,组织者之一正是怀尔斯的博士导师科茨,于是在1993年6月21日到23日怀尔斯被特许在该学术会上以“模形式、椭圆曲线与伽罗瓦表示”为题,分三次作了演讲。听完演讲人们意识到谷山---志村猜想巳经证明。由此把法尔廷斯证明的莫德尔猜想、肯.里贝特证明的弗雷命题和怀尔斯证明的谷山---志村猜想联合起来就可说明费马大定理成立。其实这三个猜想每一个都非常困难,问题是怀尔斯最后证明,他变为完成费马大定理证明的最后一棒。 1993年6月23日从剑桥牛顿学院传出费马大定理被证明之后,世界媒体普天盖地般报道了该喜讯。 但此刻数学界反倒十分冷静,明确指论证还需仔细审核,因为历史上曾多少次宣布证明但后来被查证错误。怀尔斯的证明被分为6个部分分别由6人审查,其中第三部分由凯兹负责的查出关于欧拉系的构造有严重缺陷,使科利瓦金---弗莱切方法不能对它适用,怀尔斯对无能为力,1993年12月怀尔斯公开承认证明有问题,但表示很快会补正。一时间怀尔斯的证明被认为认为是历史上拉梅、柯西、勒贝格、里贝特(里贝特也曾称证明了谷山--志村猜想)错误证明的又一例子。1994年1月怀尔斯邀请剑桥大学讲师理查德.泰勒到普林斯顿帮他完善科利瓦金--弗莱切方法解决问题,但整整8个月过去,问题没有解决。泰勒准备再一个月回剑桥,然后怀尔斯正式公布手稿,承认证明失败,1994年9月19日怀尔斯想自己证明失败原因该怎么写,回顾自己是先用岩泽理论未能突破而后用科利瓦金---弗莱切方法,又该法对

相关文档
相关文档 最新文档