文档视界 最新最全的文档下载
当前位置:文档视界 › 最新)概率常考题型解析

最新)概率常考题型解析

最新)概率常考题型解析
最新)概率常考题型解析

概率知识点及考点分析

开封高中 王国平(高中数学 开封市高中数学二坊 )

本章主要研究随机事件、互斥事件及概率的意义,并会计算互斥事件的概率;掌握古典概型、几何概型的概率计算.

一.知识点解读

1.随机事件和确定事件

(1)在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件.

(2)在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件. (3)必然事件与不可能事件统称为确定事件.

(4)在条件S 下可能发生也可能不发生的事件,叫做随机事件.

(5)确定事件和随机事件统称为事件,一般用大写字母A ,B ,C…表示. 2.频率与概率

(1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A

为事件A 出现的频数,称事件A 出现的比例f n (A)=n A

n

为事件A 出现的频率.

(2)对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P(A),称为事件A 的概率,简称为A 的概率. 3.互斥事件与对立事件

(1)互斥事件:若A∩B 为不可能事件(A∩B=?),则称事件A 与事件B 互斥,其含义是:事件A 与事件B 在任何一次试验中不会同时发生.

(2)对立事件:若A∩B 为不可能事件,而A ∪B 为必然事件,那么事件A 与事件B 互为对立事件,其含义是:事件A 与事件B 在任何一次试验中有且仅有一个发生.

4.概率的几个基本性质

(1)概率的取值范围:0≤P(A)≤1. (2)必然事件的概率:P(A)=1. (3)不可能事件的概率:P(A)=0. (4)互斥事件的概率加法公式:①P(A ∪B)=P(A)+P(B)(A ,B 互斥).②P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n )(A 1,A 2,…,A n 彼此互斥). (5)对立事件的概率:P(A )=1-P(A).

5.基本事件的特点

(1)任何两个基本事件是互斥的.

(2)任何事件(除不可能事件)都可以表示成基本事件的和. 6.古典概型

具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(1)试验中所有可能出现的基本事件只有有限个.(2)每个基本事件出现的可能性相等. 7.古典概型的概率公式

P(A)=A 包含的基本事件的个数基本事件的总数

8.几何概型

事件A 理解为区域Ω的某一子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关.满足以上条件的试验称为几何概型.

9.几何概型中,事件A 的概率计算公式

P(A)=构成事件A 的区域长度面积或体积

试验的全部结果所构成的区域长度面积或体积.

10.要切实理解并掌握几何概型试验的两个基本特点

(1)无限性:在一次试验中,可能出现的结果有无限多个; (2)等可能性:每个结果的发生具有等可能性. 二.常考题型分析

考点1.事件的关系与运算

对互斥事件要把握住不能同时发生,而对于对立事件除不能同时发生外,其并事件应为必然事件,这些也可类比集合进行理解,具体应用时,可把所有试验结果写出来,看所求事件包含哪些试验结果,从而断定所给事件的关系.

例1.(2016·湖北十市联考)从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是()

A.“至少有一个黑球”与“都是黑球”

B.“至少有一个黑球”与“都是红球”

C.“至少有一个黑球”与“至少有一个红球”

D.“恰有一个黑球”与“恰有两个黑球”

解析:选D A中的两个事件是包含关系,不是互斥事件;B中的两个事件是对立事件;C中的两个事件都包含“一个黑球一个红球”的事件,不是互斥关系;D中的两个事件是互斥而不对立的关系.

跟踪训练1。(易错题)(2016年《三维设计》)在一次随机试验中,彼此互斥的事件A,B,C,D的概率分别为0.2,0.2,0.3,0.3,则下列说法正确的是()

A.A∪B与C是互斥事件,也是对立事件

B.B∪C与D是互斥事件,也是对立事件

C.A∪C与B∪D是互斥事件,但不是对立事件

D.A与B∪C∪D是互斥事件,也是对立事件

解析:选D由于A,B,C,D彼此互斥,且A∪B∪C∪D是一个必然事件,故其事件

的关系可由如图所示的韦恩图表示,由图可知,任何一个事件与其余3个事件的和事件必然

是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件.

考点2。随机事件的频率与概率

频率是个不确定的数,在一定程度上频率可以反映事件发生的可能性大小,但无法从根本上刻画事件发生的可能性大小,但从大量重复试验中发现,随着试验次数的增多,事件发生的频率就会稳定于某一固定的值,该值就是概率.

例2..(2016年高考新课标全国Ⅱ,18)某险种的基本保费为a(单位:元),继

续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次

数的关联如下:

随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:

(1)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值;

(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;

(3)求续保人本年度的平均保费的估计值.

解(1)事件A发生当且仅当一年内出险次数小于2,由所给数据知,一年内出险次数小于2

的频率为60+50

200=0.55,故P(A)的估计值为0.55.

(2)事件B发生当且仅当一年内出险次数大于1且小于4,由所给数据知,一年内出险次数大

于1且小于4的频率为30+30

200=0.3,

故P(B)的估计值为0.3.

(3)由所给数据得

调查的200名续保人的平均保费为0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a.

因此,续保人本年度平均保费的估计值为1.192 5a.

跟踪训练2.(2016·合肥一模)某城市有连接8个小区A,B,C,D,E,F,G,H和市中心O的整齐方格形道路网,每个小方格均为正方形,如图所示.某人从道路网中随机地选择一条最短路径,由小区A 前往小区H,则他经过市中心O的概率为()

A.1

3B.

2

3

C.1

4D.

3

4

解析:选B由题意知,此人从小区A前往小区H的所有最短路径为:A→B→C→E→H,A→B→O→E→H,A→B→O→G→H,A→D→O→E→H,A→D→O→G→H,A→D→F→G→H,共6条.记“此人经过市中心O”为事件M,则M包含的基本事件为:A→B→O→E→H,A→B→O→G→H,

A→D→O→E→H,A→D→O→G→H,共4个,所以P(M)=4

6=

2

3,即他经过市中心O的概率为

2

3.

考点3.互斥事件、对立事件的概率

(1)判断两个事件是否为互斥事件,就是判断它们能否同时发生,若不能同时发生,则是互斥事件,不然就不是互斥事件.若两个事件互斥,且必有一个发生,则其为对立事件.两个事件互斥未必对立,

但对立一定互斥.

(2)互斥事件的概率加法公式必须在各个事件彼此互斥的前提下使用,即A,B互斥,P(A+B)=P(A)+P(B);A,B对立,P(A)=1-P(B).

例3.(2016·洛阳模拟)经统计,在某储蓄所一个营业窗口等候的人数及相应的概率如下:

求:(1)至多2人排队等候的概率是多少?

(2)至少3人排队等候的概率是多少?

解:记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A,B,C,D,E,F互斥.

(1)记“至多2人排队等候”为事件G,则

G=A∪B∪C,

所以P(G)=P(A∪B∪C)

=P(A)+P(B)+P(C)

=0.1+0.16+0.3=0.56.

(2)法一:记“至少3人排队等候”为事件H,则

H=D∪E∪F,

所以P(H)=P(D∪E∪F)

=P(D)+P(E)+P(F)

=0.3+0.1+0.04=0.44.

法二:记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.

跟踪训练3。(2015·湖北黄石二模)某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:

(1)P(A),P(B),P(C);

(2)1张奖券的中奖概率;

(3)1张奖券不中特等奖且不中一等奖的概率.

解:(1)P(A)=

1

1 000,P(B)=

10

1 000=

1

100,

P(C)=

50

1 000=

1

20.

故事件A,B,C的概率分别为

1

1 000,

1

100,

1

20.

(2)1张奖券中奖包含中特等奖、一等奖、二等奖. 设“1张奖券中奖”为事件M ,则 M =A ∪B ∪C .

∵A ,B ,C 两两互斥,

∴P (M )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=1+10+501 000=61

1 000.

故1张奖券的中奖概率为61

1 000.

(3)设“1张奖券不中特等奖且不中一等奖”为事件N ,由对立事件概率公式得 P (N )=1-P (A ∪B ) =1-? ??

??11 000+1100=9891 000. 故1张奖券不中特等奖且不中一等奖的概率为9891 000.

考点4。简单古典概型的求法

求古典概型的概率时,应注意试验结果的有限性和所有结果的等可能性. (1)反复阅读题目,收集题目中的各种信息,理解题意; (2)判断试验是否为古典概型,并用字母表示所求事件;

(3)利用列举法求出总的基本事件的个数n 及事件A 中包含的基本事件的个数m ;

例4.(2016·新课标全国Ⅰ,3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在

一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A.13 B.12 C.23

D.56

解析 将4种颜色的花种任选两种种在一个花坛中,余下2种种在另一个花坛,有((红黄)、(白紫)),((白紫)、(红黄)),((红白)、(黄紫)),((黄紫)、(红白)),((红紫)、(黄白)),((黄白)、(红紫))共6种种法,其中红色和紫色不在一个花坛的种数有((红黄)、(白紫)),((白紫)、(红黄)),((红白)、(黄紫)),((黄紫),(红白)),共4种,故所求概率为P =46=2

3,选C. 答案 C

跟踪训练4. 2.(2016·新课标全国Ⅲ,5)小敏打开计算机时,忘记了开机密码的前两位,只记得

第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( ) A.815 B.18 C.115

D.130

解析 第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,所以总的基本事件的个数为15,密码正确只有一种,概率为1

15,故选C. 答案 C

考点五。 古典概型的交汇命题

古典概型在高考中常与平面向量、集合、函数、解析几何、统计等知识交汇命题,命题的角度新颖,考查知识全面,能力要求较高.归纳起来常见的交汇探究角度有以下几种:

探究一 古典概型与平面向量相结合

例5.(2016·威海一模)从集合{2,3,4,5}中随机抽取一个数a ,从集合{1,3,5}中随机抽取一个数b ,则向量m =(a ,b )与向量n =(1,-1)垂直的概率为( )

A.16

B.13

C.14

D.12

解析:由题意可知m =(a ,b )有:(2,1),(2,3),(2,5),(3,1),(3,3),(3,5),(4,1),(4,3),(4,5),(5,1),(5,3),(5,5),共12种情况.

因为m ⊥n ,即m ·n =0,

所以a ×1+b ×(-1)=0,即a =b , 满足条件的有(3,3),(5,5)共2个, 故所求的概率为16.

答案:A

跟踪训练5.(2015·陕西质检)连掷两次骰子得到的点数依次为m 和n ,若记向量a =(m ,n )与向量b =(1,-2)的夹角为θ,则θ为锐角的概率是________.

解析:依题意,θ为锐角,则a·b >0,则m -2n >0,m >2n 连续掷两次骰子的所有可能结果为36种,其中满足m >2n 的有(3,1),(4,1),(5,1),(5,2),(6,1),(6,2),共6种,所以所求概率为636=16

.

答案:16

探究二 古典概型与直线、圆相结合

例6.(2015·洛阳统考)将一颗骰子先后投掷两次分别得到点数a ,b ,则直线ax +by =0与圆(x -2)2+y 2

=2有公共点的概率为________.

解析:依题意,将一颗骰子先后投掷两次得到的点数所形成的数组(a ,b )有(1,1),(1,2),(1,3),…,(6,6),共36种,其中满足直线ax +by =0与圆(x -2)2+y 2=2有公共点,即满足

2a a 2+b 2

≤2,a 2≤b 2

的数组(a ,b )有(1,1),(1,2),(1,3),(1,4),…,(6,6),共6+5+4+3+2+1=21种,因此所求的概率等于2136=7

12

.

答案:7

12

跟踪训练6.(2016年《创新方案》)设集合P ={-2,-1,0,1,2},x ∈P 且y ∈P ,则点(x ,y )在圆x 2

+y 2=4内部的概率为________.

解析:以(x ,y )为基本事件,可知满足x ∈P 且y ∈P 的基本事件有25个.若点(x ,y )在圆x 2+y 2=4内部,则x ,y ∈{-1,1,0},用列表法或坐标法可知满足x ∈{-1,1,0}且y ∈{-1,1,0}的基本事件有9个.所以点(x ,y )在圆x 2+y 2=4内部的概率为925

.

答案:9

25

探究三 古典概型与函数相结合

例7.(2016·烟台模拟)在区间[0,1]上任取两个数a ,b ,则函数f (x )=x 2+ax +b 2无零点的概率为( ) A.12 B.23 C.34 D.14

解析:选C 要使该函数无零点,只需a 2-4b 2<0,即(a +2b )(a -2b )<0.∵a ,b ∈[0,1],a +2b >0,∴a -2b <0.

作出????

?

0≤a ≤1,0≤b ≤1,

a -2

b <0

的可行域(如阴影部分所示),

易得该函数无零点的概率P =1-12×1×

1

21×1=3

4.

跟踪训练7.(2016·宁波一模)已知实数a 满足-3

P 1,定义域为R 的概率为P 2,则( )

A .P 1>P 2

B .P 1=P 2

C .P 1

D .P 1与 P 2的大小不确定

解析:选C 若f (x )的值域为R ,则Δ=a 2-4≥0,得a ≤-2或a ≥2,故P 1=-2-(-3)4-(-3)+4-2

4-(-3)=

3

7.若f (x )的定义域为R ,则Δ=a 2-4<0,得-2

探究四 古典概型与统计相结合

例8.(2016·贵州七校联考)从某校高三年级学生中抽取40名学生,将他们高中学业水平考试的数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图的频率分布直方图.

(1)若该校高三年级有640人,试估计这次学业水平考试的数学成绩不低于60分的人数及相应的平均分(平均分保留到百分位);

(2)若从[40,50)与[90,100]这两个分数段内的学生中随机选取2名学生,求这2名学生成绩之差的绝对值不大于10的概率.

解。(1)由于图中所有小矩形的面积之和等于1, 所以10×(0.005+0.01+0.02+a +0.025+0.01)=1, 解得a =0.03.

根据频率分布直方图,成绩不低于60分的频率为1-10×(0.005+0.01)=0.85.

由于高三年级共有学生640人,可估计该校高三年级数学成绩不低于60分的人数为640×0.85=544. 可估计不低于60分的学生数学成绩的平均分为 640×(0.2×65+0.3×75+0.25×85+0.1×95)

544≈77.94.

(2)成绩在[40,50)分数段内的人数为40×0.05=2, 成绩在[90,100]分数段内的人数为40×0.1=4,

若从这6名学生中随机抽取2人,则总的取法有15种,

如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.

则所取2名学生的数学成绩之差的绝对值不大于10的取法为7种,

所以所求概率P =7

15

.

跟踪训练8.(2016·广东七校联考)甲、乙两位学生参加数学竞赛培训,在培训期间,他们参加的5次预赛成绩记录如下:

甲 82 82 79 95 87 乙 95 75 80 90 85

(1)用茎叶图表示这两组数据;

(2)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率; (3)①求甲、乙两人的成绩的平均数与方差;

②若现要从中选派一人参加数学竞赛,根据你的计算结果,你认为选派哪位学生参加合适? 解:(1)作出茎叶图如下:

(2)记甲被抽到的成绩为x ,乙被抽到的成绩为y ,用数对(x ,y )表示基本事件:

(82,95),(82,75),(82,80),(82,90),(82,85), (82,95),(82,75),(82,80),(82,90),(82,85), (79,95),(79,75),(79,80),(79,90),(79,85),

(95,95),(95,75),(95,80),(95,90),(95,85),

(87,95),(87,75),(87,80),(87,90),(87,85),

基本事件总数n =25.

记“甲的成绩比乙高”为事件A ,事件A 包含基本事件: (82,75),(82,80),(82,75),(82,80),(79,75),(95,75),

(95,80),(95,90),(95,85),(87,75),(87,80),(87,85), 事件A 包含的基本事件数m =12,所以P (A )=m n =1225,

所以甲的成绩比乙高的概率为12

25

.

(3)①x 甲=1

5(70×1+80×3+90×1+9+2+2+7+5)=85,

x 乙=1

5

(70×1+80×2+90×2+5+0+5+0+5)=85, s 2甲=15[(79-85)2+(82-85)2+(82-85)2+(87-85)2+(95-85)2]=31.6,

s 2乙=15

[(75-85)2+(80-85)2+(85-85)2+(90-85)2+(95-85)2]=50, ②因为x 甲=x 乙,s 2甲<s 2乙,所以甲的成绩较稳定,派甲参赛比较合适.

考点6. 与长度、角度有关的几何概型

当考察对象为点,点的活动范围在线段上时,用线段长度比计算;当考察对象为线时,一般用角度比计算,即当半径一定时,由于弧长之比等于其所对应的圆心角的度数之比,所以角度之比实际上是所对的弧长(曲线长)之比.

高考对与长度有关的几何概型的考查主要有以下四个命题角度: (1)与线段长度有关的几何概型; (2)与时间有关的几何概型; (3)与不等式有关的几何概型; (4)与距离有关的几何概型.

例9.(2016·丽江模拟)设A 为圆周上一点,在圆周上等可能地任取一点与A 连接,则弦长超过半径 2 倍的概率是( )

A.34

B.12

C.13

D.35

(2)作等腰直角△AOC 和△AMC ,B 为圆上任一点,则当点B 在

上运动时,弦长|AB |>2R ,∴

=1

2

.

跟踪训练9。(2016年高考新课标全国Ⅱ,8)某路口人行横道的信号灯为红灯和绿灯交替出现,

红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A.710 B.58 C.38

D.310

解析 至少需要等待15秒才出现绿灯的概率为40-1540=5

8,故选B. 答案 B

考点7.与体积有关的几何概型

对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.

例10. (2016·济南一模)如图,长方体ABCD -A 1B 1C 1D 1中,有一动点在此长方体内随机运动,则此动点在三棱锥A -A 1BD 内的概率为________.

解析:设事件M =“动点在三棱锥A -A 1BD 内”, P (M )=V 三棱锥A -A 1BD

V 长方体ABCD -A 1B 1C 1D 1

=V 三棱锥A 1-ABD V

长方体ABCD -A 1B 1C 1D 1

=1

3AA 1·S △ABD

V

长方体ABCD -A 1B 1C 1D 1

=13AA 1·1

2S 矩形ABCD AA 1·S 矩形ABCD =16.

答案:16

跟踪训练10。(2016·深圳模拟)一只小蜜蜂在一个棱长为4的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为________.

解析:根据几何概型知识,概率为体积之比,即P =(4-2)343=18.

答案:1

8

考点8.与面积有关的几何概型

求解与面积有关的几何概型时,关键是弄清某事件对应的面积以求面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解.

例11.(2016·广州调研)在边长为2的正方形ABCD 内部任取一点M ,则满足∠AMB >90°的概率为________.

解。如图,

如果点M 位于以AB 为直径的半圆内部,则∠AMB >90°,否则,M 点位于半圆上及空白部分,则∠AMB ≤90°,所以∠AMB >90°的概率P =1

2×π×1222

=π8.答案:π

8

跟踪训练11.(2016·石家庄一模)在区间[0,1]上任取两个数,则这两个数之和小于6

5的概率是( )

A.1225

B.1625

C.1725

D.1825

解析:设这两个数分别是x ,y ,则总的基本事件构成的区域是?

???

?

0≤x ≤1,0≤y ≤1,

确定的平面区域,所求事件包含的基本事件构成的区域是???

??

0≤x ≤1,0≤y ≤1,

x +y <65,

确定

的平面区域,如图所示,阴影部分的面积是1-12×????452=1725,所以这两个数之和小于65的概率是17

25

.

答案:C

概率论试题(含解析)

1、事件A B 、独立,且()0.8,()0.4P A B P A ?==,则P(AB) 2、设()f x 是连续型随机变量X 的概率密度函数 ()f x 非负。 3、随机变量),(~2σμN X ,则概率{1}P X μ≤+随着σ的变大而 (A )变小; (B )变大; (C )不变; (D )无法确定其变化趋势。 答:( A ) 6、某人投篮,每次命中的概率为2 3 ,现独立投篮3次,则至少命中3次的概率为. 7、已知连续型随机变量X 的概率密度函数为(1)2,1()0, x Ae x f x --??≥=???其它,则常数A = . 8、二维随机变量(,)X Y 的分布函数为(12)(13),0,0 (,)0,x y x y F x y --?-->>=?? 其它,则概率 P(Y>2)= . 9、已知随机变量X Y 、的方差分别为2,1DX DY ==,且协方差(,)0.6Cov X Y =,则D(X+Y)= 设,A B 为随机事件,且()0,(|)1P B P A B >=,说明什么? 某人向同一目标独立重复射击,每次射击命中目标的概率为(01)p p <<,则此人第5次射击恰好第2次命中目标的概率为( )C 14P 2(1-p )3 三、解答题(本大题共6小题,每小题10分,共60分)。 一、已知男人中有8%是肝病患者,女人中有0.35%是肝病患者。今从男女人数相等的人群中随机地挑选一人,恰好是肝病患者,问此人是男性的概率是多少? 四、 11、玻璃杯成箱出售,每箱20只,设每箱含0,1,2只残品的概率分别为0.8, 0.1, 0.1. 顾客购买时,售货员随意取一箱,而顾客随意查看四只,若无残品,则买下,否则,退回。现售货员随意取一箱玻璃杯,求顾客买下的概率。(结果保留3个有效数字) 解:设B 表示售货员随意取一箱玻璃杯,顾客买下;i A 表示取到的一箱中含有i 个残品, 0,1,2i =,则所求概率为 2 ()(|)()...............................................................................(5') 1918171618171615 0.810.10.1...........................(9')2019181720191817 0.9i i i P B P B A P A ==??????=?+? +???????≈∑43...................................................................................................(10')

概率论复习题及答案

概率论与数理统计复习题 一.事件及其概率 1. 设,,A B C 为三个事件,试写出下列事件的表达式: (1) ,,A B C 都不发生;(2),,A B C 不都发生;(3),,A B C 至少有一个发生;(4),,A B C 至多有一个发生。 解:(1) ABC A B C =?? (2) ABC B =?? (3) A B C ?? (4) BC AC AB ?? 2. 设B A ,为两相互独立的随机事件,4.0)(=A P ,6.0)(=B P ,求(),(),(|)P A B P A B P A B ?-。 解:()()()()()()()()0.76P A B P A P B P AB P A P B P A P B ?=+-=+-=; ()()()()0.16,(|)()0.4P A B P AB P A P B P A B P A -=====。 3. 设,A B 互斥,()0.5P A =,()0.9P A B ?=,求(),()P B P A B -。 解:()()()0.4,()()0.5P B P A B P A P A B P A =?-=-==。 4. 设()0.5,()0.6,(|)0.5P A P B P A B ===,求(),()P A B P AB ?。 解:()()(|)0.3,()()()()0.8,P AB P B P A B P A B P A P B P AB ==?=+-= ()()()()0. 2P A B P A B P A P A B = -=-=。 5. 设,,A B C 独立且()0.9,()0.8,()0.7,P A P B P C ===求()P A B C ??。 解:()1()1()1()()()0.994P A B C P A B C P ABC P A P B P C ??=-??=-=-=。 6. 袋中有4个黄球,6个白球,在袋中任取两球,求 (1) 取到两个黄球的概率; (2) 取到一个黄球、一个白球的概率。 解:(1) 24210215C P C ==;(2) 11462 108 15 C C P C ==。 7. 从0~9十个数字中任意选出三个不同的数字,求三个数字中最大数为5的概率。 解:12153 101 12 C C P C ==。

1.高考数学考点与题型全归纳——集合

第一章 集合与简易逻辑 第一节 集 合 ? 基础知识 1. 集合的有关概念 1.1.集合元素的三个特性:确定性、无序性、互异性. 1. 2.集合的三种表示方法:列举法、描述法、图示法. 1.3.元素与集合的两种关系:属于,记为∈;不属于,记为?. 1.4.五个特定的集合及其关系图: N *或N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. 2. 集合间的基本关系 2.1.子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,则称A 是B 的子集,记作A ?B(或B ?A). 2.2.真子集:如果集合A 是集合B 的子集,但集合B 中至少有一个元素不属于A ,则称A 是B 的真子集,记作AB 或B A. A B ?? ???? A ? B ,A≠B.既要说明A 中任何一个元素都属于B ,也要说明B 中存在一个元素不属于A. 2.3.集合相等:如果A ?B ,并且B ?A ,则A =B. 两集合相等:A =B ?? ??? ? A ? B ,A ?B.A 中任意一个元素都符合B 中元素的特性,B 中任意一个元素也符合A 中元素的特性. 2.4.空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作?. ?∈{?},??{?},0??,0?{?},0∈{0},??{0}.

3. 集合间的基本运算 (1)交集:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作A∩B ,即A∩B ={x|x ∈A ,且x ∈B}. (2)并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为A 与B 的并集,记作A ∪B ,即A ∪B ={x|x ∈A ,或x ∈B}. (3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作?U A ,即?U A ={x |x ∈U ,且x ?A }. 求集合A 的补集的前提是“A 是全集U 的子集”,集合A 其实是给定的条件.从全集U 中取出集合A 的全部元素,剩下的元素构成的集合即为?U A . ? 常用结论 (1)子集的性质:A ?A ,??A ,A ∩B ?A ,A ∩B ?B . (2)交集的性质:A ∩A =A ,A ∩?=?,A ∩B =B ∩A . (3)并集的性质:A ∪B =B ∪A ,A ∪B ?A ,A ∪B ?B ,A ∪A =A ,A ∪?=?∪A =A . (4)补集的性质:A ∪?U A =U ,A ∩?U A =?,?U (?U A )=A ,?A A =?,?A ?=A . (5)含有n 个元素的集合共有2n 个子集,其中有2n -1个真子集,2n -1个非空子集. (6)等价关系:A ∩B =A ?A ?B ;A ∪B =A ?A ?B . 考点一 集合的基本概念 [典例] 1. (2017·全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( ) A .3 B .2 C .1 D .0 2. 已知a ,b ∈R ,若? ?? ? ??a ,b a ,1={a 2,a +b,0},则a 2 019+b 2 019的值为( ) A .1 B .0 C .-1 D .±1 [解析] (1)因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2. (2)由已知得a ≠0,则b a =0,所以 b =0,于是a 2=1,即a =1或a =-1.又根据集合中元素的互异性可 知a =1应舍去,因此a =-1,故a 2 019+b 2 019=(-1)2 019+02 019=-1. [答案] (1)B (2)C [提醒] 集合中元素的互异性常常容易忽略,求解问题时要特别注意. [题组训练]

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

概率论经典实例

概率论经典实例 概率论的研究问题大多与现实世界联系十分密切,有的甚至引人入胜,非常值得我们探讨以便激发我们对概率论学习的兴趣,同时引导我们对生活的思考,这对我们每一个大学生思维能力的培养有着重要的意义。下面我列举几个典型的概率实例加以说明其重要意义。 1990 年9 月9 日,美国一家报纸检阅提出一个有趣的概率问题:电视主持人指着三扇关着的门说,其中一扇后是汽车,另两扇后各有一只山羊。你可随意打开一扇,后面的东西就归你了。你当然想得到汽车。当你选定一扇门,如1 号门(但未打开) ,这时主持人打开有山羊的另一个扇门,不妨说是3号门( 主持人清楚哪扇门后是汽车) ,并对你说:现在再给你一次机会,允许你改变原来的选择。你为了得到汽车是坚持1号门还是改选2号门?问题及答案公诸于众后引发了出乎意料的轰动,编辑部收到了上万封从小学二年级的学生到大学教授的来信,给出了不尽相同的答案(当然正确的答案是唯一的),热烈讨论持续两年之久。此时,无论是一号门还是二号门都有可能门后是汽车,看上去好像每一个都是一半的几率。但从主持人的角度看,他不会让你轻易就得到汽车,于是打开三号门来迷惑你的思想,让你放弃一号门。由此看出,可能一号门的几率会大一点。若从主持人的话语中判断出他没有那种想法,则可以这样思考这个问题。将一号门看成一部分,里面有汽车的概率为0.33,将二号门和三号门看成另一部分,里面有汽车的概率为0.67。当发现三号门里没有汽车时,则一号门和二号门有汽车的概率分别为0.33和0.67。因此,选择二号门比较理智。 稍加留意就会发现若利用概率统计提供的科学思维方法就会大大提高获胜的几率。比如抛两颗均匀骰子,规定如下规则:总数之和小于6为出现小点,大于6为大点,则每局可押大点或小点,若押对了,以出现的点数为对应的奖品数目,若押不中则同样以出现的点数为惩罚品的数目。可以这样思考,当假设骰子理论意义上是均匀的,则六面中点数少的面较重,在抛出后点数多的面朝上的可能性较大,从而抛出点数大的情况的概率应大一些,这样,即可作如下观察:(1)随机抛2颗骰子若干次,观察出现的点数,若点数大于6的次数占多数,则初步判断骰子是均匀的。(2) 当比赛开始时,可做以下决策:刚开始可先押大点,无论押中或不中,第二轮可接着押大点,然后观察一轮,当出现小点后,可继续押大点,当然也可在连续出现几个大点后押一次小点,也有取胜的把握。这是因为,出现大点的机会要多于出现小点的机会,开始出现大点的概率要大一些,故应押大点,当出现几次大点后,小概率的事件也是会发生的,故可押一次小点,若一次不中可继续押,此时出现小点的概率将变大。另外,当连续出现几次小点或大点,则情况即将发生转变,应考虑押相反的情况。运用概率的思想来解决此类问题让我们更有把握赢得我们所要的东西,对此类问题,一味的乱猜,只能让我们处于劣势。 在第二次世界大战中,美国曾经宣布:一个优秀的数学家的作用超过10 个师的兵力,这句话有一个非同寻常的来历。1943年以前,在大西洋的英美运输船队常常受到德国潜艇的袭击。当时,英美两国限于实力,无力增派更多的护航舰,一时间德国的潜艇战搞得盟军焦头烂额。为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析后,舰队与潜艇相遇是一个随机事件。从数学角度来看这一问题,它具有一定的规律性,一定数量的船(为100艘),编队规模越小,编次就越多(为每次20艘,就要有5个编次),编次越多,与敌

高中数学集合基础知识及题型归纳复习

集合基础知识及题型归纳总结 1、集合概念与特征: 例:1.下列各项中,不可以组成集合的是( ) A .所有的正数 B .等于2的数 C .接近于0的数 D .不等于0的偶数 例:下列命题正确的有( ) (1)很小的实数可以构成集合; (2)集合{}1|2-=x y y 与集合(){} 1|,2-=x y y x 是同一个集合; (3)36 11,,,,0.5242 -这些数组成的集合有5个元素; (4)集合(){}R y x xy y x ∈≤,,0|,是指第二和第四象限内的点集。 A .0个 B .1个 C .2个 D .3个 2、元素与集合、集合与集合间的关系 元素集合的关系:∈?或 集合与集合的关系=?或 例:下列式子中,正确的是( ) A .R R ∈+ B .{}Z x x x Z ∈≤?-,0| C .空集是任何集合的真子集 D .{}φφ∈ 3、集合的子集:(必须会写出一个集合的所有子集) 例:若集合}8,7,6{=A ,则满足A B A =?的集合B 的个数是 4、集合的运算:(交集、并集、补集) 例1:已知全集}{5,4,3,2,1,0=U ,集合}{5,3,0=M ,}{5,4,1=N ,则=N C M U I 例2:已知 {}{}=|3217,|2A x x B x x -<-≤=< (1)求A ∩B ; (2)求(C U A )∪B 例3:已知{25}A x x =-≤≤,{121}B x m x m =+≤≤-,B A ?,求m 的取值范围 例4:某班有学生55人,其中体育爱好者43人,音乐爱好者34人,还有4人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为 人 例5:方程组? ??=-=+9122y x y x 的解集是( ) A .()5,4 B .()4,5- C .(){}4,5- D .(){}4,5-

概率论试题及答案

概率论试题及答案 Document number:PBGCG-0857-BTDO-0089-PTT1998

试卷一 一、填空(每小题2分,共10分) 1.设是三个随机事件,则至少发生两个可表示为______________________。 2.掷一颗骰子,表示“出现奇数点”,表示“点数不大于3”,则表示______________________。 3.已知互斥的两个事件满足,则___________。 4.设为两个随机事件,,,则___________。 5.设是三个随机事件,,,、 ,则至少发生一个的概率为___________。 二、单项选择(每小题的四个选项中只有一个是正确答案,请将正确答案的番号填在括号内。每小题2分,共20分) 1.从装有2只红球,2只白球的袋中任取两球,记“取到2只白球”,则()。 (A)取到2只红球(B)取到1只白球 (C)没有取到白球(D)至少取到1只红球 2.对掷一枚硬币的试验,“出现正面”称为()。 (A)随机事件(B)必然事件 (C)不可能事件(D)样本空间 3.设A、B为随机事件,则()。 (A)A(B)B (C)AB(D)φ 4.设和是任意两个概率不为零的互斥事件,则下列结论中肯定正确的是()。 (A)与互斥(B)与不互斥 (C)(D) 5.设为两随机事件,且,则下列式子正确的是()。 (A)(B) (C)(D) 6.设相互独立,则()。 (A)(B) (C)(D) 7.设是三个随机事件,且有,则 ()。 (A)(B) (C)(D) 8.进行一系列独立的试验,每次试验成功的概率为p,则在成功2次之前已经失败3次的概率为()。 (A)p2(1–p)3(B)4p(1–p)3 (C)5p2(1–p)3(D)4p2(1–p)3 9.设A、B为两随机事件,且,则下列式子正确的是()。

概率论与数理统计(经管类)复习试题及答案

概率论和数理统计真题讲解 (一)单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设随机事件A与B互不相容,且P(A)>0,P(B)>0,则() A.P(B|A)=0 B.P(A|B)>0 C.P(A|B)=P(A) D.P(AB)=P(A)P(B) 『正确答案』分析:本题考察事件互不相容、相互独立及条件概率。 解析:A:,因为A与B互不相容,,P(AB)=0,正确; 显然,B,C不正确;D:A与B相互独立。 故选择A。 提示:① 注意区别两个概念:事件互不相容与事件相互独立; ② 条件概率的计算公式:P(A)>0时,。 2.设随机变量X~N(1,4),F(x)为X的分布函数,Φ(x)为标准正态分布函数,则F(3)=() A.Φ(0.5) B.Φ(0.75) C.Φ(1) D.Φ(3) 『正确答案』分析:本题考察正态分布的标准化。 解析:, 故选择C。 提示:正态分布的标准化是非常重要的方法,必须熟练掌握。 3.设随机变量X的概率密度为f(x)=则P{0≤X≤}=() 『正确答案』分析:本题考察由一维随机变量概率密度求事件概率的方法。第33页 解析:, 故选择A。 提示:概率题目经常用到“积分的区间可加性”计算积分的方法。

4.设随机变量X的概率密度为f(x)=则常数c=() A.-3 B.-1 C.- D.1 『正确答案』分析:本题考察概率密度的性质。 解析:1=,所以c=-1, 故选择B。 提示:概率密度的性质: 1.f(x)≥0; 4.在f(x)的连续点x,有F′(X)=f(x);F(x)是分布函数。课本第38页 5.设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是() A.f(x)=-e-x B. f(x)=e-x C. f(x)= D.f(x)= 『正确答案』分析:本题考察概率密度的判定方法。 解析:① 非负性:A不正确;② 验证:B:发散; C:,正确;D:显然不正确。 故选择C。 提示:判定方法:若f(x)≥0,且满足,则f(x)是某个随机变量的概率密度。 6.设二维随机变量(X,Y)~N(μ1,μ2,),则Y ~() 『正确答案』分析:本题考察二维正态分布的表示方法。 解析:显然,选择D。

高考数学题型归纳完整版

第一章集合与常用逻辑用语 第一节集合 题型1-1 集合的基本概念 题型1-2 集合间的基本关系 题型1-3 集合的运算 第二节命题及其关系、充分条件与必要条件 题型1-4 四种命题及关系 题型1-5 充分条件、必要条件、充要条件的判断与证明 题型1-6 求解充分条件、必要条件、充要条件中的参数取值范围 第三节简单的逻辑联结词、全称量词与存在量词 题型1-7 判断命题的真假 题型1-8 含有一个量词的命题的否定 题型1-9 结合命题真假求参数的取值范围 第二章函数 第一节映射与函数 题型2-1 映射与函数的概念 题型2-2 同一函数的判断 题型2-3 函数解析式的求法 第二节函数的定义域与值域(最值) 题型2-4 函数定义域的求解 题型2-5 函数定义域的应用 题型2-6 函数值域的求解 第三节函数的性质——奇偶性、单调性、周期性题型2-7 函数奇偶性的判断 题型2-8 函数单调性(区间)的判 断 题型2-9 函数周期性的判断 题型2-10 函数性质的综合应用 第四节二次函数 题型2-11 二次函数、一元二次方程、 二次不等式的关系 题型2-12 二次方程的实根分布及 条件 题型2-13 二次函数“动轴定区间” “定轴动区间”问题 第五节指数与指数函数 题型2-14 指数运算及指数方程、指 数不等式 题型2-15 指数函数的图象及性质 题型2-16 指数函数中恒成立问题 第六节对数与对数函数 题型2-17 对数运算及对数方程、对 数不等式 题型2-18 对数函数的图象与性质 题型2-19 对数函数中恒成立问题 第七节幂函数 题型2-20 求幂函数的定义域 题型2-21 幂函数性质的综合应用 第八节函数的图象 题型2-22 判断函数的图象 题型2-23 函数图象的应用 第九节函数与方程 题型2-24 求函数的零点或零点所 在区间 题型2-25 利用函数的零点确定参 数的取值范围 题型2-26 方程根的个数与函数零 点的存在性问题 第十节函数综合 题型2-27 函数与数列的综合 题型2-28 函数与不等式的综合 题型2-29 函数中的信息题 第三章导数与定积分 第一节导数的概念与运算 题型3-1 导数的定义 题型3-2 求函数的导数 第二节导数的应用 题型3-3 利用原函数与导函数的关 系判断图像 题型3-4 利用导数求函数的单调性 和单调区间 题型3-5 函数的极值与最值的求解 题型3-6 已知函数在区间上单调或 不单调,求参数的取值范围 题型3-7 讨论含参函数的单调区间 题型3-8 利用导数研究函数图象的

概率论考试题以及解析汇总

——第1页—— 系名____________班级____________姓名____________学号____________ 密封线内不答题 试题一 一、选择题(每题有且仅有一个正确答案,每题2分,共20分) 1、已知P(A)=0.7, P(B)=0.8,则下列判断正确的是( )。 A. A,B 互不相容 B. A,B 相互独立 C.A ?B D. A,B 相容 2、将一颗塞子抛掷两次,用X 表示两次点数之和,则X =3的概率为( ) A. 1/2 B. 1/12 C. 1/18 D. 1/9 3、某人进行射击,设射击的命中率为0.2,独立射击100次,则至少击中9次的概率为( ) A.91 99 100 98 .02.0C B. i i i i C -=∑100100 9 100 98.02.0 C. i i i i C -=∑100100 10 100 98 .02.0 D.i i i i C -=∑- 1009 100 98.02.01 4、设)3,2,1(39)(=-=i i X E i ,则)()3 1 253(321=++ X X X E A. 0 B. 25.5 C. 26.5 D. 9 5、设样本521,,,X X X 来自N (0,1),常数c 为以下何值时,统计量25 24 2 3 21X X X X X c +++? 服从t 分布。( ) A. 0 B. 1 C. 2 6 D. -1 6、设X ~)3,14( N ,则其概率密度为( ) A. 6 )14(2 61-- x e π B. 3 2)14(2 61-- x e π C. 6 )14(2 321 -- x e π D. 2 3)14(2 61-- x e π 7、 321,,X X X 为总体),(2σμN 的样本, 下列哪一项是μ 的无偏估计( ) A. 3212110351X X X ++ B. 321416131X X X ++ C. 3211252131X X X + + D. 3216 1 3131X X X ++ 8 、设离散型随机变量X 的分布列为 X 1 2 3 P C 1/4 1/8 则常数C 为( ) (A )0 (B )3/8 (C )5/8 (D )-3/8 9 、设随机变量X ~N(4,25), X1、X2、X3…Xn 是来自总体X 的一个样本,则样本均值X 近似的服从( ) (A ) N (4,25) (B )N (4,25/n ) (C ) N (0,1) (D )N (0,25/n ) 10、对正态总体的数学期望进行假设检验,如果在显著水平a=0.05下,拒绝假设00μμ=:H ,则在显著水平a=0.01 下,( )

概率论试题(含解析)

一、单项选择题(本大题共5小题,每小题3分,共15分)。 1、事件独立,且,则等于 (A )0; (B )1/3; (C)2/3; (D)2/5、 ? ? 答:( B ) 2、设就是连续型随机变量得概率密度函数,则下列选项正确得就是 (A )连续; (B ); (C)得值域为[0,1]; (D)。 答:( D ) 3、随机变量,则概率随着得变大而 (A)变小; (B )变大; (C)不变; (D)无法确定其变化趋势. ? ?? ? 答:( A ) 4、已知连续型随机变量相互独立,且具有相同得概率密度函数,设随机变量,则得概 率密度函数为 (A ); (B ); (C ); (D )、 答:( D ) 5、设就是来自正态总体得容量为得简单样本,则统计量服从得分布就是 (A) (B ) (C) (D) 答:( C ) 二、填空题(本大题共5小题,每小题3分,共15分)。 6、某人投篮,每次命中得概率为,现独立投篮3次,则至少命中1次得概率为、 7、已知连续型随机变量得概率密度函数为,则常数=、 8、二维随机变量得分布函数为,则概率=、 9、已知随机变量得方差分别为,且协方差,则=1、8、 10、某车间生产滚珠,从长期实践中知道,滚珠直径(单位:c m)服从正态分布,从某 天生产得产品中随机抽取9个产品,测其直径,得样本均值=1、12,则得置信度为0、95得置信区间为、 (已知,,,) 三、解答题(本大题共6小题,每小题10分,共60分)。 11、玻璃杯成箱出售,每箱20只,设每箱含0,1,2只残品得概率分别为0、8, 0、1, 0、1、顾客购买时,售货员随意取一箱,而顾客随意查瞧四只,若无残品,则买下,否则,退回。现售货员随意取一箱玻璃杯,求顾客买下得概率.(结果保留3个有效数字) 解:设表示售货员随意取一箱玻璃杯,顾客买下;表示取到得一箱中含有个残品,,则所 求概率为 2 0()(|)()...............................................................................(5') 19181716181716150.810.10.1...........................(9')2019181720191817 0.9i i i P B P B A P A ==??????=?+? +???????≈∑43...................................................................................................(10') 12、已知连续型随机变量得概率密度函数为 , (1)求概率;(2)求、

复数高考题型归类

复数高考题型归类解析 一、基本运算型 二、基本概念型 三、复数相等型 四、复数的几何意义型 练习: 1.如果复数z=1+ai满足条件|z|<2,那么实数a的取值 范围是[ ] A.() 22,22 - B.(-2,2) C.(-1,1) D.(3,3 - 2.在平行四边形OABC中,顶点O,A,C分别表示0,3 +2i,-2+4i.则对角线CA → 所表示的复数的模为; 3.已知复数z1=i(1-i)2,|z|=1|z-z1|的取值范围 是;

五、技巧运算型 六、知识交汇型 七、轨迹方程型 练习: 1.已知复数z 满足|z |2-2|z |-3=0,则复数z 对应点的轨迹是( ) A .1个圆 B.线段 C.2个点 D.2个圆 2.如果复数z 满足|z +2i|+|z -2i|=4,那么|z +i +1|的最小值是( ) A.1 B. 2 C.2 D. 5 3.若|z -2|=|z +2|,则|z -1|的最小值是 .

复数高考题型归类解析 一、基本运算型 二、基本概念型 三、复数相等型 四、复数的几何意义型 练习: 1.如果复数z=1+ai满足条件|z|<2,那么实数a的取值 范围是[ ] A.() 22,22 - B.(-2,2) C.(-1,1) D.(3,3 - 2.在平行四边形OABC中,顶点O,A,C分别表示0,3 +2i,-2+4i.则对角线CA → 所表示的复数的模为; 3.已知复数z1=i(1-i)2,|z|=1,则|z-z1|的最大值. 五、技巧运算型 六、知识交汇型

七、轨迹方程型 已知复数z 满足|z |2-2|z |-3=0,则复数z 对应点的轨迹是( ) A.1个圆 B.线段 C.2个点 D.2个圆 答案 A 解析 由题意可知(|z |-3)(|z |+1)=0, 即|z |=3或|z |=-1. ∵|z |≥0,∴|z |=3. ∴复数z 对应的轨迹是1个圆. 5.如果复数z 满足|z +2i|+|z -2i|=4,那么|z +i +1|的最 小值是( ) A.1 B. 2 C.2 D. 5 答案 A 解析 设复数-2i,2i ,-(1+i)在复平面内对应的点分别为Z 1,Z 2,Z 3,因为|z +2i|+|z -2i|=4,Z 1Z 2=4,所以复数z 的几何意义为线段Z 1Z 2,如图所示,问题转化为:动点Z 在线段Z 1Z 2上移动,求ZZ 3的最小值. 因此作Z 3Z 0⊥Z 1Z 2于Z 0,则Z 3与Z 0的距离即为所求的最小值,Z 0Z 3=1.故选A. 8.若|z -2|=|z +2|,则|z -1|的最小值是 . 答案 1 解析 由|z -2|=|z +2|,知z 对应点的轨迹是到(2,0)与到(-2,0)距离相等的点,即虚轴.|z -1|表示z 对应的点与(1,0)的距离.∴|z -1|min =1. 12.集合M ={z ||z -1|≤1,z ∈C },N ={z ||z -1-i|=|z -2|,z ∈C },集合P =M ∩N . (1)指出集合P 在复平面上所表示的图形; (2)求集合P 中复数模的最大值和最小值. 解 (1)由|z -1|≤1可知,集合M 在复平面内所对应的点集是以点E (1,0)为圆心,以1为半径的圆的内部及边界;由|z -1-i|=|z -2|可知,集合N 在复平面内所对应点集是以点(1,1)和(2,0)为端点的线段的垂直平分线l ,因此集合P 是圆面截直线l 所得的一条线段AB ,如 图所示.

大学概率论与数理统计必过复习资料试题解析(绝对好用)

《概率论与数理统计》复习提要第一章随机事件与概率1.事件的关系 2.运算规则(1)(2)(3)(4) 3.概率满足的三条公理及性质:(1)(2)(3)对互不相容的事件,有(可以取)(4)(5) (6),若,则,(7)(8) 4.古典概型:基本事件有限且等可能 5.几何概率 6.条件概率(1)定义:若,则(2)乘法公式:若为完备事件组,,则有(3)全概率公式: (4) Bayes公式: 7.事件的独立 性:独立(注意独立性的应用)第二章随机变量与概率分 布 1.离散随机变量:取有限或可列个值,满足(1),(2)(3)对 任意, 2.连续随机变量:具有概率密度函数,满足(1)(2); (3)对任意, 4.分布函数,具有以下性质(1);(2)单调非降;(3)右连续;(4),特别;(5)对离散随机变量,; (6)为连续函数,且在连续点上, 5.正态分布的 概率计算以记标准正态分布的分布函数,则有(1);(2);(3) 若,则;(4)以记标准正态分布的上侧分位 数,则 6.随机变量的函数(1)离散时,求的值,将相同的概率相加;(2)连续,在的取值范围内严格单调,且有一阶连续导 数,,若不单调,先求分布函数,再求导。第三章随机向量 1.二维离散随机向量,联合分布列,边缘分布,有(1);(2 (3), 2.二维连续随机向量,联合密度,边缘密度,有 (1);(2)(4)(3);,3.二维均匀分布,其中为的面积 4.二维正态分布 且; 5.二维随机向量的分布函数有(1)关于单调非降;(2)关 于右连续;(3);(4),,;(5);(6)对 二维连续随机向量, 6.随机变量的独立性独立(1) 离散时独立(2)连续时独立(3)二维正态分布独立,且 7.随机变量的函数分布(1)和的分布的密度(2)最大最小分布第四章随机变量的数字特征 1.期望 (1) 离散时 (2) 连续 时, ;,; (3) 二维时, (4); (5);(6);(7)独立时, 2.方差(1)方差,标准差(2); (3);(4)独立时, 3.协方差 (1);;;(2)(3);(4)时, 称不相关,独立不相关,反之不成立,但正态时等价;(5) 4.相关系数;有, 5.阶原点矩,阶中心矩第五章大数定律与中心极限定理 1.Chebyshev不等式 2.大数定律 3.中心极限定理(1)设随机变量独立同分布, 或,或

2021年高考文科数学《集合与简易逻辑》题型归纳与训练(有解析答案)

2021年高考文科数学《集合与简易逻辑》题型归纳与训练 【题型归纳】 题型一 集合的交并补运算 例1 :已知集合{0,2}=A ,{21012}=--, ,,,B ,则A B =( ) A .{0,2} B .{1,2} C .{0} D .{21012}--, ,,, 【答案】A 【解析】由题意{0,2}A B =,故选A . 【易错点】交并不分 【思维点拨】概念的应用 例2已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B =( ) A .{3} B .{5} C .{3,5} D .{}1,2,3,4,5,7 【答案】C 【解析】因为{}1,3,5,7A =,{}2,3,4,5B =,所以{3,5}A B =,故选C . 【易错点】交并不分 【思维点拨】概念的应用 题型二 集合的交并补与不等式结合 例3:已知集合{|2}A x x =<,{320}B x =->,则( ) A .3{|}2A B x x =< B .A B =? C .3 {|}2 A B x x =< D .A B =R 【答案】A 【解析】∵3{|}2 B x x =<,∴3 {|}2 A B x x =<, 选A . 【易错点】不等式解错 【思维点拨】掌握常规不等式的解答 例4:设集合2 {|}M x x x ==,{|lg 0}N x x =≤,则M N =( ) A .[0,1] B .(0,1] C .[0,1) D .(-∞,1]

2 【答案】A 【解析】∵{0,1}M =,{|01}N x x ≤=<,∴M N =[0,1]. 【易错点】方程解错,对数不等式不会解答 【思维点拨】基本函数和方程思想的掌握 题型三 四种命题的基本考查 例5:设m R ∈,命题“若0m >,则方程20x x m +-=有实根”的逆否命题是 A .若方程20x x m +-=有实根,则0m > B .若方程20x x m +-=有实根,则 0m ≤ C .若方程20x x m +-=没有实根,则0m > D .若方程20x x m +-=没有实根,则0m ≤ 【答案】D 【解析】一个命题的逆否命题,要将原命题的条件、结论加以否定,并且加以互换,故选D . 【易错点】概念混淆 【思维点拨】加强对四种命题的强化 题型四 充要条件的判断 例6:设x ∈R ,则“38x >”是“||2x >” 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】A 【解析】由38x >,得2x >,由||2x >,得2x >或2x <-,故“3 8x >”是“||2x >” 的充分而不必要条件,故选A . 【易错点】解不等式 【思维点拨】加强部分不等式的解答 例7:设a ,b ,c ,d 是非零实数,则“ad bc =”是“a ,b ,c ,d 成等比数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】B

概率论和数理统计考试试题和答案解析

一.填空题(每空题2分,共计60分) 1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)(,4.0)A (p ===A B P ,则=)B A (p 0.6 , =)B -A (p 0.1 ,)(B A P ?= 0.4 , =)B A (p 0.6。 2、一个袋子中有大小相同的红球6只、黑球4只。(1)从中不放回地任取2只,则第一次、 第二次取红色球的概率为: 1/3 。(2)若有放回地任取2只,则第一次、第二次取红色球的概率为: 9/25 。(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为: 21/55 。 3、设随机变量X 服从B (2,0.5)的二项分布,则{}=≥1X p 0.75, Y 服从二项分布B(98, 0.5), X 与Y 相互独立, 则X+Y 服从 B(100,0.5),E(X+Y)= 50 ,方差D(X+Y)= 25 。 4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1、0.15.现从由甲厂、 乙厂的产品分别占60%、40%的一批产品中随机抽取一件。 (1)抽到次品的概率为: 0.12 。 (2)若发现该件是次品,则该次品为甲厂生产的概率为: 0.5 . 5、设二维随机向量),(Y X 的分布律如右,则=a 0.1, =)(X E 0.4, Y X 与的协方差为: - 0.2 , 2Y X Z +=的分布律为: 6、若随机变量X ~)4 ,2(N 且8413.0)1(=Φ,9772.0)2(=Φ,则=<<-}42{X P 0.815 , (~,12N Y X Y 则+= 5 , 16 )。 7、随机变量X 、Y 的数学期望E(X)= -1,E(Y)=2, 方差D(X)=1,D(Y)=2, 且X 、Y 相互独立,则: =-)2(Y X E - 4 ,=-)2(Y X D 6 。 8、设2),(125===Y X Cov Y D X D ,)(,)(,则=+)(Y X D 30 9、设261,,X X 是总体)16,8(N 的容量为26的样本,X 为样本均值,2S 为样本方差。则:~X N (8 , 8/13 ), ~16252 S )25(2χ, ~5 2/8s X - )25(t 。

高中数学集合总结+题型分类+完美解析

集合 【知识清单】 1.性质:确定性、互易性、无序性. 2.元素和集合的关系:属于“∈”、不属于“?”. 3.集合和集合的关系:子集(包含于“?”)、真子集(真包含于“≠ ?”). 4.集合子集个数=n 2;真子集个数=12-n . 5.交集:{}B x A x x B A ∈∈=且| 并集:{}B x A x x B A ∈∈=或| 补集:{}A x U x x A C U ?∈=且| 6.空集是任何非空集合的真子集;是任何集合的子集. 题型一、集合概念 解决此类型题要注意以下两点: ①要时刻不忘运用集合的性质,用的最多的就是互易性; ②元素与集合的对应,如数对应数集,点对应点集. 【No.1 定义&性质】 1.下列命题中正确的个数是( ) ①方程022=++-y x 的解集为{}2,2- ②集合{} R x x y y ∈-=,1|2 与{}R x x y y ∈-=,1|的公共元素所组成的集合是{}1,0 ③集合{}01|<-x x 与集合{}R a a x x ∈>,|没有公共元素 A.0 B.1 C.2 D.3 分析:①中的式子是方程但不是一个函数,所以我们要求的解集不是x 的值所构 成的集合,而是x 和y 的值的集合,也就是一个点. 答案:A

详解:在①中方程022=++-y x 等价于? ??=+=-020 2y x ,即???-==22y x 。因此解集应为 (){}2,2-,错误; 在②中,由于集合{} R x x y y ∈-=,1|2的元素是y ,所以当R x ∈时,112-≥-=x y .同理, {}R x x y y ∈-=,1|中R y ∈,错误; 在③中,集合{}01|<-x x 即1,|,画出数轴便可知这两个集合可能有公共的元素,错误.故选A. 2.下列命题中, (1)如果集合A 是集合B 的真子集,则集合B 中至少有一个元素; (2)如果集合A 是集合B 的子集,则集合A 的元素少于集合B 的元素; (3)如果集合A 是集合B 的子集,则集合A 的元素不多于集合B 的元素; (4)如果集合A 是集合B 的子集,则集合A 和B 不可能相等. 错误的命题的个数是( ) A .0 B .1 C .2 D .3 分析:首先大家要理解子集和真子集的概念,如果集合M 是集合N 的子集,那么M 中的元素个数要小于或等于N 中元素的个数;如果集合M 是集合N 的真子集,那么M 中的元素个数要小于N 中元素的个数. 答案:C 详解:(1)如果集合A 是集合B 的真子集,则集合B 中至少有一个元素,故(1)正确; (2)如果集合A 是集合B 的子集,则集合A 的元素少于或等于集合的B 元素,故(2)不 正确; (3)如果集合A 是集合B 的子集,则集合A 的元素不多于集合B 的元素,故(3)正确; (4)如果集合A 是集合B 的子集,则集合A 和B 可能相等,故(4)不正确.故选C . 3.设P 、Q 为两个非空实数集,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合Q P +中的元素是b a +,其中P a ∈,Q b ∈,则Q P +中元素的个数是( ) A.9 B.8 C.7 D.6 分析:因为P a ∈,Q b ∈,所以Q P +中的元素b a +是P 中的元素和Q 中元素两两相加而得出的,最后得出的集合还要考虑集合的互易性. 答案:B 详解:当0=a 时,b 依次取1,2,6,得b a +的值分别为1,2,6; 当2=a 时,b 依次取1,2,6,得b a +的值分别3,4,8; 当5=a 时,b 依次取1,2,6,得b a +的值分别6,7,11;

相关文档
相关文档 最新文档