文档视界 最新最全的文档下载
当前位置:文档视界 › 纳米技术与纳米材料

纳米技术与纳米材料

纳米技术与纳米材料
纳米技术与纳米材料

纳米技术与纳米材料

纳米技术是近十年来蓬勃兴起的新科技,纳米技术是一种在纳米尺度空间内的生产方式和工作方式。纳米技术的内涵非常广泛,它包括纳米材料的制造技术,纳米材料向各个领域应用的技术(含高科技领域),在纳米空间构筑一个器件,实现对原子、分子的翻切、操作以及在纳米微区内对物质传输和能量传输新规律的认识等等。纳米技术作为一门崭新的、面向21世纪的科学技术,它已渗透于精细化工的方方面面,逐步形成纳米精细化工学,可以预言,随着纳米科学技术的飞速发展,会有越来越多的新型纳米材料在精细化工方面得到广泛的应用,精细化工学也会发生巨大的变革。

第一节概述

一、纳米技术与纳米材料的概念

1.纳米技术

纳米科学技术是研究在千万分之一米(10-8)到亿分之一米(10-9米)内,原子、分子和其它类型物质的运动和变化的学问;在这一尺度范围内对原子、分子进行操纵和加工称为纳米技术。我国纳米科学家,国家重点基础研究计划(973计划)纳米材料和纳米结构项目首席科学家、中国科学院固体物理研究所张立德研究员作了总结性的定义:“纳米科技是研究由尺寸在0.1~100nm之间的物质组成的体系的运动规律和相互作用,以及可能的实际应用中的技术问题的科学技术”。

纳米技术包括的内容有:创造和制备优异性能的纳米材料;设计、制备各种纳米器件和装置;探测和分析纳米区域的性质和现象。

2.纳米材料

纳米材料是指晶粒尺寸为纳米级(10-9米)的超细材料。它的微粒尺寸大于原子簇,小于通常的微粒,一般为0.1~102nm。它包括体积分数近似相等的两个

部分:一是直径为几个或几十个纳米的粒子,二是粒子间的界面。前者具有长程序的晶状结构,后者是既没有长程序也没有短程序的无序结构。

在纳米材料中,纳米晶粒和由此而产生的高浓度晶界是它的两个重要特征。纳米晶粒中的原子排列已不能处理成无限长程有序,通常大晶体的连续能带分裂成接近分子轨道的能级,高浓度晶界及晶界原子的特殊结构导致材料的力学性能、磁性、介电性、超导性、光学乃至热力学性能的改变。纳米材料跟普通的金属、陶瓷和其它固体材料都是由同样的原子组成,只不过这些原子排列成了纳米级的原子团,成为组成这些新材料的结构粒子或结构单元。其常规纳米材料中的基本颗粒直径不到100 nm,包含的原子不到几万个。一个直径为3 nm的原子团包含大约900个原子,几乎是英文里一个句点的百万分之一,这个比例相当于一条300多米长的帆船跟整个地球的比例。

二、纳米材料的特性

纳米材料是指物质的颗粒尺寸<100nm的超微粉末,它的比表面积很大,晶界处的原子数比率高达15%~50%,一些科学家认为,纳米材料不同于晶态与非晶态,是物质的第三态固体材料,其种类很多,可分为金属、陶瓷、有机与无机、复合纳米材料等。

纳米材料的特殊性能是由于纳米材料的特殊结构,使之产生四大效应,即小尺寸效应、量子效应(含宏观量子隧道效应)、表面效应和界面效应,从而具有传统材料所不具备的物理、化学性能。

1.纳米材料的表面效应

纳米材料的表面效应是指纳米粒子的表面原子数与总原子数之比随粒径的变小而急剧增大后所引起的性质上的变化。如图10-1所示:

图10-1表面原子数与粒径的关系

从图中可以看出,粒径在10nm以下,将迅速增加表面原子的比例。当粒径降到1nm时,表面原子数比例达到约90%以上,原子几乎全部集中到纳米粒子的表面。由于纳米粒子表面原子数增多,表面原子配位数不足和高的表面能,使这些原子易与其它原子相结合而稳定下来,故具有很高的化学活性。

超微颗粒的表面具有很高的活性,在空气中金属颗粒会迅速氧化而燃烧。如要防止自燃,可采用表面包覆或有意识地控制氧化速率,使其缓慢氧化生成一层极薄而致密的氧化层,确保表面稳定化。利用表面活性,金属超微颗粒可望成为新一代的高效催化剂和贮气材料以及低熔点材料。

2.小尺寸效应

随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变。由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质。

纳米材料与技术思考题2016

纳米材料导论复习题(2016) 一、填空: 1.纳米尺度是指 2.纳米科学是研究纳米尺度内原子、分子和其他类型物质的科学 3.纳米技术是在纳米尺度范围内对原子、分子等进行的技术 4.当材料的某一维、二维或三维方向上的尺度达到纳米范围尺寸时,可将此类材料称为 5.一维纳米材料中电子在个方向受到约束,仅能在个方向自由运动,即电子在 个方向的能量已量子化一维纳米材料是在纳米碳管发现后才得到广泛关注的,又称为 6.1997年以前关于Au、Cu、Pd纳米晶样品的弹性模量值明显偏低,其主要原因是 7.纳米材料热力学上的不稳定性表现在和两个方面 8.纳米材料具有高比例的内界面,包括、等 9.根据原料的不同,溶胶-凝胶法可分为: 10.隧穿过程发生的条件为. 11.磁性液体由三部分组成:、和 12.随着半导体粒子尺寸的减小,其带隙增加,相应的吸收光谱和荧光光谱将向方向移动,即 13.光致发光指在照射下被激发到高能级激发态的电子重新跃入低能级被空穴捕获而发光的微观过程仅在激发过程中发射的光为在激发停止后还继续发射一定时间的光为 14.根据碳纳米管中碳六边形沿轴向的不同取向,可将其分成三种结构:、和 15.STM成像的两种模式是和. 二、简答题:(每题5分,总共45分) 1、简述纳米材料科技的研究方法有哪些? 2、纳米材料的分类? 3、纳米颗粒与微细颗粒及原子团簇的区别? 4、简述PVD制粉原理 5、纳米材料的电导(电阻)有什么不同于粗晶材料电导的特点? 6、请分别从能带变化和晶体结构来说明蓝移现象

7、在化妆品中加入纳米微粒能起到防晒作用的基本原理是什么? 8、解释纳米材料熔点降低现象 9、AFM针尖状况对图像有何影响?画简图说明 1. 纳米科学技术 (Nano-ST):20世纪80年代末期刚刚诞生并正在崛起的新科技,是研究在千万分之一米10–7)到十亿分之一米(10–9米)内,原子、分子和其它类型物质的运动和变化的科学;同时在这一尺度范围内对原子、分子等进行操纵和加工的技术,又称为纳米技术 2、什么是纳米材料、纳米结构? 答:纳米材料:把组成相或晶粒结构的尺寸控制在100纳米以下的具有特殊功能的材料称为纳米材料,即三维空间中至少有一维尺寸小于100nm的材料或由它们作为基本单元构成的具有特殊功能的材料,大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类;纳米材料有两层含义: 其一,至少在某一维方向,尺度小于100nm,如纳米颗粒、纳米线和纳米薄膜,或构成整体材料的结构单元的尺度小于100nm,如纳米晶合金中的晶粒;其二,尺度效应:即当尺度减小到纳米范围,材料某种性质发生神奇的突变,具有不同于常规材料的、优异的特性量子尺寸效应。 纳米结构:以纳米尺度的物质为单元按一定规律组成的一种体系 3、什么是纳米科技? 答:纳米科技是研究在千万分之一米(10-8)到亿分之一米(10-9米)内,原子、分子和其它类型物质的运动和变化的学问;同时在这一尺度范围内对原子、分子进行操纵和加工 4、什么是纳米技术的科学意义? 答:纳米尺度下的物质世界及其特性,是人类较为陌生的领域,也是一片新的研究疆土在宏观和微观的理论充分完善之后,再介观尺度上有许多新现象、新规律有待发现,这也是新技术发展的源头;纳米科技是多学科交叉融合性质的集中体现,我们已不能将纳米科技归为任何一门传统的学科领域而现代科技的发展几乎都是在交叉和边缘领域取得创新性的突破的,在这一尺度下,充满了原始创新的机会因此,对于还比较陌生的纳米世界中尚待解释的科学问题,科学家有着极大的好奇心和探索欲望 5、纳米材料有哪4种维度?举例说明 答:零维:团簇、量子点、纳米粒子 一维:纳米线、量子线、纳米管、纳米棒 二维:纳米带、二维电子器件、超薄膜、多层膜、晶体格 三维:纳米块体 6、请叙述什么是小尺寸效应、表面效应、量子效应和宏观量子隧道效应、库仑堵塞效应 答:小尺寸效应:当颗粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米粒子的颗粒表面层附近的原子密度减少,导致声、光、电、磁、热、力学等特性呈现新的物理性质的变化称为小尺寸效应 表面效应:球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比随着颗粒直径的变小,比表面积将会显著地增加,颗粒表面原子数相对增多,从而使这些表面原子具有很高的活性且极不稳定,致使颗粒表现出不一样的特性,这就是表面效应 量子尺寸效应:当粒子的尺寸达到纳米量级时,费米能级附近的电子能级由连续态分裂成分立能级当能级间距大于热能、磁能、静电能、静磁能、光子能或超导态的凝聚能时,会出现纳米材料

纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法

纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中

纳米材料综述要点

纳米材料综述 一、基本定义 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着 纳米科学技术的正式诞生。 1、纳米 纳米是一种长度单位,1纳米=1×10-9米,即1米的十亿分之一,单位符 号为 nm。 2、纳米技术 纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行 精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和 相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技 术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出 具有特定功能的产品。 纳米技术的发展大致可以划分为3个阶段: 第一阶段(1990年即在召开“Nano 1”以前主要是在实验室探索各种纳米粉体的制备手段,合成纳米块体(包括薄膜,研究评估表征的方法,探索纳米材料的特殊性能。研究对象一般局限于纳米晶或纳米相材料。 第二阶段 (1990年~1994年人们关注的热点是设计纳米复合材料: ?纳米微粒与纳米微粒复合(0-0复合, ?纳米微粒与常规块体复合(0-3复合, ?纳米复合薄膜(0-2复合。 第三阶段(从1994年至今纳米组装体系研究。它的基本内涵是以纳米颗粒 以及纳米丝、管等为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系的研究。 3、纳米材料 材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料就称为纳米 材料。纳米材料和宏观材料迥然不同,它具有奇特的光学、电学、磁学、热学和力学等方面的性质。

图1 纳米颗粒材料SEM图 二、纳米材料的基本性质 由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管放大特性。并根据低温下碳纳米管的三极管放大特性,成

纳米材料用在哪方面

纳米技术是新世纪一项重要的技术,为多个行业带来了深远影响。纳米技术包含几个方面:纳米电子学,纳米生物学,纳米药物学,纳米动力学,以及纳米材料。其中,纳米材料主要集中在纳米功能性材料的生产,性能的检测。其独特性使它应用很广,那么,纳米材料用在哪方面呢 1、特殊性能材料的生产 材料科学领域无疑会是纳米材料的重要应用领域。高熔点材料的烧结纳米材料的小尺寸效应(即体积效应)使得其在低温下烧结就可获得质地优异的烧结体(如SiC、WC、BC等),且不用添加剂仍能保持其良好的性能。另一方面,由于纳米材料具有烧结温度低、流动性大、渗透力强、烧结收缩大等烧结特性,所以它又可作为烧结过程的活化剂使用,以加快烧结过程、缩短烧结时间、降低烧结温度。例如普通钨粉需在3 000℃高温时烧结,而当掺入%%的纳米镍粉后,烧结成形温度可降低到1200℃-1311℃。复合材料的烧结由于不同材料的熔点和相变温度各不相同,所以把它们烧结成复合材料是比较困难的。 纳米材料的小尺寸效应和表面效应,不仅使其熔点降低,且相变温度也降低了,从而在低温下就能进行固相反应,获得烧结性能好的复合材料。纳米陶瓷材料的制备通常的陶瓷是借助于高温高压使各种颗粒融合在一起制成的。由于纳米材料粒径非常小、熔点低、相变温度低,故在低温低压下就可用它们作原料生产出质地致密、性能优异的纳米陶瓷。纳米陶瓷具有塑性强、硬度高、耐高温、耐腐蚀、耐磨的性能,它还具有高磁化率、高矫顽力、低饱和磁矩、低磁耗以及光吸收效应,这些都将成为材料开拓应用的一个崭新领域,并将会对高技术和新材料的开发产生重要作用。 2、生物医学中的纳米技术应用 从蛋白质、DNA、RNA到病毒,都在1-100nm的尺度范围,从而纳米结构也

纳米技术的应用与前景

纳米技术的应用与前景 纳米技术作为一种高新科技,我认为其本质不亚于当年的电子与半导体科技,有着我们未所发掘到潜能与实用价值,在这个世代,各种技术的发展迅速,随着纳米技术的进一步发展,可以作为一种催化剂,促使各行各业的迅猛发展。 纳米技术是近年来出现的一门高新技术。“纳米”主要是指在纳米(一种长度计量单位,等于1/1000,000,000米)尺度附近的物质,其表现出来的特殊性能用于不同领域而称之为“纳米技术”,其具体定义见词条“纳米科技”。 纳米技术目前已成功用于许多领域,包括医学、药学、化学及生物检测、制造业、光学以及国防等等。本词条为纳米技术应用的总纲,包括如下领域: 1、纳米技术在新材料中的应用 2、纳米技术在微电子、电力等领域中的应用 3、纳米技术在制造业中的应用 4、纳米技术在生物、医药学中的应用 5、纳米技术在化学、环境监测中的应用 6、纳米技术在能源、交通等领域的应用 尽管从理论到实践是一个相当困难的过程,但纳米技术已经证明,可以利用扫描隧道电子显微镜等工具移动原子个体,使它们形成在自然界中永远不可能存在的排列方式,如IBM 公司的标志图案、比例为百亿分之一的世界地图、或一把琴弦只有50纳米粗的亚显微吉他。纳米材料的应用有着诱人的技术潜力,它的应用范围包括从制造工业、航天工业到医学领域等。美国全国科学基金会曾发表声明说:“当我们进入21世纪时,纳米技术将对世界人民的健康、财富和安全产生重大的影响,至少如同20世纪的抗生素、集成电路和人造聚合物那样。”科学家们预计,纳米技术在新世纪中的应用前景广阔,已经涵盖了材料、测量、机械、电子、光学、化学、生物等众多领域,信息技术与纳米技术的关系已密不可分。 从纳米科技发展的历史来看,人们早在1861年建立所谓肢体化学时即开始了对纳米肢体的研究。但真正对纳米进行独立的研究,则是1959年,这一年,著名美国物理学家、诺贝尔奖金获得者德·费曼在美国物理学年会上作了一次报告。他在报告中认为,能够用宏观的机器来制造比其体积小的机器,而这较小的机器又可制作更小的机器,这样一步步达到分子程度。费曼还幻想在原子和分子水平上操纵和控制物质。 在70年代末,美国MIT(麻省理工大学)的W.R.Cannon等人发明了激光气相法合成数十纳米尺寸的硅基陶瓷粉末。80年代初,德国物理学家H.Gleiter等人用气体冷凝发制备了具有清洁表面的纳米颗粒,并在超真空条件下原位压制了多晶纳米固体。现在看来,这些研究都属于纳米材料的初步探索。 科学家预言,尺寸为分子般大小、厚度只有一根头发丝的几百万分之一的纳米机械装置将在今后数年内投入使用。学术实验室和工业实验室的研究人员在开发分子马达、自组装材料等纳米机械部件方面取得了飞速进展。纳米机器具有可以操纵分子的微型“手指”和指挥这些手指如何工作、如何寻找所需原材料的微型电脑。这种手指完全可以由碳纳米管制成,碳纳米管是1991年发现的一种类似头发的碳分子,其强度是钢的100倍,直径只有头发的五万分之一。美国康奈尔大学的研究人员利用有机物和无机物组件开发出一个分子大小的马达,一些人称之为纳米技术领域的“T型发动机”。 纳米科技中具有主导或牵头作用的是纳米电子学,因为它是微电子学发展的下一代。纳米电子学是来自电子工业,是纳米技术发展的一个主要动力。纳米电子学立足于最新的物理理论和最先进的工艺手段,按照全新的理念来构造电子系统,并开发物质潜在的储存和处理

纳米科技与纳米技术

纳米技术 1510700224 韦甜甜纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术,也称毫微技术,研究结构尺寸在0.1至100纳米范围内材料的性质和应用。 1981年扫描隧道显微镜发明后,诞生了一门以0.1到100纳米长度为研究分子世界,它的最终目标是直接以原子或分子来构造具有特定功能的产品。因此,纳米技术其实就是一种用单个原子、分子射程物质的技术。 利用纳米技术将氙原子排成IBM纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。纳米科学与技术主要包括:纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学、纳米力学等。这七个相对独立又相互渗透的学科和纳米材料、纳米器件、纳米尺度的检测与表征这三个研究领域。纳米材料的制备和研究是整个纳米科技的基础。其中,纳米物理学和纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最重要的内容。 在我国,纳米技术早已融入到大众的生活了,包括很多涂料、纤维材料、燃料、高分子合成和纺织品加工处理技术等等。其实纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。 纳米技术内容 1、纳米材料 当物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。 如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。 过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度范围的性能。第一个真正认识到它的性能并引用纳米概念的是日本科学家,他们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。磁性材料也是如此,像铁钴合金,把它做成大约20—30纳米大小,磁畴就变成单磁畴,它的磁性要比原来高1000倍。80年代中期,人们就正式把这类材料命名为纳米材料。 为什么磁畴变成单磁畴,磁性要比原来提高1000倍呢?这是因为,磁畴中的单个原子排列的并不是很规则,而单原子中间是一个原子核,外则是电子绕其旋转的电子,这是形成磁性的原因。但是,变成单磁畴后,单个原子排列的很规则,对外显示了强大磁性。 这一特性,主要用于制造微特电机。如果将技术发展到一定的时候,用于制造磁悬浮,可以制造出速度更快、更稳定、更节约能源的高速度列车。 2、纳米动力学 主要是微机械和微电机,或总称为微型电动机械系统(MEMS),用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等.

纳米材料及其应用前景

纳米材料及其应用前景 摘要:21世纪,纳米技术、纳米材料在科技领域将扮演重要角色。纳米技术是当今世界最有前途的决定性技术之一。本文简要地概述了纳米材料的基本特性以及其在力学、磁学、电学、热学等方面的主要应用,并简单展望了纳米材料的应用前景。 关键词:纳米材料;功能;应用; 一、纳米材料的基本特性 所谓纳米材料是指材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料。由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增 殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和 增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50 多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直 难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、 强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。 使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油 钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用 变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面 有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作 用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的 隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体 器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管 放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室 温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研 制出由碳纳米管组成的逻辑电路。

纳米技术知识材料

纳米技术知识材料 一、纳米(nano meter,nm): 一种长度单位,一纳米等于十亿分之一米,千分之一微米。大约是三、四个原子的宽度。 二、纳米科学技术(nanotechnology): 纳米科学技术是用单个原子、分子制造物质的科学技术。纳米科学技术是以许多现代科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微技术、核分析技术)结合的产物,纳米科学技术又将引发一系列新的科学技术,例如纳米电子学、纳米材料学、纳米机械学等。纳米科学技术被认为是世纪之交出现的一项高科技。 三、纳米材料(nano material)与纳米粒子(nano particle): 纳米材料又称为超微颗粒材料,由纳米粒子组成。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著的不同。 四、几种典型的纳米材料: a) 纳米颗粒型材料: 应用时直接使用纳米颗粒的形态称为纳米颗粒材料。被称为第四代催化剂的超微颗粒催化剂,利用甚高的比表面与活性可以显著得提高催化效率,例如,以微径小于微米的镍和钢-锌合金的超微颗粒为主要成分制成的催化剂可使有机物氯化的效率达到传统镍催化剂的10倍;超细的铁微粒作为催化剂可以在低温将二氧化碳分解为碳和水,超细铁粉可在苯气相热分解中起成核作用,从而生成碳纤维。 录音带、录像带和磁盘等都是采用磁性粒子作为磁记录介质。随着社会的信息化,要求信息储存量大、信息处理速度高,推动着磁记录密度日益提高,促使磁记录用的磁性颗粒尺寸趋于超微化。目前用金属磁粉(20)纳米左右的超微磁性颗粒)制成的金属磁带、磁盘,国外已经商品化,其记录密度可达4’106~4’107位/厘米(107~108位/英寸),即每厘米可记录4百万至4千万的信息单元,与普通磁带相比,它具有高密度、低噪音和高信噪比等优点。

纳米材料和纳米技术

纳米材料和纳米技术 纳米材料的使用古已有之。据研究认为中国古代字画之所以历经千年而不褪色,是因为所用的墨是由纳米级的碳黑组成。中国古代铜镜表面的防锈层也被证明是由纳米氧化锡颗粒构成的薄膜。只是当时的人们没有清楚的了解而已。纳米材料在近十几年的研究中,领域迅速拓宽,内涵不断扩展。目前,普遍接受的定义为基本单元的颗粒或晶粒尺寸至少在一维上小于100nm,且必须具有与常规材料截然不同的光、电、热、化学或力学性能的一类材料体系。纳米材料的奇异性是由于其构成基本单元的尺寸及其特殊的界面、表面结构所决定的。 纳米技术的灵感,来自于诺贝尔奖获得者Richard Feyneman于1959年所作的《在底部还有很大空间》的演讲。他以“由下而上的方法” 出发,提出从单个分子甚至原子开始进行组装,以达到设计要求。他说道,“至少依我看来,物理学的规律不排除一个原子一个原子地制造物品的可能性。”并预言,“当我们对细微尺寸的物体加以控制的话,将极大得扩充我们获得物性的范围。” 纳米技术是面向尺寸在1~100nm之间的物质组成的体系的运动规律和相互作用以及在应用中实现特有功能和智能作用的技术问题,发展纳米尺度的探测和操纵。它从思维方式的概念表明生产和科研的对象将向更小的尺寸、更深的层次发展,将从微米层次深入至纳米层次。纳米技术未来的目标是按照需要,操纵原子、分子构建纳米级的具有一定功能的器件或产品。纳米科学与技术主要包括:纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学、纳米力学等,这七个相对独立又相互渗透的学科和纳米材料、纳米器件、纳米尺度的检测与表征这三个研究领域。纳米材料的制备和研究是整个纳米科技的基础。扫描隧道显微镜(STM)在纳米科技中占有重要的地位,它贯穿到七个分支领域中,以其为分析和加工手段所做的工作占一半以上。 纳米材料的研究最初源于十九世纪六十年代对胶体微粒的研究,二十世纪六十年代后,研究人员开始有意识得通过对金属纳米微粒的制备和研究来探索纳米体系的奥秘。2001年初,中国科技大学朱清时院士的研究组首次直接拍摄到能够分辨出化学键的C60单分子图像[2],这种单分子直接成像技术为解析分子内部结构提供了有效的手段,使科学家可以人工“切割”和重新“组装”化学键,为设计和制备单分子级的纳米器件奠定了基础。3月,美国佐治亚理工学院留美中国学者王中林教授的研究组利用高温固体气相法,在世界上首次合成了独特形态且无缺陷的半导体氧化物纳米带状结构[3]。这是继纳米管、纳米线之后纳米家族增加的新的成员。它有望解决纳米管在大规模生产时稳定性的问题,并在纳米物理研究和纳米器件应用上有重要的作用。6月,香港科技大学沈平教授的研究组在单根纯碳纳米碳管中观察到超导特性[4]。这一观察表明,当纳米碳管细到一定程度时,其材料性质将发生突变。从应用上来讲,纳米碳管超导性的发现,将有助解决电子在集成半导体器件中传输时的发热问题。 由上可见,在纳米基础研究领域,中国并不落后。自90年代初,科技部、国家自然科学基金委、中国科学院等单位就启动了有关纳米材料的攀登计划、国家重点基础研究项目等,投入数千万元资金支持纳米基础研究;中国的纳米科学家,在国际上取得了一系列令人瞩目的成果,相继在《Science》、《Nature》等权威杂志上发表了高水平的论文,使中国在纳米材料基础研究方面,尤其是纳米结构的控制合成方面,走在比较前沿的位置,继美、日、德之后,位居世界第四。

四川大学纳米材料与纳米技术期末提纲及问题

第一章纳米技术的基本概念 1 什么是纳米?什么是纳米技术? 纳米=10^-9米,大约等于十个氢原子并列一直线的长度。纳米科学技术(Nano-ST)是20世纪80年代末期诞生并正在崛起的新科技,它的基本涵义是在纳米尺寸(0.1nm∽100nm)范围内认识和改造自然,通过直接操作和安排原子、分子创造新物质。纳米科技是研究由尺寸0.1∽100nm之间的物质组成的体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术。纳米技术:是20世纪80年代末期兴起的新技术,其基本含意是在纳米尺寸范围内认识和改造自然,通过直接操纵和安排原子、分子而获得新结构和新材料的技术。 2 按照材料维度分,纳米材料可以分成几维? 三维空间中,至少有一维处于纳米尺度(介于1~100 nm之间)范围内的材料,都可归属于纳米材料范畴。按维数的不同,纳米材料可分类为: 零维— 一维—(直线运动) 二维—(平面运动) 三维—纳米晶体(纳米分子筛)度中的三维中自由活动 3 纳米技术涉及的研究领域有哪些? 纳米材料、纳米器件和纳米尺度的检测与表征 其中纳米材料是纳米科技的基础;纳米器件的研制水平和应用程度是人类是否进入纳米科技时代的重要标志;纳米尺度的检测与表征是纳米科技研究必不可少的手段和理论与实验的重要基础。 4 纳米材料涉及哪些基本效应?产生的原因是什么? 小尺寸效应:当微粒分割到达一定程度时,其性质将会发生根本性的变化。 量子效应:电子能级由准连续变为离散能级的现象。 界面效应:纳米材料由于大量的原子存在于晶界和局部的原子结构不同于大块晶体材料,使纳米材料的自由能增加,纳米材料处于不稳定状态。 表面效应:纳米微粒尺寸小,表面能高,位于表面的原子或分子所占的比例非常大。 四个特点:尺寸小、比表面积大、表面能高、表面原子比例大 5 为什么金属纳米粉呈现黑色? 这是小尺寸效应的表现,当金属粒径小到光波波长以下,金属的反射率极低,故呈现黑色。 6 STM、AFM工作原理是什么? STM扫描隧道显微镜就是根据量子力学中的隧道效应与原理,通过探测固体表面原子中的电子的隧道电流来分辨固体表面形貌的新型显微装置。 AFM原子力显微镜中,样品放置在扫描器上方,扫描器中的压电陶瓷管在外加电压的作用下,可以在X、Y和Z方向上独立运动。SPM探头中的激光器发出激光,照射在探针的尖端背面,经反射后,落在光斑位置检测器上。光斑位置检测器上下部分的光强差产生了上下部分的电压差,通过测量这个压差,就可以得到光斑位置的变化量。 7 纳米粉体为什么容易出现团聚现象? 书P15第五段 8 请举例说明纳米技术的“自上而下”和“自下而上”方法。 “自上而下”是指通过微加工或固态技术,不断在尺寸上将人类创造的功能产品微型化;“针尖书写”是“自上而下”的主要技术之一。 “自下而上”最典型的例子是3维打印、基因药物。纳米科技研究的技术路线“自下而上”是指以原子、分子为基本单元,根据人们的意愿进行设计和组装,从而构筑成具有特

纳米技术与纳米材料简介

纳米技术与纳米材料简介

纳米技术与纳米材料简介 摘要:简单介绍了纳米、纳米结构的基本概念和涵义,阐述了纳米技术的内涵及其产生、发展和前景。并介绍了纳米材料与常规块体材料迥异的独特性能及其应用潜力。 Introduction of nanotechnology and nano-materials (Class mining 08-2 ,Resources and Environmental Sciences, Shandong University of Science and Technology) Summary:A brief introduction of the nano, nano-structure of the basic concepts and meanings, explained the meaning of nanotechnology and the production, development and prospects. And introduces the nano-materials with conventional bulk materials and the unique properties of different potential applications 1.前言:纳米科学是一门将基础科学和应用科学集于一体的新兴科学,主要包括纳米电子学、纳米材料学和纳米生物学等。21世纪将是纳米技术的时代,随着其制备和改性技术的不断发展,纳米材料在诸多领域将会得到日益广泛的应用,在机械、电子、光学、磁学、化学和生物学领域有关广泛的应用前景。纳米科学技术的诞生,将对人类社会产生深远的影响,并有可能从根本上解决人类面临的许多问题,特别是能源、人类健康和环境保护等重大问题。 2.纳米结构与纳米技术 1 m的十亿分之一是纳米技术领域的测量单位,在纳米技术中100 nm的尺寸是重要的, 因为在这个范围内,根据量子物理学定律,可以观察到新物性。当物质小到1~100 nm时,其量子效应、物质的局域性及巨大的表面及界面效应使物质的很多性能发生质变,呈现出许多既不同于宏观物体,也不同于单个孤立原子的奇异现象。 纳米技术是20世纪80年代末延生并崛起的高科技,它的基本涵义是指在纳米尺寸范围内研究物质的组成,通过直接操纵和安排原子、分子而创造新物质。纳米技术的出现标志着人类的认知领域已拓展至原子、分子水平,标志着人类科学技术的新时代———纳米科技时代的来临。纳米技术是一门以许多现代先进科学技术为基础的科学技术,是现代科学(量子学、分子生物学)和现代技术(微电子技术、计算机技术、高分辨显微技术和热分析技术)结合的产物。纳米技术在不断渗透到现代科学技术的各个领域的同时,形成了许许多多的与纳米技术相关的研究纳米自身规律的新兴学科,如:纳米物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学及纳米力学等,正是这些新兴学科构成了纳米科技的主要内容。3.纳米材料及其特性 广义上,纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料,即纳米材料是物质以纳米结构按一定方式组装成的体系,或纳米结构排列于 一定基体中分散形成的体系,包括纳米超微粒子、纳米块体材料和纳米复合材料等。组成纳米材 料的基本单元在维数上可分为三类:①零维。指在空间三维尺寸均在纳米尺度内。如纳米尺度颗粒、原子簇等;②一维。指在空间有两维处于纳米尺度,如纳米丝、纳米棒、纳米管等; ③二维。是指在三维空间中有一维处于纳米尺度,如超薄膜、多层膜、超晶格等。构成纳米材料的物质的类别可以有多种,分为金

纳米技术与纳米材料

纳米技术与纳米材料
祖万兴 无机纳米材料的制备、性能及表征
摘要:综述了国内外无机纳米材料研究的成果与进展,对各种金属与非金属无机纳米材料的种类、
具有各 种特异性能和用途作了系统的介绍,并系统地阐述了无机纳米材料的各种物理或化学的制备技术, 讨论了 各种制备方法的特点、适用范围以及国内外在无机纳米材料制备方法研究上的进展,并介绍了目前 国内常 用的一些无机纳米材料的表征方法及其特点和应用。
关键词:无机纳米材料;纳米技术;制备;性能
;研究发展
研究中最为重要的领 域。无机纳米材料以及与之相关的纳米复合材料的研 究开发与应用正吸引众多科学家的浓厚兴趣,成为材 料科学领域研究的热点, 最近十几年来亦已取得了可 喜的进展[1|。目前,一些重要的无机纳米材料在制 备 技术、性能及结构表征以及应用方面已取得成功,近 几年来,更不断有无机 纳米材料产品产业化的报道。 因此,无机纳米材料的制备及无机/有机纳米复 合材 料的研究具有广阔的应用前景, 是对相关行业的技术 进步具有重要促进作 用的、前景十分灿烂的研究开发 领域。 1. 无机纳米材料的制备技术 2. 纳米材料从形态上分,可分为纳米颗粒,纳米固体(块体或薄膜)和纳米 结构。其中,纳米颗粒是最 基本的、也是研究最早、最广泛的材料。 无机纳米粉 体的制备方法可分为物理和化学两大类。 1.1 物理制备方法 (1)蒸发一冷凝法。 该方法是将装有待蒸发物 质的容器抽至至 looPa。 10“Pa 的高真空或充填低压惰性气体后,加热蒸发源,使物质 (金属、合金或化 合物) 蒸发成雾状原子,随隋性气体流冷凝到冷凝器 上,将聚集的纳米尺度的粒子刮 下、收集即得到纳米粉体。该法按加热蒸发源的不同,可有电阻加热法、等离子 体法、高频感应法、激光加热法和电子束加热法等等。该法主要用于制备金属或 金属氧化物纳米颗 粒,其纯度、粒径和粒径分布都能达到理想要求。该 法所制 备的纳米颗粒表面清洁, 但晶体形状难以控 制, 生产效率低, 适于实验室采用。 (2)高能机械球磨法,又称机械合金化法。这 是一种依靠机械能使大晶粒 经球磨变成纳米晶来制备 纳米粉体的方法。同时还可通过颗粒间湿相反应直接 合成金属间化合物、金属一碳化物和金属硫化物。类 似这种利用机械能使大颗

纳米结构与纳米材料25个题目+完整答案

1.什么是纳米材料?其内涵是什么?(从零、一、二、三维考虑) 2.纳米材料的四大效应是什么?对每一效应举例说明。 3.纳米材料的常用的表征方法有哪些? 4.用来直接观察材料形态的SEM、TEM、AFM对所测定的样品有哪些特定要求?从它们的图像中能够得到哪些基本信息? 5.纳米颗粒的高表面活性有何优缺点?如何利用? 6.在纳米颗粒的气相合成中涉及到哪些基本环节?气相合成大致可分为哪四种?气相成核理论的机制有哪两种? 7.溶胶-凝胶法制备纳米颗粒的基本过程是怎样的? 8.用溶胶-凝胶技术结合碳纳米管的生长机理,可获得密度不同的碳纳米管阵列(也叫纳米森林),简要阐述其主要步骤及如何控制碳纳米管的分布密度? 9.改变条件可制备不同晶粒大小的二氧化钛,下图分别为两种晶粒尺寸不同的二氧化钛的XRD图与比表面积数据。请用Scherrer 方程、BET比表面积分别估算这两种二氧化钛的晶粒尺寸(XRD测试时所用的 = 1.5406?,锐钛矿相二氧化钛的密度是3.84 g/cm3)(默写出公式并根据图中的数据来计算)。 10.氧化物或者氮化物纳米材料具有许多特殊的功能,请以一种氧化物或者氮化物为例,举出其三种主要的制备方法(用到的原料、反应介质、主要的表征手段)、主要用途(与纳米效应有关的用途)、并介绍这种物质的至少两种晶相。 11.举出五种碳的纳米材料,阐述其一维材料与二维材料的结构特点、用途。 12.简述纳米材料的力学性能、热学性能与光学性能有怎样的变化? 13.什么叫化学气相沉积法,它与外场结合又可衍生出哪些方法?简述VLS机制。 14.纳米半导体颗粒具有光催化性能的主要原因是什么?光催化有哪些具体应用 15.利用机械球磨法制备纳米颗粒的主要机制是什么?有何优、缺点? 16 何为“自催化VLS生长”?怎样利用自催化VLS生长实现纳米线的掺杂? 17.液相合成金属纳米线,加入包络剂(capping reagent)的作用是什么? 18.何为纳米材料的模板法合成?它由哪些优点?合成一维纳米材料的模板有哪些? 19.试结合工艺流程图分别说明氧化铝模板的制备过程以及氧化铝模板合成纳米线阵列的过程 20.从力学特性、电学特性和化学特性来阐述碳纳米管的性质,它有哪些主要的应用前景? 21.如何提高传统光刻技术中曝光系统的分辩率? 22.试比较电子束刻蚀和离子束刻蚀技术的异同点和优缺点。 23.比较极紫外光刻技术和X射线光刻技术的异同。 24.何为纳米材料的自组装?用于制备纳米结构的微乳液体系一般有几个组成部分? 25 何谓“取向搭接Oriented attachment”“奥斯德瓦尔德熟化Ostwald ripening”?

纳米材料与纳米技术的应用

考试序列号____ 论文题目:纳米材料与纳米技术的应用 课程名称:纳米材料与纳米技术 学院 专业班级 学号 姓名 联系方式 任课教师 2016年10 月29日

纳米材料与纳米技术的应用 摘要纳米材料和纳米技术在当今新材料领域中最富有活力,它们很可能成为下一世纪前20年的主导技术,纳米材料和纳米技术的应用几乎涉及现代化工业的各个领域。本文主要对纳米材料和纳米技术在各个领域的应用予以叙述。 关键词纳米材料纳米技术纳米颗粒应用 “纳米材料”这一名称出现在80年代,它特指粒径为1至100nm(1nm= 10- 9m)的颗粒。纳米技术包括纳米材料的制备技术、纳米颗粒表面的控制、改性和修饰技术,以及把纳米材料应用到各个领域和各种产品上的关键技术。事实上,世界上早就有纳米颗粒存在,只是到80年代,科学家才惊奇地发现,由几个到几千个原子组成的纳米颗粒既不同于宏观的大块物体,也不同于单个的原子和分子,而是一个颇具“个性”的奇特的群体。 此后,关于纳米材料的制备方法、性能及应用研究逐渐引起了各国科学家和政府的高度重视。在世纪交替之际,有人预言,纳米技术可能成为下一世纪的主导技术,美国科学技术委员会则把“启动纳米技术的计划看作是下一次的工业革命的核心”[1]。之所以受到如此的重视,是因为纳米材料和纳米技术的应用几乎涉及现代化工业的各个领域。 纳米材料是由纳米颗粒组成的。纳米颗粒中的电子被局限在一个十分微小的纳米空间里,电子运输受到限制,电子的平均自由程短,使电子的局域性和相干性增强。与宏观物体相比,纳米颗粒所包含的原子数大大减少,因此宏观固定的准连续能带消失,能级分裂,呈现量子化。这些实质性变化,使得纳米材料在光、电、热、磁等物理性质方面和宏观材料有很大的不同,并展现出十分广泛的应用前景。 纳米材料和纳米结构的应用将对如何调整国民经济支柱产业的布局、设计新产品、形成新的产业及改造传统产业注入高科技含量提供新的机遇。研究纳米材料和纳米结构的重要科学意义在于它开辟了人们认识自然的新层次,是知识创新的源泉。由于纳米结构单元的尺度(1~100urn)与物质中的许多特征长度,如电子的德布洛意波长、超导相干长度、隧穿势垒厚度、铁磁性临界尺寸相当,从而导致纳米材料和纳米结构的物理、化学特性既不同于微观的原子、分子,也不同于宏观物体,从而把人们探索自然、创造知识的能力延伸到介于宏观和微观物体之间的中间领域。在纳米领域发现新现象,认识新规律,提出新概念,建立新理论,为构筑纳米材料科学体系新框架奠定基础,也将极大丰富纳米物理和纳米化学等新领域的研究内涵。世纪之交高韧性纳米陶瓷、超强纳米金属等仍然是纳米材料领域重要的研究课题;纳米结构设计,异质、异相和不同性质的纳米基元(零维纳米微粒、一维纳米管、纳米棒和纳米丝)的组合。纳米尺度基元的表面修饰改性等形成了当今纳米材料研究新热点,人们可以有更多的自由度按自己的意愿合成具有特殊性能的新材料。利用新物性、新原理、新方法设计纳米结构原理性器件以及纳米复合传统材料改性正孕育着新的突破。1研究形状和趋势纳米材料制备和应用研究中所产生的纳米技术很可能成为下一世纪前20年的主导技术,带动纳米产业的发展。世纪之交世界先进国家都从未来发展战略高度重新布局纳米材料研究,在千年交替的关键时刻,迎接新的挑战,抓紧纳米材料和柏米结构的立项,迅速组织科技人员围绕国家制定的目标进行研究是十分重要的。纳米材料诞生州多年来所取得的成就及对各个领域的影响和渗透一直引人注目。进入90年代,纳米材料研究的内涵不断扩大,领域逐渐拓宽。一个突出的特点是基础研究和应用研究的衔接十分紧密,实验室成果的转化速度之快出乎人们预料,基础研究和应用研究都取得了重要的进展。美国已成功地制备了晶粒为50urn的纳米cu材料,硬度比粗晶cu提高5倍;晶粒为7urn的pd,屈服应力比粗

纳米材料与纳米技术论文

纳米材料与纳米技术 学院:自动化学院 专业年级:2015级物联网工程4班 学生姓名:梁建业 摘要:纳米技术是当今世界最有前途的决定性技术。文章简要了解纳米材料和纳米技术,介绍它的一些相关的应用及其在国内外的现状,并尝试预测它的发展趋势。与此同时,也共同探讨下其存在的问题。首先,让我们来简单地了解下纳米材料和纳米技术吧!一.什么是纳米材料? 纳米是一个长度单位,1nm=10ˉ9m。纳米材料是指在结构上具有纳米尺度调制 特征的材料,纳米尺度一般是指1~100nm。当一种材料的结构进入纳米尺度特征范围时,其某个或某些性能会发生明显的变化。纳米尺度和性能的特异变化是 纳米材料必须同时具备的两个基本特征。 按材质,纳米材料可分为纳米金属材料、纳米非金属材料、纳米高分子材料和 纳米复合材料。其中纳米非金属材料又可细分为纳米陶瓷材料、纳米氧化物材 料和其他非金属纳米材料。 按纳米尺度在空间的表达特征,纳米材料可分为零维纳米材料即纳米颗粒材料、一维纳米材料(如纳米线、棒、丝、管和纤维等)、二维纳米材料(如纳米膜、纳米盘和超晶格等)、纳米结构材料即纳米空间材料(如介孔材料。 按形态,纳米材料可分为纳米颗粒材料、纳米固体材料(也称纳米块体材料)、纳米膜材料以及纳米液体材料(如磁性液体纳米材料和纳米溶胶等)。 按功能,纳米材料可分为纳米生物材料、纳米磁性材料、纳米药物材料、纳米催化材料、纳米智能材料、纳米吸波材料、纳米热敏材料以及纳米环保材 料等)。 二.什么是纳米技术? 纳米技术(nanotechnology)是指在~100nm空间尺度上操纵原子和分子,对材料进行加工,制造具有特定功能的产品或对物质及其结构进行研究的一门综合性的高新技术学科。其实通俗的讲就是“use?little?things?to?finish?the?big?work”。我们在分子原子这样的微小尺度上加工材料,得到一些新型的功能性的高科技产品,他们往往具有相比于一般材料更优良的性能,具有很高的实用价值和研究价值。而将纳米应用到测量等方面,又可以达到高精度的效果,比如扫描隧道显微镜(STM)、原子显微镜(AFM)的发明等。另外还有:纳米物理学、纳米生物学、纳米化学、纳米电子学、纳米加工技术和纳米计量学等方面的应用。 三.纳米技术的特异性质及其相关的应用。 1.纳米技术的具有的个性效应。 小尺寸效应是指:随着颗粒尺寸的不断减小,当进入纳米量级的时候,颗粒的 光、声、电磁和热力学等物理性质将发生根本性变化的一类现象。比如磁性的 纳米颗粒的矫顽力异常之高,而且其有很多应用,磁性车票、磁性钥匙、磁性

相关文档