文档视界 最新最全的文档下载
当前位置:文档视界 › 高层建筑结构设计论文

高层建筑结构设计论文

高层建筑结构设计论文
高层建筑结构设计论文

浅谈高层建筑结构设计

【摘要】上世纪末以来,城市化进程加速,城市人口激增,社会经济蓬勃发展,高层建筑在城市中越来越多。如今,城市中的高层建筑已经成为当地经济繁荣的重要标志。

【关键词】结构设计;高层建筑;控制参数;载荷;抗震

1 高层建筑的特点

《高层建筑混凝土结构技术规程》规定,10层及10层以上和高度超过28 m的钢筋混凝土民用建筑属于高层建筑。相比多层建筑而言,高层是向空中发展,容积率一定的情况下,建造高层建筑可以节省规划用地面积,提高城市绿化率,还可以缓解城市用地紧张的局面。

高层建筑基础需要计算确定深度,独立的高层建筑单体而言,基础埋深比较容易确定,但现今住宅多为数十栋高层建筑群,地下车库相互连接,这时,既要充分考虑地下车库应的侧向刚度作为高层建筑的侧限。

高层建筑比多层建筑多出较多的设备用房,如电梯、管道井等,这样就会增加建筑物的造价,增加公共面积;从建筑防火的角度看,高层筑的防火要求要高于中低层建筑,也会增加高层建筑的工程造价和运行成本。

2 高层结构设计体系特点

地震作用和风荷载的影响下高度的增加,水平作用对高层建筑结构安全的控制作用更加显著。高层建筑的抗震性能、抗侧刚度、

高层建筑结构设计分析王方成

高层建筑结构设计分析王方成 发表时间:2016-07-28T15:02:06.787Z 来源:《基层建设》2016年10期作者:王方成 [导读] 本文结合工程实际,对高层建筑结构设计分析。 深圳市建筑设计研究总院有限公司 摘要:随着我国科学技术的不断进步和经济的快速发展,城市中高楼耸立,高层建筑物已成为人们共同的追求。本文结合工程实际,对高层建筑结构设计分析。 关键词:高层建筑;结构设计 1 工程概况 该建筑总长46.10m,总宽35.90m,总高 111.563m,大屋面层高96.90m。地上共23层,地下 2 层。地下室层高 4.7m 与 3.75m。1~22 层层高 4.2m,23 层层高4.5m。上部均为办公室,地下部分为车库和设备用房。总建筑面积53065.79 m2,其中地上37307.59 m2,地下 15758.20 m2,建筑占地面积 10636m2。 2 自然地质情况 本工程场地地震基本烈度 7 度,设计地震分组第三组,设计基本地震加速度 0.1g,属于抗震不利地段,建筑场地类别Ⅱ类,设计特征周期取 0.45s。50 年遇基本风压 0.80kN/m2,场地地基土自上而下可划分为 7 层,从上至下依次为①层填石,层厚 2.7~19m;②层中砂,层厚 0.90~22.9m;②-A 层淤泥,层厚 1.70~1.90m;③层(含砾砂)粉质粘土,层厚 1.3~3.2m;④层残积砂质粘性土,层厚 2.6~8.0m;⑤层全风化花岗岩,层厚1.1~7.3m;⑥层强风化花岗岩:灰白、灰黄、灰褐色,饱和。⑥-1层砂土状强风化花岗岩,层厚 1.1~11.1m;⑥-2 层碎块状强风化花岗岩,层厚 0.8~11.5m;⑦层中风化花岗岩:灰、灰黄、灰白色,岩芯多呈短柱状和长柱状,局部呈块状,中粗粒花岗结构,块状构造,岩芯裂隙较发育,多呈闭合,岩芯采取率 67%~87%,RQD=38~71,岩石饱和单轴抗压试验为 64.60~70.10MPa,标准值为 66.03MPa,岩石坚硬程度为坚硬岩,岩体完整程度为破碎~较完整,岩体基本质量等级为Ⅱ~Ⅳ级。本次勘察所有钻孔均有揭示至该层,均未揭穿,揭露厚度为2.20~10.76m。 3 基础形式 由于办公楼及其周边纯地下室在基坑开挖后存在一定厚度的①层填石(厚度为 3.46~11.54m),采用预应力管桩时难以穿越填石层,另可供预应力管桩选择的桩端持力层④层残积砂质粘性土、⑤层全风化花岗岩和⑥-1 层砂土状强风化花岗岩分布不均匀,考虑到⑥-2层碎块状强风化花岗岩和⑦层中风化花岗岩分布较均匀,根据拟建场地岩土层特性、拟建物结构特点及荷载情况,采用冲(钻)孔灌注桩基础。 4 主体结构设计 4.1 结构选型 本建筑抗震设防类别为标准设防类(丙类)。由于建筑功能布局多为开敞办公区、大会议室等大空间,中间部分以及建筑外形要求美观、大方等方面因素,故本建筑主体部分采用钢筋混凝土框架———核心筒结构形式。框架———核心筒结构的周边框架与核心筒之间形成的可用空间较大,能使房屋空间布局灵活,又能使高层建筑结构满足较大刚度的要求,因此广泛用于写字楼、多功能建筑。具体做法是在建筑中部的电梯井筒及楼梯间四周布置抗震墙框筒,加大外框筒的柱距,减小梁的高度,周边形成稀柱框架。参照规范抗震设防烈度为7 度,确定抗震等级框架为二级,核心筒为二级。 4.2 主要荷载取值 高压配电房、电梯机房、通风机房活荷载为 7.0 kN/ m2,储藏间活荷载为 5.0 kN/m2,备餐间、车库活荷载为 4.0 kN/m2,商场、消防疏散楼梯活荷载为3.5 kN/ m2,办公室、卫生间、走廊、门厅、屋面花园、多功能厅大会议室活荷载为 3.0 kN/ m2,食堂活荷载为 2.5 kN/m2,上人屋面活荷载为 2.0 kN/m2,不上人屋面活荷载为 0.5 kN/m2。大型设备按实际情况考虑。 4.3 主要受力构件尺寸取值 地下室~1 层墙厚度为 400mm,2~23 层墙厚度为300mm。框架柱截面尺寸:地下室为 1200mm×1200mm,1~3层为1100mm×1100mm,4~6 层为 1000mm×1100mm,7~9 层为 1000mm×1000mm,10~12 层为 900mm×1000mm,13~15层为 800mm×900mm,16~18 层为 800mm×800mm,19~21 为700mm×700mm,22~23 层为 600mm×600mm。地下室负一层顶板的厚度为 200mm,地下室顶板除核心筒内板厚 180mm之外,其余部位板厚为 300mm,屋面层的板厚为 120mm,其它各楼层的板厚为 100mm。 4.4 主要结构材料选取 梁板混凝土强度等级为 C30,柱墙混凝土强度等级:-2~4层为C50,5~9层为C45,10~14 层为 C40,15~19 层为C35,20构架层为 C30。此外,圈梁、构造柱、挑檐、雨篷及楼梯均采用 C30 混凝土。主要用于基础梁、板,墙和柱以及楼面梁的纵筋选用 HRB400级钢筋。 4.5 计算软件及计算依据 本工程计算使用程序为中国建筑科学研究院开发的建筑结构三维设计与分析软件 SATWE。计算依据为建筑条件图以及《建筑结构荷载规范》GB50009-2012、《建筑抗震设计规范》GB50011-2010、《建筑地基基础设计规范》GB50007-2011、《高层建筑混凝土结构技术规程》JGJ3-2010等国家相关规范。 4.6 计算结果分析 (1)位移比。基于刚性楼板假定,考虑偶然偏心的条件下,X 方向最大层间位移与平均层间位移的比值:1.19 (第26层第1塔),Y 方向最大层间位移与平均层间位移的比值:1.28(第 26 层第 1 塔),属于平面不规则中的扭转不规则。位移比超过 1.2,需要考虑双向地震作用。 (2)层间位移。计算时不扣除整体弯曲变形,不考虑偶然偏心的影响,X 方向地震力作用下的楼层最大位移:1/1055<1/800;Y 方

浅谈高层建筑结构设计的优化

浅谈高层建筑结构设计的优化 摘要:在社会经济快速发展的背景下,城市建筑用地资源日益紧张,高层乃至 超高层建筑项目不断兴起,在城市建筑领域中占据着相当重要的地位,并带动着 建筑行业的蓬勃发展。高层建筑项目建设中,结构设计的质量水平会对高层建筑 物的整体性能产生影响,如何对高层建筑结构进行优化设计是业内人士必须关注 的一项课题。本文即探讨在高层建筑结构优化设计中存在的不足之处,并提出了 高层建筑结构优化设计的解决措施与方法,望能够促进建筑结构设计方案的进一 步优化与发展。 关键词:高层建筑;结构;设计;优化 引言:高层建筑凭借着自身众多优势而成为当前城市建设中最重要的类型。 而结构设计的科学合理性对高层建筑的安全稳定性、适用性、耐久性及经济性等 有重大影响,因此优化高层建筑结构设计意义重大。高层建筑结构优化的主要目 的是在满足人们基本居住要求的前体下,实现对有限空间及资源的更合理分配, 以提升房屋的安全、舒适及美观性。建筑工程包含的内容众多,因此结构设计优 化的内容也是多方面的,在结构优化设计中,只有从多角度进行全面的优化设计,才能从整体上促进高层建筑结构优化设计水平的提高。 1、高层建筑历史与现状发展 在很早以前就有了结构化优化的思维,是在很多建筑设计者的实践中提炼出 来的,林同炎设计大师就是首次在国内提出结构化优化的方法。之后在我国高层 建筑迅速发展,目前发展已经十分惊人,各种优化方法也层出不穷。 在早前,手工画图时代,结构设计师都是依靠先把空间问题转换成平面问题。此时通过计算力学效应,逐步分析计算和考核,强度、整体受力情况都需要一一 验算核准,强调安全性,也要满足设计的基本要求。然后凭经验初取截面,再进 行强度验算校核、整体受力验算等步骤。由于受到当时条件制约,整体上要既要 实现经济,又要完全达到优化设计是很难达到的。随着计算机的普及,在建筑设 计上的应用,利用计算机来优化建筑设计结构,研究成果虽然取得了突破性的进展,但是应用上并不如人意。那是因为科研的结果与现实的运用在很大程度上有 一定的距离,现实中会考虑更多的约束条件,工程的复杂性在现实中得到体现。 不是科研中的简单函数关系就能处理完成,需要考虑实际情况。工程的复杂和不 可复制性,就决定了结构化优化的难度。 各种计算机语言和软件的出现,为建筑结构化设计提供了精准的计算,让设 计更有迅速。即便如此,科学研究的最优解和建筑实际的最优化还是有很大的区别,理论和实践区别在于实践的变化性。这就需要以实践为基础,更深入的去研究,从结构优化,到安全、美学、功能等方面进行优化。 2、设计高层建筑结构合理性所遵守的原则 2.1 高层建筑结构基础设计方案要合理 高层建筑场地的地址因素是决定高层建筑结构基础方案如何选择的参考依据。合理、有效的高层建筑结构基础方案的设计,必须结合相应的地址勘探条件,必 须切实、全面的考虑周边原有建筑群体、施工限制条件、地基荷载分布情况与高 层建筑结构类型等相互间的关联因素。 2.2 保证高层建筑结构设计方案的合理性

浅析高层建筑结构设计的难点

浅析高层建筑结构设计的难点 我国建筑行业发展至今,不管是其规模还是建筑技术在国际领域都是名列前茅。在建筑工程中,结构设计环节,是高层建筑未来施工的主要参考依据。它具有基础性、关联性、创新性等特征,在当代城市规划中,发挥着越来越重要的作用。基于此,结合国内高层结构设计的相关理论,着重对其设计难点进行分析,以达到降低高层建筑建设成本,保障结构设计质量的目的。 标签:高层建筑;结构设计;难点分析 一、高层建筑结构的特征 与普通建筑相比,高层建筑需承载垂直和水平两个方向的荷载,因此,其对结构的荷载承受能力要求更高,其中垂直荷载主要是由建筑物高度引起的,而水平荷载则是由外界风力产生的,外界风力和地震都是影响高层建筑结构稳定性的重要因素,另外,建筑层数的增高也会加快建筑物的位移速度,而过快得位移速度则会对建筑物的功能性和建筑物内住户的舒适度产生直接的影响,并且过大的侧移位还会对建筑的结构和非结构构件造成损害,因此,相关人员在进行高层建筑结构设计时,需合理控制建筑物的侧移范围,才能保证其结构功能性良好。 二、高层建筑结构的设计原则 (一)基础方案的合理性 高层建筑结构基础施工方案,是保证高层建筑施工整体性和良好性的基础保障,在实际的建筑结构方案设计当中,相关设计单位需要依照具体施工地质条件,依照具体的建筑施工要求来对结构实施设计。一方面,在建筑结构基础方案的配置上,需要和地质调查报告进行对接,保证其中各项调查数据充分符合工程施工标准。另一方面,在进行高层建筑施工过程中,还需要对建筑实施综合性进行分析,特别是对建筑整体结构的稳定程度、每一个环节的负载加以考虑,通过这种施工设计方式,充分保证工程施工的稳定性。 (二)结构措施完善 在高层建筑施工当中,除了需要对基础施工方案和施工图纸进行设计之外,其中还有一个比较重要的施工原则是相关施工单位经常忽略的问题,那就是需要保证建筑结构实施措施完善化。相关设计单位在对高层建筑结构进行设计的过程当中,需要充分地注意各部分组件相互之间的衔接程度。比如建筑体当中的钢筋锚固长度等,同时,设计单位还需要充分注意建筑体存在的一些薄弱环节,建筑体本身的温度对建筑体组件产生的影响等,对这几个方面的问题,在实际的设计工作当中,需要充分遵循“强柱弱梁、强剪弱弯、强压弱拉”的基本结构设计原则,保证高层建筑结构设计的稳定性。

高层建筑结构设计资料

名词解释: 高层建筑:10层及10层以上或房屋高度大于28m的建筑物。 2. 房屋高度:自室外地面至房屋主要屋面的高度。 3. 框架结构:由梁和柱为主要构件组成的承受竖向和水平作用的结构。 4. 剪力墙结构:由剪力墙组成的承受竖向和水平作用的结构。 5. 框架—剪力墙结构:由框架和剪力墙共同承受竖向和水平作用的结构。 6. 转换结构构件:完成上部楼层到下部楼层的结构型式转变或上部楼层到下部楼层结构布置改变而设置的结构构件,包括转换梁、转换桁架、转换板等。 7. 结构转换层:不同功能的楼层需要不同的空间划分,因而上下层之间就需要结构形式和结构布置轴线的改变,这就需要在上下层之间设置一种结构楼层,以完成结构布置密集、墙柱较多的上层向结构布置较稀疏、墙术较少的下层转换,这种结构层就称为结构转换层。(或说转换结构构件所在的楼层) 8. 剪重比:楼层地震剪力系数,即某层地震剪力与该层以上各层重力荷载代表值之和的比值。 9. 刚重比:结构的刚度和重力荷载之比。是影响重力 P效应的主要参数。 10. 抗推刚度(D):是使柱子产生单位水平位移所施加的水平力。 11. 结构刚度中心:各抗侧力结构刚度的中心。 12. 主轴:抗侧力结构在平面内为斜向布置时,设层间剪力通过刚度中心作用于某个方向,若结构产生的层间位移与层间剪力作用的方向一致,则这个方向称为主轴方向。 13. 剪切变形:下部层间变形(侧移)大,上部层间变形小,是由梁柱弯曲变形产生的。框架结构的变形特征是呈剪切型的。 14. 剪力滞后:在水平力作用下,框筒结构中除腹板框架抵抗倾复力矩外,翼缘框架主要是通过承受轴力抵抗倾复力矩,同时梁柱都有在翼缘框架平面内的弯矩和剪力。由于翼缘框架中横梁的弯曲和剪切变形,使翼缘框架中各柱轴力向中心逐渐递减,这种现象称为剪力滞后。 15. 延性结构:在中等地震作用下,允许结构某些部位进入屈服状态,形成塑性铰,这时结构进入弹塑性状态。在这个阶段结构刚度降低,地震惯性力不会很大,但结构变形加大,结构是通过塑性变形来耗散地震能量的。具有上述性能的结构,称为延性结构。 16. 弯矩二次分配法:就是将各节点的不平衡弯矩,同时作分配和传递,第一次按梁柱线刚度分配固端弯矩,将分配弯矩传递一次(传递系数C=1/2),再作一次分配即结束。填空:1、我国《高层建筑混凝土结构技术规程》(JGJ3—2002) 规定:把10层及10层以上或房屋高度大于28m的建筑物 称为高层建筑,此处房屋高度是指室外地面到房屋主要屋 面的高度。2.高层建筑设计时应该遵循的原则是安全适用, 技术先进,经济合理,方便施工。 3.复杂高层结构包括带转换层的高层结构,带加强层的高 层结构,错层结构,多塔楼结构。 4.8度、9度抗震烈度 设计时,高层建筑中的大跨和长悬臂结构应考虑竖向地震 作用。 5.高层建筑结构的竖向承重体系有框架结构体系,剪力墙 结构体系,框架—剪力墙结构体系,筒体结构体系,板柱 —剪力墙结构体系;水平向承重体系有现浇楼盖体系,叠 合楼盖体系,预制板楼盖体系,组合楼盖体系。 6.高层结构平面布置时,应使其平面的质量中心和刚度中 心尽可能靠近,以减少扭转效应。 7.《高层建筑混凝土结 构技术规程》JGJ3-2002适用于10层及10层以上或房屋高 度超过28m的非抗震设计和抗震设防烈度为6至9度抗震 设计的高层民用建筑结构。 9 三种常用的钢筋混凝土高层结构体系是指框架结构、剪 力墙结构、框架—剪力墙结构。 1.地基是指支承基础的土体,天然地基是指基础直接建造 在未经处理的天然土层上的地基。 2.当埋置深度小于基础底面宽度或小于5m,且可用普通开 挖基坑排水方法建造的基础,一般称为浅基础。 3,为了增强基础的整体性,常在垂直于条形基础的另一个 方向每隔一定距离设置拉梁,将条形基础联系起来。 4.基础的埋置深度一般不宜小于0.5m,且基础顶面应低于 设计地面100mm以上,以免基础外露。 5.在抗震设防区,除岩石地基外,天然地基上的箱形和筏 形基础,其埋置深度不宜小于建筑物高度的1/15;桩箱或 桩筏基础的埋置深度(不计桩长)不宜小于建筑物高度的 1/18—1/20。 6.当高层建筑与相连的裙房之间设置沉降缝时,高层建筑 的基础埋深应大于裙房基础的埋深至少2m。 7.当高层建筑与相连的裙房之间不设置沉降缝时,宜在裙 房一侧设置后浇带,其位置宜设在距主楼边柱的第二跨内。 8.当高层建筑与相连的裙房之间不设置沉降缝和后浇带 时,应进行地基变形验算。 9.基床系数即地基在任一点发生单位沉降时,在该处单位 面积上所需施加压力值。 10.偏心受压基础的基底压应力应满足maxpaf2.1 、af 和2 min maxppp 的要求,同时还应防止基础转动过 大。 11.在比较均匀的地基上,上部结构刚度较好,荷载分布 较均匀,且条形基础梁的高度不小于1/6柱距时,地基反 力可按直线分布,条形基础梁的内力可按连续梁计算。当 不满足上述要求时,宜按弹性地基梁计算。 12.十字交叉条形基础在设计时,忽略地基梁扭转变形和 相邻节点集中荷载的影响,根据静力平衡条件和变形协调 条件,进行各类节点竖向荷载的分配计算。 13.在高层建筑中利用较深的基础做地下室,可充分利用 地下空间,也有基础补偿概念。如果每㎡基础面积上墙体 长度≮400mm,且墙体水平截面总面积不小于基础面积的 1/10,且基础高度不小于3m,就可形成箱形基础。 1.高层建筑结构主要承受竖向荷载,风荷载和地震作用等。 2.目前,我国钢筋混凝土高层建筑框架、框架—剪力墙结 构体系单位面积的重量(恒载与活荷载)大约为12~14kN /m2 ;剪力墙、筒体结构体系为14~16kN/m2 。 3.在框架设计中,一般将竖向活荷载按满载考虑,不再一 一考虑活荷载的不利布置。如果活荷载较大,可按满载布 置荷载所得的框架梁跨中弯矩乘以1.1~1.2的系数加以放 大,以考虑活荷载不利分布所产生的影响。 4.抗震设计时高层建筑按其使用功能的重要性可分为甲类 建筑、乙类建筑、丙类建筑等三类。 5.高层建筑应按不同情况分别采用相应的地震作用计算方 法:①高度不超过40m,以剪切变形为主,刚度与质量沿高 度分布比较均匀的建筑物,可采用底部剪力法;②高度超 过40m的高层建筑物一般采用振型分解反应谱方法;③刚 度与质量分布特别不均匀的建筑物、甲类建筑物等,宜采 用时程分析法进行补充计算。, 6.在计算地震作用时,建筑物重力荷载代表值为永久荷载 和有关可变荷载的组合值之和。 7.在地震区进行高层建筑结构设计时,要实现延性设计, 这一要求是通过抗震构造措施来实现的;对框架结构而言, 就是要实现强柱弱梁、强剪弱弯、强节点和强锚固。 8.A级高度钢筋混凝土高层建筑结构平面布置时,平面宜 简单、规则、对称、减少偏心。 9.高层建筑结构通常要考虑承载力、侧移变形、稳定、倾 复等方面的验算 问答: 1.我国对高层建筑结构是如何定义的? 答:我国《高层建筑混凝土结构技术规程》 (JGJ3—2002)规定:10层及10层以上或房屋高度大 于28m的建筑物称为高层建筑,此处房屋高度是指室 外地面到房屋主要屋面的高度。 2.高层建筑结构有何受力特点? 答:高层建筑受到较大的侧向力(水平风力或水平地 震力),在建筑结构底部竖向力也很大。在高层建筑 中,可以认为柱的轴向力与层数为线性关系,水平力 近似为倒三角形分布,在水平力作用卞,结构底部弯 矩与高度平方成正比,顶点侧移与高度四次方成正 比。上述弯矩和侧移值,往往成为控制因素。另外, 高层建筑各构件受力复杂,对截面承载力和配筋要求 较高。

浅析高层建筑结构设计的中震设计概念

浅析高层建筑结构设计的中震设计概念 发表时间:2016-06-27T14:51:54.553Z 来源:《基层建设》2016年5期作者:隆凡梅 [导读] 本文主要阐述了中中震设计的原理、设计方法及软件操作,并提出一些个人见解以供参考。 摘要:对于普通建筑物的结构抗震设计,目前我国是以小震为设计基础,中震和大震则是通过地震力的调整系数和各种抗震构造措施来保证的。但是对于较重要的、超高的、超限的建筑物则需要进行中震和大震的抗震计算。本文主要阐述了中中震设计的原理、设计方法及软件操作,并提出一些个人见解以供参考。 关键词:中震设计概念;地震影响系数;荷载 《建筑抗震设计规范》(GB50011-2001 2008年版)(下简称《抗规》)中对中震设计仅在总则中提到“小震不坏、中震可修、大震不倒”的抗震设防目标,但没有给出中震设计的设计要求和判断标准。 首先我们了解一下现行《抗规》存在几个问题: 1规范未对结构存在的薄弱构件进行分析并作出专门的设计规定,仅对框架类剪切型结构适用的薄弱层作了一些规定; 2在中震作用下,规范仅提出“中震可修”的概念设计要求,没有具体的抗震设计方法; 3“中震可修”的技术经济问题:可修的标准决定工程????造价、破坏损失、震后修复费用。 随着时代的进步,现在的建筑物体型复杂,结构新颖,超高超限越来越多,因此要求对结构进行中震的设计也越来越多。 2 中震设计 2.1 为何要进行中震设计呢? 《抗规》条文说明1.0.1条指出,对大多数结构,可只进行第一阶段设计(即小震下的弹性计算),而通过概念设计和抗震构造措施来实现“中震可修和大震不倒”的设计要求,但前提是建筑物的体型常规、合理,经验上一般能满足大中震的抗震要求。反之对于一些体型很不好的甚至超限的建筑物,在大震下的结构反应和小震完全不同,不进行相应的中震和大震计算是没法保证结构安全的。 为达到各阶段抗震要求,须对于上述体型异常、刚度变化大、超高超限等类型建筑物进行中震抗震设计,其余类型建筑物建议可按中震抗震进行验算。 2.2 中震设计的基本概念 抗震设计要达到的目标是在不同频数和强度的地震时,要求建筑物具有不同的抵抗能力。中震设计就是为了使建筑物满足该地区的基本设防烈度,即能够抵抗50年限期内可能遭遇超越概率为10%的地震烈度。 中震设计和大震设计都可称为性能设计。基于性能的抗震设计是建筑结构抗震设计的一个新的重要发展,它的特点是使抗震设计从宏观性、规范指定的目标向具体量化的多重目标过渡,业主(设计者)可选择所需的性能目标,而不仅仅是按现行规范通过分项系数、内力调整系数、抗震构造措施等粗略、定性的手段来满足中震和大震的设防要求。针对本工程的结构特点,设定本结构的抗震性能目标。对超限结构而言,利用这些指标能更合理地判断整体结构在中震、大震作用下的性能表现,给超限设计提供可靠的判断依据。 2.3 中震设计的分类 中震设计就是结构在地震影响系数按小震的2.875倍(αmax=0.23)取值下进行验算。目前工程界对于结构的中震设计有两种方法,第一种按照中震弹性设计,第二种是按照中震不屈服设计。 首先明确一点,中震弹性和中震不屈服是两个完全不同的概念,两者所采用的设计方法与设防目的均不相同。中震弹性设计,设计中取消《抗规》要求的各项地震组合内力调整系数,保留材料、荷载等分项系数,对应地保留了结构的安全度和可靠度,结构仍属于弹性阶段,属正常设计。中震不屈服设计,设计中除了地震内力不作调整,同时也取消了材料、荷载等分项系数,对应地不考虑结构的安全度和可靠度,结构已经处于弹塑性阶段,属承载力极限状态设计,是一种基于性能的设计方法。由此可见,中震弹性设计接近于平常的小震弹性设计,而中震不屈服设计则与大震设计同属于基于性能的设计。 3 基本方法及应用 根据中震设计的分类,以下分别阐述中震弹性及中震不屈服的具体设计方法,介绍如何在satwe、etabs、midas等软件中实现中震设计。 3.1 中震不屈服设计 3.3.1 不同抗震烈度下的各级屈服控制 若场地安评报告提供实际的地震影响系数,则应取用所提供的多遇地震、设防烈度地震下相应的地震影响系数,屈服判别地震作用1、2 的地震影响系数可相应插值求得。 3.3.2 SAWTE计算:地震信息中抗震等级均为四级;αmax按表3取值;总信息中风荷载不参加计算;勾选地震信息中的按中震(或大震)不屈服做结构设计选项;其它设计参数的定义均同小震设计。 3.3.3 MIDAS/Gen计算:主菜单→设计→钢筋混凝土构件设计参数→定义抗震等级:四级;主菜单→荷载→反应谱分析数据→反应谱函数:定义中震反应谱,在相应的小震反应谱基础上输入放大系数β即可,β值按表3计算所得;总信息中风荷载不参加计算;主菜单→结果→荷载组合:将各项荷载组合中的地震作用分项系数取为1.0;主菜单→设计→钢筋混凝土构件设计参数→材料分项系数:将材料分项系数取为1.0;其它同小震。 3.3.4 ETABS计算:选项→首选项→混凝土框架设计→定义抗震设计等级:四级;定义→反应谱函数→Add Chinese 2002 Spectrum→定义中震反应谱,地震影响系数最大值αmax取值,其余参数按《抗规》;静荷载工况中不定义风荷载作用;定义→荷载组合→各项荷载比例系数均取为荷载分项系数1.0x荷载组合系数φ;定义→材料属性→填写各材料的强度标准值其它同小震。 4 工程算例 4.1 示范算例 4.1.1 基本参数:二十二层框支剪力墙结构,三层楼面转换,无地下室,首、二层4.5米,标准层3.5米,总高79m。结构平面布置如图一所示。结构高宽比3.76,长宽比1.22;抗震参数,7 度,第一组,0.10g;场地II类;风荷载100年一遇为0.9kN/㎡。

高层建筑结构设计简答题及答案

.1 框架—支撑结构 在框架中设置支撑斜杆,即为支撑框架,一般用于钢结构,由框架和支撑框架共同承担竖向荷载和水平荷载的结构,称为框架—支撑结构。 2.(框筒结构的)剪力滞后现象 翼缘框架中各柱轴力分布并不均匀,角柱的轴力大于平均值,中部柱的轴力小于平均值,腹板框架各柱的轴力也不是线性分布,这种现象称为剪力滞后现象 3. 框架的剪切刚度 C框架产生单位层间剪切变形所要施加的层间剪力。 f 三.. 简述房屋建筑平面不规则与竖向不规则的类型,在设计中应如何避免上述不规则结构?平面不规则包括扭转不规则、楼板凹凸不规则和楼板局部不连续。 竖向不规则包括侧向刚度不规则、竖向抗侧力构件不连续和楼层承载力突变。 在设计中可以通过限制建筑物的长宽比,立面的外挑和内收以及限制沿向刚度的变化来避免不规则结构。 四. 剪力墙抗震设计的原则有哪些?为什么要设置剪力墙的加强部位?试说明剪力墙加强部位的范围。(10分) 强墙弱梁、强剪弱弯、限制墙肢轴压比和墙肢设置边缘构件、加强重点部位、连梁特殊措施。 因为剪力墙加强部位的弯矩和剪力均很大; 总高1/8和底部2层高度中的较大值,且不大于15m.。 五.什么是抗震设计的二阶段设计方法?为什么要采用二阶段设计方法? (10分) 第一阶段为结构设计阶段,第二阶段为验算阶段。保证小震不坏、中震可修、在震不倒的目标实现。 七. 简述框架-剪力墙结构的主要特点 (10分) 框架-剪力墙结构是由框架和剪力墙组成的结构体系,具有两种结构的优点,既能形成较大的使用空间,又具有较好的抵抗水平荷载的能力。 八.简述高层建筑结构结构设计的基本原则。(11分) 注重概念设计,注重结构选型与平、立面布置的规则性,择优选用抗震和抗风好且经济的体系,加强构造措施,在抗震设计中,应保证结构的整体性能,使整个结构具有必要的承载力、刚度和延性。结构应满足下列基本要求:1)具有必要的承载力、刚度和变形能力;2)避免因局部破坏而导致整个结构破坏;3)对可能的薄弱部位采取加强措施;4)避免局部突变和扭转效应形成的薄弱部位;5)宜具有多道抗震防线。 1. 框架结构和框筒结构的结构平面布置有什么区别? 框架是平面结构,主要由于水平力方向平行的框架抵抗层剪力及倾覆力矩。 框筒是空间结构,沿四周布置的框架参与抵抗水平力,层剪力由平行于水平力作用方向的腹板框架抵抗。倾覆力矩由腹板框架和垂直于水平力方向的翼缘框架共同抵抗。框筒结构的四榀框架位于建筑物周边,形成抗侧、抗扭刚度及承载力都很大的外筒,使建筑材料得到充分的利用。因此,框筒结构的适用高度比框架结构高得多。 2.计算水平地震作用有哪些方法? 计算等效水平地震作用是将地震作用按水平和竖直两个方法分别来进行计算的。具体计算方法又分为反应谱底部剪力法和反应谱振型分解法两种方法。 3.什么是抗震设计的二阶段设计方法?为什么要采用二阶段设计方法? 第一阶段为结构设计阶段,第二阶段为验算阶段。保证小震不坏、中震可修、在震不倒的目标实现。 9.什么是地震系数、动力系数和地震影响系数? 地震系数:地面运动最大加速度与g的比值。 动力系数:结构最大加速度反应相对于地面最大加速度的最大系数。 地震影响系数:地震系数与动力系数的积。 4.延性和延性比是什么?为什么抗震结构要具有延性?

高层建筑结构设计分析论文

关于高层建筑结构设计分析 摘要:随着社会经济的迅速发展,人民物质生活水平的不断提高,居住条件的不断改善,高层住宅如雨后春笋一座座拔地而起。一个优秀的建筑结构设计往往是适用、安全、经济、美观便于施工的最佳结合。 关键词:建筑结构结构设计 abstract: with the rapid development of social economy, the people’s material life level unceasing enhancement, the constant improvement of the living conditions, high-rise residential have mushroomed place have sprung up. a good structure design is often apply, safety, economy, beautiful is advantageous for the construction of the best combination. keywords: building structure design 中图分类号: tu3文献标识码:a 文章编号: 一、高层建筑各专业设计的协调 高层建筑设计是个多专业、多程序的复杂系统工程,涉及“建筑、结构、设备”三个基本环节,参与高层建筑设计的工程师都深深体会到,对于每个专业单独而言是最完美的设计,但结合在一起却不是优秀的设计。各专业之间的矛盾如不妥善处理!高层建筑就无法施工,建成后也无法使用。“建筑、结构、设备”是互相制约的三个有机组成部分,高层建筑设计既是各个专业自我完善的过

高层建筑结构设计复习总结

2元 高层建筑结构设计复习总结 一、1.高层建筑:将10层及10层以上或高度超过28m的混 凝土结构为高层民用建筑;高层建筑结构是高层建筑中的主要承重骨架。2.高层建筑优点:占地面积小,节约建筑用地; 缩短城市道路和各种管线,节约基础设施费用;改造城市面貌。3.高层建筑结构功能:安全性、实用、耐久、稳定4.高层建筑结构中:轴力和结构高度成线性关系;弯矩和结构高度成二次方关系;位移和结构高度成四次方关系。4.高层建筑结构形式:a按材料分:砌体结构、钢筋砼、钢结构、钢和钢筋砼材料混合结构b.按结构体系:框架结构、剪力墙结构、框架-剪力墙结构、筒体结构(框筒结构、筒中筒、多筒、成束筒)、悬挂结构及巨型框架结构5.(1)砌体结构:造价低; 强度低,特别是抗拉、抗剪强度低、延性差;抗震性不好(2). 钢筋砼结构:优(强度高,能组成多种结构体系,抗震性能较好,跟钢结构相比刚度大,造价低,材料来源丰富,耐火性好)缺(自重大,结构截面尺寸大,建筑面积小,造价增加施工周期较长)(3)钢结构:优(较理想材料,强度高,自重轻,延性好,抗震性能好,施工速度快,易于加工,施工方便)缺(造价高,耐火性差,维护费用高)6.(1)框架结构体系:优(建筑平面布置灵活,可形成大空间,立面也可变化;延性好;造价低。)缺(侧向刚度小;水平位移大,一般不超过60米;在高烈度地区,高度严格控制;非结构

构件破坏严重,维护费用高;缺少二道防线)设计要点:a 根据使用要求,建筑要求来布置框架层高;b梁柱节点必须刚接;c梁的跨度受梁、断面尺寸限制d柱断面尺寸根据轴力大小确定,在震区有轴压比限制(2)剪力墙结构体系:利用钢筋砼墙体组成的承受全部竖向和水平作用的。优(整体性好;侧移刚度大;变形小;非结构构件损坏小;结构次生内力P-Δ效应不显著;弹塑性稳定问题不突出;承载力易满足要求;抗震性能好;具有多道防线)缺(剪力墙间距较小;平面布置不灵活;大房间受到限制;自重大;刚度大,周期短)(3)框架-剪力墙结构体系:在框架结构中布置一定数量的剪力墙组成由框架和剪力墙共同承受竖向和水瓶座用的高层建筑结构。优(侧向位移小;减轻节点负担;增加了超静定次梁;保证了塑性的发展;屈间侧移屈干均匀;框架部分各层剪力趋于均匀;具有多道防线)缺(水平方向刚度不均匀)(4)筒体结构体系:由竖向筒体为主组成的承受竖向和水平作用的高层建筑结构。7.高层建筑结构发展原因:经济的发展;建筑用地减少;城市人口增多;地价上涨;建筑科技进步;钢筋及水泥的应用8.高层建筑发展:建筑功能和用途越来越好,建筑城市化;向亚洲发展,高度将有新突破;在结构设计方法方面着重技术深化;采用新结构形式。二1.在高层建筑结构设计中,水平荷载与作用占据主导和控制作用2.高层建筑中活荷载的不利布置一般怎样考虑:高层

高层建筑结构设计分析论文

高层建筑结构设计分析论文 1结构分析及设计分析 1.1分析三种重要的体系 1.1.1剪力墙体系 剪力墙结构是利用建筑的内、外墙做成剪力墙以承受垂直和水平荷载的结构体系。剪力墙的变形状态和受力特性同剪力墙的开洞情况联系密切,其中依据轧受力特性的不同,单片剪力墙可以分为特殊开洞墙和单肢墙。类型不同的剪力墙,对应的也会有不同的截面应力分布,所以,在对位移和内力进行计算时,也应该对不同的计算和设计方法进行使用,将平面有限元法应用到剪力墙的结构计算中。此种方法能够比较准确地完成计算,能够应用到各类剪力墙之间,然而,也有一定的弊端存在于这种方法中,其有着较多的自由度。所以,在具体的应用时,较为普遍地应用了开洞墙这一类型。 1.1.2筒体结构 筒体结构分为框架—核心筒、筒中筒等结构体系,其中框架—核心筒受力特点为框架主要承受竖向荷载,筒体主要承受水平荷载,变性特点类似于框架剪力墙,但抗侧刚度较大。依据不同的计算机模型处理手段,有三种类型的分析方法:主要为离散化方法、三维空间分析和连续化方法,其中三维空间方法的精确性会更高。 1.1.3框架—剪力墙体系 框架—剪力墙结构,是由若干个框架和剪力墙共同作为竖向承重结构的建筑结构体系。此种结构位移和内力等计算方法尽管种类较

多,然而,连梁连续化假定方法会经常被使用,在对位移协调条件进行计算时,应该按照框架水平位移和剪力墙转角进行设计,将外荷载和位移的关系用微分方程建立起来。然而,应该考虑需求和因素量会存在的差异,所以,也会有着不同形式的解答方式。 1.2具体的设计与分析 1.2.1合理地确定水平荷载 每一个建筑结构都应该一同承受风产生的水平荷载和垂直荷载,对于抵抗地震的能力也应该具备。高层建筑中,尽管结构设计会较大程度上受到竖向荷载的影响,然而,水平荷载却占据着重大的比重。随着不断增多的高层建筑层数,在高层建筑的结构设计中,水平荷载成为了其中一个重要的影响因素。首先,由于楼面使用荷载和楼房自重在竖构件中发挥的功能,对应水平荷载会将一定的倾覆作用施加到结构中,并且竖构件中就会出现高层建筑结构的作用力;其次,就高层建筑结构而言,地震作用和竖向荷载,也会跟着建筑结构的动力情况而出现较大的改变。 1.2.2合理地确定侧控 同低层建筑不同,在高层建筑结构设计中,结构侧移已经成为 了其中一个非常重要的影响因素。随着不断增加的楼层数量,结构侧移在水平荷载侧向变形下会逐渐增大。在高层建筑结构进行设计中,不但规定结构要有一定的强度,对于荷载作用带来的内力能够有效的予以承受,同时,还应该确保具备一定的抗侧刚度,确保在某一限度内控制结构在水平荷载作用出现的侧移情况。

高层建筑结构抗震与设计考试重点复习题(含答案)

1.从结构的体系上来分,常用的高层建筑结构的抗侧力体系主要有:_框架结构,剪力墙结构,_框架-剪力墙_结构,_筒体_结构,悬挂结构和巨型框架结构。 2.一般高层建筑的基本风压取_50_年一遇的基本风压。对于特别重要或对风荷载比较敏感的高层建筑,采用_100_年一遇的风压值;在没有_100_年一遇的风压资料时,可近视用取_50_年一遇的基本风压乘以1.1的增大系数采用。 3.震级――地震的级别,说明某次地震本身产生的能量大小 地震烈度――指某一地区地面及建筑物受到一次地震影响的强烈程度 基本烈度――指某一地区今后一定时期内,在一般场地条件下可能遭受的最大烈度设防烈度――一般按基本烈度采用,对重要建筑物,报批后,提高一度采用 4.《建筑抗震设计规范》中规定,设防烈度为_6_度及_6_度以上的地区,建筑物必须进行抗震设计。 5.详细说明三水准抗震设计目标。 小震不坏:小震作用下应维持在弹性状态,一般不损坏或不需修理仍可继续使用 中震可修:中震作用下,局部进入塑性状态,可能有一定损坏,修复后可继续使用大震不倒:强震作用下,不应倒塌或发生危及生命的严重破坏 6.设防烈度相当于_B_ A、小震 B 、中震C、中震 7.用《高层建筑结构》中介绍的框架结构、剪力墙结构、框架-剪力墙结构的内力和位移的近似计算方法,一般计算的是这些结构在__下的内力和位移。 A 小震 B 中震C大震 8.在建筑结构抗震设计过程中,根据建筑物使用功能的重要性不同,采取不同的抗震设防 标准。请问建筑物分为哪几个抗震设防类别? 甲:高于本地区设防烈度,属于重大建筑工程和地震时可能发生严重次生灾害的建筑乙:按本地区设防烈度,属于地震时使用功能不能中断或需尽快恢复的建筑 丙:除甲乙丁外的一般建筑 丁:属抗震次要建筑,一般仍按本地区的设防烈度 9.下列高层建筑需要考虑竖向地震作用。(D) A 8°抗震设计时 B 跨度较大时 C 有长悬臂构件时 D 9°抗震设计

高层建筑结构设计特点.

浅论高层建筑结构特点及其体系 [摘要]文章分析高层建筑结构的六个特点,并介绍目前国内高层建筑的四大结构体系:框架结构、剪力墙结构、框架剪力墙结构和筒体结构。 [关键词]高层建筑;结构特点;结构体系 我国改革开放以来,建筑业有了突飞猛进的发展,近十几年我国已建成高层建筑万栋,建筑面积达到2亿平方米,其中具有代表性的建筑如深圳地王大厦81层,高325米;广州中天广场80层,高322米;上海金茂大厦88层,高420.5米。另外在南宁市也建起第一高楼:地王国际商会中心即地王大厦共54层,高206.3米。随着城市化进程加速发展,全国各地的高层建筑不断涌现,作为土建工作设计人员,必须充分了解高层建筑结构设计特点及其结构体系,只有这样才能使设计达到技术先进、经济合理、安全适用、确保质量的基本原则。 一、高层建筑结构设计的特点 高层建筑结构设计与低层、多层建筑结构相比较,结构专业在各专业中占有更重要的位置,不同结构体系的选择,直接关系到建筑平面的布置、立面体形、楼层高度、机电管道的设置、施工技术的要求、施工工期长短和投资造价的高低等。其主要特点有: (一水平力是设计主要因素 在低层和多层房屋结构中,往往是以重力为代表的竖向荷载控制着结构设计。而在高层建筑中,尽管竖向荷载仍对结构设计产生重要影响,但水平荷载却起着决定性作用。因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比。另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。

浅谈高层建筑结构设计_0

浅谈高层建筑结构设计 上世纪末以来,城市化进程加速,城市人口激增,社会经济蓬勃发展,高层建筑在城市中越来越多。如今,城市中的高层建筑已经成为当地经济繁荣的重要标志。 标签结构设计;高层建筑;控制参数;载荷;抗震 1 高层建筑的特点 《高层建筑混凝土结构技术规程》规定,10层及10层以上和高度超过28 m 的钢筋混凝土民用建筑属于高层建筑。相比多层建筑而言,高层是向空中发展,容积率一定的情况下,建造高层建筑可以节省规划用地面积,提高城市绿化率,还可以缓解城市用地紧张的局面。 高层建筑基础需要计算确定深度,独立的高层建筑单体而言,基础埋深比较容易确定,但现今住宅多为数十栋高层建筑群,地下车库相互连接,这时,既要充分考虑地下车库应的侧向刚度作为高层建筑的侧限。 高层建筑比多层建筑多出较多的设备用房,如电梯、管道井等,这样就会增加建筑物的造价,增加公共面积;从建筑防火的角度看,高层筑的防火要求要高于中低层建筑,也会增加高层建筑的工程造价和运行成本。 2 高层结构设计体系特点 地震作用和风荷载的影响下高度的增加,水平作用对高层建筑结构安全的控制作用更加显著。高层建筑的抗震性能、抗侧刚度、承载能力、造价高低,与所采用的结构系统密切相连。不同的层数、高度应采用不同的结构体系。 2.1 筒体结构 单个筒体可分为实腹筒、框筒和桁筒。平面剪力墙组成空间薄壁筒体,即为实腹筒;框架通过减小肢距,形成空间密柱框筒,即框筒;筒壁若用空间桁架组成,则形成桁筒。实际结构中除烟囱等构筑物外不可能存在单筒结构,而常常以框架—筒体结构、筒中筒结构、多筒体结构和成束筒结构形式出现。在层数很多或设防烈度要求很高时,可用筒体结构。 2.2 剪力墙结构体系 利用建筑物墙体作为承受竖向荷载、抵抗水平荷载的结构,称为剪力墙结构体系。剪力墙结构体系于钢筋混凝土结构中,由墙体承受全部水平作用和竖向荷载。现浇钢筋混凝土剪力墙结构的整体性好,刚度大,在水平荷载作用下侧向变形小,承载力要求也容易满足。但剪力墙结构体系平面布置不灵活,结构自重往

结构工程师必知的100个设计要点

方案阶段 1.建设场地不能选在危险地段。 由于结构设计在建设场地的选择中一般是被动的接受方,因此,在结构方案及初步设计阶段, 应特别注重对建设场地的再判别。对不利地段,应根据不利程度采取相应的技术措施。 2.山地建筑尤其需要注意总平布置。 山区建筑场地应根据地质、地形条件和使用要求, 因地制宜设置符合抗震设防要求的边坡工程; 边坡附近的建筑基础应进行抗震稳定性设计。建筑基础与土质、强风化岩质边坡应留有足够的 距离, 其值应根据抗震设防烈度的高低确定, 并采取措施避免地震时地基基础破坏。当需要在 条状突出的山嘴、高耸孤立的山丘、非岩石的陡坡、河岸和边坡边缘等不利地段建造丙类及丙 类以上建筑时,除保证其在地震作用下的稳定性外, 尚应估计不利地段对设计地震动参数可能 产生的放大作用, 其地震影响系数最大值应乘以增大系数。其值可根据不利地段的具体情况确定, 在1.1~1.6 范围内采用。 此条为强条; 台地边缘建筑地震力放大系数也意味着单体建筑成本的增加。实际上, 有时边坡 支护的费用可能远远大于边坡上单体的费用。曾经有的方案设计单位布置总平时将 18~33层的高层布置在悬崖边缘或跨越十多米高的边坡, 这些都是对结构及地质不了解才会产生的错误。3.是否有地下室。 高层建筑宜设地下室;对无地下室的高层建筑,应满足规范对埋置深度的要求。 4.高度问题 室内外高差是多少,房屋高度是多少,房屋高度有没有超限。 5.结构高宽比问题 设计规定,6、7度抗震设防烈度时,框架- 剪力墙结构、剪力墙结构高宽比不宜超过 6。高 宽比控制的目的在于对高层建筑结构刚度、整体稳定、承载能力和经济合理性(主要影响结构 设计的经济性,对超高层建筑,当高宽比大于7时,结构设计难度大,费用高)的宏观控制。6.结构设计应与建筑师密切合作优化建筑设计和结构布置。 采取必要的结构和施工措施尽量避免设置各类结构缝(伸缩缝、沉降缝、防震缝)。当必须设 置时,应符合现行规范有关缝的要求,并根据建筑使用要求、结构平面和竖向布置的情况、地 基情况、基础类型、结构刚度以及荷载、作用的差异、抗震要求等条件、综合考虑后确定。 各缝宜合并布置,并应按规范的规定采取可靠的构造措施和保证必要的缝宽,防止地震时发生 碰撞导致破坏。结构长度大于规范时, 应设置伸缩缝, 高层建筑结构伸缩缝的最大间距: 框架 结构为 55m, 剪力墙结构为 45m。 7.结构平面布置不规则问题

相关文档