文档视界 最新最全的文档下载
当前位置:文档视界 › 与二次函数有关的含有绝对值不等式的证明问题

与二次函数有关的含有绝对值不等式的证明问题

与二次函数有关的含有绝对值不等式的证明问题
与二次函数有关的含有绝对值不等式的证明问题

与二次函数有关的含有绝对值不等式的证明问题

二次函数是最简单的非线性函数之一,而且有着丰富的内容,它对近代数仍至现代数学影响深远,这部分内容为历年来高考数学考试的一项重点考查内容,经久不衰,以它为核心内容的高考试题,形式上也年年有变化,此类试题常常有绝对值,充分运用绝对值不等式及二次函数、二次方程、二次不等式的联系,往往采用直接法,利用绝对值不等式的性质进行适当放缩,常用数形结合,分类讨论等数学思想,以下举例说明。

1.设()c bx ax x f ++=2,当1≤x 时,总有()1≤x f ,求证当2≤x 时,()7≤x f . 证明:由于()x f 是二次函数,()x f 在[]2,2-上最大值只能是()()2,2-f f ,或

??? ??-a b f 2,故只要证明()()72;72≤-≤f f ;当22≤-a b 时,有72≤??

? ??-a b f ,由题意有()()()11,11,10≤≤-≤f f f .

由()()()?????+-=-++==c b a f c b a f c f 110 得()()()[]()()[]()????

?????=--=--+=01121021121f c f f b f f f a

()()()()()()()

0311303113242f f f f f f c b a f +-+≤--+=++=∴7313=++≤.

()()()()()()()

0313103131242f f f f f f c b a f +-+≤--+=+-=-7331=++≤.

()()()()()()1112

111211121=+≤-+≤--=f f f f b . ∴ 当22≤-a b 时,22444222b a b c a b c a b ac a b f ?-=-=-=??

? ??- 722

12122<=?+≤?+≤b a b c . 因此当2≤x 时,()7≤x f . 点评:从函数性质的角度分析,要证2≤x 时,()7≤x f ,只要证当2≤x 时,()x f 的最大值M 满足7≤M . 而()x f 又是二次函数,不论a 、b 、c 怎么取值()x f 在[]2,2-

上的最大值只能是()()2,2f f -,或??

? ??-a b f 2,因而只要证明()()72,72≤-≤f f ,72≤??

? ??-a b f ,这里需要特别指出的是要将()()2,2-f f 与()()()1,1,0-f f f 建立联系,将二次函数中的系数b a ,c ,用()1f 、()1-f 、()0f 表示:

()()(),20211f f f a --+=()()()0,2

11f c f f b =--=,然后用含有绝对值不等式的性质,进行适当放缩。

2.已知c b a ,,是实数,函数()()b ax x g c bx ax x f +=++=,2,当11≤≤-x 时,()1≤x f ,

(1)证明:1≤c ;

(2)证明:当11≤≤-x 时,()2≤x g ;

(3)设0>a ,当11≤≤-x 时,()x g 的最大值为2,求()x f . (1996年全国高考题) 证明:(1)依题设得()10≤f ,而()c f =0 所以1≤c .

(2)证法:当0>a 时,()b ax x g +=在[]1,1-上是增函数。

则[]1,1-∈x 时,有()()()11g x g g ≤≤-,又()1,1≤≤c x f ,

()()()2111≤+≤-=+=∴c f c f b a g ,

()()()()2111-≥+--≥+--=+-=-c f c f b a g ,因此得()()112≤≤-≤x x g . 当0

()()()2111≤+-≤+--=+-=-∴c f c f b a g ,

()()()()2111-≥+-≥-=+=c f c f b a g ,因此得()2≤x g .

当0=a 时,()()c bx x f b x g +==,,

()1,11≤≤c f

()()()211≤+≤-=∴c f c f x g

综上可知,当11≤≤-x 时,都有()2≤x g .

(3)依题意0>a ,故()b ax x g +=在[]1,1-上是增函数,又()x g 在[]1,1-上的最大值为2,故()21=g ;()()c f b a g -=+=11 ,()1,11≤≤c f .

()()121111-=-≤-=≤-∴g f c 1-=∴c 。

当11≤≤-x 时,()()01f c x f ==-≥,即函数()c bx ax x f ++=2在区间[]1,1-的内点0=x 上取得最小值为1-,所以,()x f 是二次函数且它的图像是对称轴a b x 2-

=是直线0=x ,由此得02=-a

b ,即0=b . ()21==+g b a 2=∴a ,故()122-=x x f .

点评:本题运用了赋值法,函数的单调性、二次函数的最小值,含有绝对值不等式的性质等,问题(1)的设置意在降低难度,容易上手,抓住这2分,问题(3)的意义是证明问题

(2)中的结论不能改进,从而是精确的,这样(2)、(3)合在一起构成问题的完整解答。本题的设计背景是:对于二次函数()c bx ax x f ++=2和一次函数()b ax x h +≤2,给定条件“当11≤≤-x 时,()1≤x f ”,则有结论“当11≤≤-x 时,()4≤x h ”. 更一般地,对于多项式函数()n n n n a x a x a x a x P ++++=--1110 和

()()121101---++-+=n n n a x a n x na x Q ,给定件“当11≤≤-x 时,()1≤x P ”

,则有结论“当11≤≤-x 时,()2n x Q ≤”.

含参二次函数中绝对值问题

2016浙江高考数学含参二次函数中绝对值问题 1设函数R b a b a x x x f ∈+-=,,)(. (1)当0>a 时,讨论函数)(x f 的零点个数; (2)若对于给定的实数)01(<<-a a ,存在实数b ,使不等式2 1)(21+≤≤-x x f x 对于任意的[]12,12+-∈a a x 恒成立试将最大实数b 表示为关于a 的函数)(a m ,并求)(a m 的取值范围。 2已知函数.)(2b x x ax x f -+= (1)当1-=b 时,若不等式12)(--≥x x f 恒成立,求实数a 的最小值; (2)若0

(1)若方程x x f 2)(=恰有三个不同的实数根,求实数a 的值; (2)当0>a 时,若对任意的],0[+∞∈x ,不等式)(2)1(x f x f ≤-恒成立,求实数a 的取值范围. 4已知0≥a ,函数a a x x x f 25)(2+--=. (1)若函数)(x f 在]3,0[上单调,求实数a 的取值范围; (2)若存在实数2,1x x ,满足)()(0))((2121x f x f a x a x =<--且,求当a 变化时 21x x +的取值范围.

(1)若函数)]([)(x f f x F =与)(x f 在R x ∈时有相同值域,求实数b 的取值范围; (2)若方程21)(2=-+x x f 在)2,0(上有两个不同实数根2,1x x , ①求实数b 的取值范围; ②求证: 41121<+x x 6已知函数),()(2R b R a b ax x x f ∈∈--=+. (1) 若,2,2≥=b a 且函数)(x f 的定义域,值域均为],1[b ,求b 的值; (2) 若函数)(x f 的图像与直线1=y 在)2,0(∈x 上有2个不同的交点,试求a b 的范围.

初三数学二次函数知识点总结及经典习题含答案77699

人教版九年级下册数学 二次函数知识点总结教案 主讲人:李霜霜

一、教学目标: (1)了解二次函数的意义,掌握二次函数的图象特征和性质,能确定函数解析式,并能解决简单的实际问题. (2)通过练习及提问,复习二次函数的基础知识;通过对典型例题的分析,培养学生分析问题、解决问题、综合运用数学知识的能力;继续渗透数学思想. 二、教学重点、难点 教学重点:二次函数的图像,性质和应用 教学难点:运用二次函数知识解决较综合性的数学问题. 三、教学过程 复习巩固 (一)二次函数概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. (二)二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。 4. ()2 y a x h k =-+的性质: (三)二次函数图象的平移 1. 平移步骤: ⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k , ; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律

绝对值不等式教学设计

含有绝对值的不等式 教学目标 (1)掌握绝对值不等式的基本性质,在学会一般不等式的证明的基础上,学会含有绝对值符号的不等式的证明方法; (2)通过含有绝对值符号的不等式的证明,进一步巩固不等式的证明中的由因导果、执要溯因等数学思想方法; (3)通过证明方法的探求,培养学生勤于思考,全面思考方法; (4)通过含有绝对值符号的不等式的证明,可培养学生辩证思维的方法和能力,以及严谨的治学精神。 教学建议 一、知识结构 二、重点、难点分析 ①本节重点是性质定理及推论的证明.一个定理、公式的运用固然重要,但更重要的是要充分挖掘吸收定理公式推导过程中所蕴含的数学思想与方法,通过证明过程的探求,使学生理清思考脉络,培养学生勤于动脑、勇于探索的精神. ②教学难点一是性质定理的推导与运用;一是证明含有绝对值的不等式的方法选择.在推导定理中进行的恒等变换与不等变换,相对学生的思维水平是有一定难度的;证明含有绝对值的不等式的方法不外是比较法、分析法、综合法以及简单的放缩变换,根据要证明的不等式选择适当的证明方法是无疑学生学习上的难点. 三、教学建议

(1)本节内容分为两课时,第一课时为含有绝对值的不等式性质定理的证明及简单运用,第二课时为含有绝对值的不等式的证明举例. (2)课前复习应充分.建议复习:当时 ; ; 以及绝对值的性质: ,为证明例1做准备. (3)可先不给出含有绝对值的不等式性质定理,提出问题让学生研究:是否等于? 大小关系如何?是否等于?等等.提示学生用一些数代入计算、比较,以便归纳猜想一般结论. (4)不等式的证明方法较多,也应放手让学生去探讨. (5)用向量加减法的三角形法则记忆不等式及推论. (6)本节教学既要突出教师的主导作用,又要强调学生的主体作用,课上尽量让全体学生参与讨论,由基础较差的学生提出猜想,由基础较好的学生帮助证明,培养学生的团结协作的团队精神. 教学设计示例 含有绝对值的不等式 教学目标 理解及其两个推论,并能应用它证明简单含有绝对值不等式的证明问题。 教学重点难点

二次函数中绝对值问题的求解策略

二次函数中绝对值问题的求解策略 二次函数是高中函数知识中一颗璀璨的“明珠”,而它与绝对值知识的综合,往往能够演绎出一曲优美的“交响乐”,故成为高考“新宠”。二次函数和绝对值所构成的综合题,由于知识的综合性、题型的新颖性、解题方法的灵活性、思维方式的抽象性,学习解题时往往不得要领,现从求解策略出发,对近年来各类考试中的部分相关考题,进行分类剖析,归纳出一般解题思考方法。 一、适时用分类,讨论破定势 分类讨论是中学数学中的重要思想。它往往能把问题化整为零,各个击破,使复杂问题简单化,收到化难为易,化繁为简的功效。 例1 已知f(x)=x 2 +bx+c (b,c ∈R), (1)当b<-2时,求证:f(x)在(-1,1)单调递减。 (2)当b<-2时,求证:在(-1,1)至少存在一个x0,使得|f(x0)|≥ 2 1. 分析 (1)当b<-2时,f(x)的对称轴在(-1,1)的右侧,那么f(x)在(-1,1)单调递减。 (2)这是一个存在性命题,怎么理解“至少存在一个x 0”呢?其实质是能找到一个这样的x 0,问题就解决了,不妨用最特殊的值去试一试。 当x=0时,|f(0)|=|c|,|c|与 2 1 的大小关系如何呢?对|c|进行讨论: (i )若|c|≥ 21,即|f(0)|≥2 1 ,命题成立。 (ii )若|c|< 21,取x 0=-21,则2 1432145|||2141||2141||)21(|>=->--≥+-=-c b c b f .

故不论|c|≥ 21还是|c|<21,总存在x 0=0或x 0=-21使得|f(x 0)|≥2 1 成立。 本题除了取x=- 2 1 外,x 还可取那些值呢?留给读者思考。 二、合理用公式,灵活换视角 公式|a|-|b|≤|a±b|≤|a|+|b|在处理含绝对值问题时的作用有时是不可替代的,常用于不等式放缩、求最值等,思路简洁、明快,解法自然、迅捷。 例2 已知f(x)=x 2+ax+b 的图象与x 轴两交点的横坐标为x 1,x 2若|a|+|b|<1,求证:|x 1|<1且|x 2|<1. 解 由韦达定理,得???=-=+b x x a x x 2121 ???==+∴.|||||,|||2 121 b x x a x x 代入|a|+|b|<1,得|x 1+x 2|+|x 1x 2|<1, 又|x 1|-|x 2|≤|x 1+x 2|. 1||||||||||21212121<++≤+-∴x x x x x x x x 即|x 1|(1+|x 2|)<1+|x 2|。 又∵1+|x 2|>0,∴|x1|<1. 同理可得|x 2|<1。 例3 函数f(x)=ax 2+bx+c(a≠0),若函数f(x)的图象与直线y=x 和y=-x 均无公共点,求证:(1)4ac -b 2>1. (2)对一切实数x ,恒有| |41 ||2a c bx ax >++. 分析(1)略。

绝对值不等式例题解析

典型例题一 例1 解不等式2321-->+x x 分析:解含有绝对值的不等式,通常是利用绝对值概念? ??<-≥=)0()0(a a a a a ,将不等式中的绝对符号去掉,转化成与之同解的不含绝对值的不等式(组),再去求解.去绝对值符号的关键是找零点(使绝对值等于零的那个数所对应的点),将数轴分成若干段,然后从左向右逐段讨论. 解:令01=+x ,∴ 1-=x ,令032=-x ,∴2 3=x ,如图所示. (1)当1-≤x 时原不等式化为2)32()1(--->+-x x ∴2>x 与条件矛盾,无解. (2)当2 31≤ <-x 时,原不等式化为2)32(1--->+x x . ∴ 0>x ,故2 30≤x 时,原不等式化为 2321-->+x x .∴6<-+-有解的条件为32 7<-a ,即1>a ; 当43≤≤x 时,得a x x <-+-)3()4(,即1>a ;

当4>x 时,得a x x <-+-)3()4(,即27+< a x ,有解的条件为42 7>+a ∴1>a . 以上三种情况中任一个均可满足题目要求,故求它们的并集,即仍为1>a . 解法二:设数x ,3,4在数轴上对应的点分别为P ,A ,B ,如图,由绝对值的几何定义,原不等式a PB PA <+的意义是P 到A 、B 的距离之和小于a . 因为1=AB ,故数轴上任一点到A 、B 距离之和大于(等于1),即134≥-+-x x ,故当1>a 时,a x x <-+-34有解. 典型例题三 例3 已知),0(,20,2M y a b y M a x ∈ε<-<ε<-,求证ε<-ab xy . 分析:根据条件凑b y a x --,. 证明:ab ya ya xy ab xy -+-=- ε=ε?+ε?<-?+-≤-+-=a a M M b y a a x y b y a a x y 22)()(. 说明:这是为学习极限证明作的准备,要习惯用凑的方法. 典型例题四 例4 求证 b a a b a -≥-22 分析:使用分析法 证明 ∵0>a ,∴只需证明b a a b a -≥-222,两边同除2 b ,即只需证明 b a b a b b a -≥-2222 2,即 b a b a b a -≥-22)(1)( 当1≥b a 时,b a b a b a b a -≥-=-222)(1)(1)(;当1

绝对值问题的求解方法

绝对值问题的求解方法 一、定义法 例1 若方程只有负数解,则实数a的取值范围是:_________。 分析与解因为方程只有负数解,故,原方程可化为: , ∴, 即 说明绝对值的意义有两点。其一,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零;其二,在数轴上表示一个点到原点的距离。利用绝对值的定义常可达到去掉绝对值符号的目的。 二、利用非负性 例2 方程的图象是() (A)三条直线: (B)两条直线: (C)一点和一条直线:(0,0), (D)两个点:(0,1),(-1,0)

分析与解由已知,根据非负数的性质,得 即或 解之得:或 故原方程的图象为两个点(0,1),(-1,0)。 说明利用非负数的性质,可以将绝对值符号去掉,从而将问题转化为其它的问题来解决。 三、公式法 例3 已知,求的值。 分析与解, ∴原式 说明本题根据公式,将原式化为含有的式子,再根据绝对值的定义求值。 四、分类讨论法 例4 实数a满足且,那么

分析与解由可得 且。 当时, ; 当时, 说明有的题目中,含绝对值的代数式不能直接确定其符号,这就要求分情况对字母涉及的可能取值进行讨论。 五、平方法 例5 设实数a、b满足不等式,则 (A)且 (B)且 (C)且 (D)且 分析与解由于a、b满足题设的不等式,则有 ,

整理得 , 由此可知,从而 上式仅当时成立, ∴,即且, 选B。 说明运用此法是先对不等式进行平方去掉绝对值,然后求解。 六、图示法 例6 在式子中,由不同的x值代入,得到对应的值。在这些对应值中,最小的值是() (A)1 (B)2 (C)3 (D)4 分析与解问题可变化为:在数轴上有四点A、B、C、D,其对应的值分别是-1、-2,-3、-4,求一点P,使最小(如图)。 由于是当P点在线段AD上取得最小值3,是当P在线段BC上取得最小值1,故的最小值是4。选D。 说明由于借助图形,巧妙地把问题在图形中表示出来,形象直观,便于思考,从而达到快捷解题之目的。

含绝对值的不等式解法练习题及答案

含绝对值的不等式解法练习题及答案 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

例1 不等式|8-3x|>0的解集是 [ ]答选C. 例2 绝对值大于2且不大于5的最小整数是 [ ] A.3 B.2 C.-2 D.-5 分析列出不等式. 解根据题意得2<|x|≤5. 从而-5≤x<-2或2<x≤5,其中最小整数为-5, 答选D. 例3不等式4<|1-3x|≤7的解集为________. 分析利用所学知识对不等式实施同解变形. 解原不等式可化为4<|3x-1|≤7,即4<3x-1≤7或-7例4已知集合A={x|2<|6-2x|<5,x∈N},求A. 分析转化为解绝对值不等式. 解∵2<|6-2x|<5可化为 2<|2x-6|<5 因为x∈N,所以A={0,1,5}. 说明:注意元素的限制条件.

例5 实数a,b满足ab<0,那么 [ ] A.|a-b|<|a|+|b| B.|a+b|>|a-b| C.|a+b|<|a-b| D.|a-b|<||a|+|b|| 分析根据符号法则及绝对值的意义. 解∵a、b异号, ∴ |a+b|<|a-b|. 答选C. 例6 设不等式|x-a|<b的解集为{x|-1<x<2},则a,b 的值为 [ ] A.a=1,b=3 B.a=-1,b=3 C.a=-1,b=-3 分析解不等式后比较区间的端点. 解由题意知,b>0,原不等式的解集为{x|a-b<x<a+b},由于解集又为{x|-1<x<2}所以比较可得. 答选D. 说明:本题实际上是利用端点的位置关系构造新不等式组.例7 解关于x的不等式|2x-1|<2m-1(m∈R)

高考含绝对值不等式的解法

高考中常见的七种含有绝对值的不等式的解法 类型一:形如)()(,)(R a a x f a x f ∈><型不等式 解法:根据a 的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础. 1、当0>a 时, a x f a a x f <<-?<)()( a x f a x f >?>)()(或a x f -<)( 2、当0=a a x f <)(,无解 ?>a x f )(使0)(≠x f 的解集 3、当0a x f )(使)(x f y =成立的x 的解集. 例1 (2008年四川高考文科卷)不等式22<-x x 的解集为( ) A.)2,1(- B.)1,1(- C.)1,2(- D.)2,2(- 解: 因为 22<-x x ,

所以 222<-<-x x . 即 ?????<-->+-0 20222x x x x , 解得: ? ??<<-∈21x R x , 所以 )2,1(-∈x ,故选A. 类型二:形如)0()(>><><<)()0()( 或a x f b -<<-)( 需要提醒一点的是,该类型的不等式容易错解为: b x f a a b b x f a <><<)()0()( 例2 (2004年高考全国卷)不等式311<+

二次函数绝对值问题

常见绝对值类问题汇总 ——辽宁数学小丸子编辑 【题1】已知32()(0)f x ax bx cx d a =+++≠,当1x ≤时,'()f x M ≤恒成立,求a 的最大值 【题2】设1()4 2(,)x x f x a b a b R +=+?+∈,若对于1[0,1],()2x f x ?∈≤都成立,求b 【题3】2()f x x bx c =++在定区间[,]m n 上的最大值为M ,则M 有一个最小值2 ()8 m n -,当且仅【题4】设,,a b c R ∈,对任意满足1x ≤的实数x ,都有21ax bx c ++≤,则a b c ++的最大可能值为___ 【题5】设函数(),,f x x ax b a b R =--∈,若对任意实数,a b ,总存在实数0[0,4]x ∈使得不等式0()f x m ≥成立,求实数m 的取值范围 【题6】设2 ()(0)f x ax bx c a =++≠,当1x ≤时,总有()1f x ≤,求证:当2x ≤时,()7 f x ≤【推广】设2()(0)f x ax bx c a =++≠,当1x ≤时,总有()f x k ≤,求证:当x n ≤时,2()(21)f x n k ≤-【题7】已知二次函数22(),(),(1)1,(0)1,(1)1f x ax bx c g x cx bx a f f f =++=++-≤≤≤求证:当11x -≤≤时, (1)5 ()4f x ≤(2)()2 g x ≤【题8】设函数2()f x ax bx c =++对一切[1,1]x ∈-都有()1f x ≤,求证对一切[1,1]x ∈-都有 24 ax b +≤【推广】设函数2 ()f x ax bx c =++对一切[1,1]x ∈-都有()1f x ≤,求证对一切[1,1]x ∈-都有2(*) nax b n n N +≤∈【题9】设,,a b c R ∈,对任意满足01x ≤≤的实数x ,都有21ax bx c ++≤,则a b c ++的最大可能值为___ 【题10】设函数1()(1,)f x x c b c R x b =++<-∈-,函数()()g x f x =在区间[1,1]-上的最大值为M ,若M k ≥对任意的,b c 成立,求k 最大

不等式证明的基本方法

绝对值的三角不等式;不等式证明的基本方法 一、教学目的 1、掌握绝对值的三角不等式; 2、掌握不等式证明的基本方法 二、知识分析 定理1 若a,b为实数,则,当且仅当ab ≥0时,等号成立。 几何说明:(1)当ab>0时,它们落在原点的同一边,此时a 与-b的距离等于它们到原点距离之和。 (2)如果ab<0,则a,b分别落在原点两边,a与-b的距离严格小于a与b到原点距离之和(下图为ab<0,a>0,b<0的情况,ab<0的其他情况可作类似解释)。 |a-b|表示a-b与原点的距离,也表示a到b之间的距离。 定理2 设a,b,c为实数,则,等号成立 ,即b落在a,c之间。 推论1

推论2 [不等式证明的基本方法] 1、比较法是证明不等式的一种最基本的方法,也是一种常用的方法,基本不等式就是用比较法证得的。 比较法有差值、比值两种形式,但比值法必须考虑正负。 比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述。 如果作差后的式子可以整理为关于某一个变量的二次式,则可考虑用到判别式法证。 2、所谓综合法,就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直至推出要证明的结论,可简称为“由因导果”,在使用综合法证明不等式时,要注意基本不等式的应用。 所谓分析法,就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,或者是显然成立的不等式,可简称“执果索因”,在使用分析法证明不等式时,习惯上用“”表述。 综合法和分析法是两种思路截然相反的证明方法,其中分析法既可以寻找解题思路,如果表述清楚,也是一个完整的证明过程.注意综合法与分析法的联合运用。 3、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。 4、放缩法:欲证A≥B,可通过适当放大或缩小,借助一个或多个中间量,使得,,再利用传递性,达到证明的目的.这种方法叫做放缩法。 【典型例题】 例1、已知函数,设a、b∈R,且a≠b,求证:

二次函数中绝对值问题的求解策略

二次函数中绝对值问题的 求解策略 This model paper was revised by the Standardization Office on December 10, 2020

二次函数中绝对值问题的求解策略 二次函数是高中函数知识中一颗璀璨的“明珠”,而它与绝对值知识的综合,往往能够演绎出一曲优美的“交响乐”,故成为高考“新宠”。二次函数和绝对值所构成的综合题,由于知识的综合性、题型的新颖性、解题方法的灵活性、思维方式的抽象性,学习解题时往往不得要领,现从求解策略出发,对近年来各类考试中的部分相关考题,进行分类剖析,归纳出一般解题思考方法。 一、适时用分类,讨论破定势 分类讨论是中学数学中的重要思想。它往往能把问题化整为零,各个击破,使复杂问题简单化,收到化难为易,化繁为简的功效。 例1 已知f(x)=x 2+bx+c (b,c ∈R), (1)当b<-2时,求证:f(x)在(-1,1)内单调递减。 (2)当b<-2时,求证:在(-1,1)内至少存在一个x0,使得|f(x0)|≥ 2 1. 分析 (1)当b<-2时,f(x)的对称轴在(-1,1)的右侧,那么f(x)在(-1,1)内单调递减。 (2)这是一个存在性命题,怎么理解“至少存在一个x 0”呢其实质是能找到一个这样的x 0,问题就解决了,不妨用最特殊的值去试一试。 当x=0时,|f(0)|=|c|,|c|与 2 1 的大小关系如何呢对|c|进行讨论: (i )若|c|≥ 21,即|f(0)|≥2 1 ,命题成立。 (ii )若|c|< 21,取x 0=-21,则2 1432145|||2141||2141||)21(|>=->--≥+-=-c b c b f . 故不论|c|≥ 21还是|c|<21,总存在x 0=0或x 0=-21使得|f(x 0)|≥2 1 成立。 本题除了取x=- 2 1 外,x 还可取那些值呢留给读者思考。

含绝对值的不等式解法·典型例题

含绝对值的不等式解法·典型例题 能力素质 例1 不等式|8-3x|>0的解集是 [ ] A B R C {x|x } D {83 }...≠.? 83 分析∵->,∴-≠,即≠. |83x|083x 0x 83 答 选C . 例2 绝对值大于2且不大于5的最小整数是 [ ] A .3 B .2 C .-2 D .-5 分析 列出不等式. 解 根据题意得2<|x|≤5. 从而-5≤x <-2或2<x ≤5,其中最小整数为-5, 答 选D . 例3 不等式4<|1-3x|≤7的解集为________. 分析 利用所学知识对不等式实施同解变形. 解 原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7 ≤-<-解之得<≤或-≤<-,即所求不等式解集为-≤<-或<≤.3x 14x 2x 1{x|2x 1x }53835383 例4 已知集合A ={x|2<|6-2x|<5,x ∈N},求A . 分析 转化为解绝对值不等式. 解 ∵2<|6-2x|<5可化为 2<|2x -6|<5 即-<-<,->或-<-, 52x 652x 622x 62??? 即<<,>或<,12x 112x 82x 4???

解之得<<或<<.4x x 211212 因为x ∈N ,所以A ={0,1,5}. 说明:注意元素的限制条件. 例5 实数a ,b 满足ab <0,那么 [ ] A .|a -b|<|a|+|b| B .|a +b|>|a -b| C .|a +b|<|a -b| D .|a -b|<||a|+|b|| 分析 根据符号法则及绝对值的意义. 解 ∵a 、b 异号, ∴ |a +b|<|a -b|. 答 选C . 例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 [ ] A .a =1,b =3 B .a =-1,b =3 C .a =-1,b =-3 D a b .=,=1232 分析 解不等式后比较区间的端点. 解 由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得. a b 1a b 2 a b -=-+=,解之得=,=.???1232 答 选D . 说明:本题实际上是利用端点的位置关系构造新不等式组. 例7 解关于x 的不等式|2x -1|<2m -1(m ∈R) 分析 分类讨论. 解若-≤即≤,则-<-恒不成立,此时原不等 2m 10m |2x 1|2m 112 式的解集为;? 若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 12 x <m .

二次函数经典难题(完整资料).doc

【最新整理,下载后即可编辑】 二次函数经典难题(含精解) 一.选择题(共1小题) 1.顶点为P的抛物线y=x2﹣2x+3与y轴相交于点A,在顶点不变的情况下,把该抛物线绕顶点P旋转180°得到一个新的抛物线,且新的抛物线与y轴相交于点B,则△PAB的面积为()A.1B.2C.3D.6 二.填空题(共12小题) 2.作抛物线C 1关于x轴对称的抛物线C 2 ,将抛物线C 2 向左平 移2个单位,向上平移1个单位,得到的抛物线C的函数解析式是y=2(x+1)2﹣1,则抛物线C 1 所对应的函数解析式是 _________ . 3.抛物线关于原点对称的抛物线解析式为 _________ . 4.将抛物线y=x2+1的图象绕原点O旋转180°,则旋转后的抛物线解析式是_________ . 5.如图,正方形ABCD的顶点A、B与正方形EFGH的顶点G、H同在一段抛物线上,且抛物线的顶点在CD上,若正方形ABCD 边长为10,则正方形EFGH的边长为_________ . 6.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛

物线的“抛物线三角形”.在抛物线y=ax2+bx+c中,系数a、b、c为绝对值不大于1的整数,则该抛物线的“抛物线三角形”是等腰直角三角形的概率为_________ . 7.抛物线y=ax2+bx+c经过直角△ABC的顶点A(﹣1,0),B (4,0),直角顶点C在y轴上,若抛物线的顶点在△ABC的内部(不包括边界),则a的范围是_________ . 8.已知抛物线y=x2﹣6x+a的顶点在x轴上,则a= _________ ;若抛物线与x轴有两个交点,则a的范围是_________ .9.抛物线y=x2﹣2x+a2的顶点在直线y=2上,则a= _________ . 10.若抛物线y=x2﹣2x+a2的顶点在直线x=2上,则a的值是_________ . 11.若抛物线的顶点在x轴上方,则m的值是 _________ . 12.如图,二次函数y=ax2+c图象的顶点为B,若以OB为对角线的正方形ABCO的另两个顶点A、C也在该抛物线上,则a?c 的值是_________ . 13.抛物线y=ax2+bx﹣1经过点(2,5),则代数式6a+3b+1的值为_________ .

二次函数及含有绝对值练习

二次函数及含有绝对值练习 的取值范围; 恒成立,求实数、若函数a a x x x f ≥-++=|2|1)(1 2、的取值范围;成立,求实数使若存在一个a a x ≥+|2x |-|1-x | 3、的值 ,求实数的最小值为若函数a a x x x f 3|2||1|)(+++= 的最小值是 函数|2018||2017||4||3||2||1|)(-+-++-+-+-+-=x x x x x x x f Λ [)) 1()1()(-.)1()1()(-.)1()1()(-.)1()1()(-.,0|,)1()(|)1()()(0)().(4a F a F a F a F D a F a F a F a F C a F a F a F a F B a F a F a F a F A a x g x f x g x f x F x g x f -≤+≤-≥+≤-≤+≥-≥+≥>----+=∞+且)(且)(且)(且)(则()若设函数上单调递增, ,都是偶函数,且在、已知 的值求实数的最小值为、已知函数a ax x x a x x f , 2 111)4()(522+-++-+=

的取值范围 求实数有四个不同的根,若方程 、已知函数a a ax x g x f x g x f x x g x x f 03|)()(|)()(,34)(,)(62=----+-== ) ,()),(),,((.|||||)||,(|.|;||||)||,(|.),(),(.. 2 ),(,2 ),(,,7b a m b a m b a M m D b a b a b a M C b a b a b a m B b a b a m b a M A b a b a b a m b a b a b a M R b a =+=-+-=-++=+--+= -++=∈) 下列式子错误的是( 定义:、设 的取值范围是 则有两个不同的零点,、已知m m x x x f x x ----+-=23 4234)(8 的取值范围 求实数,的最小值为、已知a x x a x x a x x x f 1)0(321 1)(9>-+--+-+ =

含绝对值不等式的解法(含答案)

含绝对值的不等式的解法 一、 基本解法与思想 解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。 (一)、公式法:即利用a x >与a x <的解集求解。 主要知识: 1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。 2、a x >与a x <型的不等式的解法。 当0>a 时,不等式>x 的解集是{} a x a x x -<>或, 不等式a x <的解集是} a x a x <<-; 当0的解集是{}R x x ∈ 不等式a x <的解集是?; 3.c b ax >+与 c b ax <+型的不等式的解法。 把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。 当0>c 时,不等式c b ax >+的解集是{ } c b ax c b ax x -<+>+或, 不等式c b ax <+的解集是{}c b ax c x <+<-; 当0+的解集是{}R x x ∈ 不等式c bx a <+的解集是?; 例1 解不等式32<-x 分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“2-x ” 看着一个整体。答案为{} 51<<-x x 。(解略) (二)、定义法:即利用(0),0(0),(0).a a a a a a >??==??-++。 分析:由绝对值的意义知,a a =?a ≥0,a a =-?a ≤0。 解:原不等式等价于 2 x x +<0?x(x+2)<0?-2<x <0。

绝对值函数系列习题(二次函数)

含有绝对值符号的函数的性质 1、已知不等式| |2 2x x a +≤对x 取一切负数恒成立,则a 的取值范围是_______. 2、若关于x 的不等式||22 a x x --<至少有一个负数解,则实数a 的取值范围是_______. 3、函数2 |1|y x =-和函数y x k =+的图像恰有三个交点,则k 的值是_______. 4、设常数R ∈a ,以方程20112||=?+x a x 的根的可能个数为元素的集合=A _______. 5、不等式2313x x a a +--≤-对任意实数x 恒成立,则实数a 的取值范围为_______. 6、对任意的120x x <<,若函数1 ()f x a x x b x =-+折线(两侧的射线均平行于x 轴), 试写出a 、b 应满足的条件 . 7、已知函数()2log f x x =,正实数,m n 满足m n <, 且()()f m f n =,若()f x 在区间2,m n ????上的最大值为则m =________,n =_________. 8、设,,a b R ∈且1b ≠.若函数1y a x b =-+的图象与直线y x =恒有公共点,则,a b 应满足的条件是_______. 9、关于x 的方程092 2=-++a x a x (R a ∈)有唯一的实数根,则=a _______. 10、若函数1log 2 )(| 3|+-=-x x f a x 无零点,则a 的取值范围为_______. 11、定义在R 上的函数()f x 的图像过点(6,2)M -和(2,6)N -,且对任意正实数k ,有 ()()f x k f x +<成立,则当不等式|()2|4f x t -+<的解集为(4,4)-时,则实数t 的值 为_______. 12、已知函数21(0)()log (0) x a x f x x x ?++≤=?>?有三个不同零点,则实数a 的取值范围为_______. 13、设关于x 的不等式4|4|2 +≤+-x m x x 的解集为A ,且A A ?∈2,0,则实数m 的取 值范围是_______.

二次函数绝对值的问题练习及答案

二次函数绝对值的问题练习及答案 二次函数是最简单的非线性函数之一,而且有着丰富的内容,它对近代数仍至现代数学影响深远,这部分内容为历年来高考数学考试的一项重点考查内容,经久不衰,以它为核心内容的高考试题,形式上也年年有变化,此类试题常常有绝对值,充分运用绝对值不等式及二次函数、二次方程、二次不等式的联系,往往采用直接法,利用绝对值不等式的性质进行适当放缩,常用数形结合,分类讨论等数学思想,以下举例说明 例1 设a 为实数,函数 2 ()||1f x x x a =+-+,x R ∈ (1)讨论()f x 的奇偶性; (2)求()f x 的最小值 解;(1)0a =时, () f x 为偶函数 0a ≠时,()f x 为非奇非偶函数 (2)2 222 2131,24()||1131,24x x a x a x a f x x x a x x a x a x a ?? ?+-+=++-≥? ??? ?=+-+=??? ?-++=-++< ????? 当()min 13 ,24a f x a ≤-=- 当()2min 11 ,1 22a f x a -<<=+ 当()min 13 ,24a f x a ≥=+ 例2 已知函数 1)(2 -=x x f ,|1|)(-=x a x g . (1)若关于x 的方程)(|)(|x g x f =只有一个实数解,求实数a 的取值范围; (2)若当R x ∈时,不等式)()(x g x f ≥恒函数成立,求实数a 的取值范围; (3)求函数)(|)(|)(x g x f x h +=在区间[-2,2]上的最大值(直接写出结果,不需给出演算步骤). 解:(1)方程|()|()f x g x =,即 2 |1||1|x a x -=-,变形得|1|(|1|)0x x a -+-=,显然,1x =已是该方程的根,从而欲原方程只有一解,即要求方程|1|x a +=,有且仅有一个等于1的

含绝对值的不等式解法练习题及答案

例1 不等式|8-3x|>0的解集是 [ ] A B R C {x|x } D {83 } ...≠.?8 3 分析∵->,∴-≠,即≠. |83x|083x 0x 8 3 答 选C . 例2 绝对值大于2且不大于5的最小整数是 [ ] A .3 B .2 C .-2 D .-5 \ 分析 列出不等式. 解 根据题意得2<|x|≤5. 从而-5≤x <-2或2<x ≤5,其中最小整数为-5, 答 选D . 例3 不等式4<|1-3x|≤7的解集为________. 分析 利用所学知识对不等式实施同解变形. 解 原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7 ≤-<-解之得<≤或-≤<-,即所求不等式解集为 -≤<-或<≤. 3x 14x 2x 1{x|2x 1x }538 3 538 3 例4 已知集合A ={x|2<|6-2x|<5,x ∈N},求A . 分析 转化为解绝对值不等式. ' 解 ∵2<|6-2x|<5可化为 2<|2x -6|<5 即-<-<,->或-<-,52x 652x 622x 62??? 即<<,>或<,12x 112x 82x 4??? 解之得<< 或<<.4x x 21121 2 因为x ∈N ,所以A ={0,1,5}. 说明:注意元素的限制条件.

例5 实数a ,b 满足ab <0,那么 [ ] A .|a -b|<|a|+|b| · B .|a +b|>|a -b| C .|a +b|<|a -b| D .|a -b|<||a|+|b|| 分析 根据符号法则及绝对值的意义. 解 ∵a 、b 异号, ∴ |a +b|<|a -b|. 答 选C . 例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 [ ] A .a =1,b =3 : B .a =-1,b =3 C .a =-1,b =-3 D a b .=,=123 2 分析 解不等式后比较区间的端点. 解 由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得. a b 1a b 2a b -=-+=,解之得=,=.?? ? 123 2 答 选D . 说明:本题实际上是利用端点的位置关系构造新不等式组. 例7 解关于x 的不等式|2x -1|<2m -1(m ∈R) 分析 分类讨论. 、 解若-≤即≤,则-<-恒不成立,此时原不等 2m 10m |2x 1|2m 11 2 式的解集为;? 若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 1 2 x <m . 综上所述得:当≤时原不等式解集为; 当>时,原不等式的解集为 m m 1 2 1 2 ? {x|1-m <x <m}. 说明:分类讨论时要预先确定分类的标准.

两个常用绝对值不等式的应用

两个常用绝对值不等式的应用 教学目标 理解及其两个推论,并能应用它证明简单含有绝 对值不等式的证明问题。 教学重点难点 重点是理解掌握定理及等号成立的条件,绝对值不等式的证明。 难点是定理的推导过程的探索,摆脱绝对值的符号,通过定理或放缩不等式。 教学过程 一、复习引入 我们在初中学过绝对值的有关概念,请一位同学说说绝对值的定义。 当时,则有: 那么与及的大小关系怎样? 这需要讨论当 当 当 综上可知: 我们已学过积商绝对值的性质,哪位同学回答一下? . 当时,有:或. 二、引入新课

由上可知,积的绝对值等于绝对值的积;商的绝对值等于绝对值的商。 那么和差的绝对值等于绝对值的和差吗? 1.定理探索 和差的绝对值不一定等于绝对值的和差,我们猜想 . 怎么证明你的结论呢? 用分析法,要证. 只要证 即证 即证, 而显然成立, 故 那么怎么证? 同样可用分析法 当时,显然成立, 当时,要证 只要证, 即证 而显然成立。 从而证得. 还有别的证法吗?(学生讨论,教师提示)

由与得. 当我们把看作一个整体时,上式逆用可得什么结 论? 。 能用已学过得的证明吗? 可以表示为. 即(教师有计划地板书学生分析证明的过程) 就是含有绝对值不等式的重要定理,即. 由于定理中对两个实数的绝对值,那么三个实数和的绝对值呢? 个实数和的绝对值呢? 亦成立 这就是定理的一个推论,由于定理中对没有特殊要求,如果用代换会 有什么结果?(请一名学生到黑板演) , 用代得, 即。 这就是定理的推论成立的充要条件是什么? 那么成立的充要条件是什么? .

例1求证. 证法:(直接利用性质定理)在时,显然成立. 当时,左边 . 三、随堂练习 1.求证. 答案: 与同号 四、小结 1.定理. 把、、看作是三角形三边,很象 三角形两边之和大于第三边,两边之差小于第三边,这样理解便于记忆,此定理在后面学习复数时,可以推广到比较复数的模长,并有其几何意义,有时也称其为“三角形不等式”. 2.平方法能把绝对值不等式转化为不含绝对值符号的不等式,但应注意两边非负时才可平方,有些证明并不容易去掉绝对值符号,需用定理及其 推论。 3.对要特别重视.

5含绝对值的二次函数(教案及练习)

含绝对值的二次函数 含绝对值的二次函数其本质是分段函数,研究含绝对值的二次函数就是分段研究二次函数的局部性态.设定分类讨论的标准是问题解决的前提条件,数形结合则是问题能否正确解决的关键 所在. 例1.解下列各题: (1)(2010全国)直线1=y 与曲线a x x y +-=2有4个交点,则实数a 的取值范围是 . (2)(2008浙江)已知t 为常数,函数t x x y --=22在区间]3,0[上的最大值为2,则=t . (3)设集合{} {}2,,022<=∈<++-=x x B R a a a x x x A ,若Φ≠A 且B A ?,则实数a 的取值范 围是 . 例2.设函数R x a x x x f ∈+-+=,1)(2 (1)判断函数)(x f 的奇偶性; (2)求函数)(x f 的最小值.

例3.已知函数1)(,1)(2-=-=x a x g x x f . (1)若关于x 的方程)()(x g x f =只有一个实数解,求实数a 的取值范围; (2)若R x ∈时,)()(x g x f ≥恒成立,求实数a 的取值范围; (3)求函数)()()(x g x f x h +=在区间]2,2[-上的最大值. 例4.设a 为实数,函数2()2()f x x x a x a =+--. (1)若(0)1f ≥,求实数a 的取值范围; (2)求()f x 的最小值.

5.含绝对值的二次函数 班级 姓名 一、综合练习 1.设b a <<0,且x x x f ++= 11)(,则下列大小关系式成立的是( ) (A ))()2()(ab f b a f a f <+< (B ))()()2(ab f b f b a f <<+ (C ))()2()(a f b a f ab f <+< (D ))()2 ()(ab f b a f b f <+< 2.已知{}n a 为等差数列,n S 是{}n a 的前n 项和,若9843=++a a a ,则9S = . 3.直线750x y +-=截圆221x y +=所得的两段弧长之差的绝对值是 . 4.函数y k x a b =--+与y k x c d =-+的图象1(k 0k )3 >≠且交于两点)3,8(),5,2(,则c a + 的值是_______________. 5.任意满足305030x y x y x -+≤??+-≥??-≤? 的实数,x y ,若不等式222()()a x y x y +<+恒成立,则实数a 的取值 范围是 . 6.已知双曲线22 221(0,0)x y a b a b -=>>,N M ,是双曲线上关于原点对称的两点,P 是双曲线上的动点,且直线PN PM ,的斜率分别为12,k k ,021≠k k ,若21k k +的最小值为1,则双曲线的离心率为 . 二、本讲练习 1.设函数c bx x x x f ++=)(给出下列四个命题: ① 0=c 时,)(x f y =是奇函数; ② 0,0>=c b 时,方程0)(=x f 只有一个实根; ③ )(x f y =的图象关于),0(c 对称; ④ 方程0)(=x f 至多有两个实根. 其中正确的命题是 ( ) (A )①④ (B )①③ (C )①②③ (D )①②④ 2.若不等式2 1x x a <-+的解集是区间()33-,的子集,则实数a 的范围为 . 3.设a 为实数,函数a x x x f -=)(,求函数)(x f 在]2,2[-上的最大值.

相关文档
相关文档 最新文档