文档视界 最新最全的文档下载
当前位置:文档视界 › 纳米微粒的制备方法及其进展

纳米微粒的制备方法及其进展

纳米微粒的制备方法及其进展
纳米微粒的制备方法及其进展

纳米微粒的制备方法及其进展

一般把尺寸在0.1nm到100nrn之间,处在原子簇和宏观物体交接区域内的粒子称为纳米材料或超微粒。纳米材料由于具有由表面效应.体积效应、量子尺寸效应和宏观量子隧道效应引起的奇异力学、电学、磁学、热学.光学和化学活性等特性而使其在国防、电子,化工、核技术、冶金、航空.轻工.医药等领域中具有重要的应用价值,在催化、发光材料、磁性材料、半导体材料及精细陶瓷材料等领域已得到了广泛的应用。无论是美国的“星球大战计划”、信息高速公路”,欧共体的“尤里卡计划”,还是我国的“863计划”都把制备纳米材料列为重点发展项目。为了实现纳米材料产业规模化,如何制备高纯.超细、均匀的纳米微粒就显得十分重要。一种好的制备方法,制备出来的纳米微粒应是直径小而分布均匀,所需设备也应尽可能的简单易行,纳米微粒的制备方法多种多样。以物料状态来分仍可归纳为固相法、液相法和气相法三大类,但随着科技的不断发展对不同物理、化学特性超微粒的需求,在上述几类方法的基础上衍生出许多新的技术。

1 固相法

固相法是一种传统的粉化工艺,具有成本低、产量高、制备工艺简单的优点。是通过固相到固相的变化来制备粉体,基础的固相法是金属或金属氧化物按一定的比例充分混合,研磨后进行煅烧,通过发生固相反应直接制得超微粉,或者是再

次粉碎得到超微粉。在该法的尺寸降低过程中,物质无变化:机械粉碎(用球磨机,喷射磨等进行粉碎) ,化学处理(溶出法等)。

固相法包括热分解法,固相反应法,火花放电法,溶出法,球磨法。

固相反应不使用溶剂,具有高选择性、高产率、低能耗、工艺过程简单等特点。高能球磨法是靠压碎、击碎等作用,将金属机械地粉碎成粉末,并在冷态下反复挤压和破碎,使之成为弥散分布的超细粒子。其工艺简单,成本低廉。但颗粒易受污染,且颗粒分布不均匀。其中室温、近室温固相反应合成纳米材料的方法的突出优点是操作方便,合成工艺简单,粒径均匀,且粒度可控,污染少,同时又可以避免或减少液相中易出现的硬团聚现象。对于固相反应,反应速度是影响粒径大小的主要因素,而反应速度是由研磨方式和反应体系所决定的。另外,表面活性剂的加入对改变颗粒的分散性有明显作用,其用量对粒径大小的影响存在最佳值。不同的反应配比对产物的均匀程度也有影响,一般配比越大,均匀性越差,但分散性

很好。

固相法存在能耗大、颗粒粒径分布不均匀、易混入杂质、颗粒外貌不规则等缺点,因而较少用以制备纳米微粒。但是最近,Li 等在室温下采用固相反应法成功地合成了分散性较好、颗粒均匀的SiO2 、CeO2 、SnO2 等纳米微粒(透射电镜TEM证实) ,并首次对这种在室温下通过固相反应形成纳米微粒的机理进行研究,重新引起了学术界和产业界对固相法的兴趣。

2 气相法

气相法也是一种常用的方法。它是直接利用气体或通过各种方式将物料变成气体,使之在气体状态下发生物理变化或化学反应,最后经冷却凝聚形成超细固体微粒的方法。气体蒸发法制备的纳米微粒主要具有如下特点:①表面清洁;②粒度整齐,粒径分布窄;③粒度容易控制;④颗粒分散性好。

气相法通过控制可以制备出液相法难以制得的金属、碳化物、氮化物、硼化物等非氧化物超微粉。

气相法主要包括:

①气体冷凝法气体冷凝法的基本原理是:在惰性气氛下令原材料蒸发,随后,原材料的蒸气原子因在与惰性气体原子的不断碰撞过程中逐渐损失其能量而发生凝聚;控制条件,可形成粒径为几个纳米的微粒。Sanchez2Lopez 等采用此法制备了ZnS 超细粉末,TEM 结果表明其平均粒径为8nm ,且大部分微粒粒径都在7~9nm 这一较窄的分布范围内。气体冷凝法可通过调节气体压力、惰性气体温度、蒸发温度或速率等手段,来控制纳米微粒粒径的大小。但该法仅适用于制备低熔点、成分单一的物质,难于合成金属氧化物、氮化物等高熔点物质的纳米微粒。Ozawa 等在低压氦气氛中,用激光辐射已抛光的多晶钨,合成了W纳米微粒。研究发现,粒径小于80nm 的W微粒的尺寸大小受环境压力的影响。因而可通过严格控制环境压力的大小来获得特定尺寸的单分散W纳米微粒。与传统的加热蒸发底物的方法相比,激光的使用减少了因底物与坩埚反应造成的污染。但激光器的效率低,电能消耗较大,难于实现规模化生产。

②气溶胶法气溶胶法与差示迁移率分析仪(Differential Mobility

Analyzer ,DMA) [17 ] 联用技术被广泛用于分级和制备单分散气溶胶。原料在高温下被加热产生多分散气溶胶微粒,随载气进入尺寸分级器DMA。带电气溶胶因其电迁移直径(electric mobility diameter) 的不同而在DMA 中被分成不同的级分。因而可通过控制电场力和气流阻力,获得特定尺寸的单分散微粒。Magnusson 等用气溶胶技术制备了粒径小于30nm 的尺寸可控的Au 微粒,DMA 和TEM的

分析表明,所制备的纳米微粒尺寸分散性为20 %。Hummes 等[19 ] 用气溶胶法制备了多分散Ag 气溶胶,经DMA 分级后得到窄分布的Ag 纳米微粒;原子力显微

镜(AFM) 结果表明其平均粒径为10nm ,且分布较窄,与DMA结果吻合较好。

③气相沉积法气相沉积法利用挥发性原料蒸气的化学反应来制备纳米微粒,具有原料精炼容易、产物纯度高、粒子大小可精确控制、无粘结、粒度分布窄等优点。目前,气相沉积法已制备出多种单质、无机化合物和复合材料的超细微粉末。激光诱导化学气相沉积法成功地用于制备Fe 纳米微粒,其原理是利用原料气体分子对特定波长激光束的吸收而引起其激光光解、激光热解、激光光敏化或激光诱导化学合成等反应,从而在一定条件下使产物的超细粒子空间成核和长大。Otten等利用激光离解二茂铁,即通过Fe2(C5H5 ) 键的断裂,冷凝得到3~

100nm 的Fe 纳米微粒,经DMA 分级获得较窄分布产物。激光产生的Fe 纳米微粒呈标准偏差为2 的正态分布,经DMA 尺寸选择后的Fe 纳米微粒标准偏差可减少至1.14 。

3 液相法

80年代以来,随着对材料性能与结构关系的深入研究,出现了一种趋势,即采用化学途径达到对性能的“剪裁”。这些化学手段的实质是采用微观层次上性能受到控制的源物质取代传统工艺中那些未受几何、化学控制(如矿物、陶瓷)或仅有几何控制(如普通微粒、单分散粉末)的生原料。这种从无控制状态到有控制状态的过渡不是一个简单的量变递进,而是在材料结构和性能上的质的飞跃。这些化学手段的采用已显示了巨大的优越性和广泛的应用前景。与此同时,出现了所谓。超结构过程”这一新概念,以区别于借助物理方法可控制的微观结构。这个概念不仪暗示了化学制备方法的重要性+而且明确地内涵了通过控制微观尺

寸而达到对卓越、奇异性能的“剪裁”。液相法是实现上述“超结构过程”的基本途径。这是因为依据化学手段,在不需要复杂仪器的条件下.通过简单的溶液过程就可对性能进行“剪裁”。

液相法具有设备简单。原料容易获得、纯度高、均匀性好、化学组成控制准确等优点,主要用于氧化物系超微粉的制备。液相法主要包括:

①沉淀法沉淀法是液相法制备金属氧化物纳米微粒最早采用的方法。沉淀法是指包括一种或多种离子的可溶性盐溶液,当加入沉淀(OH-,C2O42-等)于一定温度下使溶液发生水解,形成不溶性的氢氧化物、水合氧化物或盐类从溶液中析出,将溶剂和溶液中原有的阳离子洗去,经热解或热脱即得到所需的氧化物粉料。沉淀法包括共沉淀法、直接沉淀法、均相沉淀法等。直接沉淀法是仅用沉淀操作从溶液中制备氧化物纳米微粒的方法。通过控制生成沉淀剂的速度,减少晶粒凝聚,均匀沉淀法可制得万方数据纯度高的纳米材料。共沉淀法是把沉淀剂加人混合后的金属盐溶液中,促使各组分均匀混合沉淀,然后加热分解以获得超微粒。采用该法制备超微粒时、沉淀剂的过滤.洗涤及溶液的pH值、浓度、水解速度、干燥方式,热处理等均影响微粒的尺寸大小。

沉淀法工艺简单、成本低、反应时间短、反应温度低,易于实现工业化生产。但是,沉淀物通常为胶状物,水洗、过滤较困难;所制备的纳米微粒易发生团聚,难于制备粒径小的纳米微粒。沉淀剂容易作为杂质混入产物之中。此外,还由于大量金属不容易发生沉淀反应,因而这种方法适用面较窄。洪中山等采用凝胶网络共沉淀法制备了CuO P ZnO P Al2O3 纳米复合氧化物。凝胶网络共沉淀法是一种先将金属离子固定在三维结构的凝胶网络中,然后再进行共沉淀的制备方法。凝胶网格类似于微乳液中的“纳米反应器”,可以防止沉淀物在沉淀过程中的相互聚集和团聚,因而最终形成粒子的大小取决于凝胶网格的大小。在直径为10nm 数量级尺寸比较均匀的网格中,凝胶网格共沉淀法可制备出化学组成相对均匀的窄分布的纳米微粒。该法是对传统沉淀法的改进,可以通过改变凝胶网格的大小,实现控制产物粒径大小的目的,在粒径控制上优于传统的沉淀法。

②微乳液法微乳液法制备纳米微粒是十几年前开始研究和应用的方法。乳液法是利用两种互不相溶的溶剂在表面活性剂的作用下形成一个均匀的乳液,从乳液中析出固相,这样可使成核、生长、聚结、团聚等过程局限在一个微小的球形液滴内,从而可形成球形颗粒,又避免了颗粒之间进一步团聚。微乳液法具有实验装置简单,能耗低,操作容易;所得纳米粒子粒径分布窄,且单分散性、界面性和稳定性好;与其它方法相比具有粒径易于控制,适应面广等优点。如潘庆谊等用微乳液法制备了粒径大小为5~11nm纳米SnO2材料。江贵长等用原位种子乳液复合法合成了苯乙烯/甲基烯酸-二氧化钛复合纳米微球,其平均粒径为50nm。但是表面活性剂的存在将影响到纳米微粒的应用,而破乳会导致纳米微粒的团聚,是微乳液法的不足之处。

③溶胶-凝胶法溶胶2凝胶法是20 世纪60 年代发展起来的一种制备玻璃、陶瓷等无机材料的工艺[ ,后来该法也被成功地用来制备纳米微粒,成为制备纳米微粒最常用的方法之一。

溶胶-凝胶法是指前驱物质(水溶性盐或油溶性醇盐)溶于水或有机溶剂中形成均质溶液,溶质发生水解反应生成纳米级的粒子并形成溶胶,溶胶经蒸发干燥转变为凝胶,该法为低温反应过程,允许掺杂大剂量的无机物和有机物,可以制备出

许多高纯度和高均匀度的材料,并易于加工成型。该法涉及作为反应物的氧化物或氢氧化物浓溶胶的制备,以及通过除去溶剂使其转化为’半硬或凝胶的过程。

其优势在于从过程的初始阶段就可在纳米尺度上控制材料结构。该法具有在低温下制备纯度高,粒径分布均匀,能制得化学活性大,单组分或多组分分级混合物的

优点。该法过程机制有三种类型:传统胶体型、无机聚合物型和络合物型。刘静波等用溶胶-凝胶法以部分醇盐为原料及非醇溶剂,醋酸作催化剂,以不同镧源为

掺杂物,在不同工艺条件下合成了一系列镧掺杂钛酸钡基纳米晶。李蓉萍等以钛酸丁酯作为原料,无水乙醇作为有机溶剂,盐酸作为催化剂,用溶胶- 凝胶成功的制备了纳米TiO2粉末,不同温度热处理后TiO2D平均晶粒尺寸有较大差异,大致在6.1~93.2 nm(250~750℃)范围内。N. Sanz等用溶胶凝胶法制备了粒径为20~80 nm的有机纳米微粒,sol-gel法的低温过程满足有机相的热稳定性的要求,通过控制有机相成核过程、颗粒的增长、醇盐母体的溶胶化过程可以得到粒径均匀的纳米颗粒。Zhang等用无水乙醇作为溶剂,盐酸作为水解催化剂,钛酸四丁酯水解得到二氧化钛溶胶,将TiO2溶胶与苯酚混合加入到n-庚烷中,在搅拌的同时,滴入甲醛溶液,然后在90℃下静止该反应体系1. 5 h,得到象牙色的微球,最后在高温下焙烧象

牙色的微球得到TiO2多孔球形纳米晶体,粒径为20~40nm,试验过程中发现合适

的热处理条件对纳米球体的体积和结构都有较大的影响,在300℃下焙烧得到无定形结构,500℃下焙烧得到锐钛矿结构,700℃下焙烧得到金红石结构。

溶胶-凝胶法过程易控制,可在低温下制备纯度高、粒径小且分布窄、化学活性高的单、多组分混合物,特别适于制备非晶态材料。但是采用金属醇盐为原料,致使成本偏高,且由于凝胶化过程缓慢,而延长合成周期。溶胶2凝胶法还必须解决制备过程中的液相反应、干燥和煅烧阶段都可能产生团聚体的问题,加入相应的保护剂、采用冷冻干燥及低温煅烧等措施可减少团聚。

④水热法该法最初是用来研究地球矿物成因的一种手段,近年来也被尝试用来制备分布较窄的纳米微粒。目前已被用来制备许多新型切割工具.模具,传感器、燃料电池等材料。该法的原理是在水热条件F加速离子反应和促进水船反应。一些常温常压F反应速度很慢的热力学反应,在水热条件下可以实现反应快速化。依据水热反应类型不同,可分为:水热氧化、还原、沉淀、合成、分解和结晶等几种。水热法制备的样品纯度高,分散性好,晶体结构完整且尺寸可控;但是需要高压装置,操作不方便。

⑤化学还原法化学还原法通常是从相应金属化合物溶液中还原出金属纳米微粒,也是一种常用的方法。

Bonet 等以聚乙烯吡咯烷酮(PVP) 为保护剂、乙二醇为还原剂,由相应的金属化合物备了Au、Pt 、Pd、Ru、Ir 等金属纳米微粒,其平均粒径小于10nm。TEM 表明,化学还原法制备的金属纳米微粒粒径分布较窄。Rataboul 等第一次在温和条件下,以金属有机化合物[ Zn (C6H11 ) 2 ]为前驱体,采用该法制备了表面包裹ZnO 的单分散Zn 纳米微粒。TEM表明产物为窄分布、平均粒径6nm的球形颗粒。精细控制反应温度、各种反应物初始浓度、加料方式和顺序等反应条件,可控制纳米微粒的粒径。Selvakannan 等激烈搅拌氯金酸(HAuCl4 ) 水溶液和十六烷基胺(HDA) 的混合物12h ,使在有机相中生成Au 纳米微粒。纳米微粒的尺寸可以通过反应物HAuCl4 与HDA 的物料配比来控制,实验发现: 不同的物料配比,可产

生不同粒径的产物。XRD实验结果表明,分别采用10 - 3mol P L HAuCl4210

-2mol P L HDA 和10 - 3mol P L HAuCl4210 - 4mol P L HDA 两种不同的反应物配比制备Au 纳米微粒,前者采用较高HDA 浓度得到的Au 纳米微粒粒径更小。

⑥胶体化学法日本伊藤首先采用该法合成纳米珠光颜料。我国南开大学现代光学研究所、吉林大学等已将其成功用于非线性光学材料的制备巾.引起了国

内外的注意。该法的特点是首先采用离子交换法、化学絮凝法、胶溶法制得透明性阳性金属氧化物的水凝胶,以阴离于表面活性剂(如DBS)进行增水处理.然后用有机溶剂冲洗制得有机胶体,经脱水和减压蒸馏.在低于所用表面活性剂热分解温度的条件下,制得无定性球状纳米微粒。但如何提高有机溶剂循环使用,防止环境污染等等待进一步完善解决。

⑦电解法它包括水溶液和熔盐电解两种方法。用此法可制得很多用通常方法不能制备或难以制得的高纯金属超微粒,尤其是电负性大的金属粉末。

4 模板合成法

随着纳米微粒的深人研究、其合成技术也从单纯的固.液.气法发展到利用结构的基质作为模板进行合成。结构基质包括多孔玻璃、沸石分子筛、大孔离子交换树脂、Nation膜等。如Herron等将Na—Y型沸石与硝酸钙溶液混合,离子交换后形成ad—Y型沸石,经干燥后与硫化氢气体反应,在分子筛八面体沸石笼中生成了CdS超微粒。用相同方法也已将CdS半导体簇团引人A犁和X型沸石分子筛纳米孔穴中。模板合成是一种很吸引人的方法,通过合成适宜尺寸和结构的模板作为主体,在其中生成作为客体的纳米微粒,可获得所期望的窄粒径分布、粒径可控、易掺杂和反应易控制的超分子纳米微粒。

综上所述,纳米微粒的制备方法已从固、液、气相法发展到模板合成法。现在纳米微粒的有序LB膜,或其它有序自组装技术及复合纳米微粒的制备已初见端倪、无疑这些新的制备方法将会扩大纳米微粒的应用范围和改进其性能。

参考资料:①《纳米微粒的制备方法及其进展》(郭永、巩雄、杨宏秀著)

②《纳米材料的制备》(谢璐著)

③《单分散纳米微粒制备方法研究进展》(陈毓敏、何旭敏、蓝伟光、夏海平著)

(完整版)金属纳米颗粒制备中的还原剂与修饰剂の总结,推荐文档

《金属纳米颗粒制备中的还原剂与修饰剂》总结 一:金属纳米材料具有表面效应(比表面积大,表面原子多,表面原子可与其他原子结合稳定下来,使材料化学活性提高。)和量子尺寸效应,因而有不同于体相材料的光学、电磁学、化学特性。 目前制备方法为液相合成(操作简便、成本低、产量高、颗粒单分散性好)。——以金属盐或金属化合物为原料将其还原得到金属原子后聚集成金属纳米粒子。而金属纳米粒子比表面积大、物化活性高、易氧化、易团聚,所以需要引入修饰剂来控制形貌、稳定或分散纳米颗粒。 液相还原法按照溶剂不同可分为有机溶剂合成法(结晶性好、单分散性好、形貌易控、不能直接用于生物体系、环境不友好)和水溶液合成法(水溶性、制备方法简单环保、成本低、颗粒大小不均一)。按照还原手段不同可分为化学试剂还原法、辐射还原法、电化学还原法。 二:化学试剂还原法中常用的还原剂及其还原机理 还原能力不同:1)强还原剂(硼氢化物、水合肼、氢气、四丁基硼氢化物),还原能力强、反应速率快、纳米颗粒多为球形或类球形、尺寸小。2)弱还原剂(柠檬酸钠、酒石酸钾、胺类化合物、葡萄糖、抗坏血酸、次亚磷酸钠、亚磷酸钠、醇类化合物、醛类化合物、双氧水、DMF),反应体系一般需要加热。例如多元羟基类化合物可做溶剂和还原剂,通过控制反应条件可制备多种形貌的材料。柠檬酸钠、抗坏血酸做还原剂的同时可做保护剂。(一)无机类还原剂 1,硼氢化物(硼氢化钠钾、硼氢化四丁基铵TBAB),硼氢化钠化学性质活波与水反应放出 氢气,与金属盐反应时所需浓度低。 2,氢化铝锂,还原性极强,应用不及硼氢化钠。 3,水合肼N2H4·H2O,应用广泛。在碱性介质中为强还原剂。 4,双氧水。 5,有机金属化合物,二茂铁还原制备银纳米线。 6,氢气,(可以合成相当稳定无保护的可进一步修饰的银纳米颗粒。),控制反应时间可以得到相当大尺寸跨度的纳米颗粒,进一步处理如过滤离心可以得到尺寸分布窄的颗粒。 7,次亚磷酸盐,弱还原剂,因为容易与氧气反应所以一般用3-4倍。酸性条件下反应速度加快,认为酸性条件下利于次亚磷酸像活泼型转变。

一种纳米金颗粒的制备方法

说明书摘要 本发明公开了一种纳米金颗粒的制备方法,其步骤如下:(1)在去离子水中加入氯金酸溶液、CTAC、硼氢化钠溶液,得到老化的种子溶液;(2)在去离子水中加入氯金酸溶液、CTAC、溴化钠溶液、抗坏血酸溶液,得到生长溶液1;(3)在去离子水中加入氯金酸溶液、CTAC、溴化钠溶液、抗坏血酸溶液,得到生长溶液2;(4)取(1)中的老化好的种子溶液加入到(2)中的生长溶液1,反应完全后得一次生长的Au纳米颗粒分散溶液;(5)取(4)中的溶液加入到(3)中的生长溶液2,反应完全后得二次生长的Au纳米颗粒分散溶液,即为最终的Au纳米颗粒。本发明以水为基液,具有经济性好、操作简单、分散性好的优点,所获得的产品粒径大小比较均匀,且可控,从10 nm到100 nm均可获得。

权利要求书 1、一种纳米金颗粒的制备方法,其特征在于所述方法步骤如下: (1)在5~20 ml去离子水中加入0.001 ~ 0.2 ml氯金酸溶液,然后加入0.01 ~1 g CTAC,与氯金酸溶液混合后均匀后,再加入0.01 ~ 1 mL硼氢化钠溶液,摇晃10 ~ 20 s将溶液混合均匀,静置30 ~ 60 min 后得到老化的种子溶液; (2)在5~20 ml去离子水中加入0.001 ~ 1 ml氯金酸溶液,然后加入0.01 ~1 g CTAC,再加入0 .001~ 0.01 mL溴化钠溶液,超声震荡0.5 ~ 5 min将溶液混合均匀,接着加入0.01 ~ 1 mL抗坏血酸溶液,摇晃30 ~ 60 s使溶液混合均匀后得到无色透明的生长溶液1; (3)在5~20 ml去离子水中加入0.001 ~ 1 ml氯金酸溶液,然后加入0.01 ~1 g CTAC,再加入0.001 ~ 0.01 mL溴化钠溶液,超声震荡0.5 ~ 5 min将溶液混合均匀,接着加入0.001 ~ 1 mL抗坏血酸溶液,摇晃30 ~ 60 s使溶液混合均匀后得到无色透明的生长溶液2; (4)取(1)中的老化好的种子溶液1 ~ 100 μL加入到(2)中配置好的生长溶液1,摇晃10 ~ 20 s使溶液混合均匀后,在30 ℃条件下放置5 ~ 30 min使其反应完全,得一次生长的Au纳米颗粒分散溶液; (5)取(4)中的溶液1 ~ 100 μL加入到(3)中配置好的生长溶液2,摇晃10 ~ 20 s使溶液混合均匀后,在30 ℃条件下放置10 ~60 min使其反应完全,得二次生长的Au纳米颗粒分散溶液,即为最终的Au纳米颗粒。 2、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于所述Au纳米颗粒的粒径为10 nm到100 nm。 3、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于所述氯金酸溶液的浓度为0.01 mol/L。 4、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于所述氯金酸溶液的浓度为0.00025 mol/L。 5、根据权利要求1所述的纳米金颗粒的制备方法,其特征在于

纳米粒子制备方法

一、纳米粒子的物理制备方法 1.1 机械粉碎法 机械粉碎就是在粉碎力的作用下,固体料块或粒子发生变形进而破裂,产生更微细的颗粒。物料的基本粉碎方式是压碎、剪碎、冲击粉碎和磨碎。一般的粉碎作用力都是这几种力的组合,如球磨机和振动磨是磨碎与冲击粉碎的组合;气流磨是冲击、磨碎与剪碎的组合,等等。理论上,固体粉碎的最小粒径可达0.01~0.05 μ m。然而,用目前的机械粉碎设备与工艺很难达到这一理想值。粉碎极限取决于物料种类、机械应力施加方式、粉碎方法、粉碎工艺条件、粉碎环境等因素。比较典型的纳米粉碎技术有:球磨、振动磨、搅拌磨、气流磨和胶体磨等。其中,气流磨是利用高速气流(300~500m/s)或热蒸气(300~450℃)的能量使粒子相互产生冲击、碰撞、摩擦而被较快粉碎。气流磨技术发展较快,20世纪80年代德国Alpine公司开发的流化床逆向气流磨可粉碎较高硬度的物料粒子,产品粒度达到了1~5μm。降低入磨物粒度后,可得平均粒度1μm的产品,也就是说,产品的粒径下限可达到0.1μm以下。除了产品粒度微细以外,气流粉碎的产品还具有粒度分布窄、粒子表面光滑、形状规则、纯度高、活性大、分散性好等优点。因此,气流磨引起了人们的普遍重视,其在陶瓷、磁性材料、医药、化工颜料等领域有广阔的应用前景。 1.2 蒸发凝聚法 蒸发凝聚法是将纳米粒子的原料加热、蒸发,使之成为原子或分子;再使许多原子或分子凝聚,生成极微细的纳米粒子。利用这种方法得到的粒子一般在5~100nm之间。蒸发法制备纳米粒子大体上可分为:金属烟粒子结晶法、真空蒸发法、气体蒸发法等几类。而按原料加热技术手段不同,又可分为电极蒸发、高频感应蒸发、电子束蒸发、等离子体蒸发、激光束蒸发等几类。 1.3 离子溅射法 用两块金属板分别作为阴极和阳极,阴极为蒸发用材料,在两电极间充入Ar(40~250Pa),两极间施加的电压范围为0.3~1.5kV。由于两极间的辉光放电使Ar粒子形成,在电场作用下Ar离子冲击阳极靶材表面,使靶材原子从其表面蒸发出来形成超微粒子,并在附着面上沉积下来。离子的大小及尺寸分布主要取决于两极间的电压、电流、气体压力。靶材的表面积愈大,原子的蒸发速度愈高,超微粒的获得量愈大。溅射法制备纳米微粒材料的优点是:(1)可以制备多种纳米金属,包括高熔点和低熔点金属。常规的热蒸发法只能适用于低熔点金属;(2)能制备出多组元的化合物纳米微粒,如AlS2,Tl48,Cu91,Mn9,ZrO2等;通过加大被溅射阴极表面可加大纳米微粒的获得量。采用磁控溅射与液氮冷凝方法可在表面沉积有方案膜的电镜载网上支撑制备纳米铜颗粒。 1.4 冷冻干燥法 先使干燥的溶液喷雾在冷冻剂中冷冻,然后在低温低压下真空干燥,将溶剂升华除去,就可以得到相应物质的纳米粒子。如果从水溶液出发制备纳米粒子,冻结后将冰升华除去,直接可获得纳米粒子。如果从熔融盐出发,冻结后需要进行热分解,最后得到相应纳米粒子。冷冻干燥法用途比较广泛,特别是以大规模成套设备来生产微细粉末时,其相应成本较低,具有实用性。此外,还有火花放电法,是将电极插入金属粒子的堆积层,利用电极放电在金属粒子之间发生电火花,从而制备出相应的微粉。爆炸烧结法,是利用炸药爆炸产生的巨大能量,以极强的载荷作用于金属套,使得套内的粉末得到压实烧结,通过爆炸法可以得到1μm以下的纳米粒子。活化氢熔融金属反应法的主要特征是将氢气混入等离子体中,这种混合等离子体再加热,待加热物料蒸发,制得相应的纳米粒子。 二、制备纳米粒子的化学方法

金纳米粒子的制备方法

金纳米粒子的制备方法 由于不同状态的纳米粒子的性质有较大的差异,故人们已经尝试很多方法用简单和多样的合成方法制备特定形貌和大小的金纳米粒子,如纳米线、纳米棒、纳米球纳米片和纳米立方。下面将介绍下目前合成金纳米粒子最常用的方法。 1梓檬酸盐还原法 目前在众多的合成金纳米粒子方法中,最方便的方法是还原Au的衍生物。很长的一段时间最流行的方法是在1951年Turkevitch提出的水溶液中用梓檬酸盐还原HAuCl4的方法,可得到20mn左右的金纳米粒子。金纳米粒子在水溶液中合成的方法主要分为三个步骤:第一,金的盐溶液在适当的溶液中分解;第二,在某种还原剂中还原金的盐溶液;最后,在稳定剂中合成稳定的金纳米粒子。目前,最流行的制备金纳米粒子的方法是在加热的条件下,在水溶液中用梓檬酸盐还原HAuCl4。对于这个方法,通过改变金的浓度和梓檬酸盐的浓度,可以制备出大量的平均粒度的金纳米粒子。 2 Brust-Schiffrin法:两相合成并通过硫醇稳定 人们于1994年提出了合成金纳米粒子的Brust-Schiffrin方法。由于热稳定合成方法简单易行,在不到十年的时间内,此方法在所有领域都有重要的影响。金纳米粒子在有机溶剂中能分散和再溶解,并且没有不可逆的团聚或分解。作为有机分子化合物,它们能很容易的控制和功能化。Faraday的两相合成体系给予合成技术一定的启发,由于Au和S的软性质,这种方法便利用硫醇配体强烈绑住金。四正辛基溴化按作为相转移试剂将AuCV转移到甲苯溶液中,并用NaBH4在正十二硫醇中还原AuCLT。在NaBH4还原过程中,橙色相在几秒内向

深棕色转变(图1): 图1 Au化合物在硫醇溶液中被还原,其Au纳米粒子表面被有机外壳所覆盖 其反应机理如下: 3其它含硫配体 其它含硫配体已经用于稳定金纳米粒子,如黄酸盐和二硫化物等。二硫化物不如硫醇的稳定,但是在催化方面有明显的效果。同样,硫醚不能很好的约束金纳米粒子,但是Rheinhout 团队利用聚硫醚就能很好的解决这个问题。另外,利用碘氧化以硫醇为包覆剂的金纳米粒子,使其分解为金的碘化物和二硫化物。Crook等人利用这一现象制备了以金纳米粒子为模版的环胡精的空心球。 4微乳液,反向胶束,表面活性剂,细胞膜和聚合电解质类 在有或是没有硫醇溶液的情况下,使用微乳液,共聚物胶束,反相胶束,表面活性剂,细胞膜和其它两亲物都是合成稳定的金纳米粒子重要探究领域。用表面活性剂合成的两相系统会引起微乳液或是胶束的形成,将金属离子从水相抽离到有机相,从而维持良好的微环境。表面活性剂的双重角色和硫醇与金纳米粒子的相互作用可以控制金纳米粒子或是纳米晶体的稳定和生长。聚合电解质也广泛用于金纳米粒子的合成。酸衍生的金纳米粒子的聚合电解质包覆剂己经通过带电的聚合电解质静电自组装 得到了。

3.7 金纳米粒子的合成方法

1 金纳米粒子的合成方法 1.1 物理法 物理法即采用高能消耗的方式将块体金细化成为纳米级小颗粒,主要包括块状固体粉碎法(又称为磨球法或机械研磨法)、气相法、电弧法、金属蒸汽溶剂化法、辐照分解和热分解等。辐照分解包括近红外辐照和紫外辐照。近红外辐照通过使硫醇包裹的纳米粒子的粒径变大,从而可以获得粒径较大的金纳米粒子;紫外辐照通过影响种子和胶束的协同作用,从而控制金纳米粒子的合成。另外,激光消融通过对温度、反应器位置、异丙醇用量、超声场等实验条件的控制,可以合成形貌,粒径不同的金纳米粒子。总之,金纳米粒子合成的关键在于同时精确地控制其尺寸和形貌。通过物理法制备的金纳米粒子虽然纯度较高,但其产量低下,设备成本极高。 1.2 化学法 化学法主要是以金盐为原料,利用还原反应生成金纳米粒子,在形成过程中通过控制粒子的生长从而控制其尺寸。化学法主要包括水相氧化还原法、相转移法(主要为Brust法)、晶种生长法(又称种金生长法)、模板法、反相胶束法、湿化学合成法、电化学法、光化学法。相对物理法而言,化学法制备金纳米粒子所得到的产物粒径均匀、稳定性高,并且易于控制形貌,是最为方便和经济的方法。 1.2.1 水相氧化还原法 水相氧化还原法合成金纳米粒子主要是指在含有Au3+的溶液中,利用适当的还原剂(例如鞣酸,柠檬酸等,还原剂的选择根据所要合成的金纳米粒子的粒径而定),将Au3+还原成零价,从而聚集成粒径为纳米级的金纳米粒子。常见的方法有AA还原法、白磷还原法、柠檬酸钠还原法和鞣酸-柠檬酸钠还原法。制备粒径在5~12nm的金纳米粒子,一般采用AA还原或白磷还原HAuCl4溶液;制备粒径在大于12nm的金纳米粒子,则采用柠檬酸钠还原HAuCl4溶液。柠檬酸钠法还原Au3+合成金纳米粒子是最早且应用最为广泛的方法。 1951年,Turkevitch首次报道了柠檬酸钠还原HAuCl4溶液的方法制备金纳米粒子,其粒径分布在20nm左右。基于此,Frens发现,通过控制柠檬酸钠和金的比率来控制金纳米粒子的形成,从而可以得到特定尺寸(粒径可以控制在16~147 nm)的金纳米粒子。经典的Frens法至今仍得到了广泛的使用,用于保护和稳定金纳米粒子的柠檬酸根与金纳米粒子的结合能力较弱,易于被其他稳定剂所取代,因此可用于分析DNA,从而扩大了金纳米粒子的应用领域。

纳米粒子的制备方法综述

纳米粒子的制备方法综述 摘要: 纳米材料是近期发展起来的一种多功能材料。在纳米材料的当前研究中,其制备方法占有极其重要的地位,新的制备工艺过程的研究与控制对纳米材料的微观结构和性能具有重要的影响。本文主要概述了纳米材料传统的及最新的制备方法。纳米材料制备的关键是如何控制颗粒的大小和获得较窄且均匀的粒度分布。 [1] Abstract : Nanometer material is a kind of multi-functional material which was developed in recend . In the current study of it , its produce-methods occupy the important occupation . New methods’ reseach and control have an important influence on Nanometer materials’microstructure and property .This title mainly introduces nanometer materials’traditional and new method of producing . The key of the nanometer material s’ producing Is how to control the grain size and get the narrow and uniform size distribution . 关键词: 纳米材料制备方法 Key words : Nanometer material produce-methods 正文: 纳米材料的制备方法主要包括物理法,化学法和物理化学法等三大类。下面分别从三个方面介绍纳米材料的制备方法。 物理制备方法 早期的物理制备方法是将较粗的物质粉碎,其最常见的物理制备方法有以下三种: 1.真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。 1.物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。

金纳米粒子的制备及表征研究

金纳米粒子的制备及表征研究 8四川化工第14卷 2019年第3期 金纳米粒子的制备及表征研究 王静 易中周 李自静 (红河学院理学院,云南蒙自,661100) 摘要 以氯金酸为原料,柠檬酸钠为保护剂,成功制备出金纳米粒子,并应用透射电镜和紫外 可见分光光度计对该实验样品进行了表征,结果表明此类纳米粒子尺寸均匀、呈球形单分 散分布。 关键词:纳米金 制备 表征 1 引言 金纳米粒子的制备已经报道了许许多多的方法,其中以柠檬酸盐做稳定剂和还原剂的 化学合成是最为经典的。控制Au(III)和柠檬酸盐的比例,Frens获得了不同尺寸的单分散 金纳米粒子,最小粒径为12nm。这一方法目前已经被广泛使用。由于柠檬酸盐稳定的Au纳米粒子无细胞毒性,在生物医学领域中具有广泛的应用。另一方面,人们为获得单分散或更 小尺寸具有生物相容性的胶体金纳米粒子,使用壳聚糖、多巴胺、氨基酸、环糊精等做稳 定剂和表面修饰的制备研究也有报道[1-4]。此类报道主要是针对体系中的保护剂做改变, 方法类似,但是所制备金纳米颗粒尺寸不是很均匀,分散性较差。 采用柠檬酸钠水溶液体系制备Au纳米粒子,不用加入制备纳米金胶体时常用的高分子 聚合物保护剂PVA(聚乙烯醇)、PVP(聚乙烯吡咯烷酮)等,并且柠檬酸钠对人体无毒副作用。在本研究中提出了一种简单的Au纳米粒子的化学制备方法。通过对胶体溶液UV Vis吸收 光谱和粒子的TEM表征,获得了良好球形和单分散的金纳米粒子,并且尺寸比其他文献所报 道的小,平均粒径只有7-8nm。同时对金纳米粒子成核机理进行了探讨。 [5] 2 1 试剂与仪器

HAuCl4溶液:用王水溶解99 99%纯金制备;柠檬酸钠(分析纯,天津市化学试剂一厂); 水为石英蒸馏器蒸馏的二次水。 仪器:Lambda900UV/VIS/NIR光谱仪(Per kinElmer公司);JEM 2000EX透射电子显微镜。 2 2 Au纳米粒子制备 在100mL烧杯中加入30mg柠檬酸钠水溶液,将其加热至95 ,然后将2ml0 6mg/mlHAuCl4加入水中,保持温度并定容,30分钟后冷却。2 3 纳米粒子的表征 Au纳米粒子用UV Vis吸收光谱表征和TEM表征,TEM的样品制备是将胶体溶液滴在碳 膜覆盖的铜网上,溶液挥发至干,然后在操作电压200kV时摄取TEM图像。 3 结果与机理探讨 3 1 UV Vis吸收光谱表征 当将HAuCl4加入到柠檬酸钠溶液时,溶液的颜色迅速的变成蓝色,随着加热时间增长, 又变为紫色,最后变为红色。当为红色时纳米Au胶体溶液已制备结束。 12 实验部分 第3期金纳米粒子的制备及表征研究粒子的UV Vis吸收光谱图[5,6]。3 2 TEM表征图2为柠檬酸钠水溶液体系所制备的Au纳米粒子的TEM 图。 9 柠檬酸钠还原为Au单质;然后,Au单质在柠檬酸钠保护下进行团聚和不断长大,最后成为Au纳米粒子,但是柠檬酸钠阻止了Au纳米粒子的进一步团聚,控制了较小粒径,并使其 颗粒均匀并呈球形分布。 图3 柠檬酸钠水溶液体系金纳米粒子的热化学合成机理 3 结论 通过较为严格温度控制的柠檬酸钠水溶液体系制备得到的Au纳米粒子: (1)尺寸均匀; (2)呈球形单分散分布;(3)平均粒径只有7-8nm。 参考文献 [1]Marie ChristineDaniel,DidierAstruc.GoldNanoparticles:As sembly,SupramolecularChemistry,Quantum Size RelatedProper

纳米金的制备

氯金酸(HAuC14)是主要还原材料,常用还原剂有柠檬酸钠、鞣酸、抗坏血酸、白磷、硼氢化钠等。根据还原剂类型以及还原作用的强弱,可以制备0.8 nm~150 nm不等的胶体金。最常用的制备方法为柠檬酸盐还原法。具体操作方法如下: (1)将HAuC14先配制成0.01%水溶液,取100 mL加热至沸。 (2)搅动下准确加入一定量的1%柠檬酸三钠(Na3C6H5O7·2H2O)水溶液。 (3)继续加热煮沸15 min。此时可观察到淡黄色的氯金酸水溶液在柠檬酸钠加入后很快变灰色,续而转成黑色,随后逐渐稳定成红色。全过程约2~3 min。 (4)冷却至室温后用蒸馏水恢复至原体积。 用此法可制备16~147 nm粒径的胶体金。金颗粒的大小取决于制备时加入的柠檬酸三钠的量。 表19-1 四种粒径胶体金的制备及特性 胶体金粒径/ nm 1%柠檬酸三钠加入量/mL 胶体金特性呈色λmax/nm 16 2.00 橙色518 24.5 1.50 橙红522 41 1.00 红色525 71.5 0.70 紫色535 *还原100mL 0.01%HAuC14所需量 2.注意事项 ● 氯金酸易潮解,应干燥、避光保存。 ● 氯金酸对金属有强烈的腐蚀性,因此在配制氯金酸水溶液时,不应使用金属药匙称量氯金酸。 ● 用于制备胶体金的蒸馏水应是双蒸馏水或三蒸馏水,或者是高质量的去离子水。 ● 是以制备胶体金的玻璃容器必须是绝对清洁的,用前应先经酸洗并用蒸馏水冲净。最好是经硅化处理的,硅化方法可用5%二氯甲硅烷的氯仿溶液浸泡数分钟,用蒸馏水冲净后干燥备用。 ● 胶体金的鉴定和保存:胶体金的制备并不难,但要制好高质量的胶体金却也并非易事。因此对每次制好的胶体金应加以检定,主要检查指标有颗粒大小,粒径的均一程度及有无凝集颗粒等。 肉眼观察是最基本也是最简单和方便的检定方法,但需要一定的经验。良好的胶体金应该是清亮透明的,若制备的胶体金混浊或液体表面有漂浮物,提示此次制备的胶体金有较多的凝集颗粒。在日光下仔细观察比较胶体金的颜色,可以粗略估计制得的金颗粒的大小。当然也可用分光光度计扫描λmax来估计金颗粒的粒径。结制备的胶体金最好作电镜观察,并选一些代表性的作显微摄影,可以比较精确地测定胶体金的平均粒径。 胶体金在洁净的玻璃器皿中可较长时间保存,加入少许防腐剂(如0.02%NaN3)可有利于保存。保存不当时会有细菌生长或有凝集颗粒形成。少量凝集颗粒并不影响以后胶体金的标记,使用时为提高标记效率可先低速离心去除凝集颗粒。

金纳米颗粒的有序制备及其光学特性

金纳米颗粒的有序制备及其光学特性 3 王 凯 杨 光 龙 华 李玉华 戴能利 陆培祥 (华中科技大学武汉光电国家实验室激光科学与技术研究部,武汉 430074) (2007年10月26日收到;2007年11月14日收到修改稿) 采用纳米球蚀刻技术在石英衬底上制备了不同高度的金纳米颗粒阵列.通过扫描电子显微镜对其表面形貌进行了观测,表明金纳米颗粒为有序分布的三棱柱结构.通过红外—紫外吸收光谱仪在190—900nm 波长范围内对其光吸收特性进行了测量,并成功观测到了金纳米颗粒表面等离子体振荡效应引起的光吸收峰,结果表明随着金纳米颗粒高度的增加,其吸收峰的位置向短波方向移动(蓝移).同时对金纳米颗粒的光吸收特性进行了基于离散偶极子近似的理论计算,并与实验结果进行了比较. 关键词:纳米球蚀刻技术,金纳米颗粒,离散偶极子近似 PACC :7865E ,8116N 3国家自然科学基金(批准号:10604018,10574050)和高等学校博士学科点专项科研基金(批准号:20060487006)资助的课题. 通讯联系人.E 2mail :gyang @https://www.docsj.com/doc/d514187715.html, E 2mail :lupeixiang @https://www.docsj.com/doc/d514187715.html, 11引言 随着现代纳米技术的发展,贵金属纳米颗粒的制备和可控光学特性的研究,引起了人们广泛的兴趣.其在纳米光学 [1] 、非线性光学 [2] 、催化作用 [3] 、热 动力学[4] 和传感器[5] 以及医学诊断[6] 等研究领域都有着十分重要的应用前景. 贵金属纳米颗粒最具代表性的特性是在可见光范围内伴随有强烈的吸收峰,这是其颗粒里大量的自由传导电子对外界光波入射的响应.当电子振动频率和入射光波频率相等时,即发生表面等离子体 振荡(surface plasm on res onance ,SPR )效应,从而产生强烈的吸收峰.SPR 光谱峰位对颗粒的形状、大小、分布以及外部环境的变化非常敏感. 以往制备贵金属纳米颗粒主要采用溅射或离子注入等方法,但通过上述方法制备的纳米颗粒,其形状不一,而且分布不均匀,不便于定量地研究其光学特性.在1995年,Van Duyne 研究组[7] 在自然蚀刻法[8] 的基础上提出了纳米球刻蚀技术(nanosphere lithography ,NS L ),即将尺寸均匀的聚苯乙烯纳米球的悬浊液滴在衬底上,形成单层或双层纳米球的自组装密排的掩膜板.在沉积金属颗粒的过程中,掩 膜板只允许金属通过纳米球之间的间隙沉积到衬底 上.再用超声波清洗去除聚苯乙烯纳米球,得到二维纳米颗粒阵列.最近几年,科学家们通过这种方法制备出了不同尺寸和形状的Ag ,Au ,Cu ,Pt 等金属纳米颗粒.其中Au 纳米颗粒由于其优良的化学稳定性、生物吸附性[9] 和光学特性,成为金属纳米颗粒研究中的热点方向. 另一方面,科学家们尝试从理论上合理解释贵金属纳米颗粒的可控光学特性.离散偶极子近似 (discrete dipole approximation ,DDA )最初是由Purcell 和Pennypacker [10] 在计算天体尘埃的散射时提出的. 目前,DDA 法被广泛应用于小颗粒光学特性的理论 研究中 [11,12] .随着算法的改进,基于DDA 算法的软 件包DDSC AT [13] 使得能在计算机上计算不同大小、 形状、高度、种类和外部环境的颗粒的光学特质.目前已经有一些关于Au 和Ag 纳米颗粒的理论计算的报道 [14—16] ,其结果基本与实验结果相符合. 本实验中结合NS L 和脉冲激光沉积(pulsed laser deposition ,P LD )技术在石英衬底上制备了不同高度的Au 纳米颗粒阵列,对其表面形貌、尺寸进行了观测,对其在可见光范围内的光谱吸收特性进行了测量,并通过理论模拟对Au 纳米颗粒的光学特性进行了计算. 第57卷第6期2008年6月100023290Π2008Π57(06)Π3862206 物 理 学 报 ACT A PHY SIC A SI NIC A V ol.57,N o.6,June ,2008 ν2008Chin.Phys.S oc.

金纳米颗粒的合成方法

金纳米颗粒的盐酸羟胺种子合成法 摘要:本文描述了粒径在30nm到100nm的金纳米颗粒合成方法。通过种子生长法盐酸羟胺作为还原剂合成不同大小的金纳米颗粒。其大小由种子和氯金酸的浓度决定。此方法合成的金纳米颗粒单分散性优于柠檬酸钠作还原剂的一步合成法。重要的是,表面被修饰过的金纳米颗粒也可通过上述方法长大。 许多科学家和工程师都在关注金纳米颗粒的特殊的物理性质。在颗粒组装和膜的形成方面,单分散的金纳米颗粒有着很重要的地位。厚度为45-60nm的金膜表现出角度相关的等离子体共振。柠檬酸钠合成的10-20nm金纳米颗粒单分散性很好。但是此方法合成的更大的金纳米颗粒(粒径在40nm到120nm)单分散性变差,其颗粒浓度小,而且颗粒的真实粒径与预测的粒径相差比较大。 我们所提供的方法是通过种子生长发盐酸羟胺还原氯金酸合成金纳米颗粒。在热力学上,盐酸羟胺是能够还原氯金酸为金单质,金纳米颗粒表面可以加速这个反应的发生。这样,实现了成核和生长两个阶段分离,如图1。此方法的优势在于:ⅰ此方法合成的金纳米颗粒单分散性优于Frens的柠檬酸钠合成法合成的;ⅱ能很好的预测金纳米颗粒的粒径;ⅲ能很好的应用到表面修饰的金纳米颗粒。 图1 金纳米颗粒的生长过程 紫外吸收光谱可以很好监测金纳米颗粒合成的整个过程。图2表明加入 17nM,12nm的种子后,盐酸羟胺与氯金酸反应的过程。上面的吸收光谱是以10s 的间隔记录的,金纳米颗粒的等离子体共振峰的强度增长很明显。这些改变可能是颗粒增长或者新的金纳米颗粒的形成引起的。下面的吸收光谱是氯金酸和盐酸羟胺混合物30min前后的紫外吸收光谱。没有出现金纳米颗粒的紫外吸收峰,说明没有新的金纳米颗粒核生成。因此,在520nm金纳米颗粒的吸收峰增强是由于

金纳米粒子的制备及表征研究

金纳米粒子的制备及表征研究 王 静易中周李自静 (红河学院理学院,云南蒙自,661100) 摘 要 以氯金酸为原料,柠檬酸钠为保护剂,成功制备出金纳米粒子,并应用透射电镜和紫外 可见分光光度计对该实验样品进行了表征,结果表明此类纳米粒子尺寸均匀、呈球形单分散分布。 关键词:纳米金制备表征 1 引言 金纳米粒子的制备已经报道了许许多多的方法,其中以柠檬酸盐做稳定剂和还原剂的化学合成是最为经典的。控制Au(III)和柠檬酸盐的比例, Frens[5]获得了不同尺寸的单分散金纳米粒子,最小粒径为12nm。这一方法目前已经被广泛使用。由于柠檬酸盐稳定的Au纳米粒子无细胞毒性,在生物医学领域中具有广泛的应用。另一方面,人们为获得单分散或更小尺寸具有生物相容性的胶体金纳米粒子,使用壳聚糖、多巴胺、氨基酸、环糊精等做稳定剂和表面修饰的制备研究也有报道[1-4]。此类报道主要是针对体系中的保护剂做改变,方法类似,但是所制备金纳米颗粒尺寸不是很均匀,分散性较差。 采用柠檬酸钠水溶液体系制备Au纳米粒子,不用加入制备纳米金胶体时常用的高分子聚合物保护剂PVA(聚乙烯醇)、PV P(聚乙烯吡咯烷酮)等,并且柠檬酸钠对人体无毒副作用。在本研究中提出了一种简单的Au纳米粒子的化学制备方法。通过对胶体溶液U V Vis吸收光谱和粒子的TEM表征,获得了良好球形和单分散的金纳米粒子,并且尺寸比其他文献所报道的小,平均粒径只有7-8nm。同时对金纳米粒子成核机理进行了探讨。 2 实验部分2 1 试剂与仪器 H AuCl4溶液:用王水溶解99 99%纯金制备;柠檬酸钠(分析纯,天津市化学试剂一厂);水为石英蒸馏器蒸馏的二次水。 仪器:Lambda900U V/VIS/NIR光谱仪(Per kin Elmer公司);JEM 2000EX透射电子显微镜。 2 2 Au纳米粒子制备 在100mL烧杯中加入30mg柠檬酸钠水溶液,将其加热至95 ,然后将2ml0 6mg/ml H AuCl4加入水中,保持温度并定容,30分钟后冷却。 2 3 纳米粒子的表征 Au纳米粒子用U V Vis吸收光谱表征和TEM 表征,T EM的样品制备是将胶体溶液滴在碳膜覆盖的铜网上,溶液挥发至干,然后在操作电压200kV时摄取T EM图像。 3 结果与机理探讨 3 1 U V Vis吸收光谱表征 当将H AuCl4加入到柠檬酸钠溶液时,溶液的颜色迅速的变成蓝色,随着加热时间增长,又变为紫色,最后变为红色。当为红色时纳米Au胶体溶液已制备结束。 图1为柠檬酸钠水溶液体系所制备的Au纳米 8四川化工 第14卷 2011年第3期

纳米金的制备方法

胶体金溶液的制备有许多种方法,其中最常用的是化学还原法,基本的原理是向一定浓度的金溶液内加入一定量的还原剂使金离子变成金原子。目前常用的还原剂有:白磷、乙醇、过氧化氢、硼氢化钠、抗坏血酸、枸橼酸钠、鞣酸等,下面分别介绍制备不同大小颗粒的胶体金溶液。 一、制备胶体金的准备 (一)玻璃器皿的清洁 制备胶体金的成功与失败除试剂因素以外玻璃器皿清洁是非常关键的一步。如果玻璃器皿内不干净或者有灰尘落入就会干扰胶体金颗粒的生成,形成的颗粒大小不一,颜色微红、无色或混浊不透明。我们的经验是制备胶体金的所有玻璃器皿先用自来水把玻璃器皿上的灰尘流水冲洗干净,加入清洁液(重铬酸钾1000g,加入浓硫酸2500ml,加蒸馏水至10000ml)浸泡24h,自来水洗净清洁液,然后每个玻璃器皿用洗洁剂洗3~4次,自来水冲洗掉洗洁剂,用蒸馏水洗3~4次,再用双蒸水把每个器皿洗3~4次,烤箱干燥后备用。通过此方法的处理玻璃器皿不需要硅化处理,而直接制备胶体金。也可用已经制备的胶体金溶液,用同等大不颗粒的金溶液去包被所用的玻璃器皿的表面,然后弃去,再用双蒸水洗净,即可使用,这样效果更好,因为减少了金颗粒的吸附作用。 (二)试剂的配制要求 (1)所有配制试剂的容器均按以上要求酸处理洗净,配制试剂用双蒸馏水或三蒸馏水。 (2)氯化金(HauCl4水溶液的配制:将lg的氯化金一次溶解于双蒸水中配成1%的水溶液。放在4”c冰箱内保存长达几个月至1年左右,仍保持稳定。 (3)白磷或黄磷乙醚溶液的配制:白磷在空气中易燃烧,要格外小心操作。把白磷在双蒸水中切成小块,放在滤纸上吸于水份后,迅速放入已准备好的乙醚中去,轻轻摇动,等完全溶解后即得饱和溶液。储藏于棕色密闭瓶内,放在阴凉处保存。 二、制备胶体金的方法和步骤 (一)白磷还原法 1.白磷还原法(z Sigmondy 1905年) (1)取1%的HAuCl4水溶液1ml,加双蒸水99ml配成0.01%的HAuCl4水溶液。 (2)用0.2mol/l K2CO3调pH至7.2。 (3)加热煮沸腾,迅速加入0.5ml 20%白磷的饱和乙醚溶液,振荡数分钟至溶液呈现橙红色时即成。胶体金的颗粒直径为3nm左右,大小较均匀。

金纳米颗粒的合成

目录 摘要 (2) Abstract (4) 1.引言 (5) 1.1. 传统实验方法 (5) 1.2. 基于纳米颗粒的实验方法 (5) 1.3. FRET和NSET (5) 1.4. 捕光材料—共轭聚合物 (6) 1.5. 实验机理 (7) 1.5.1嵌入染料TO (7) 1.5.2阳离子共轭聚合物PFP (7) 1.5.3 实验过程 (9) 2.实验部分 (9) 2.1. 实验材料 (9) 2.2. 表征 (10) 2.3. 金纳米颗粒的合成 (10) 2.4. 金纳米颗粒的表面功能化 (111) 2.5. 金纳米颗粒表面DNA的固定 (12) 2.6. 表面固定DNA的GNPs的杂化 (12)

2.7. TO和PFP的NSET实验 (12) 2.8. 一个碱基不匹配的双链DNA S1核酸酶切反应的分析 (13) 3.实验结果及分析 (13) 3.1. 以CPPs/GNPs/dsDNA复合物进行的核酸酶探测 (13) 3.1.1. PFP量的优化 (13) 3.1.2. GNPs-DNA量的优化 (14) 3.1.3. S1核酸酶探测 (16) 3.2. 以CPPs/TO/GNPs-dsDNA复合物进行的核酸酶探测 (16) 3.2.1. PFP量的优化 (17) 3.2.2.S1核酸酶探测 (18) 3.3. 用PG作为荧光探针 (19) 结论 (21) 参考文献 (22) 致谢 (24) 摘要

我们使用共轭高分子/金纳米颗粒/染料标记的DNA复合物发展了S1核酸酶的一种新型检测方法,此方法利用了金良好的荧光淬灭性质和共轭高分子的信号放大特性。这种方法是由于纳米材料表面能量转移(NSET)中,能量从供体分子到纳米颗粒表面的转移遵循可预测的约为70-100nm的距离。在此过程中,由于从共轭高分子到嵌入染料进而到金纳米颗粒表面的NSET,不存在S1核酸酶的情况下将观察不到嵌入染料的荧光信号。而存在S1核酸酶的情况下,双链DNA被切离金纳米颗粒的表面,NSET过程中断,从共轭高分子到嵌入染料高效的荧光共振能量转移所得的嵌入染料的荧光得以恢复。 关键词 S1核酸酶分析,共轭高分子(CP),金纳米颗粒(GNPs),DNA,信号放大,纳米材料表面能量转移(NSET),荧光共振能量转移(FRET)

光谱表征金纳米粒子的制备及催化性能

光谱表征金纳米粒子的制备及催化性能1 周巧燕,唐华琼,陈明清,倪忠斌,刘晓亚,熊万斌 江南大学化学与材料工程学院,江苏无锡(214122) E-mail: mqchen@https://www.docsj.com/doc/d514187715.html, 摘要:采用原位还原法合成不同粒径的金纳米粒子,利用透射电子显微镜和X-射线衍射对金纳米粒子进行相关表征。X-射线衍射研究发现金纳米粒子出现位于38.18°的特征峰,由此可推测金纳米粒子的粒径小于10 nm,结果与透射电子显微镜结果一致。将此金纳米粒子体系催化对硝基苯酚制备对氨基苯酚,紫外-可见吸收光谱和荧光光谱表征结果证实了良好的催化活性。 关键词:金纳米粒子;催化还原;荧光 文献标设码:A 0. 引言 金纳米粒子除具有量子尺寸效应、表面效应和宏观量子隧道效应等特性外,还表现出独特的电学、光学和催化性能,并能通过自组装形成新的纳米结构,在传感器[1]、微电子元件、生化工程(如基因测序) 、化学催化[2,3]等方面的应用研究已成为近年来材料科学领域的热门课题。制备金纳米颗粒的方法很多,常见的浸渍法在还原中容易造成金纳米颗粒大量聚集,很难得到长效的高活性负载型纳米金催化剂。制备负载型纳米金催化剂通常采用共沉淀法[4]、沉积-沉淀法[5]、化学气相沉积法[6,7]和离子交换法[8]等,载体可选用Fe O4、Fe2O3、TiO2[9]、 3 ZrO2[10]、Mn2O3、SiO2、Co3O4、NiO、Al2O3[11]和MgO等多种金属氧化物,也可用分子筛[12]和活性炭[13]及碳纳米管等。选用高分子微球为载体时,利用微球的稳定作用可使金催化剂具有长效性[14,15]。 本文通过PNIPAAm大分子单体与AN、St的三元分散共聚,得到了表面凸起均一的特殊形态高分子微球,以此特殊形态PNIPAAm-g-PAN/PSt微球为载体,利用微球上的酰胺基络合吸附Au3+,用乙醇原位还原制得金纳米粒子。通过紫外与荧光分光光度计,研究负载了金纳米粒子的复合体系催化对硝基苯酚的效果。 1. 实验部分 1.1试剂 N-异丙基丙烯酰胺(NIPAAm,纯度>99%),日本兴人公司;对氯甲基苯乙烯(CMSt,纯度>99%),日本油脂公司;四丁基溴化磷(TBPB,特级纯),日本和光公司;偶氮二异丁腈(AIBN,化学纯),上海四赫维化工有限公司生产,乙醇重结晶后使用;四氯金酸(HAuCl4·4H2O),日本和光工业公司;无水乙醇(分析纯)上海振兴化工一厂生产;硼氢化钠(化学纯),对硝基苯酚(化学纯),中国医药集团上海试剂公司。 1.2 金纳米粒子的制备 将0.2 mL 0.025 mol/L的Au3+水溶液,20 mg自制特殊形态PNIPAAm-g-PAN/PSt微球(简1本课题得到国家自然科学基金(20671043)和江苏高等学校优秀科技创新团队(苏教科[2007]5号)资助。

纳米粒子的制备方法及应用

纳米粒子的制备方法及应用,当粒子尺寸达到纳米量级时,粒子将具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应,综述了纳米粒子的制备方法,按研究纳米粒子的学科分类,可将其分为物理方法、化学方法和物理化学方法,关键词:纳米粒子,物理化学方法中图法分类号,TF123纳米粒子指的是粒径比光波短(100nm以下)而性质处于本体和原子之间的,纳米制备技术是20世纪80年代末诞生并崛起的新技术,其基本 纳米粒子的制备方法及应用 当粒子尺寸达到纳米量级时,粒子将具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应,因而表现出许多特有的性质,在催化、滤光、光吸收、医学、磁介质及新材料方面有广阔的应用前景。综述了纳米粒子的制备方法,按研究纳米粒子的学科分类,可将其分为物理方法、化学方法和物理化学方法。 关键词:纳米粒子;制备方法;物理方法;化学方法;物理化学方法中图法分类号 TF123纳米粒子指的是粒径比光波短(100nm以下)而性质处于本体和原子之间的物质。纳米制备技术是20世纪80年代末诞生并崛起的新技术,其基本涵义是:纳米尺寸范围(10-9~10-7m)内认识和改造自然,通过直接操作和安排原子、分子创造新物质[1] 。由于纳米材料具有奇特的力学、电学、磁学、热学、化学性能等,目前正受到世界各国科学家的高度重视[2] 。 1 制备纳米粒子的物理方法 1.1 机械粉碎法 机械粉碎就是在粉碎力的作用下,固体料 块或粒子发生变形进而破裂,产生更微细的颗粒。物料的基本粉碎方式是压碎、剪碎、冲击粉碎和磨碎。一般的粉碎作用力都是这几种力的组合,如球磨机和振动磨是磨碎与冲击

粉碎的组合;气流磨是冲击、磨碎与剪碎的组合,等等。理论上,固体粉碎的最小粒径可达0.01~0.05 μ m。然而,用目前的机械粉碎设备与工艺很难达到这一理想值。粉碎极限取决于物料种类、机械应力施加方式、粉碎方法、粉碎工艺条件、粉碎环境等因素。比较典型的纳米粉碎技术有:球磨、振动磨、搅拌磨、气流磨和胶体磨等。其中,气流磨是利用高速气流(300~500m/s)或热蒸气(300~450℃)的能量使粒子相互产 生冲击、碰撞、摩擦而被较快粉碎。气流磨技术发展较快,20世纪80年代德国Alpine 公司开发 的流化床逆向气流磨可粉碎较高硬度的物料粒子,产品粒度达到了1~5μm。降低入磨物粒度后,可得平均粒度1μm的产品,也就是说,产品的粒径下限可达到0.1μm以下。除了产品粒度微细以外,气流粉碎的产品还具有粒度分布窄、粒子表面光滑、形状规则、纯度高、活性大、分散性好等优点。因此,气流磨引起了人们的普遍重视,其在陶瓷、磁性材料、医药、化工颜料等领域有广阔的应用前景。1.2 蒸发凝聚法 蒸发凝聚法是将纳米粒子的原料加热、蒸发,使之成为原子或分子;再使许多原子或分子凝聚,生成极微细的纳米粒子。利用这种方法得到的粒子一般在5~100nm之间。蒸发法制备纳米粒子大体上可分为:金属烟粒子结晶法、真空蒸发法、气体蒸发法等几类。而按原料加热技术手段不同,又可分为电极蒸发、高频感应蒸发、电子束蒸发、等离子体蒸发、激光束蒸发等几类。1.3 离子溅射法 用两块金属板分别作为阴极和阳极,阴极为蒸发用材料,在两电极间充入Ar(40~250Pa),两极间施加的电压范围为0.3~1.5kV。由于两极间的辉光放电使Ar粒子形成,在电场作用下Ar离子冲击阳极靶材表面,使靶材原子从其表面蒸发出来形成超微粒子,并在附着面上沉积下来。离子的大小及尺寸分布主要取决于两极间的电压、电流、气体压力。靶材的表 面积愈大,原子的蒸发速度愈高,超微粒的获得量愈大。溅射法制备纳米微粒材料的优点是: (1)可以制备多种纳米金属,包括高熔点和低熔点金属。常规的热蒸发法只能适用于低熔点金属;(2)能制备出多组元的化合物纳米微粒,如AlS2,Tl48,Cu91,Mn9,ZrO2等;通过加大被溅射阴极表面可加大纳米微粒的获得量。采用磁控溅射与液氮冷凝方法可在表面沉积有方案膜的电镜载网上支撑制备纳米铜颗粒。1.4

纳米材料制备方法

纳米微粒制备方法研究进展 刘伟 (湘潭大学材料科学与工程学院,13材料二班,2013701025) 摘要:纳米微粒一般是指粒径在1nm到100nm之间,处在原子簇和宏观物体交接区域内的粒子,或聚集数从十到几百范围的物质。纳米材料具有表面效应、体积效应、量子尺寸效应、宏观量子隧道效应等特点,因而有许多与传统的晶体和非晶体不同的独特性质,也与组成它们的分子或原子差异很大,在材料学、物理学、化学、催化、环境保护、生物医学等领域具有十分广阔的应用前景。本文综述目前纳米微粒的主要的制备方法, 比较和评述了每种方法的特点,以期这一新材料能得以更为深入地研究和更广泛地应用。 关键词:纳米微粒;制备;方法 1.引言 纳米微粒的制备方法从物料的状态来分,可归纳为固相法、液相法、气相法3大类;从物料是否发生化学反应而分为物理法、化学法及近年迅速发展的模板合成法、仿生法等;随着科技的不断发展及对不同物理、化学特性超微粒子的需求,又派生出许多新的技术,下面就着重介绍固相法、液相法和气相法。 2.固相法 固相法是一种传统的粉化工艺,具有成本低、产量高、制备工艺简单的优点。固相法分为固相机械粉碎法和固相反应法。固相机械粉碎法借用诸如搅拌磨、球磨机、气流磨、塔式粉碎机等多种粉碎机,利用介质和物料之间的相互研磨和冲击的原理,使物料粉碎,常用来制备微米级粒径的粉体颗粒。此法存在能耗大、颗粒粒径分布不均匀、易混入杂质、颗粒外貌不规则等缺点,因而较少用以制备纳米微粒。固相反应法是将固体反应物研细后直接混合,在研磨等机械作用下发生化学反应,然后通过后处理得到需要的纳米微粒。该方法一般要加入适量表面活性剂,所以有时也称湿固相反应。该方法具有工艺简单、产率高、颗粒粒子稳定化好、易操作等优点,尤其是可减少或避免液相中易团聚的现象。[4] 3.液相法 液相法是目前实验室和工业生产中较为广泛采用的方法。通常是让溶液中的不同分子或离子进行反应,产生固体产物。产物可以是单组分的沉淀,也可以是多组分的共沉淀。其涉及的反应也是多种多样的,常见的有:复分散反应、水解反应、还原反应、络合反应、聚合反应等。适当控制反应物的浓度、反应温度和搅拌速度,就能使固体产物的颗粒尺寸达到纳米级。液相法具有设备简单、原料易得、产物纯度高、化学组成可准确控制等优点。下面主要介绍其中的沉淀法和微乳液法。 3.1 沉淀法 沉淀法是液相法制备金属氧化物纳米微粒最早采用的方法。沉淀法基本过程是:可溶性化合物经沉淀或水解作用形成不溶性氢氧化物、水合氧化物或盐类而析出,经过滤、洗涤、煅烧得到纳米微粒粉末。沉淀法又分为均相沉淀法和共沉淀法。沉淀法工艺简单、成本低、反应时间短、反应温度低,易于实现工业化生产。但是,沉淀物通常为胶状物,水洗、过滤较困难;所制备的纳米微粒易发生团聚,难于制备粒径小的纳米微粒。沉淀剂容易作为杂质混入产物之中。此外,还由于大量金属不容易发生沉淀反应,因而这种方法适用面较窄。[3]

相关文档
相关文档 最新文档