文档视界 最新最全的文档下载
当前位置:文档视界 › 绝对值不等式与推理证明综合综合测试

绝对值不等式与推理证明综合综合测试

绝对值不等式与推理证明综合综合测试
绝对值不等式与推理证明综合综合测试

绝对值不等式与推理证明综合测试题

一、选择题(共10个小题,每个5分,共50分)

1.若,则下列不等式正确的个数是()

①②③44bc ac >④1122+>+c b c a

A .1

B .2

C .3

D .4

2.用反证法证明某命题时,对结论“自然数a ,b ,c 中恰有一个偶数”正确的反设是

A .自然数a ,b ,c 中至少有两个偶数

B .自然数a ,b ,c 中至少有两个偶数或都是奇数

C .自然数a ,b ,c 都是奇数

D .自然数a ,b ,c 都是偶数

3.给出下面类比推理命题(其中Q 为有理数集,R 为实数集,C 为复数集): ①“若a ,b ∈R ,则a ?b=0?a=b ”类比推出“若a ,b ∈C ,则a ?b=0?a=b ”;

②“若a ,b ,c ,d ∈R ,则复数a +bi=c +di ?a=c ,b=d ”类比推出“若a ,b ,c ,d ∈Q ,则题a +

a=c ,b=d ”;

③若“a ,b ∈R ,则a ?b>0?a>b ”类比推出“若a ,b ∈C ,则a ?b>0?a>b ”.

其中类比结论正确的个数是

A .0

B .1

C .2

D .3

4. [x]表示不超过x 的最大整数,例如:[π]=3.

13S =++=

210S =++++=

321S =++++++=,

……

依此规律,那么S 10等于

A .210

B .230

C .220

D .240

5. “所有9的倍数(M )都是3的倍数(P ),某奇数(S )是9的倍数(M ),故某奇数(S )是3的倍数(P ).”上述推理是( )

A .小前提错

B .结论错

C .正确的

D .大前提错

6.设a b c 、、均为正实数,则三个数

111a b c b c a +++、、() A .都大于2 B .都小于2

C .至少有一个不大于2

D .至少有一个不小于2

,,,a b c R a b ∈>且b a 11<22b a >

7.如图,椭圆的中心在坐标原点,F 为其左焦点,当⊥时,椭圆的离心率为,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”可得“黄金双曲线”的离心率为( ) A.5

+12

B.5-12

C.5-1

D.5+1

8.已知0a >,0b >,若不等式310

3m a b a b --≤+恒成立,则m 的最大值为()

A.4 B .3 C.9 D .12

9.如果关于x 的不等式|x -a|+|x +4|≥1的解集是空集,则实数a 的取值范围是()

A.(-∞,3]∪[5,+∞)

B.[-5,-3]

C.[3,5]

D.(-∞,-5]∪[-3,+∞)

10.已知2()(1),(1)1()2

f x f x f f x +==+*x N ∈(),猜想(f x )的表达式为 A.4()22x f x =+ B.2()1f x x =+ C.1()1f x x =+ D.2()21

f x x =+ 二、填空(共5题,每个5分,共25分)

11.将全体正整数排成一个三角形数阵:

根据以上排列规律,数阵中第n(n≥3)行的从左至右的第3个数是________.

12.已知f(x)=x 1+x

,x ≥0,若f 1(x)=f(x),f n +1(x)=f(f n (x)),n ∈N +,则f 2014(x)的表达式为____________________.

13若关于x 的不等式|ax -2|<3的解集为??????x ??

-53<x <13,则实数a =________. 14.若函数f(x)=|x +1|+2|x -a|的最小值为5,求实数a 的值____________.

15.设)()(,sin )('

010x f x f x x f ==,'21()(),,f x f x = '1()()n n f x f x +=,n ∈N ,则2007()f x = ________________.

三、解答题(共6个答题,共75分)

15.已知函数f (x)=|x+1|-|2x-3|.

(1)画出y=f (x)的图像;

(2)求不等式|f (x)|>1的解集.

16. 已知函数

()13 f x x x

=-++

(1)求x的取值范围,使得

()

f x

为常函数;

(2)若关于的不等式

()0

f x a

-≤

有解,求实数a的取值范围.

17.已知函数f (x)=|2x-a|+a.

(1)当a=2时,求不等式f (x)≤6的解集;

(2)设函数g(x)=|2x-1|.当x∈R时,恒有f (x)+g(x)≥3,求实数a的取值范围.18.已知函数f(x)=|2x﹣1|﹣|x+2|.

(1)求不等式f (x )>0的解集;

(2)若存在x ∈R ,使得f (x )+2a 2<4a ,求实数a 的取值范围.

19.已知函数f(x)=????x -12+???

?x +12,M 为不等式f(x)<2的解集. (1)求M ;

(2)证明:当a ,b ∈M 时,|a +b|<|1+ab|.

20.已知函数f(x)=|x|+|x -1|.

(1)若f(x)≥|m -1|恒成立,求实数m 的最大值M ;

(2)在(1)成立的条件下,正实数a ,b 满足a 2+b 2=M ,证明:a +b ≥2ab.

(完整版)均值不等式及其证明

1平均值不等式及其证明 平均值不等式是最基本的重要不等式之一,在不等式理论研究和证明中占有重要的位置。平均值不等式的证明有许多种方法,这里,我们选了部分具有代表意义的证明方法,其中用来证明平均值不等式的许多结论,其本身又具有重要的意义,特别是,在许多竞赛的书籍中,都有专门的章节介绍和讨论,如数学归纳法、变量替换、恒等变形和分析综合方法等,这些也是证明不等式的常用方法和技巧。 1.1 平均值不等式 一般地,假设12,,...,n a a a 为n 个非负实数,它们的算术平均值记为 12...,n n a a a A n +++= 几何平均值记为 112(...)n n n G a a a == 算术平均值与几何平均值之间有如下的关系。 12...n a a a n +++≥ 即 n n A G ≥, 当且仅当12...n a a a ===时,等号成立。 上述不等式称为平均值不等式,或简称为均值不等式。 平均值不等式的表达形式简单,容易记住,但它的证明和应用非常灵活、广泛,有多种不同的方法。为使大家理解和掌握,这里我们选择了其中的几种典型的证明方法。供大家参考学习。 1.2 平均值不等式的证明 证法一(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 1 1212...(...)k k n a a a a a a k +++≥。 那么,当1n k =+时,由于

121 1 (1) k k a a a A k +++++= +,1k G +=, 关于121,,...,k a a a +是对称的,任意对调i a 与j a ()i j ≠,1k A +和1k G +的值不改变,因此不妨设{}1121min ,,...,k a a a a +=,{}1121max ,,...,k k a a a a ++= 显然111k k a A a ++≤≤,以及1111()()0k k k a A a A +++--<可得 111111()k k k k A a a A a a +++++-≥. 所以 1111211 1(1)...k k k k k k kA k A A a a a A A k k k +++++++-+++-= == 2111...()k k k a a a a A k ++++++-=≥即12111...()k k k k k A a a a a A +++≥+- 两边乘以1k A +,得 111211112111...()...()k k k k k k k k k k A a a A a a A a a a a G ++++++++≥+-≥=。 从而,有11k k A G ++≥ 证法二(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 12...k a a a +++≥ 那么,当1n k =+时,由于

基本不等式练习题

3.4基本不等式 重难点:了解基本不等式的证明过程;会用基本不等式解决简单的最大(小)值问题. 考纲要求:①了解基本不等式的证明过程。 ②会用基本不等式解决简单的最大(小)值问题. 经典例题:若a,b,c都是小于1的正数,求证:,,不可能同时大于. 当堂练习: 1.若,下列不等式恒成立的是() A。B。 C。 D. 2. 若且,则下列四个数中最大的是() A. B.C.2ab D。a 3。设x>0,则的最大值为 ( )A.3 B. C。 D.-1 4.设的最小值是( ) A. 10 B. C. D。 5. 若x, y是正数,且,则xy有( ) A.最大值16B.最小值C.最小值16 D.最大值 6. 若a, b,c∈R,且ab+bc+ca=1, 则下列不等式成立的是 ( ) A. B. C.D。 7。若x〉0, y>0,且x+y4,则下列不等式中恒成立的是 ( )

A. B。 C。 D。 8。a,b是正数,则三个数的大小顺序是() A.B。 C.D. 9.某产品的产量第一年的增长率为p,第二年的增长率为q,设这两年平均增长率为x,则有( ) A.B. C.D。 10.下列函数中,最小值为4的是 ( ) A。B. C. D. 11. 函数的最大值为。 12. 建造一个容积为18m3, 深为2m的长方形无盖水池,如果池底和池壁每m2 的造价为200元和150元,那么池的最低造价为元. 13。若直角三角形斜边长是1,则其内切圆半径的最大值是。 14。若x, y为非零实数,代数式的值恒为正,对吗?答。 15.已知:, 求mx+ny的最大值. 16。已知.若、, 试比较与的大小,并加以证明. 17。已知正数a, b满足a+b=1(1)求ab的取值范围;(2)求的最小值. 18. 设.证明不等式对所有

微积分证明不等式方法

用微积分理论证明不等式的方法 江苏省扬中高级中学 卞国文 212200 高等数学中所涉及到的不等式,大致可分为两种:函数不等式(含变量)和数值不等式(不含变量).对于前者,一般可直接或稍加变形构造一函数,从而可通过研究所构造函数的性质,进而证明不等式;对于后者,我们也可根据数值不等式的特点,巧妙的构造辅助函数,从而将数值不等式问题转化为函数的问题,研究方法正好与前者相似. 微积分是高等数学中的重要内容,以它为工具能较好的研究函数的形态,有些常规方法难于证明的不等式,若能根据不等式的结构特征,巧妙的构造函数,将不等式问题转化为函数的问题,利用微积分理论研究函数的性质,应用函数的性质证明不等式. 一、用导数定义证明不等式法 1.证明方法根据-导数定义 导数定义:设函数)(x f y =在点0x 的某个邻域内有定义,若极限 x y x x x x x x f x f ??→?→=--lim lim 0 00)()(0 存在,则称函数)(x f 在0x 可导,称这极限为函数)(x f y =在点0x 的导数,记作)(0x f y '=. 2.证明方法: (1)找出0x ,使得)(0x f y '=恰为结论中不等式的一边;(2)利用导数的定义并结合已知条件去研究. 3.例 例1:设函数nx a x a x a x f n sin 2sin sin )(21+++= ,其中n a a a ,,21都为实数, n 为正整数,已知对于一切实数x ,有x x f sin )(≤,试证:1221≤+++n na a a . 分析:问题中的条件与结论不属于同一类型的函数,如果能找出它们之间的关系,无疑能帮助解决此题,可以看出:)0(221f na a a n '=+++ .于是问题可以转化为证明 1)0(≤'f . 证 明 : 因 nx na x a x a x f n cos 2cos 2cos )(21+++=' .则n na a a f +++=' 212)0(. 利 用 导 数 的 定 义 得 :

2019届高考数学考前30天基础知识专练8(不等式推理与证明)

高三数学基础知识专练 不等式 推理与证明 一.填空题(共大题共14小题,每小题5分,共70分) 1、在某报《自测健康状况》的报道中,自测血压结果与相应年龄的统计数据如下表.观察 2、一元二次不等式ax +bx +c >0的解集为(α,β)(α>0),则不等式cx +bx +a >0的解集为 __________________. 3、有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线.已知直线 b ?平面α,直线a ?平面α,直线b //平面α,则直线b //直线a ”,这个结论显然是错误的,这是因为________________(填写下面符合题意的一个序号即可). (1)大前提错误 (2)小前提错误 (3)推理形式错误 (4)非以上错误 4、设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f (n )表示这n 条直线交点的个数,则f (n )= . 5、在等差数列{a n }中,公差为d ,前n 项和为S n ,则有等式d n n na S n 2 )1(1-+=成立.类比上述 性质,相应地在等比数列{b n }中,公比为q ,前n 项和为T n ,则有等式_____成立. 6、下列推理中属于合情合理的序号是_____________. (1)小孩见穿“白大褂”就哭; (2)凡偶数必能被2整除,因为0能被2整除,所以0是偶数; (3)因为光是波,所以光具有衍射性质; (4)鲁班被草划破了手而发明了锯. 7、设?????≥-<=-2 ),1(log 22)(2 21x x x x f x ,则不等式2)(>x f 的解集为____________. 8、若函数13)2(2)(2≥?+++= x a x a x x x f 能用均值定理求最大值,则a 的取值范围是____. 9、设a >b >c >0,且 c a m c b b a -≥ -+-11恒成立,则m 的最大值为___________. 10、某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是每袋 35千克,价格为140元;另一种是每袋24千克,价格为120元.在满足需要的条件 下,最少要花费____________元. 11、已知0,0>>b a 且1=+b a ,则)1 )(1(b b a a ++ 的最小值为_______________. 12、设f (x )=x 3+x ,a ,b ,c ∈R 且a +b >0,b +c >0,a +c >0, 则f (a )+f (b )+f (c )的值的符号为____(填“正数” 或“负数). 13、删去正整数数列1,2,3,…中的所有完全平方数,得到一个新数列,则这个数列的第2019项为__________. 14、下面使用类比推理正确的序号是__________. (1)由“(a +b )c =ac +bc ”类比得到:“()()()a b c a c b c +?=?+?”; (2)由“在f (x )=ax 2+bx (a ≠0)中,若f (x 1)=f (x 2)则有f (x 1+x 2)=0”类比得到“在等差数列{a n }中,S n 为前n 项和,若S p =S q ,则有S p+q =0”; (3)由“平面上的平行四边形的对边相等”类比得到“空间中的平行六面体的对面是

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

高等数学中不等式的证明方法

高等数学中不等式的证明方法 摘要:各种不等式就是各种形式的数量和变量之间的相互比较关系或制约关系,因此, 不等式很自然地成为分析数学与离散数学诸分支学科中极为重要的工具,而且早已成为 专门的研究对象。高等数学中存在大量的不等式证明,本文主要介绍不等式证明的几种 方法,运用四种通法,利用导数研究函数的单调性,极值或最值以及积分中值定理来解 决不等式证明的问题。我们可以通过这些方法解决有关的问题,培养我们的创新精神, 创新思维,使一些较难的题目简单化、方便化。 关键词:高等数学;不等式;极值;单调性;积分中值定理 Abstract: A variety of inequality is the various forms of high-volume and variable comparison between the relationship or constraints. Therefore, Inequality is natural to be a very important tool in Analysis of discrete mathematics and various bran(https://www.docsj.com/doc/d310121007.html, 毕业论文参考网原创论文)ches of mathematics .It has been a special study.Today there are a large number of inequalities in higher mathematics .This paper introduces the following methods about Proof of Inequality ,such as the using of several general methods, researching monotone function by derivative, using extreme or the most value and Integral Mean Value Theorem . We can resolve the problems identified through these methods. It can bring up our innovative spirit and thinking and some difficult topics may be more easy and Convenient , Keyword: Higher Mathematics; Inequality; Extreme value Monotonicity; Integral Mean Value Theorem 文章来自:全刊杂志赏析网(https://www.docsj.com/doc/d310121007.html,) 原文地址: https://www.docsj.com/doc/d310121007.html,/article/16be7113-df3a-4524-a9c3-4ba707524e72.htm 【摘要】不等式证明是高等数学学习中的一个重要内容,通过解答考研数学中出现的 不等式试题,对一些常用的不等式证明方法进行总结。 【关键词】不等式;中值定理;泰勒公式;辅助函数;柯西 施瓦茨;凹凸性 在高等数学的学习过程当中,一个重点和难点就是不等式的证明,大多数学生在遇到不 等式证明问题不知到如何下手,实际上在许多不等式问题都存在一题多解,针对不等式的证 明,以考研试题为例,总结了几种证明不等式的方法,即中值定理法、辅助函数法、泰勒公

听课答案-第六单元-不等式、推理与证明

全品高考复习方案数学(理科) RJA 第六单元不等式、推理与证明 1.编写意图 (1)重视不等式本身的知识、方法的讲解和练习力度,以基本的选题和细致全面的讲解进行组织,使学生掌握好不等式本身的重要知识和方法,为不等式的应用打下良好的基础. (2)二元一次不等式(组)所表示的平面区域和简单的线性规划问题,是高考重点考查的两个知识点,我们不把探究点设置为简单的线性规划问题,而是设置为目标函数的最值(这样可以涵盖线性规划和非线性规划),含有参数的平面区域以及生活中的优化问题,这样在该讲就覆盖了高考考查的基本问题. (3)对于合情推理,主要在于训练学生的归纳能力,重点在一些常见知识点上展开. 2.教学建议 (1)在各讲的复习中首先要注意基础性,这是第一位的复习目标.由于各讲的选题偏重基础,大多数例题、变式题学生都可以独立完成,在基础性复习的探究点上要发挥教师的引导作用,教师引导学生独立思考完成这些探究点,并给予适度的指导和点评. (2)要重视实际应用问题的分析过程、建模过程.应用问题的难点是数学建模,本单元涉及了较多的应用题,在这些探究点上教师的主要任务就是指导学生如何通过设置变量把实际问题翻译成数学问题,重视解题的过程. (3)不等式在高考数学各个部分的应用,要循序渐进地解决,在本单元中涉及不等式的综合运用时,我们的选题都很基础,在这样的探究点上不要试图一步到位,不等式的综合运用是整个一轮复习的系统任务,在本单元只涉及基本的应用,不要拔高. (4)推理与证明是培养学生良好思维习惯,学习和运用数学思想方法,形成数学能力的重要一环.要站在数学思想方法的高度,对多年来所学习的数学知识和数学方法进行较为系统的梳理和提升.务必使学生对数学发现与数学证明方法有一个较为全面的认识. 3.课时安排 本单元共7讲,一个小题必刷卷(九),建议每讲1个课时完成,小题必刷卷1个课时完成,本单元建议用8个课时完成复习任务. 第33讲不等关系与不等式 考试说明了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景. 考情分析 考点考查方向考例考查热度 不等式的性 比较数、式的大小2017全国卷Ⅰ11 ★☆☆质 不等式性质 求参数的值、范围★☆☆的应用 真题再现 ■[2017-2013]课标全国真题再现 [2017·全国卷Ⅰ]设x,y,z为正数,且2x=3y=5z,则()

证明n元均值不等式

学习好资料 欢迎下载 证明n 元均值不等式 1212n n n a a a n a a a +++≥证明: 首先证明,23n 2,222当,,,,时,不等式成立。 显然,12122a a a a +≥, 又因为412341234123412342+2222=4a a a a a a a a a a a a a a a a +++≥≥?, 同理可以证明得到n 2也成立。 再证明,当k k+1n 22∈(,) 也成立。 k k n=2+i 1i 2-1≤≤不妨设 ,其中,则有k k k k 21212 222a a a a a a ++ +≥, k+1k+1k+1k+121212 222a a a a a a ++ +≥ 则k k k 121222+12+i =++ +n a a a a a a a a +++++ +(), k k k k k k k k k k k k k k k k+1212 22k 2+i 1212 22+12+i 1222+1k 2+i 12 22+1 2++1 2+i i 2+2-i =++++2-i 2i i n a a a a a a a a a a a a a a a a a a a a a a a +++++++ ?+≥? (则()()) k k k k k k k k k 2+i 12 22+1 2+i k 2+i 12 22+1 2+i 2-2i i -a a a a a a a a a a 其中可以看成是()个相()加所得。 k k k k k k k k k k k k 2+i 12 22+12+i k 2+i 1212 22+12+i 22+1 2+i 2-i ++ +2+i a a a a a a a a a a a a a a a ?++ +≥()最后,在式两边同时减去就得到了()() 1212 n n n a a a n a a a ++ +≥即:得证。

不等式的证明及著名不等式知识梳理及典型练习题

不等式的证明及着名不等式 一、知识梳理 1.三个正数的算术—几何平均不等式 (1)定理 如果a ,b ,c 均为正数,那么a +b +c 3____3abc ,当且仅当________时, 等号成立. 即三个正数的算术平均________它们的几何平均. (2)基本不等式的推广 对于n 个正数a 1,a 2,…,a n ,它们的算术平均________它们的几何平均,即a 1+a 2+…+a n n ____n a 1a 2…a n ,当且仅当______________时,等号成立. 2.柯西不等式 一、二维形式的柯西不等式 二维形式的柯西不等式的变式: .,,,,, )( 1等号成立时当且仅当则都是实数若二维形式的柯西不等式定理bc ad d c b a =22222) ())((bd ac d c b a +≥++bd ac d c b a +≥+?+2222)1(bd ac d c b a +≥+?+2222)2 ( .,,,,, )( 2等号成立时使或存在实数是零向量当且仅当是两个向量设柯西不等式的向量形式定理βαββαk k =≤.,:1221等号成立时当且仅当式得二维形式的柯西不等平面向量坐标代入b a b a ,=2 221122212221)()()(b a b a b b a a +≥++式: 得三维形式的柯西不等将空间向量的坐标代入,2 332211232221232221)()()(b a b a b a b b b a a a ++≥++++.)3,2,1(,,,,等号成立时使得或存在一个数即共线时当且仅当 ,i kb a k i i ===221221222221212211)()(R,y ,x ,y , )( 3y y x x y x y x x -+-≥+++∈那么设二维形式的三角不等式定理

高等数学不等式的证明试题及答案

微积分中不等式的证明方法讨论 不等式的证明题经常出现在考研题中,虽然题目各种各样,但方法无非以下几种: 1.利用函数的单调性证明不等式 若在),(b a 上总有0)(>'x f ,则)(x f 在),(b a 单调增加;若在),(b a 上总有0)(<'x f ,则)(x f 在),(b a 单调减少。 注:考研题的难点是,构造恰当的辅助函数,有时需要两次利用函数的单调性证明不等式,有时需要对),(b a 进行分割,分别在小区间上讨论。 例1:证明:当0a b π<<<时, sin 2cos sin 2cos b b b b a a a a ππ++>++. 【分析】 利用“参数变易法”构造辅助函数,再利用函数的单调性证明. 【详解】 令()sin 2cos sin 2cos ,0f x x x x x a a a a a x b πππ=++---<≤≤<, 则 ()sin cos 2sin cos sin f x x x x x x x x ππ'=+-+=-+,且()0f π'=. 又 ()cos sin cos sin 0f x x x x x x x ''=--=-<,(0,s i n 0x x x π<<>时), 故当0a x b π<≤≤<时,()f x '单调减少,即()()0f x f π''>=,则()f x 单调增加,于是()()0f b f a >=,即 sin 2cos sin 2cos b b b b a a a a ππ++>++. 【评注】 证明数值不等式一般需构造辅助函数,辅助函数一般通过移项,使不等式一端为“0”,另一端即为所作辅助函数()f x ,然后求导验证()f x 的增减性,并求出区间端点的函数值(或极限值)。 例2:设2e b a e <<<, 证明)(4ln ln 2 22a b e a b ->-. 【分析】即证a e a b e b 2 222 4ln 4ln ->- 证明: 设x e x x 224ln )(-=?,则 24ln 2)(e x x x -='?, 2ln 12)(x x x -=''?, 所以当x>e 时,,0)(<''x ? 故)(x ?'单调减少,从而当2 e x e <<时,

2019届高三数学文一轮复习:第七章 不等式 推理与证明 课时跟踪训练38含解析

课时跟踪训练(三十八) [基础巩固] 一、选择题 1.观察下面关于循环小数化分数的等式:0.3·=39=13,0.1· 8·=1899=211,0.3· 5· 2·=352999,0.0005· 9·=11000×5999=5999000,据此推测循环小数0.23·可化成分数( ) A.2390 B.9923 C.815 D.730 [解析] 0.23·=0.2+0.1×0.3·=15+110×39=730. 选D. [答案] D 2.已知数列{a n }为11,21,12,31,22,13,41,32,23,14,…,依它的前10项的规 律,则a 99+a 100的值为( ) A.3724 B.76 C.1115 D.715 [解析] 由给出的数列{a n }的前10项得出规律,此数列中,分子与分母的和等于2的有1项,等于3的有2项,等于4的有3项,…,等于n 的有n -1项,且分母由1逐渐增大到n -1,分子由n -1逐渐减小到1(n ≥2),当n =14时即分子与分母的和为14时,数列到91项,当n =15即分子与分母的和为15时,数列 到104项,所以a 99与a 100是分子与分母和为15中的第8项与第9项,分别为78, 69,∴a 99+a 100=78+69=3724,选A. [答案] A 3.观察下列各式:55=3125,56=15625,57=78125,…,则52018的末四位数字为( ) A .3125 B .5625 C .0625 D .8125

[解析]∵55=3125,56=15625,57=78125, 58=390625,59=1953125,…,∴最后四位应为每四个循环,2018=4×504+2,∴52018最后四位应为5625. [答案] B 4.(2017·安徽合肥一中模拟)《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形 如以下形式的等式具有“穿墙术”:22 3=2 2 3,3 3 8=3 3 8,4 4 15=4 4 15, 55 24=5 5 24,…,则按照以上规律,若9 9 n=9 9 n具有“穿墙术”,则n= () A.25 B.48 C.63 D.80 [解析]由22 3=2 2 3,3 3 8=3 3 8,4 4 15=4 4 15,5 5 24=5 5 24,…, 可得若99 n=9 9 n具有“穿墙术”,则n=9 2-1=80,故选D. [答案] D 5.(2017·湖北宜昌一中、龙泉中学联考)老师带甲、乙、丙、丁四名学生去参加自主招生考试,考试结束后老师向四名学生了解考试情况,四名学生回答如下:甲说:“我们四人都没考好”;乙说:“我们四人中有人考得好”;丙说:“乙和丁至少有一人没考好”;丁说:“我没考好”.结果,四名学生中有两人说对了,则四名学生中说对了的两人是() A.甲丙B.乙丁 C.丙丁D.乙丙 [解析]如果甲对,则丙、丁都对,与题意不符,故甲错,乙对;如果丙错,则丁错,因此只能是丙对,丁错,故选D. [答案] D 6.如图所示,面积为S的平面凸四边形的第i条边的边长记为a i(i=1,2,3,4), 此四边形内任一点P到第i条边的距离记为h i(i=1,2,3,4),若a1 1= a2 2= a3 3= a4 4=k,

证明不等式的种方法

证明不等式的13种方法 咸阳师范学院基础教育课程研究中心安振平 不等式证明无论在高考、竞赛,还是其它类型的考试里,出现频率都是比较高,证明难度也是比较大的.因此,有必要总结证明不等式的基本方法,为读者提供学习时的参考资料.笔者选题的标准是题目优美、简明,其证明方法基本并兼顾巧妙. 1.排序方法 对问题的里的变量不妨排出大小顺序,有时便于获得不等式的证明. 例1已知,,0a b c ≥,且1a b c ++=,求证: ()22229 1. a b c abc +++≥2.增量方法 在变量之间增设一个增量,通过增量换元的方法,便于问题的变形和处理.例2设,,a b c R + ∈,试证:2222 a b c a b c a b b c c a ++++≥+++.3.齐次化法 利用题设条件,或者其它变形手段,把原不等式转换为齐次不等式. 例3设,,0,1x y z x y z ≥++=,求证: 2222222221.16 x y y z z x x y z +++≤4.切线方法 通过研究函数在特殊点处的切线,利用切线段代替曲线段,来建立局部不等式.例4已知正数,,x y z 满足3x y z ++=,求证: 323235 x y +≤++.. 5.调整方法 局部固定,逐步调整,探究多元最值,便能获得不等式的证明. 例5已知,,a b c 为非负实数,且1a b c ++=,求证:13.4 ab bc ca abc ++-≤ 6.抽屉原理

在桌上有3个苹果,要把这3个苹果放到2个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放2个苹果.这一简单的现象,就是人们所说的“抽屉原理”.巧用抽屉原理,证明某些不等式,能起到比较神奇的效果. 例6(《数学通报》2010年9期1872题)证明:在任意13个实数中,一定能找到两个实数,x y ,使得0.3.10.3x y x ->+7.坐标方法 构造点坐标,应用解析几何的知识和方法证明不等式. 例7已知a b c R ∈、、,a 、b 不全为零,求证: ()()()22 22222 22.a b ac a b bc a b c a b +++++≥+++8.复数方法 构造复数,应用复数模的性质,可以快速证明一些无理不等式. 例8(数学问题1613,2006,5)设,,,0,a b c R λ+ ∈≥求证:9.向量方法 构造向量,把不等式的证明纳入到向量的知识系统当中去. 例9已知正数,,a b c 满足1a b c ++=,求证: 4 ≤. 10.放缩方法 不等式的证明,关键在于恒等变形过程中的有效放大、或者缩小技巧,放和缩应当恰到好处. 例10已知数列{}n a 中,首项132 a = ,且对任意*1,n n N >∈,均有 11n n a a +=++()211332.42 n n n a -+<

均值不等式的证明(精选多篇)

均值不等式的证明(精选多篇) 第一篇:常用均值不等式及证明证明 常用均值不等式及证明证明 这四种平均数满足hn?gn? an?qn ?、ana1、a2、 ?r?,当且仅当a1?a2?? ?an时取“=”号 仅是上述不等式的特殊情形,即d(-1)≤d(0)≤d(1)≤d(2)由以上简化,有一个简单结论,中学常用 均值不等式的变形: (1)对实数a,b,有a 2 22 ?b2?2ab (当且仅当a=b时取“=”号),a,b?0?2ab (4)对实数a,b,有 a?a-b??b?a-b? a2?b2? 2ab?0 (5)对非负实数a,b,有 (8)对实数a,b,c,有

a2? b2?c2?ab?bc?ac a?b?c?abc(10)对实数a,b,c,有 均值不等式的证明: 方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序 不等式法、柯西不等式法等等 用数学归纳法证明,需要一个辅助结论。 引理:设a≥0,b≥0,则?a?b??an?na?n-1?b n 注:引理的正确性较明显,条件a≥0,b≥0可以弱化为a≥0 ,a+b≥0 (用数学归纳法)。 当n=2时易证; 假设当n=k时命题成立,即 那么当n=k+1时,不妨设ak?1是则设 a1,a2,?,ak?1中最大者, kak?1?a1?a2???ak?1 s?a1?a2???ak 用归纳假设 下面介绍个好理解的方法琴生不等式法 琴生不等式:上凸函数f?x?,x1,x2,?,xn是函数f?x?在区间(a,b)内的任意n个点, 设f?x??lnx,f

?x?为上凸增函数所以, 在圆中用射影定理证明(半径不小于半弦) 第二篇:均值不等式证明 均值不等式证明一、 已知x,y为正实数,且x+y=1求证 xy+1/xy≥17/4 1=x+y≥2√(xy) 得xy≤1/4 而xy+1/xy≥2 当且仅当xy=1/xy时取等 也就是xy=1时 画出xy+1/xy图像得 01时,单调增 而xy≤1/4 ∴xy+1/xy≥(1/4)+1/(1/4)=4+1/4=17/4 得证 继续追问: 拜托,用单调性谁不会,让你用均值定理来证 补充回答: 我真不明白我上面的方法为什么不是用均值不等式证的法二: 证xy+1/xy≥17/4

用微积分理论证明不等式的方法

用微积分理论证明不等式的方法 高等数学中所涉及到的不等式,大致可分为两种:函数不等式(含变量)和数值不等式(不含变量).对于前者,一般可直接或稍加变形构造一函数,从而可通过研究所构造函数的性质,进而证明不等式;对于后者,我们也可根据数值不等式的特点,巧妙的构造辅助函数,从而将数值不等式问题转化为函数的问题,研究方法正好与前者相似. 微积分是高等数学中的重要内容,以它为工具能较好的研究函数的形态,有些常规方法难于证明的不等式,若能根据不等式的结构特征,巧妙的构造函数,将不等式问题转化为函数的问题,利用微积分理论研究函数的性质,应用函数的性质证明不等式. 一、用导数定义证明不等式法 1.证明方法根据-导数定义 导数定义:设函数)(x f y =在点。0x 的某个邻域内有定义,若极限 x y x x x x x x f x f ??→?→=--lim lim 0) ()(0 存在,则称函数)(x f 在0x 可导,称这极限为函数)(x f y =在点0 x 的导数,记作)(0x f y '=. 2.证明方法: (1)找出0x ,使得)(0x f y '=恰为结论中不等式的一边;(2)利用导数的定义并结合已知条件去研究. 3.例 例1:设函数nx a x a x a x f n sin 2sin sin )(21+++= ,其中n a a a ,,21都为实数, n 为正整数,已知对于一切实数x ,有x x f sin )(≤,试证:1221≤+++n na a a . 证 明 : 因 nx na x a x a x f n cos 2cos 2cos )(21+++=' .则 n na a a f +++=' 212)0(. 得:x x f x x f x f x f f x x x ) ()(lim 0)0()()0(lim lim 00 →→→==--= '.由于x x f sin )(≤. 所以1sin )0(lim =≤ '→x x f x .即1221≤+++n na a a . 4.适用范围 用导数定义证明不等式,此方法得适用范围不广,我们应仔细观察问题中的条件与结论之间的关系.有些不等式符合导数的定义,因此可利用导数的定义将其形式转化,以达到化繁为简的目的. 二.用可导函数的单调性证明不等式法

第六章质量检测不等式推理与证明

第六章不等式推理与证明 (时间120分钟,满分150分) 、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只 有一项是符合题目要求的) 1 .不等式(x + 1) x — 1> 0的解集是 A . {x|x > 1} 解析:■/ x — 1> 0, /? x > 1. 同时 x + 1> 0,即卩 x > — 1.二 x > 1. 答案:B 2 .下列命题中的真命题是 答案: x w 0 x 2> 1,从而得 x > 1 或 x W — 1. 答案:D 2x + 1 4 .若集合 A = {x||2x — 1|v 3}, B = {x| v 0},贝V A Q B 是 3 — x 1 A . {x|— 1 v x v — 2或 2v x v 3} B . {x|2v x v 3} 1 1 C . {x|—v x v 2} D . {x|— 1v x v — ^} 解析:T I2X — 1|v 3, ??? — 3v 2x — 1v 3.A — 1v x v 2. 2x + 1 又v 0, (2x + 1)(x — 3) > 0, 3 — x … 1 1 …x > 3 或 x v — 2* - - A Q B = {x| — 1 v x v — 2). {x|x > 1} C . {x|x > 1 或 x =— 1} {x|x >— 1 或 x = 1} A 门. .右 C .若 a > b , c > d ,贝U ac > bd a > b ,贝U a 2 > b 2 解析: 由 a >|b|,可得 a >|b|>0? 2 2 B .若 |a|> b ,则 a > b D .若 a > |b|,贝U a 2> b 2 a 2> b 2. x 2, x w 0 3 .已知函数 f(x) = 2x — 1, x >0 若f(x)> 1,则x 的取值范围是 A . ( — m,— 1] B . [1 ,+m ) C . ( — m, 0] U [1,+m ) ( — m, — 1] U [1 ,+m ) 解析:将原不等式转化为: x > 0 检测

用放缩法证明不等式的方法与技巧

用放缩法证明不等式的方法与技巧 一.常用公式 1.)1(11)1(12-<<+k k k k k 2.12 112-+<<++k k k k k 3.22k k ≥()4≥k 4.1232k k ???????≥(2≥k ) 5. ?? ????--≤!!(!k k k 1)11211(待学) 6.b a b a +≤+ (待学) 二.放缩技巧 所谓放缩的技巧:即欲证A B ≤,欲寻找一个(或多个)中间变量C ,使A C B ≤≤, 由A 到C 叫做“放”,由B 到C 叫做“缩”. 常用的放缩技巧 (1)若0,,t a t a a t a >+>-< (2) < > 11> ,n >= (3)21111111 (1)1(1)(1)1n n n n n n n n n n - =<<=->++-- (4 )= <=<= (5)若,,a b m R + ∈,则,a a a a m b b m b b +>< + (6)21111111 112!3!!222 n n -+++???+<+++???+ (7)22211111111 11(1)()()232231n n n +++???+<+-+-+???+--(因为211(1)n n n < -) (7)1111111112321111n n n n n n n n n +++???+≤++???+=<+++++++ 或11111111123222222 n n n n n n n n n +++???+≥++???+==+++ (8 )1+???+>???+== 三.常见题型 (一).先求和再放缩: 1.设1111 2612 (1) n S n n = ++++ +,求证:1n S < 2.设1n b n = (n N * ∈),数列2{}n n b b +的前n 项和为n T ,求证:34n T < (二).先放缩再求和: 3.证明不等式:111 12112123 123n ++++

均值不等式的证明方法

柯西证明均值不等式的方法 by zhangyuong (数学之家) 本文主要介绍柯西对证明均值不等式的一种方法,这种方法极其重要。 一般的均值不等式我们通常考虑的是n n G A ≥: 一些大家都知道的条件我就不写了 n n n x x x n x x x ......2121≥ +++ 我曾经在《几个重要不等式的证明》中介绍过柯西的这个方法,现在再次提出: 8444844)()(: 4422)()(abcdefgh efgh abcd h g f e d c b a abcd abcd cd ab d c b a d c b a ≥+≥+++++++=≥+≥+++=+++八维时二维已证,四维时: 这样的步骤重复n 次之后将会得到 n n n x x x x x x n 2 221221 (2) ...≥ +++ 令A n x x x x x x x x x x n n n n n n =+++= =====++......;,...,2122111 由这个不等式有 n n n n n n n n n n A x x x A x x x A n nA A 2 121 212 221)..(..2 )2(- -=≥ -+= 即得到 n n n x x x n x x x ......2121≥ +++ 这个归纳法的证明是柯西首次使用的,而且极其重要,下面给出几个竞赛题的例子: 例1: 1 1 12101(1,2,...,)11(...)n i i i n n n a i n a a a a =<<=≥ --∑ 若证明 例2:

1 1 1211(1,2,...,)1 1(...)n i i i n n n r i n r r r r =≥=≥ ++∑ 若证明 这2个例子是在量在不同范围时候得到的结果,方法正是运用柯西的归纳法: 给出例1的证明: 12121 2 212 2 123 4 211(1)2(1)(1) 11,(1)(2)2(1) 22(1)2(1)2211111111n a a a a a a p a q a q p p q p q pq q p q q q p q a a a a =+ ≥ ?- --≥----=+= ?--≥-+?-+≥?+≥+?≥+ + + ≥+ ----≥ 当时设,而这是元均值不等式因此此过程进行下去 因2 1 1 2 1221 1212221 12 2 1 1 2 11(...)...(...)112 2 (2) 1111() 111n n n n n n n n i i n n n n n n n n n i i n n i i a a a a a a a a a a G n a G G G G n a G =++-==≥ --=====+-≥ = ----≥ --∑ ∑ ∑ 此令有即 例3: 1 115,,,,1(1),,111,,11( )( ) 1 1 n n i i i i i i i i i n n n i i i i i i n n i i i i i i i i i i i n r s t u v i n R r S s n n T t U u V v n n n r s t u v R ST U V r s t u v R ST U V =>≤≤== = = = ++≥--∑∑∑∑∑∏ 已知个实数都记,求证下述不等式成立: 要证明这题,其实看样子很像上面柯西的归纳使用的形式

相关文档
相关文档 最新文档