文档视界 最新最全的文档下载
当前位置:文档视界 › 汉诺塔问题与递归思想教学设计

汉诺塔问题与递归思想教学设计

汉诺塔问题与递归思想教学设计
汉诺塔问题与递归思想教学设计

一、教学思想(包括教学背景、教学目标)

1、教学背景

本课程“递归算法”,属于《数据结构与算法》课程中“栈和队列”章节的重点和难点。数据结构与算法已经广泛应用于各行各业的数据存储和信息处理中,与人们的社会生活密不可分。该课程是计算机类相关专业核心骨干课程,处于计算机学科的核心地位,具有承上启下的作用。不仅成为全国高校计算机类硕士研究生入学的统考科目,还是各企业招聘信息类员工入职笔试的必考科目。数据结构与算法课程面向计算机科学与技术、软件工程等计算机类学生,属于专业基础课。

2、教学大纲

通过本课程的学习,主要培养学生以下几个方面的能力:

1)理解递归的算法;

2)掌握递归算法的实现要素;

3)掌握数值与非数值型递归的实现方法。

根据学生在学习基础和能力方面的差异性,将整个课程教学目标分成三个水平:合格水平(符合课标的最低要求),中等以上水平(符合课标的基本要求),优秀水平(符合或超出课标提出的最高要求)。具体如下表:

二、课程设计思路(包括教学方法、手段)

“递归算法”课程以故事引入、案例驱动法、示范模仿、启发式等多元化教学方法,设计课程内容。具体的课堂内容如下所示:

编写代码:

int fact(int n)

三、教学特色(总结教学特色和效果)

递归算法课程主要讨论递归设计的思想和实现。从阶乘实例入手,由浅入深,层层深入介绍了递归的设计要点和算法的实现。从汉诺塔问题,通过“边提问,边思考”的方式逐层深入地给出算法的分析和设计过程。通过故事引入、案例导入、实例演示、PPT展示、实现效果等“多元化教学方式”,努力扩展课堂教学主战场。加上逐步引导、问题驱动,启发学生对算法的理解,并用实例演示展示算法的分析过程,在编译环境下实现该算法,加深对算法实现过程的认识。

1、知识点的引入使用故事诱导法讲授

通过“老和尚讲故事”引入函数的递归调用,并通过“世界末日问题”

故事引入非数值型问题的递归分析,激发学习积极性,挖掘学生潜能。

2、重点、难点内容采用案例驱动式教学方法

课程内容通过案例驱动,培养学生计算思维能力和设计能力;学生不但可以激发学习积极性和主动性,提高学生独立思考,深入研究,分析问题、解决问题的能力,从而促进学生综合能力发展。

3、注重应用性的实例教学法

整个教学实例都围绕递归分析的寻找分解方法和递归出口设计这两个要素展开引导、分析、演示和总结。通过实际问题的解决,使学生不但掌握“递归算法”这一知识点,同时锻炼学生分析和解决复杂问题的能力,将两者结合完成分析和程序设计实现,满足应用型人才的培养要求。

4、用启发引导式教学法实现知识点的拓展和延续

本课程中的“递归算法”是以阶乘这类数值型问题和汉诺塔这类非数值型问题分别讨论。对于现实生活中,斐波那契数列这类数值型和八皇后这类非数值型情况,在设计中提出了不同的分析策略,在课程结束启发大家思考,实现知识点的拓展和延续。

5、运用现代化教学手段丰富教学形式

在讲授相关知识的时候,采用动画演示、视频资料、编译环境、Windows 计算器以及相关的图片资料等多元化方式。这样在增加学习兴趣的同时,更容易让学生深入理解和清晰把握。例如:在汉诺塔讲解时,借助实物演示、PPT逐步动画展示递归分解过程、编译环境下实现、修改程序讨论算

法效率,加深学生对算法分析过程、实现细节的理解。

“递归算法”课程在基础理论知识教学的基础上,注重知识的实践和应用,力求理论与实践相联系,将原理与实现有机结合。辅以课后思考题,

延伸知识点的理解。

《递归算法与递归程序》教学设计

递归算法与递归程序 岳西中学:崔世义一、教学目标 1知识与技能 (1) ?认识递归现象。 (2) ?使用递归算法解决冋题往往能使算法的描述乘法而易于表达 (3) ?理解递归三要素:每次递归调用都要缩小规模;前次递归调用为后次作准备:递归调用必须有条件进行。 (4) ?认识递归算法往往不是咼效的算法。 (5) ? 了解递归现象的规律。 (6) ?能够设计递归程序解决适用于递归解决的问题。 (7) ?能够根据算法写出递归程序。 (8) ? 了解生活中的递归现象,领悟递归现象的既有重复,又有变化的特点,并且从中学习解决问题的一种方法。 2、方法与过程 本节让同学们玩汉诺塔的游戏,导入递归问题,从用普通程序解决斐波那契的兔子问题入手,引导学生用自定义了一个以递归方式解决的函数过程解决问题,同时让同学们做三个递归练习,巩固提高。然后让学生做练习(2) 和练习(3)这两道题目的形式相差很远,但方法和答案却是完全相同的练习,体会其中的奥妙,加深对递归算法的了解。最后用子过程解决汉诺塔的经典问题。 3、情感态度和价值观 结合高中生想象具有较强的随意性、更富于现实性的身心发展特点,综合反映出递归算法的特点,以及递归算法解答某些实践问题通常得很简洁,从而激发学生对程序设计的追求和向往。 二、重点难点 1、教学重点 (1) 了解递归现象和递归算法的特点。 (2) 能够根据问题设计出恰当的递归程序。 2、教学难点 (1) 递归过程思路的建立。 (2) 判断冋题是否适于递归解法。 (3) 正确写出递归程序。 三、教学环境 1、教材处理 教材选自《浙江省普通高中信息技术选修:算法与程序设计》第五章,原教材的编排是以本节以斐波那契的兔子问题引人,导出递归算法,从而自 定义了一个以递归方式解决的函数过程。然后利用子过程解决汉诺塔的经典问题。 教材经处理后,让同学们玩汉诺塔的游戏,导入递归问题,从用普通程序解决斐波那契的兔子问题入手,引导学生用自定义了一个以递归方式解决的函数过程解决问题,同时让同学们做三个递归练习,巩固提高。然后让学生做练习⑵ 和练习

汉诺塔问题的三种实现

// test_project.cpp : 定义控制台应用程序的入口点。//汉诺塔问题的 // //递归实现 /*#include "stdafx.h" #include using namespace std; int count=0;//记录移动到了多少步 void Move(int n,char From,char To); void Hannoi(int n,char From, char Pass ,char To); //把圆盘从From,经过pass,移动到To int main() { int n_count=0; cout<<"请输入圆盘个数:"; cin>>n_count; Hannoi(n_count,'A','B','C'); } void Move(int n,char From,char To)

{ count++; cout<<"第"<

/*后来一位美国学者发现一种出人意料的简单方法,只要轮流进行两步操作就可以了。首先把三根柱子按顺序排成品字型,把所有的圆盘按从大到小的顺序放在柱子A上,根据圆盘的数量确定柱子的排放顺序:若n为偶数,按顺时针方向依次摆放A B C; 若n为奇数,按顺时针方向依次摆放A C B。 ()按顺时针方向把圆盘从现在的柱子移动到下一根柱子,即当n为偶数时,若圆盘在柱子A,则把它移动到B;若圆盘在柱子B,则把它移动到C;若圆盘在柱子C,则把它移动到A。 ()接着,把另外两根柱子上可以移动的圆盘移动到新的柱子上。即把非空柱子上的圆盘移动到空柱子上,当两根柱子都非空时,移动较小的圆盘。这一步没有明确规定移动哪个圆盘,你可能以为会有多种可能性,其实不然,可实施的行动是唯一的。 ()反复进行()()操作,最后就能按规定完成汉诺塔的移动。 所以结果非常简单,就是按照移动规则向一个方向移动金片: 如阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C 汉诺塔问题也是程序设计中的经典递归问题,下面我们将给出递归和非递归的不同实现源代码。*/ /*#include "stdafx.h" #include #include

汉诺塔问题与递归思想教学设计

一、教学思想(包括教学背景、教学目标) 1、教学背景 本课程“递归算法”,属于《数据结构与算法》课程中“栈和队列”章节的重点和难点。数据结构与算法已经广泛应用于各行各业的数据存储和信息处理中,与人们的社会生活密不可分。该课程是计算机类相关专业核心骨干课程,处于计算机学科的核心地位,具有承上启下的作用。不仅成为全国高校计算机类硕士研究生入学的统考科目,还是各企业招聘信息类员工入职笔试的必考科目。数据结构与算法课程面向计算机科学与技术、软件工程等计算机类学生,属于专业基础课。 2、教学大纲 通过本课程的学习,主要培养学生以下几个方面的能力: 1)理解递归的算法; 2)掌握递归算法的实现要素; 3)掌握数值与非数值型递归的实现方法。 根据学生在学习基础和能力方面的差异性,将整个课程教学目标分成三个水平:合格水平(符合课标的最低要求),中等以上水平(符合课标的基本要求),优秀水平(符合或超出课标提出的最高要求)。具体如下表:

二、课程设计思路(包括教学方法、手段) “递归算法”课程以故事引入、案例驱动法、示范模仿、启发式等多元化教学方法,设计课程内容。具体的课堂内容如下所示:

1 1 2 3 3 7 4 15 5 31 count = 2n-1 思考:若移动速度为1个/秒,则需要 (264-1)/365/24/3600 >= 5849亿年。 四、总结和思考 总结: 对于阶乘这类数值型问题,可以表达成数学公式,然后从相应的公式入手推导,解决这类问题的递归定义,同时确定这个问题的边界条件,找到结束递归的条件。 对于汉诺塔这类非数值型问题,虽然很难找到数学公式表达,但可将问题进行分解,问题规模逐渐缩小,直至最小规模有直接解。 思考: 数值型问题:斐波那契数列的递归设计。 非数值型问题:八皇后问题的递归设计。阐述总结知识拓展 三、教学特色(总结教学特色和效果) 递归算法课程主要讨论递归设计的思想和实现。从阶乘实例入手,由浅入深,层层深入介绍了递归的设计要点和算法的实现。从汉诺塔问题,通过“边提问,边思考”的方式逐层深入地给出算法的分析和设计过程。通过故事引入、案例导入、实例演示、PPT展示、实现效果等“多元化教学方式”,努力扩展课堂教学主战场。加上逐步引导、问题驱动,启发学生对算法的理解,并用实例演示展示算法的分析过程,在编译环境下实现该算法,加深对算法实现过程的认识。 1、知识点的引入使用故事诱导法讲授 通过“老和尚讲故事”引入函数的递归调用,并通过“世界末日问题” 故事引入非数值型问题的递归分析,激发学习积极性,挖掘学生潜能。

汉诺塔课程设计

汉诺塔课程设计 一、教学内容: 1、了解汉诺塔的历史。 2、讲解汉诺塔的游戏规则。 二、课程设计目的: 1、让伙伴们了解汉诺塔的历史,勾起孩子们的学习兴趣,让伙伴们更加热爱数学。 2、在掌握汉诺塔玩法的基础上,锻炼伙伴们的观察力,变通里,和右脑开发。 3、增强伙伴们的空间想象能力和动手能力。 4、让伙伴们体会到数学的神奇,从而对数学产生更加浓厚的兴趣。 三、培养技能:观察力、想象力、变通里、右脑开发。 四、所需工具:汉诺塔、记号笔。 五、教学流程概述: 第一节课:1、讲一个关于汉诺塔的故事。2、带领伙伴们一起观察和了解汉诺塔的游戏规则。(以三盘为例说明)(30分钟) 第二节课:汉诺塔4盘的移法。(30分钟) 第三节课:汉诺塔5盘的移法。(30分钟) 第四节课: 汉诺塔月底考核。(30分钟) 六、教学流程详细解读: 第一节课:让伙伴们了解汉诺塔的历史,勾起孩子们的学习 兴趣,让伙伴们更加热爱数学。 1、讲关于汉诺塔的故事: 在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄 铜板上插着三根宝石针。印度教的主神梵天在创造世界的时 候,在其中一根针上从下到上地穿好了由大到小的64片金 片,这就是所谓的汉诺塔。不论白天黑夜,总有一个僧侣在 按照下面的法则移动这些金片:一次只移动一片,不管在哪 根针上,小片必须在大片上面。僧侣们预言,当所有的金片都从梵天穿好的那根针上移

、告诉伙伴们游戏规则: 以三个环为例说明: (一)先让伙伴们自己观察有几个柱子,有几个盘,并且盘是怎么排列的? 答:有三根相邻的柱子,第一根柱子上从下到上放着3个不同大小的圆盘,并且顺序是由大到小依次叠放。 (二)分别为这3个相邻的柱子编号A柱、B柱、C柱;在为这3个圆盘编号盘1、盘2、盘3。 让伙伴们自己动脑想想:如何要把A柱上的3个盘子一个一个移动到C柱上,并且每次移动同一根柱子上都必须保持大点的盘子在下,小点的盘子在上。最后也要使移动到C 柱的圆盘从下到上按照盘3,2,1金字塔的形状排列。 (三)带领伙伴们一起动手操作: (1)、盘1移动到C柱。 (2)、盘2移动到B柱。 (3)、盘1在移动到B柱上,这时盘1在盘2上。 (4)、盘3移动到C柱上。 (5)、再将盘1移动到A柱,这时B柱就只剩盘2。 (6)、将盘2移动到C柱,在盘3上边。 (7)、再将盘1移动到C柱,这时就成功了。 (四)鼓励伙伴们再来一次,按照刚才的移动方法 将C柱的圆盘移动到A柱。 (五)等所有伙伴都移动成功都移动成功后,引导伙伴们仔细思考,看看各位伙伴在移动的过程中有发现什么规律和技巧没有? 带领伙伴再来熟悉一遍: 第一步:盘1移动到C柱;第二步:盘2移动到B柱;......第四步:盘3移动到C柱上......

汉诺塔非递归算法C语言实现

汉诺塔非递归算法C语言实现 #include #include #define CSZL 10 #define FPZL 10 typedef struct hanoi { int n; char x,y,z; }hanoi; typedef struct Stack { hanoi *base,*top; int stacksize; }Stack; int InitStack(Stack *S) { S->base=(hanoi *)malloc(CSZL*sizeof(hanoi)); if(!S->base) return 0; S->top=S->base; S->stacksize=CSZL; return 1; } int PushStack(Stack *S,int n,char x,char y,char z) { if(S->top-S->base==S->stacksize) { S->base=(hanoi *)realloc(S->base,(S->stacksize+FPZL)*sizeof(hanoi)); if(!S->base) return 0; S->top=S->base+S->stacksize; S->stacksize+=FPZL; } S->top->n=n; S->top->x=x; S->top->y=y; S->top->z=z; S->top++; return 1; } int PopStack(Stack *S,int *n,char *x,char *y,char *z) { if(S->top==S->base)

汉诺塔课程设计

学 号: 200840420149 课 程 设 计 题 目 汉诺塔 教 学 院 计算机学院 专 业 计算机 班 级 网络技术 姓 名 指导教师 2010 年 12 月 17 日

课程设计任务书 2009 ~2010 学年第一学期 学生姓名:专业班级:网络技术 指导教师:工作部门:计算机学院 一、课程设计题目 汉诺威塔 二、课程设计内容(含技术指标) 1.在移动盘子的每一步骤,形象直观地显示各针上的盘子。 2.考虑到学“VC 语言”课程的学生同时学习了“数据结构”课程,所以用灵活的数据结构解决汉诺威塔问题,灵活的处理数据结构中的经典问题。 3.使用VC++,因用面向对象的方法去处理数据结构已经是当今的潮流。 三、进度安排 1. 初步完成总体设计,搭好框架,确定人机对话的界面,确定函数个数; 2. 完成最低要求:实现5层汉诺威塔的调整过程; 3.进一步要求:直至实现n=9时的情况。 四、基本要求 1.界面友好,函数功能要划分好 2.总体设计应画流程图 3.程序要加必要的注释 4.要提供程序测试方案 5.程序一定要经得起测试,宁可功能少一些,也要能运行起来。 教研室主任签名: 2010年12 月 17 日

目录 1、概述 (3) 2、设计目的 (4) 3、问题分析 (4) 4、逻辑设计 (5) 5、流程图 (5) 6、程序代码: (6) 7、程序调试与测试 (9) 8、结果分析 (12) 9、总结 (13) 一、概述 数据结构是计算机学科非常重要的一门专业基础理论课程,要想编写针对非数值计算问题的高质量程序,就必须要熟练的掌握这门课程设计的知识。另外,他与计算机其他课程都有密切联系,具有独特的承上启下的重要位置。拥有《数据结构》这门课程的知识准备,对于学习计算机专业的其他课程,如操作系统、数据库管理系统、软件工程的都是有益的。

汉诺塔问题

实验二知识表示方法 梵塔问题实验 1.实验目的 (1)了解知识表示相关技术; (2)掌握问题规约法或者状态空间法的分析方法。 2.实验内容(2个实验内容可以选择1个实现) (1)梵塔问题实验。熟悉和掌握问题规约法的原理、实质和规约过程;理解规约图的表示方法; (2)状态空间法实验。从前有一条河,河的左岸有m个传教士、m个野人和一艘最多可乘n人的小船。约定左岸,右岸和船上或者没有传教士,或者野人数量少于传教士,否则野人会把传教士吃掉。搜索一条可使所有的野人和传教士安全渡到右岸的方案。 3.实验报告要求 (1)简述实验原理及方法,并请给出程序设计流程图。 我们可以这样分析: (1)第一个和尚命令第二个和尚将63个盘子从A座移动到B座; (2)自己将底下最大的盘子从A移动到C; (3)再命令第二个和尚将63个盘子从B座移动到C;(4)第二个和尚命令第三个和尚重复(1)(2)(3);以此类推便可以实现。这明显是个递归的算法科技解决的问

题。 (2)源程序清单: #include #include using namespace std; void main() { void hanoi(int n,char x,char y,char z);

int n; printf("input the number of diskes\n"); scanf("%d",&n); hanoi(n,'A','B','C'); } void hanoi(int n,char p1,char p2,char p3) { if(1==n) cout<<"盘子从"<

汉诺塔问题实验报告

1.实验目的: 通过本实验,掌握复杂性问题的分析方法,了解汉诺塔游戏的时间复杂性和空间复杂性。 2.问题描述: 汉诺塔问题来自一个古老的传说:在世界刚被创建的时候有一座钻石宝塔(塔A),其上有64个金碟。所有碟子按从大到小的次序从塔底堆放至塔顶。紧挨着这座塔有另外两个钻石宝塔(塔B和塔C)。从世界创始之日起,婆罗门的牧师们就一直在试图把塔A 上的碟子移动到塔C上去,其间借助于塔B的帮助。每次只能移动一个碟子,任何时候都不能把一个碟子放在比它小的碟子上面。当牧师们完成任务时,世界末日也就到了。 3.算法设计思想: 对于汉诺塔问题的求解,可以通过以下三个步骤实现: (1)将塔A上的n-1个碟子借助塔C先移到塔B上。 (2)把塔A上剩下的一个碟子移到塔C上。 (3)将n-1个碟子从塔B借助于塔A移到塔C上。 4.实验步骤: 1.用c++ 或c语言设计实现汉诺塔游戏; 2.让盘子数从2 开始到7进行实验,记录程序运行时间和递 归调用次数; 3.画出盘子数n和运行时间t 、递归调用次数m的关系图, 并进行分析。 5.代码设计: Hanio.cpp #include"stdafx.h" #include #include #include void hanoi(int n,char x,char y,char z) { if(n==1) { printf("从%c->搬到%c\n",x,z); } else { hanoi(n-1,x,z,y); printf("从%c->%c搬到\n",x,z); hanoi(n-1,y,x,z); }

校本课程《汉诺塔游戏》【教学设计】.doc

《汉诺塔游戏》教学设计 学习内容:数学游戏“汉诺塔”第一课时 学习目标: 1.了解汉诺塔游戏的传说以及汉诺塔游戏的基本规则。 2.经历汉诺塔游戏的游玩过程,在“玩”中掌握汉诺塔游戏的基本规则,初步发现游戏中的规律。 3.在收集信息、整理归纳、猜测验证的数学思维过程,发展归纳推理能力和逻辑思维能力。 4.在解决问题的过程中,体会与他人合作获得更多的成功体验。 学习重点: 经历汉诺塔游戏的游玩过程,在“玩”中掌握汉诺塔游戏的基本规则初步发现游戏中的规律。 学习难点: 在收集信息、整理归纳、猜测验证的数学思维过程,发展归纳推理能力和逻辑思维能力。

学习过程: 课前活动 大家喜欢玩游戏么?玩过什么游戏? 我为大家带来一位游戏高手,一起来认识一下。播放录像。这 只黑猩猩聪明吧?它的表现太神奇了!你知道它玩的什么? 板书课题:汉诺塔 接下来,就让我们一起步入汉诺塔游戏的世界。 一、认识汉诺塔 1.关于汉诺塔,你想了解些什么?(规则,来历,玩法……) 同学们的问题太棒了!相信上完了这节课,能解决你的许多问题! 咱们就从汉诺塔的来历说起。Ppt 播放相关介绍。 2.认识汉诺塔各部分。 到了现代,汉诺塔演变成了这个样子。出示教具。 咱们一起来认识一下汉诺塔:下面是一个托盘,上面竖着3 根柱子,从左到右依次为A 柱、B 柱、C 柱。A 柱是起始柱,游戏开始的时候所有的圆片摆放的位置;C 柱是目标柱,游戏结束时,所有的金片都按照顺

序排列在上面;B 柱是中转柱。 3.了解游戏规则。 大家想不想看一看,老师玩汉诺塔游戏的录像?请你一边看一边想:汉诺塔游戏的规则是什么?出示录像。 谁来说一说,汉诺塔游戏的规则是什么? (1)从一边到另一边板书:1.从A 到C (2)一次只能移动一个金片板书:2.一次一片 (3)大金片不能放到小金片的上面板书:3.大不压小 二、动手实践玩游戏 知道了规则,接下来,咱们就开始玩汉诺塔的游戏吧。 1.咱们从1 个圆片开始研究。 请你拿出学具,在A 柱上摆放1 个圆片。其它圆片放在旁边桌上。 1 个圆片,可以怎么玩?动手试一试。说一说。 生1:可以从A 直接到C,移动一次。生 2:可以从A 到B 再到C,移动两次。 两种方法都可以。我们来看规则:从A 到C,如果可以直接一步到

汉诺塔问题的重点是分析移动的规则

汉诺塔问题的重点是分析移动的规则,找到规律和边界条件。 若需要将n个盘子从A移动到C就需要(1)将n-1个盘子从A移动到B;(2)将你第n个从A移动到C;(3)将n-1个盘子再从B 移动到C,这样就可以完成了。如果n!=1,则需要递归调用函数,将A上的其他盘子按照以上的三步继续移动,直到达到边界条件n=1为止。 思路清楚了,程序就好理解了。程序中的关键是分析好每次调用移动函数时具体的参数和对应的A、B、C塔的对应的关系。下面来以实际的例子对照程序进行说明。 ①move(int n,int x,int y,int z) ②{ ③if (n==1) ④printf("%c-->%c\n",x,z); ⑤else ⑥{ ⑦move(n-1,x,z,y); ⑧printf("%c-->%c\n",x,z); ⑨{getchar();}//此句有必要用吗?感觉可以去掉的吧 ⑩move(n-1,y,x,z); } }

比如有4个盘子,现在全部放在A塔上。盘子根据编号为1、2、3、4依次半径曾大。现在要将4个盘子移动到C上,并且是按原顺序罗列。首先我们考虑如何才可以将4号移动到C呢?就要以B为中介,首先将上面的三个移动到B。此步的操作也就是程序中的①开始调入move函数(首次调用记为一),当然现在的n=4,然后判断即③n!=1所以不执行④而是到⑤再次调用move函数(记为二)考虑如何将3个盘移动到B的方法。此处是递归的调用所以又一次回到①开始调入move函数,不过对应的参数发生了变化,因为这次要考虑的不是从A移动4个盘到C,而是要考虑从A如何移动移动3个盘到B。因为n=3,故不可以直接移动要借助C做中介,先考虑将两个移动到C的方法,故再一次到⑤再一次递归调用move函数(记为三)。同理两个盘还是不可以直接从A移动到C所以要以B为中介考虑将1个移动到B的过程。这次是以B为中介,移动到C为目的的。接下来再一次递归调用move函数(记为四),就是移动到B一个,可以直接进行。程序执行③④句,程序跳出最内一次的调用(即跳出第四次的调用)返回上一次(第三次),并且从第三次的调用move 函数处继续向下进行即⑧,即将2号移动到了C,然后继续向下进行到 ⑩,再将已经移到B上的哪一个移回C,这样返回第二次递归(以C 为中介将3个盘移动到B的那次)。执行⑧,将第三个盘从A移动到B,然后进入⑩,这次的调用时因为是将C上的两个盘移到B以A

汉诺塔问题的非递归算法分析

汉诺塔递归与非递归算法研究 作者1,作者2,作者33 (陕西师范大学计算机科学学院,陕西西安 710062) 摘要: 摘要内容(包括目的、方法、结果和结论四要素) 摘要又称概要,内容提要.摘要是以提供文献内容梗概为目的,不加评论和补充解释,简明,确切地记述文献重要内容的短文.其基本要素包括研究目的,方法,结果和结论.具体地讲就是研究工作的主要对象和范围,采用的手段和方法,得出的结果和重要的结论,有时也包括具有情报价值的其它重要的信息.摘要应具有独立性和自明性,并且拥有与文献同等量的主要信息,即不阅读全文,就能获得必要的信息. 关键词:关键词1; 关键词2;关键词3;……(一般可选3~8个关键词,用中文表示,不用英文 Title 如:XIN Ming-ming , XIN Ming (1.Dept. of ****, University, City Province Zip C ode, China;2.Dept. of ****, University, City Province Zip C ode, China;3.Dept. of ****, University, City Province Zip C ode, China) Abstract: abstract(第三人称叙述,尽量使用简单句;介绍作者工作(目的、方法、结果)用过去时,简述作者结论用一般现在时) Key words: keyword1;keyword2; keyword3;……(与中文关键词对应,字母小写(缩略词除外)); 正文部分用小5号宋体字,分两栏排,其中图表宽度不超过8cm.。设置为A4页面 1 引言(一级标题四号黑体加粗) 这个问题当时老和尚和众僧们,经过计算后,预言当所有的盘子都从基柱A移到基座B上时,世界就将在一声霹雳中消灭,而梵塔、庙宇和众生也都将同归于尽。其实,不管这个传说的可信度有多大,如果考虑把64个盘子,由一个塔柱上移到另一根塔柱上,并且始终保持上小下大的顺序。假设有n个盘子,移动次数是f(n).显然f(1)=1,f(2)=3,f(3)=7,且f(k+1)=2*f(k)+1。此后不难证明f(n)=2n-1。n=64时, f(64)= 2^64-1=18446744073709551615 假如每秒钟一次,共需多长时间呢?一年大约有 31536926 秒,计算表明移完这些金片需要5800多亿年,比地球寿命还要长,事实上,世界、梵塔、庙宇和众生都早已经灰飞烟灭。 对传统的汉诺塔问题,目前还有不少的学者继续研究它的非递归解法,本文通过对递归算法的研究……. 提示:(1)可以定义问题的规模n,如盘子的数量;(2)塔柱的数量(目前有部分理论可以支撑,不妨用计算机实现)分析规模的变化与算法的复杂度比较。(3)可以对经典的汉诺塔问题条件放松、加宽,如在经典的汉诺塔问题中大盘只能在小盘下面,放松其他条件可以定义相邻两个盘子必须满足大盘只能在小盘下面。其它盘子不作要求。 2 算法设计 2.1 汉诺塔递归算法描述(二级标题小五黑体加粗) 用人类的大脑直接去解3,4或5个盘子的汉诺塔问题还可以,但是随着盘子个数的增多,问题的规模变的越来越大。这样的问题就难以完成,更不用说吧问题抽象成循环的机器操作。所以类似的问题可用递归算法来求解。下面n个盘的汉

2016上公开课用的河内塔问题教案

河内塔问题 ------教学设计 新建三小徐珍珠 教学内容: 新人教版四年级上册第111页,河内塔问题。 教学目标: 1、让学生在学习过程中,根据解决问题的需要,经过自己的探索,体验化繁为简找规律这一解决数学问题的基本策略。 2、经历收集有用的信息进行归纳、类比与猜测、再验证猜测,这一系列数学思维过程,发展学生的归纳推理能力。 3、能用有条理的、清晰的语言阐述自己的想法。 4、在解决问题的活动中,学习与他人合作,懂得谦让,能相互帮助。 5、在老师的鼓励与引导下,能积极地应对活动中遇到的困难,在学习活动中获得成功体验。 教学重点: 在教学过程中,渗透化归的思想,指导学生根据解决问题的需要,收集有用的信息,进行归纳、类比与猜测,发展初步的合情推理能力。 教学难点: 在解决问题过程中,引导学生进行有条理的思考,训练学生对自己的结论做出条理清晰的说明。 教学具准备: PPT课件、河内塔教具、河内塔学具、游戏记录表。

教学过程: 课前谈话:孩子们,这节课是一节游戏与数学相结合的课,将会是一节很有趣的数学课,那你们有没有准备好要积极思考,大胆发言呀?准备好了,老师非常期待你们的精彩表现! 首先,我们先来学习一个简单的数学知识:2我们可以写成2一次方,2乘2也就是两个2相乘可以写成2的2次方等于4,2乘2乘2可以写成2的3次方等于8,以此类推:4个2相乘可以写成2的4次方等于8再乘以2得16.同学们学得很好,现在请同学们做一道找规律填空题:2 4 8 16 ……()第10数是几?()第N数是几?请同学们拿出草稿本,想想,算算,找找规律。我们不要怕失败,因为失败是成功之母。找到了,规律是第几个数,就是几个2相乘的积。那第20个数呢,你们再想一想,??? 游戏引入 同学们都喜欢玩游戏,老师这儿就有一种很好玩的游戏你们肯定想试试。这个游戏要用到的玩具叫河内塔。(出示课件)(它是由一块底盘,三根杆子和一些圆盘组成的)大家现在还想知道什么呢,是不是怎么玩呢?大家别着急,它的游戏规则和一个传说有关,请同学们认真听老师讲一个关于河内塔的古老的传说,游戏规则就在这个传说里面。出示课件讲传说。 二、介绍传说 1、听了传说后,你们担心不担心河内塔上的64块圆盘很快就会移完,世界末日很快就会到来呀! 到底有没有这个担心的必要呢?这个传说究竟蕴含了什么样的奥秘呢? 今天我们就来研究河内塔问题,找到移完64个圆盘最少所花的时间,揭开这个古老传说的奥秘。(出示课题) 2、探索玩法: 听了刚才的传说,你懂得了玩这个河内塔规则吗?看谁听得认真看得仔细。(出示白屏。)请你说出其中的一条。 同学们看看是不是有这四点:(出示课件)游戏规则: (1)、把第一根杆上的珠子全部移到第三根杆上;

课程实践报告_汉诺塔

课程实践报告 题目:汉诺塔 姓名: 学号: 班级: 日期:

一实践目的 1、初步具备根据应用需求选择合理数据结构并进行算法设计的能力; 2、进一步提升C语言的应用能力; 3、初步掌握软件开发过程的问题分析、系统设计、程序编码、测试等基本方法和技能; 4、提高综合运用所学的理论知识和方法独立分析和解决问题的能力; 5、训练用系统的观点和软件开发一般规范进行软件开发,培养软件工作者所应具备的科学的工作方法和作风; 6、提升文档写作能力。 二问题定义及题目分析 汉诺塔(又称河内塔)问题是印度的一个古老的传说。开天辟地的神勃拉玛在一个庙里留下了三根金刚石的棒,第一根上面套着64个圆的金片,最大的一个在底下,其余一个比一个小,依次叠上去,庙里的众僧不倦地把它们一个个地从这根棒搬到另一根棒上,规定可利用中间的一根棒作为帮助,但每次只能搬一个,而且大的不能放在小的上面。这是一个著名的问题,几乎所有的教材上都有这个问题。由于条件是一次只能移动一个盘,且不允许大盘放在小盘上面,所以64个盘的移动次数是:18,446,744,073,709,551,615 这是一个天文数字,若每一微秒可能计算(并不输出)一次移动,那么也需要几乎一百万年。我们仅能找出问题的解决方法并解决较小N值时的汉诺塔,但很难用计算机解决64层的汉诺塔。后来,这个传说就演变为汉诺塔游戏: 1.有三根杆子A,B,C。A杆上有若干圆盘。2.每次移动一块圆盘,小的只能叠在大的上面。3.把所有圆盘从A杆全部移到C杆上。经过研究发现,汉诺塔的破解很简单,就是按照移动规则向一个方向移动圆盘:如3阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C。 程序所能达到的功能: 用户只需要输入所需的层数即可,程序会自动计算出最终需要的步骤,并同时给出中间移动的过程。 三概要设计 1、设计思想 如果盘子为1,则将这个盘子从塔座A移动到塔座C;如果不为1,则采用递归思想。将塔座A的前n-1个盘子借助C盘(即目的盘)移到塔座B,移后,此时C为空座,那我们就可以将塔座A的第n个盘子移到塔座C了。接下来就将塔座B的n-1个盘子借助A移到塔座C,从而完成盘子的移动。 2、数据类型 结构体:用来存放盘子的栈。同时,在函数的参数中还用到了结构体类型的引用。 其他类型:基本的数据类型,包括整形,字符型。用来存放临时变量。 3、主要模块

汉诺塔问题非递归算法详解

Make By Mr.Cai 思路介绍: 首先,可证明,当盘子的个数为n 时,移动的次数应等于2^n - 1。 然后,把三根桩子按一定顺序排成品字型(如:C ..B .A ),再把所有的圆盘按至上而下是从小到大的顺序放在桩子A 上。 接着,根据圆盘的数量确定桩子的排放顺序: 若n 为偶数,按顺时针方向依次摆放C ..B .A ; 若n 为奇数,按顺时针方向依次摆放B ..C .A 。 最后,进行以下步骤即可: (1)首先,按顺时针方向把圆盘1从现在的桩子移动到下一根桩子,即当n 为偶数时,若圆盘1在桩子A ,则把它移动到B ;若圆盘1在桩子B ,则把它移动到C ;若圆盘1在桩子C ,则把它移动到A 。 (2)接着,把另外两根桩子上可以移动的圆盘移动到新的桩子上。 即把非空桩子上的圆盘移动到空桩子上,当两根桩子都非空时,移动较小的圆盘。 (3)重复(1)、(2)操作直至移动次数为2^n - 1。 #include #include using namespace std; #define Cap 64 class Stake //表示每桩子上的情况 { public: Stake(int name,int n) { this->name=name; top=0; s[top]=n+1;/*假设桩子最底部有第n+1个盘子,即s[0]=n+1,这样方便下面进行操作*/ } int Top()//获取栈顶元素 { return s[top];//栈顶 } int Pop()//出栈 { return s[top--];

} void Push(int top)//进栈 { s[++this->top]=top; } void setNext(Stake *p) { next=p; } Stake *getNext()//获取下一个对象的地址 { return next; } int getName()//获取当前桩子的编号 { return name; } private: int s[Cap+1];//表示每根桩子放盘子的最大容量 int top,name; Stake *next; }; void main() { int n; void hanoi(int,int,int,int); cout<<"请输入盘子的数量:"; cin>>n; if(n<1) cout<<"输入的盘子数量错误!!!"<

汉诺塔的递归求解分析

汉诺塔的递归求解分析 学完函数,就马上出了道经典的汉诺塔来,书里说是把递归提前拿来研究学习了,这题目实在是把我弄晕了。几天都在时时想这个题目。 递归是数学归纳法的逆过程。 递归函数是直接或通过另一个函数间接调用自己的函数。C语言的特点就是允许函数的递归调用。 如果一个问题要用递归解决,得符合以下的条件: 1,该问题要能转换成一个新问题,而新问题的解决方法要和原来的问题相同,只是复杂度有所减少而已。既是要有一定的规律。如求n!。 2、这个问题当简单到一定程度就可以解决,而不用再继续简化。(即需要一个结束递归的条件。否则无限的递归下去,最终会导致系统资源枯竭系统崩溃)。 3、问题用其他方法解决非常困难或不如用递归解决来的简单,(所有递归能解决的问题都能用迭代{非递归}来解决)这个条件是非必要的,但人总需要简单。 ? 要用递归解决问题,我们必须分析下列问题: 1、递归的参数,用递归解决的问题通常都比较复杂,规模比较大,要找出决定递归复杂度,规模的参数,比如n!,决定的递归复杂度、规模的就是n。 2、找出递归结束的标志,没有递归结束的条件,将无限循环。造成的后果是严重的。 3、找出递归的通式,才可以进一步简化问题。(通常这是比较困难的)(比如:n!的通式就是n*(n-1)!,而且是可以不断简化直到到达结束递归的边界值) ? ? ? 一般的格式是: ? if 结束条件1 表达式1(赋予边界值1) else if 结束条件2 表达式2(赋予边界值2) . . . else 递归的解决问题的通式。 ? ? 汉诺塔的问题; 这个问题对于我这个初学者来说,确实棘手,对于执行的步骤很不理解,虽然递归不用去了解执行的步骤的。但是,不用去了解不等同于不了解。 一个庙里有三个柱子,第一个有64个盘子,从上往下盘子越来越大。要求庙里的老和尚把这64个盘子全部移动到第三个柱子上。移动的时候始终只能小盘子压着大盘子。 1、此时老和尚(后面我们叫他第一个和尚)觉得很难,所以他想:要是有一个人能把前

奇妙的汉诺塔教学设计

神奇的汉诺塔教学设计 【教学目标】 1.在操作探究的过程中,使学生能够初步体会从简单问题入手寻找规律从而解决实际问题的方法,学会有条理地思考。 2.经历收集有用的信息、进行归纳、类比与猜测、再验证猜测,这一系列数学思维过程,发展学生的归纳推理能力。 3.通过自主探究、合作交流、汇报展示,引导学生有条理地阐述自己想法,培养合作意识,获得成功的体验。 【教学过程】 热身练习: ① 1 3 5 7 ()() ② 2 4 6 8 ()() ③ 2 4 8 16 ()() ④ 1 3 7 15 ()() 一、故事引入,揭示课题 师:能说出其中的规律吗? 小结:观察思考是学好数学的诀窍,他可以锻炼我们思维,当然,我们还可以通过游戏来锻炼我们的思维。 师:你们喜欢玩游戏吗?最近呀老师又迷上了一个数学游戏——汉诺塔。(板书课题)大家仔细观察这个汉诺塔,你看到了什么? 生:(预设)有大小不一的圆环,还有3根柱子。 师:这3根柱子我们帮它取个名字,一根叫起始柱,一根叫过渡柱,一根叫目标柱。

关于汉诺塔还有一个古老的传说呢,一起听一听。 汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。 师:大胆的猜一猜,他要移动多少次才能全部移完? 生:(预设)64次。 二、游戏操作,探索规律。 (1)师:那这个神奇的汉诺塔游戏怎么玩呢?大家有没有从这个故事中看出游戏规则呢? 生:①小圆盘上不能放大圆盘。②一次只能移动一个圆盘。③可以借助过渡柱。 师:同学们掌握了游戏规则,那我们先来比比赛,看哪个小组以最少的次数移完4个圆环,比赛时间2分钟,开始。 学生动手操作。 (2)学生汇报。 师:你来演示一下是怎样移的? 师:那有没有比这次数更少的,这个游戏是不是有什么规律呢?今天我们就来一起研究一下吧。 师:我们先从最简单的入手,先从1个圆环开始,依次叠加,把你们的操作过程记录在这张表上,孩子们,动起来吧! 学生动手操作并填表做记录。 (3)点名同学上台边操作边汇报。

《创造学思想录》教学设计

《创造学思想录》教学设计 《创造学思想录》教学设计1 一、单元教学目标: 1. 了解前辈学者读书治学的经验,了解他们的人才观和学习思想,从中得到启示,对自己的学习观重新思考。 2. 熟读精思,了解作者的基本观点和作品的内涵,发展创造性思维,能发现隽永智慧的语句,反复品位,理解这些语句的意义和在*中的作用。 3. 学习不同的论述方法(谈话式、随录式、独白式),并能模仿一定的表达方式写出有思想智慧的语句。 4. 学习在与别人的交谈中表达自己对问题的看法。 二、单元课时安排:共12课时 单元整体学习1课时 《创造学思想录》2课时 《成功》1课时 《学问与智慧》2课时

《论美》1课时 《诵读欣赏》1课时 写作3课时 专题交流或语文活动1课时 三、教学设计: 本单元的阅读教学 本单元的4篇*均为名家名作,虽然都与治学相关,但是视野不同,角度不一,语言风格也不相同。宜让学生基本通其大义,个别难懂之处可以忽略,重要的是对关键意思展开思考。 学习本单元,首先,应当掌握“反刍”这种有效的读书方法,边读书边思考,对充满智慧和哲理的经典作品深读精思、反复品味,直至得其精髓。“书读百遍,其意自现”。当然,“反刍”式的读书方法并不是意味着一遍又一遍简单的重复与叠加,而应当是随着读书遍数的增加,对作品理解和思考的逐步加深。第一遍的读,可以以读通、理解作品为目的;第二遍的读则应当品味作者的结构与语言;第三遍还可以进一步的对作品提出自己不同的见解和思考;第四遍则可以联系作者的其他作品或同类型的*探讨 作者的创作风格等等。总之,你完全可以根据自己的实际和需要,分阶段的制定自己的读书目的,“循序而渐进,熟读而精思”,每读一遍,你都可能会有全新的感受。

汉诺塔C递归算法详细解答

汉诺塔C递归算法详细解答 程序如下: void move(char x,char y){ printf("%c-->%c\n",x,y); } void hanoi(intn,charone,chartwo,char three){ /*将n个盘从one座借助two座,移到three座*/ if(n==1) move(one,three); else{ hanoi(n-1,one,three,two); move(one,three); hanoi(n-1,two,one,three); } } main(){ int n; printf("input the number of diskes:"); scanf("%d",&n); printf("The step to moving %3d diskes:\n",n); hanoi(n,'A','B','C'); } Hanoi塔问题, 算法分析如下,设A上有n个盘子。 如果n=1,则将圆盘从A直接移动到C。 如果n=2,则: (1)将A上的n-1(等于1)个圆盘移到B上; (2)再将A上的一个圆盘移到C上; (3)最后将B上的n-1(等于1)个圆盘移到C上。 如果n=3,则: A)将A上的n-1(等于2,令其为n`)个圆盘移到B(借助于C),步骤如下:(1)将A上的n`-1(等于1)个圆盘移到C上。 (2)将A上的一个圆盘移到B。 (3)将C上的n`-1(等于1)个圆盘移到B。 B)将A上的一个圆盘移到C。 C)将B上的n-1(等于2,令其为n`)个圆盘移到C(借助A),步骤如下:(1)将B上的n`-1(等于1)个圆盘移到A。 (2)将B上的一个盘子移到C。 (3)将A上的n`-1(等于1)个圆盘移到C。到此,完成了三个圆盘的移动过程。

小学人教四年级数学策略(汉诺塔)

河内塔游戏 活动目标: 1.本活动以河内塔做为媒介,从“玩”入手,让学生在“玩”的过程中,体会 最佳策略,初步感受递推法解决实际问题的方法。 2.能用有条理的、清晰的语言阐述自己的想法,学会用简单的方式记录活动过 程 3.培养学生的观察、分析、比较,综合思考能力。 活动材料:河内塔玩具、活动单 活动过程: 活动一:(初步感知尝试把玩) 1.师:出示河内塔玩具 谈话:今天老师给大家带来了一个玩具,见过吗?你知道这个玩具叫什么吗? 课题:“河内塔” 想知道这个玩具怎么玩吗? 2.(课件出示游戏玩法) 任务:将一根柱上的圆盘全部移动到另一根柱上。 规则:1.每次只能移动一个盘子,只能在3个柱子之间移动; 2.移动过程中,小盘子一定要放在大盘子的上面,不可颠倒; 3.读一读,问:谁看懂了游戏规则,和大家说一说。 4.在学生介绍的基础上老师结合操作介绍游戏规则 问:你想玩吗?那我们也来玩一玩。老师给你3分钟时间,请边玩边注意这个游戏的规则。(完好后把盘放回信封) 5.你知道吗,很多的数学家都研究过这个游戏。关于它还有一个古老传说,想不想听听。 传说印度教的主神梵天在创造世界的时候,在一块黄铜板上插着三根宝石针,并且在其中一根针上从下到上地穿好了由大到小的64片金片,不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针

上,小片必须在大片上面。僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声巨响中灭亡…… 师:传说中的河内塔上只有64个盘子,按照上面的规则移动完成后,我们的世界怎么可能灭亡呢?这中间究竟蕴含了什么样的奥秘呢? 今天我们也来研究一下河内塔,揭开这个古老传说中的奥秘吧。 这个河内塔上有64个金环,要是直接移动是不是有些麻烦,那你想从几个开始? 7.在学生回答的基础上小结:对于复杂的问题,我们可以从它最简单的形式开始研究,在研究的过程中找到规律就好办了。 活动二:一盘游戏 (学生说一说,教师简单演示过程) 活动三:二盘游戏 1.学生分组活动,两人一组轮流玩。(每人玩两次,比比那组最先好) 2.组织交流:操作。 (1)老师想把盘从第一根柱上移到第三根柱上,怎么移,谁来试试,指名上前操作。(要求学生一边说一边操作) (2)师:为了说起来方便我们把左边的柱子称为A柱,中间的柱子称为B柱,右边的柱子称为C柱。谁能再说一说刚才的移动过程。 (3)我们把移动过程记录下来。 小盘---B 大盘---C 小盘---C 3.讨论研究从A柱移到B柱。 学生操作,指名说说过程,老师记录过程。你能看出他完成任务了吗? 4.一起研究从B柱移到C柱 5.小结,刚才我们研究的两个盘的移动情况,你有什么想和大家说的。 (移动的目标不同,但都移动三次就可以完成) 活动四:三盘游戏 谈话:刚才我们都玩了一把,有趣吧,想不想玩难度大一点的。(从信封袋中拿出第三个盘) 1.学生分组活动。从A柱移动到B柱(两生合作,一人边说边移动,一人把移动过程记录下来)完成活动单第一列

相关文档