文档视界 最新最全的文档下载
当前位置:文档视界 › 金属纳米粒子LSPR效应的机理及其光谱特征研究【文献综述】

金属纳米粒子LSPR效应的机理及其光谱特征研究【文献综述】

金属纳米粒子LSPR效应的机理及其光谱特征研究【文献综述】
金属纳米粒子LSPR效应的机理及其光谱特征研究【文献综述】

毕业论文文献综述

理论物理

金属纳米粒子LSPR效应的机理及其光谱特征研究LSPR的定义

LSPR现象是仅限于金属纳米粒子(有时被当作金属簇)和金属纳米结构中的传导电子共振现象。它发生在金属纳米结构中,如纳米粒子,纳米三角形,纳米岛等。当光子跟金属纳米粒子中的传导电子振动相匹配时,就会产生LSPR现象。用入射波长能够激发共振的电场激励LSPR,会产生强光散射,出现强表面等离子体吸收带,同时局部电磁场增强。

LSPR的研究历史

多项研究表明,基于LSPR的纳米传感器的传导机理与平面传感器的传导机理一致,是SPR传感器的拓展和延续。在近20年来,SPR传感器,利用折射率的原理来探测接合在金属表面上或其附近的分析物,并且被广泛的用于检测一系列的分析物的表面接合相互作用。

但是就SPR技术来说,它有三个明显的缺点:(1)SPR的共振角和共振波长的移动检测模式需要大量的光学阵列来实现;(2)局限于一些平方微米量级的信号传感元的尺寸,特别典型的是10μm×10μm;(3)实时性不强。

为了提高SPR生物传感器的灵敏度,近年来,基于纳米材料制成的生物传感芯片受到研究者广泛的关注。金属纳米粒子或不连续的金属纳米结构中存在局域表面等离子体,当其受到入射光激发时,会引起局域表面等离子体共振(LSPR),该金属纳米结构表面的局域电场被增强,对某一波段的光谱展现出强烈的吸收。金、银、铂等贵金属纳米粒子具有很强的LSPR效应,它们在紫外一可见光波段展现出很强的光谱吸收。LSPR效应是纳米贵金属颗粒表面电磁场增强的结果,这是平面金膜所不具备的

由于LSPR在这些方面优于SPR,所以LSPR取代了SPR。

LSPR的现状

目前局域表面等离子体共振(LSPR)的形成以及它载体上的金和银纳米粒子的光学

特性都具有很大的吸引力。金和银纳米粒子在各种纳米光学的应用,如生物芯片,以及纳米尺度方面都得到了广泛的重视和研究。被测溶液和固定在衬底表面的粒子之间的反应能够引起的生物分子层厚度的变化,而基于LSPR的检测方法就能够对这种即时变化

进行检测。

我们知道,纳米粒子,如金和银,在可见光区域有强吸收作用,这就是通常所说的LSPR吸收。这种LSPR现象发生时,入射光子频率同金属纳米粒子或金属岛传导电子的整体振动相匹配。纳米量级的粒子在紫外-可见光区域表现出独特的光学响应,它们的吸光率随着光子能量的减少呈指数衰减(被称为Mie散射),在这个区域会出现LSPR带,对于粒子材料来说,它是叠加而成的。研究显示,表面等离子体能量和强度对粒子结构和周围环境媒介等很多因素敏感。贵金属纳米粒子由于其独特的光学特性,即它们有在普通金属的光谱中不存在的强烈等离子体共振光谱吸收带,同时,基于LSPR的设备还能够与简单光学系统同时建立,这也使得对贵金属纳米粒子基于LSPR派生的各种传感器的技术研究十分热门。

LSPR的发展动向和趋势。

金、银、铂等贵金属纳米粒子均具有很强的局域表面等离子体共振效应,它们在紫外一可见光波段展现出很强的光谱吸收,该吸收光谱峰值处的吸收波长取决于该材料的微观结构特性。例如组成、形状、大小、局域传导率。从而获得局域表面等离子体共振光谱,并对其进行分析,可以研究纳米粒子的微观组成,同时还可以作为化学传感器和生物传感器,运用光学来检测生化分子相互反应的参数。这种技术在光电子器件、传感技术、生命科学等领域具有重要的理论价值和广泛的应用前景。

由于纳米材料与生物高分子、蛋白质、核酸等在尺寸大小上具有相同的量级,所以在生物医学领域,基于LSPR的各种传感器技术的研究和优化的工作也在进行之中。生物领域中的药物研究、生物传感、细胞标记、定点诊断、分子动力学研究以及载体治疗等方面的应用,都是以生物分子和纳米材料之间的相互作用为基础的。LSPR纳米传感器在检测生物分子方面应用很广泛。生物传感技术被应用于大蛋白和抗体的检测。以通过NSL技术(纳米球光刻术)制得的银纳米粒子为例,当增加被吸附物层的密度和厚度时,会产生连续波长的红移。纳米粒子表面的分子的大小和密度决定波长的移动响应,表面结合的配体和溶液中的目标分子共同决定系统的检测能力。因为系统显示没有非特异性结合,所以整个反应归因于分子间的配对选择。LSPR纳米传感器的性能优化可通过调整纳米粒子的大小和形状实现。理论计算表明,纳米粒子角上的电磁场强度放大区域以及整个可调传感区域,与环绕在纳米粒子周围的平均感生电磁场有关。于是,随着进一步的研究成果,我们可以将纳米传感器应用于相关生物系统中来进行诊断操作,如老年痴呆症的诊断。

基于LSPR技术的无标记光学生物传感器在继承了很多传统SPR传感器的优良特性

的基础上,实时无标记监测分子动力学相互作用的能力也得到了进一步的发展。这种生物传感器容易制造,使用方便,只需要紫外-可见光分光计或者平板扫描仪辅助。值得注意的是,无标记光学生物传感器在基于阵列的形式下,能够方便并多元化实现高度检测生物分子之间的相互作用。

参考文献:

1、Yonzon, C. R. et al., Towards advanced chemical and biological nanosensors - an overview, Talanta 67, 438–448, (2005).

2、Heinz Raether, Surface Plasmons-on Smooth and Rough Surface and on Gratings, Springer, Berlin, Heidelberg (1988),ISBN 3540428504

3、洪昕,杜丹丹,裘祖荣,张国雄,半壳结构金纳米膜的局域表面等离子体共振效应,物理学报,56(12),7219-7223,(2007)

4、Z.Xie, J.Tao, Y.Lu , K.Lin, J.Yan, P.Wang, H.Ming(明海), Polymer optical fiber SERS sensor with gold nanorods,Opt. Commun., 282 ,439–442 (2009)

5、王珏,罗阳,府伟灵,一种多通道表面等离子波传感检测系统,发明专利申请号: 200810070131.1,公开(公告)日:2009.01.21

6、Jin, R. et al. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425, 487–490,(2003)

7、Y. Ma, J. Zhou (周骏), Z.Wang,Surface plasmon waves on structured metal surface with periodic grooves modified by perpendicular cuts, IEEE Photonics Technology Letters, 22(7), 450-452, (2010)

[45]KH Mohan, Sathish Pai, Raghavendra Rao, H Sripathi, Smitha Prabhu, Techniques of immunofluorescence and their significance, Indian J. Dermatol. Venereol. Le prol.,74(4):415-419, 2008

碳纳米材料综述

碳纳米材料综述 课程: 纳米材料 日期:2015 年12月

碳纳米材料综述 摘要:纳米材料是一种处于纳米量级的新一代材料,具有多种奇异的特性,展现特异的光、电、磁、热、力学、机械等物理化学性能,这使得纳米技术迅速地渗透到各个研究领域,引起了国内外众多的物理学家、化学家和材料学家的广泛关注,也成为当前世界最热门的科学研究热点。物理学家对纳米材料感兴趣是因为它具有独特的电磁性质,化学家是因为它的化学活性以及潜在的应用价值,材料学家所感兴趣的是它的硬度、强度和弹性。毫无疑问,基于纳米材料的纳米科技必将对当今世界的经济发展和社会进步产生重要的影响。因此,对纳米材料的科学研究具有非常重要的意义。其中,碳纳米材料是最热的科学研究材料之一。 我们知道,碳元素是自然界中存在的最重要的元素之一,具有sp、sp2、sp3等多种轨道杂化特性。因此,以碳为基础的纳米材料是多种多样的,包括常见的石墨和金刚石,还包括近几年比较热门的碳纳米管、碳纳米线、富勒烯和石墨烯等新型碳纳米材料。 关键词:纳米材料碳纳米材料碳纳米管富勒烯石墨烯 1.前言 从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)。自20世纪80年代初,德国科学家Gleiter提出“纳米晶体材料’,的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料己引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1—100 nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域[1]。 碳纳米材料主要包括富勒烯、碳纳米管和石墨烯等,是纳米科学技术中不可或缺的材料,从1985年富勒烯(Fullerene)的出现到1991年碳纳米管(carbon nanotube,CNTs)的发现,碳纳米材料所具有的独特物理和化学性质引起了国内外研究人员广泛而深入的研究,二十年来取得了很多的成果。2004 年Geim研究组的报道使得石墨烯(Graphene)成为碳纳米材料新一轮的研究热点,其出现充实了碳纳米材料家族,石墨烯具有由碳原子组成的单层蜂巢状二维结构,由于它只有一个原子的厚度,可以将其视为形成其它各种维度的石墨相关结构碳材料的基本建筑块,石墨烯既可翘曲形成零维的富勒烯及卷曲形成一维的碳纳米管,亦可面对面堆积形成石墨,由于石墨烯具有优异的电学、导热和机械性能及较大的比表面积,因而在储氢材料、超级电容器、高效催化剂及纳米生物传感等方面有着广泛的应用[2]。 2.常见的碳纳米材料

钛合金热处理

第十三章有色金属及合金 内容提要: 有色金属的产量和用量不如黑色金属多,但由于其具有许多优良的特性,如特殊的电、磁、热性能,耐蚀性能及高的比强度(强度与密度之比)等,已成为现代工业中不可缺少的金属材料。 1.铝及铝合金; 2.钛及钛合金; 3.铜及铜合金; 4.轴承合金。 基本要求: 掌握和了解各种有色金属的牌号、成分、性能和用途。 13.1铝及铝合金 13.1.1铅及铝合金的性能特点及分类编号 纯铝:纯铝具有银白色金属光泽,密度小(2.72 ),熔点低(660.4℃), 导电、导热性能优良。 耐大气腐蚀,易于加工成形。 具有面心立方晶格,无同素异构转变,无磁性。 1 铝合金及其特点 铝合金常加入的元素主要有Cu、Mn、Si、Mg、Zn等,此外还有Cr、Ni、Ti、Zr 等辅加元素。 ①比强度高(>>高强钢)。可用于轻结构件,尤其航空。 ②突出理化性能。导电、抗大气腐蚀。 ③良好加工性。高塑性、易冷成形;某些合金铸造性能好,宜作压铸件。 2 铝合金分类及分类编号 13.1.2铝合金的强化 1 形变强化 2沉淀强化 3 固溶强化和时效强化: 13.1.3变形铝合金 变形铝及铝合金牌号表示方法:根据国标规定,变形铝及铝合金可直接引用国际四位数字体系牌号或采用国标规定的四位字符牌号。GB 3190-82中的旧牌号仍可继续使用,表示方法为: ?防锈铝合金:LF+序号 ?硬铝合金: LY +序号 ?超硬铝合金:LC +序号 ?锻铝合金: LD +序号 常用变形铝合金 1 防锈铝合金:主要是Al-Mn和Al-Mg系合金。 Mn和Mg主要作用是提高抗蚀能力和塑性,并起固溶强化作用。 防锈铝合金锻造退火后组织为单相固溶体,抗蚀性、焊接性能好,易于变形加工,但切削性能差。不能进行热处理强化,常利用加工硬化提高其强度。常用的Al-Mn系合金有 LF21 ( 3A21 ),其抗蚀性和强度高于纯铝,用于制造油罐、油箱、管道、铆钉等需要弯曲、冲压加工的零件。常用的Al-Mg系合金有 LF5( 5A05 ),其密度比纯铝小,强度比Al-Mn合金高,在航空工业中得到广泛应用,如制造管道、容器、铆钉及承受中等载荷的零件。

内隐情绪启动效应的文献综述

内隐情绪启动效应的文献综述 一、情绪 (一)情绪启动 近年来,当启动刺激与探测刺激具有相同的情绪色彩时,控制组与实验组的反应会有明显的不同,这种情况被称之为情绪启动。这种情绪研究的发现为情绪的研究提供了新的研究范式。现代心理学产生不久以后,Williian James于1884年提出了被后人称为情绪的外周理论,但是由于情绪本身的复杂性,以及研究方法的困难,在其后的时间里情绪研究发展缓慢,直到20世纪60年代以后,情绪研究才出现了快速发展,早期情绪研究主要涉及情绪的生理唤醒、情绪脑机能定位、情绪的生理伴随模式、情绪发生序列、情绪与体内平衡、情绪与环境、条件性情绪反应、情绪与人格发展等课题。 情绪启动(affective priming)就是指这样一种现象,当启动刺激与目标刺激有相同效价即在评价上一致时(如: 阳光母爱蟑螂死亡),与具有不同效价即在评价上不一致时(如:蟑螂母爱阳光死亡)相比,在前一种情况下,对目标刺激(母爱死亡)的加工会更快和更准确,这通常就被称为情绪启动效应。 [1] (二)内隐情绪 为我们所熟知,弗洛伊德是无意识研究的先驱之一,在他的《性学与爱情心理学》中第三章就是对无意识情绪的阐述。他认为,本能是要寻求一种与观念或情感状态的结合。原始的本能与观念的结合之后就产生认知,而原始的本能与情绪情感状态结合后,就成为外显的情绪情感,两种结合过程之中都会伴随压抑影响作用,往往就把这种原始的观念和情感称为无意识观念和无意识情绪。而且弗洛伊德把意识分为意识、前意识、和潜(无)意识,并且指出无意识对人的心理发展起到重要的作用。就像上文所提到的,在20世纪60年代后,现在心理学开始蓬勃发展,认知革命开始,而内隐学习和内隐记忆的研究也快速发展,因此内隐研究的研究范式和研究方法也相对开始成熟。在此基础上有研究表明内隐社会认知揭示了无意识认知成分参与有意识的社会认知过程。这些都为内隐情绪的研究提供了可能。 什么是内隐情绪,当今研究中尚未有一致的可被所有人认可的界定,在1999 年,Kihlstrom在《无意识心理》中明确提出“implicit emotion”这个概念,表明 内隐情绪是指某种情绪状态所导致的经验思想和行动上的变化,这种情绪状态独 立于他/她对这种情绪状态的有意识的觉知。也就是说相对于个体意识到情绪、 情感及情绪状态知觉的外显情绪,内隐情绪则是归于一个人情绪状态引发的体 验、思想或行为的改变,而这种情绪状态的引发是阈下即无意识的。 [2] 二、内隐情绪的相关研究 目前内隐情绪的研究集中在两个方面,第一方面是阈下刺激诱发内隐情绪并且因此产生的反应是被试可以觉察到的,即被试可以意识到自身的情绪反应;第二方面是阈下刺激诱发的内隐情绪并且因此产生的反应是被试不能察觉到的,即被试的内隐情绪变化是被试没有意识到的。 (一)阈下引发的内隐情绪并且有外显反应

我国金属热处理的发展综述

我国金属热处理的发展综述 引言 金属热处理是利用固态金属相变规律,采用加热、保温、冷却的方法,改善并控制金属所需组织与性能(物理、化学及力学性能等)的技术。 热处理是金属加工工艺中的一项重要基础技术,通常金属材料都是要经过热处理的,而且,只要选材合适,热处理得当,就能金属材料的性能成倍、甚至十几倍的提高,收到事半功倍的效果。热处理工艺一般包括加热、保温、冷却三个过程,有时只有加热和冷却两个过程。 热处理对于充分发挥金属材料的性能潜力,提高产品的内在质量,节约材料,减少能耗,延长产品的使用寿命,提高经济效益都具有十分重要的意义。 建国以来,我国的热处理技术有了很大的发展。目前我国在热处理的基础理论研究和某些热处理新工艺、新技术研究方面,与工业发达国家的差距不大,但在热处理生产工艺水平和热处理设备方面却存在着较大的差距,还没有完全扭转热处理生产工艺和热处理设备落后、工件氧化脱碳严重、产品质量差、生产效率低、能耗大、成本高、污染严重的局面。为促进我国热处理技术的发展,我们应全面了解热处理技术的现状和水平,掌握其发展趋势,大力发展先进的热处理新技术、新工艺、新材料、新设备,用高新技术改造传统的热处理技术,实现“优质、高效、节能、降耗、无污染、低成本、专业化生产”,力争赶上工业发达国家水平。 1、热处理工艺介绍 金属热处理是机械制造中的重要过程之一,与其他加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的,所以,它是机械制造中的特殊工艺过程,也是质量管理的重要环节。 为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。另外,铝、铜、镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性能。 2、热处理发展史 在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。早在商代,就已经有了经过再结晶退火的金箔饰物。公元前770~前222年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变形的影响而变化。白口铸铁的柔化处理就是制造农具的重要工艺。

纳米尺寸效应

纳米尺寸效应 纳米是长度单位,原称毫微米,就是10^-9米(10亿分之一米)。纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在1至100纳米范围内材料的性质和应用。纳米效应就是指纳米材料具有传统材料所不具备的奇异或反常的物理、化学特性,如原本导电的铜到某一纳米级界限就不导电,原来绝缘的二氧化硅、晶体等,在某一纳米级界限时开始导电。这是由于纳米材料具有颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大等特点,以及其特有的三大效应:表面效应、小尺寸效应和宏观量子隧道效应。 表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径变小,比表面积将会显著增大,说明表面原子所占的百分数将会显著地增加。对直径大于0.1微米的颗粒表面效应可忽略不计,当尺寸小于0.1微米时,其表面原子百分数激剧增长,甚至1克超微颗粒表面积的总和可高达100平方米,这时的表面效应将不容忽略。 超微颗粒的表面与大块物体的表面是十分不同的,若用高倍率电子显微镜对金超微颗粒(直径为2*10^-3微米)进行电视摄像,实时观察发现这些颗粒没有固定的形态,随着时间的变化会自动形成各种形状(如立方八面体,十面体,二十面体多李晶等),它既不同于一般固体,又不同于液体,是一种准固体。在电子显微镜的电子束照射下,表面原子仿佛进入了“沸腾”状态,尺寸大于10纳米后才看不到这种颗粒结构的不稳定性,这时微颗粒具有稳定的结构状态。超微颗粒的表面具有很高的活性,在空气中金属颗粒会迅速氧化而燃烧。如要防止自燃,可采用表面包覆或有意识地控制氧化速率,使其缓慢氧化生成一层极薄而致密的氧化层,确保表面稳定化。利用表面活性,金属超微颗粒可望成为新一代的高效催化剂和贮气材料以及低熔点材料。 小尺寸效应 随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变。由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质。 (1)特殊的光学性质当黄金被细分到小于光波波长的尺寸时,即失去了原有的富贵光泽而呈黑色。事实上,所有的金属在超微颗粒状态都呈现为黑色。尺寸越小,颜色愈黑,银白色的铂(白金)变成铂黑,金属铬变成铬黑。由此可见,金属超微颗粒对光的反射率很低,通常可低于l%,大约几微米的厚度就能完全消光。利用这个特性可以作为高效率的光热、光电等转换材料,可以高效率地将太阳能转变为热能、电能。此外又有可能应用于红外敏感元件、红外隐身技术等。 (2)特殊的热学性质固态物质在其形态为大尺寸时,其熔点是固定的,超细微化后却发现其熔点将显著降低,当颗粒小于10纳米量级时尤为显著。例如,金的常规熔点为1064C℃,当颗粒尺寸减小到10纳米尺寸时,则降低27℃,2纳米尺寸时的熔点仅为327℃左右;银的常规熔点为670℃,而超微银颗粒的熔点可低于100℃。因此,超细银粉制成的导电浆料可以进行低温烧结,此时元件的基片不必采用耐高温的陶瓷材料,甚至可用塑料。采用超细银粉浆料,可使膜厚均匀,覆盖面积大,既省料又具高质量。日本川崎制铁公司采用0.1~

纳米材料的自组装综述

纳米材料的自组装综述 专业:高分子材料与工程 摘要: 自组装技术是制备纳米结构的几种为数不多的方法之一。本文对最近几年自组装技术在纳米科技领域中的一些重大突破和成果进行较为系统地综述,主要包括以下几个方面:自组装单层膜、纳米尺度的表面改性、超分子材料、分子电子学与光子晶体。 关键词: 自组装; 纳米技术; 材料;超分子材料 1 引言 纳米科学与技术是一门在0. 1~100 nm 尺度空间研究电子、原子和分子运动规律和特性的高技术学科。它以现代先进科学技术为基础,是现代科学(混沌物理、量子物理、介观物理、分子生物学) 和现代技术(计算机技术、微电子技术、扫描隧道显微技术、核分析技术) 相结合的产物。它的最终目标是人类按照自己的意志直接操纵单个原子,制造具有特定功能的产品。纳米技术作为21 世纪新的推动力,将对经济发展、国家安全、人民生活、以至于人们的思维产生深远的影响[1 ] 。 自组装是在无人为干涉条件下,组元自发地组织成一定形状与结构的过程[2 ] 。自组装纳米结构的形成过程、表征及性质测试,吸引了众多化学家、物理学家与材料科学家的兴趣,已经成为目前一个非常活跃并正飞速发展的研究领域[3 ] 。它一般是利用非共价作用将组元(如分子、纳米晶体等) 组织起来,这些非共价作用包括氢键、范德华力、静电力等[1 ,4 ] 。通过选择合适的化学反应条件,有序的纳米

结构材料能够通过简单地自组装过程而形成,也就是说,这种结构能够在没有外界干涉的状态下,通过它们自身的组装而产生。因此,自组装是制备纳米结构的几种为数不多的方法之一[2 ] ,它已成为纳米科技一个重要的核心理论和技术。纳米材料因其尺寸上的微观性,从而表现出特殊的光、电、磁及界面特性。这些特性使得纳米材料广泛应用于各种领域:涂料 [5 ]、催化剂[6-7] 、电化学[8] 、光化学[ 9]及材料科学[10-12 ](如光电子器件)。 2 自组装单层膜 分子与生物分子膜正在被广泛应用到许多研究领域。自组装单层膜就是其中的一个研究重点。它是分子通过化学键相互作用,自发吸附在固/ 液或固/ 气界面,形成热力学稳定和能量最低的有序膜。在适当的条件下,自组装单层膜可以通过不同类型的分子和衬底来制备,常用的衬底有Au (111) 、Pt(111) 、Ag 、Al 、Si 、云母、玻璃等。 目前,研究最多的自组装单层膜可以分为三种类型[13 ] :由脂肪酸自组装的单层膜; 由有机硅及其衍生物自组装的单层膜;烷烃硫醇在金表面自组装的单层膜。它们的原理很简单,一个烷烃长链分子 (带有10~20 个亚甲基单元) ,其头部基团吸附到所用的衬底上,如硫醇(S —H) 头部基团和Au (111) 衬底已被证明可以进行完美的结合,它代表了一种控制表面性质的模式。硫醇分子在溶液中很容易吸附到金衬底上,形成一密集的单层,尾部基团从表面伸向外部,通过应用带有不同尾基的硫醇分子,化学样品的表面功能可以在很大范围内进行调节。自组装单层膜有着广泛的应用,如电子传输的研究、生物

第四章-钛合金的相变及热处理

第四章-钛合金的相变及热处理

第4章钛合金的相变及热处理 可以利用钛合金相变诱发的超塑性进行钛合金的固态焊接,接头强度接近基体强度。 4.1 同素异晶转变 1.高纯钛的β相变点为88 2.5℃,对成分十分敏感。在882.5℃发生同素异晶转变:α(密排六方)→β(体心立方),α相与β相完全符合布拉格的取向关系。 2.扫描电镜的取向成像附件技术(Orientation-Imaging Microscopy , OIM) 3.α/β界面相是一种真实存在的相,不稳定,在受热情况下发生明显变化,严重影响合金的力学性能。 4.纯钛的β→α转变的过程容易进行,相变是以扩散方式完成的,相变阻力和所需要的过冷度均很小。冷却速度大于每秒200℃时,以无扩散发生马氏体转变,试样表面出现浮凸,显微组织中出现针状α′。转变温度会随所含合金元素的性质和数量的不同而不同。 5.钛和钛合金的同素异晶转变具有下列特点: (1)新相和母相存在严格的取向关系 (2)由于β相中原子扩散系数大,钛合金的加热温度超过相变点后,β相长大倾向特别大,极易形成粗大晶粒。 (3)钛及钛合金在β相区加热造成的粗大晶粒,不像铁那样,利用同素异晶转变进行重结晶使晶粒细化。钛及钛合金只有经过适当的形变再结晶消除粗晶组织。 4.2 β相在冷却时的转变 冷却速度在410℃/s以上时,只发生马氏体转变;冷速在410~20℃/s时,发生块状转变;冷却继续降低,将以扩散型转变为主。 1.β相在快冷过程中的转变 钛合金自高温快速冷却时,视合金成分不同,β相可以转变成马氏体α′或α"、ω或过冷β等亚稳定相。 (1)马氏体相变 ①在快速冷却过程中,由于β相析出α相的过程来不及进行,但是β相的晶体结构,不易为冷却所抑制,仍然发生了改变。这种原始β相的成分未发生变化,但晶体结构发生了变化的过饱和固溶体是马氏体。 ②如果合金的溶度高,马氏体转变点M S降低至室温一下,β相将被冻结到室温,这种β相称过冷β相或残留β相。 ③若β相稳定元素含量少,转变阻力小,β相由体心立方晶格直接转变为密排六方晶格,这种具有六方晶格的过饱和固溶体称六方马氏体,以α′表示。 ④若β相稳定元素含量高,晶格转变阻力大,不能直接转变为六方晶格,只能转变为斜方晶格,这种具有斜方晶格的马氏体称斜方马氏体,以α′′表示。 ⑤马氏体相变是一个切变相变,在转变时,β相中的原子作集体的、有规律的进程迁移,迁移距离较大时形成六方α′相,迁移距离较小时形成斜方α′′相。 ⑥马氏体相变开始温度M S ;马氏体相变终了温度M f 。 ⑦钛合金中加入Al、Sn、Zr将扩大α相区,使β相变点升高;V、Mo、Mn、Fe、Cr、Cu、Si将缩小α相区(扩大β相区),使β相变点降低。 ⑧β相中原子扩散系数很大,钛合金的加热温度一旦超过β相变点,β相将快速长大成粗晶组织,即β脆性,故钛合金淬火的加热温度一般均低于其β相变点。

金属纳米材料研究进展

金属纳米材料研究进展 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

高等物理化学 学生姓名:聂荣健 学号:…………….. 学院:化工学院 专业:应用化学 指导教师:…………. 金属氧化物纳米材料研究进展 应用化学专业聂荣健学号:……指导老师:…… 摘要:综述了近年来金属氧化物纳米材料水热合成方法的研究进展,简要阐述了金属氧化物纳米材料的应用,对其今后的研究发展方向进行了展望。 关键词:纳米材料水热合成金属氧化物 Research progress of metal oxide nanomaterials Name Rongjian Nie Abstract: This article reviews the recent progress in hydrothermal synthesis of metal oxide nanomaterials. The application progress of metal oxide nanomaterials is briefly describrd.The future research directions are prospected. Keywords: nanomaterials; hydrothermal; metal oxides ; 引言 纳米材料是纳米科学中的一个重要的研究发展方向,近年来已在许多科学领域引起了广泛的重视,成为材料科学研究的热点。作为纳米材料的一个方面,金属氧化物纳米材料在现代工业、国防和高技术发展中充当着重要的角色。 1.纳米材料简介 纳米材料概述

三维纳米材料制备技术综述

三维纳米材料制备技术综述 摘要:纳米材料的制备方法甚多。目前,制备纳米材料中最基本的原则有二:一是将大块固体分裂成纳米微粒;二是由单个基本微粒聚集,并控制聚集微粒的生长,使其维持在纳米尺寸。本文主要介绍纳米材料分类和性能,同时介绍了一些三维纳米材料的制备方法,如水热法、溶剂热法和微乳液法。 关键词:纳米材料;纳米器件;纳米阵列;水热法;溶剂热法;微乳液法 1.引言 随着信息科学技术的飞速发展,人们对物质世界认识随之也从宏观转移到了微观,也就是说从宏观的块体材料转移到了微观的纳米材料。所谓纳米材料,是材料尺寸在三维空间中,至少有一个维度处于纳米尺度范围的材料。如果按照维度的数量来划分,纳米材料的的种类基本可以分为四类:(1)零维,指在空间中三维都处在纳米尺度,如量子点,尺度在纳米级的颗粒等;(2)—维,指在空间中两个维度处于纳米尺度,还有一个处于宏观尺度的结构,例如纳米棒、纳米线、纳米管等;(3)二维,是指在空间中只有一个维度处于纳米尺度,其它两个维度具有宏观尺度的材料,典型的二维纳米材料具有层状结构,如多层膜结构、一维超晶格结构等;(4)三维,即在空间中三维都属于宏观尺度的纳米材料,如纳米花、纳米球等各种形貌[1]。 当物质进入纳米级别,其在催化、光、电和热力学等方面都出现特异性,这种现象被称为“纳米效应”。纳米材料具有普通材料所不具备的3大效应:(1)小尺寸效应——其光吸收、电磁、化学活性、催化等性质发生很大变化;(2)表面效应——在催化、吸附等方面具有常规材料无法比拟的优越性;(3)宏观量子隧道效应,例如纳米微粒表现出令人难以置信的奇特的宏观物理特性,如高强度和高韧性,高热膨胀系数、高比热容和低熔点,异常的导电率和磁化率,极强的吸波性,高扩散性,以及高的物理、化学和生物活性等[2]。 纳米科学发展前期,人们更多关注于一维纳米材料,并研究其基本性能。随着纳米科学快速发展,当今研究热点开始转向以微纳结构和纳米结构器件为方向的对纳米阵列组装体系的研究。以特定尺寸和形貌的一维纳米材料为基本单元,采用物理和化学的方法在两维或三维空间内构筑纳米体系,可得到包括纳米阵

我国产融结合效应评价文献综述

龙源期刊网 https://www.docsj.com/doc/ca17129349.html, 我国产融结合效应评价文献综述 作者:王龙祥刘扬 来源:《时代金融》2016年第08期 【摘要】在我国关于产融结合的研究中,产融结合效应评价文献占有重要地位。本文将现有相关实证研究尽可能全面地纳入分析框架,通过对效应评价指标、评价方法和主要观点的回顾和评述,为未来我国产融结合效应研究提供借鉴。 【关键词】产融结合企业绩效企业效率评价方法 一、引言 企业产融结合是产业和金融通过一定途径进行协同发展的模式[1]。在许多发达国家,产 融结合都得到实践,因产业资本和金融资本结合所产生的积极作用得到肯定;但在国际金融危机后,过度金融化也压垮了一些大型产业集团。这表明产融结合是一把双刃剑,既有正面效应,也有负面效应。 我国产融结合发端于上世纪80年代末,并于90年代后期迅速发展。学者们普遍认为实施产融结合可降低交易费用,消除企业间信息不对称,通过构建内部市场优化资源配置,为企业乃至国家经济带来积极作用。但随着德隆、农凯等企业集团相继发生严重危机,研究人员开始围绕产融结合的效应问题展开实证研究,分析我国企业实施产融结合的实际情况。本文将现有相关研究尽可能全面地纳入分析框架,通过脉络梳理,提炼精要,论其优劣,以期为我国未来产融结合效应评价建立更广阔的视野。 二、我国产融结合效应的评价指标和评价方法 现阶段我国关于产融结合效应评价的文献中,学者们大都将焦点放在产融结合有效性分析上。傅艳(2004)认为,若企业扣除资本成本后的资本收益大于零,即为有效的产融结合[2]。这一观点成为学者们在研究产融结合效应时的基本依据和出发点:若实施产融结合后企 业绩效或企业效率提高,就意味着企业获得了产融结合的正效应。 (一)企业绩效相关评价指标和评价方法 林世协(2004)以每股收益和净资产收益率作为企业绩效衡量指标,运用Wilcoxon符号秩检验进行显著性分析[3]。李革森(2004)考虑到证券市场因素和非市场因素,选用市盈率 和每股收益作为评价指标建立回归模型[4]。张庆亮和孙景同(2007)首先以每股收益和净资 产收益率作为衡量指标,分析产融结合前后的经营绩效;其次以每股收益和市盈率为被解释变量、金融参股比例为解释变量建立一元线性回归方程进行研究[5]。徐赐豪(2009)从企业发 展能力、盈利能力、偿债能力等六方面选取12项指标构建综合评价体系,运用因子分析方法

(完整)量子尺寸效应

(完整)量子尺寸效应 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)量子尺寸效应)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)量子尺寸效应的全部内容。

1.1.1量子尺寸效应 所谓的量子尺寸效应是指粒子尺寸下降到某一值时,金属费米能级附近的电子能级 由准连续变为离散的现象,纳米半导体粒子存在不连续的最高被占据的分子轨道和最低未 被占据的分子轨道能级,能隙变宽,由此导致纳米微粒的光、电、磁、热、催化和超导性等 特性与宏观性存在着显著的差异。如金属纳米材料的电阻随着尺寸下降而增大,电阻温度 系数下降甚至变成负值;相反,原是绝缘体的氧化物达到纳米级时,电阻反而下降;10~ 25nm的铁磁金属微粒矫顽力比同种宏观材料大1000倍,而当颗粒尺寸小于10nm时矫顽力 变为零,表现为超顺磁性。 1。1。2小尺寸效应 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等 物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米微粒的颗粒表面 层附近原子密度减小,导致声、光、电、滋、热、力学等特性呈现新的小尺寸效应.例如: 光吸收显著增加,吸收峰的等离子共振频移,磁有序态向磁无序态转变,超导相向正常相 的转变,声子谱发生改变等,这种现象称为小尺寸效应。 1。1.3表面与界面效应 纳米材料的另一个重要特性是表面与界面效应.由于表面原子与内部原子所处的环境 不同,当粒子直径比原子直径大时(如大于0。01时),表面原子可以忽略,但当粒子直径 逐渐接近原子直径时,表面原子的数目及作用就不能忽略,而且这时粒子的比表面积、表 面能和表面结合能都发生很大变化.人们把由此引起的种种特殊效应统称表面效应[8,9]。 随着粒径的减小,比表面迅速增大.当粒径为5nm时,表面原子数比例达到约50%以上,当 粒径为2nm时,表面原子数达到80%,原子几乎全部集中到纳米粒子的表面.庞大的表面原 子的存在导致键态严重失配,表面出现非化学平衡、非整数配位的化学键,产生许多活性中心,从而导致纳米微粒的化学活性大大增强,主要表现在:(1)熔点降低.就熔点来说,纳 米颗粒中由于每一粒子组成原子少,表面原子处于不安定状态,使其表面晶格震动的振幅 较大,所以具有较高的表面能量,造成超微粒子特有的热性质,也就是造成熔点下降,同时 纳米粉末将比传统粉末容易在较低温度烧结,而成为良好的烧结促进材料。如金的常规熔 点是1064℃当颗粒尺寸减小到10nm时,降低了270℃,当金纳米粒子尺寸为2 nm时,熔点 仅为327℃;银的常规熔点为961℃,而超微银颗粒的熔点可低于100℃等。(2)比热增大。粒径越小,比热越大.(3)化学活性增加,有利于催化反应等。 1.1。4宏观量子隧道效应 微观粒子具有贯穿势垒的能力称为隧道效应。近年来,人们发现一些宏观量,如超微 粒的磁化强度和量子相干器件中的磁通量等也具有隧道效应,称为宏观量子隧道效应,利 用它可以解释纳米镍粒子在低温下继续保持超顺磁性的现象。宏观量子隧道效应的研究对 基础研究及实用都具有重要的意义,它确立了现存微电子器件进一步微型化的极限,是未来 微电子器件的基础. 上述的小尺寸效应、表面界面效应、量子尺寸效应及量子隧道效应都是纳米微粒与 纳米固体的基本特性。它使纳米微粒和纳米固体呈现许多奇异的物理、化学性质,出现一 些“反常现象”。例如金属纳米材料的电阻随尺寸下降而增大,电阻温度系数下降甚至变 成负值;相反,原是绝缘体的氧化物达到纳米级时,电阻反而下降;10nm-25nm的铁磁金属

纳米材料综述要点

纳米材料综述 一、基本定义 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着 纳米科学技术的正式诞生。 1、纳米 纳米是一种长度单位,1纳米=1×10-9米,即1米的十亿分之一,单位符 号为 nm。 2、纳米技术 纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行 精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和 相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技 术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出 具有特定功能的产品。 纳米技术的发展大致可以划分为3个阶段: 第一阶段(1990年即在召开“Nano 1”以前主要是在实验室探索各种纳米粉体的制备手段,合成纳米块体(包括薄膜,研究评估表征的方法,探索纳米材料的特殊性能。研究对象一般局限于纳米晶或纳米相材料。 第二阶段 (1990年~1994年人们关注的热点是设计纳米复合材料: ?纳米微粒与纳米微粒复合(0-0复合, ?纳米微粒与常规块体复合(0-3复合, ?纳米复合薄膜(0-2复合。 第三阶段(从1994年至今纳米组装体系研究。它的基本内涵是以纳米颗粒 以及纳米丝、管等为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系的研究。 3、纳米材料 材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料就称为纳米 材料。纳米材料和宏观材料迥然不同,它具有奇特的光学、电学、磁学、热学和力学等方面的性质。

图1 纳米颗粒材料SEM图 二、纳米材料的基本性质 由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管放大特性。并根据低温下碳纳米管的三极管放大特性,成

现代西方学者财政政策效应理论文献综述

第25卷第4期 吉首大学学报(社会科学版) 2004年10月Vol.25,No.4 Journal of Jishou University(Social Sciences Edition) Oct.2004经济研究 现代西方学者财政政策效应理论文献综述 匡小平,龙 军 (江西财经大学研究生部,江西南昌 330013) 摘 要:扩张性财政政策是否有利于经济增长以及在多大程度上有利于经济增长,是一个既具有重要理论意 义,更具有实践意义的重要课题,自凯恩斯理论问世以来一直是西方经济学家争论的焦点。财政政策效应的主 要指标是财政乘数,因而本综述主要讨论关于财政乘数问题的理论文献,其中主要涉及政府增加支出和减少税 收对乘数的各种影响,目的在于判断财政扩张对经济产生刺激效应的条件。由于财政政策无非是通过作用于 供给、需求和制度而产生效应,故本综述分别从财政政策的需求效应、供给效应和制度约束三方面阐明西方学 者的主要研究文献是如何解释财政乘数的决定因素的。 关键词:财政政策;经济效应;文献综述 中图分类号:F810 文献标识码: A 文章编号: 1007-4074(2004)04-0076-06 作者简介:匡小平(1962-),男,湖南双峰人,教授,经济学博士,博士生导师,研究方向为公共经济与财政政策; 龙军(1978-),男(侗族),湖南衡阳人,硕士研究生,研究方向为社会保障与财政理论政策。 财政政策对于一国经济增长有无效应、有多大效应以及效应的产生过程和实现路径如何,历来是经济学家们感兴趣的问题,也是必须认真考虑和回答的问题,对此的不同回答亦是区分不同经济学流派的重要依据。长期以来,各大经济学流派围绕这一问题展开了激烈争论,发表了大量研究文献,既有理论研究文献也有经验研究文献。对于浩如烟海的这些研究成果,即使要进行粗略浏览亦是一项费时费力的巨大工程,为此,本综述将对近年来关于扩张性财政政策对经济的刺激作用的主要理论研究文献进行阐述,以明确这一领域财政政策理论的发展轨迹,把握其目前动态,为进一步研究我国的财政政策效应(尤其是近年来实行的并将继续实行的积极财政政策)提供一个国际参照平台。之所以要将文献综述限定在扩张性财政政策对经济的刺激作用方面,除了有关文献数量过多这一原因外,另一个重要原因就是近年来人们研究重点的转移和这方面研究成果对我国具有的更大实际参考价值。如果说在20世纪80年代和90年代的大多数年份,西方学者对财政政策的讨论主要集中在导致通货膨胀和国际收支差额的高额财政赤字、财政政策的经济稳定作用,以及如何精心设计税收制度和安排支出项目以促进经济长期可持续增长的话,那么,随着日本经济陷入长期困境,印尼、韩国和泰国经济因亚洲金融危机导致严重衰退,以及最近美国和欧洲经济萎靡不振,人们的注意力已经主要转向扩张性财政政策所发挥的经济刺激作用方面了。 由于人们通常用财政乘数来说明财政政策的 收稿日期:2004-09-20

钢材热处理性能综述

以很大速度作用于机件上的载荷称为冲击载荷,金属在冲击载荷作用下抵抗破坏的能力叫做冲击韧性。 五退火--淬火--回火 (一).退火的种类 1.完全退火和等温退火 完全退火又称重结晶退火,一般简称为退火,这种退火主要用于亚共析成分的各种碳钢和合金钢的铸,锻件及热轧型材,有时也用于焊接结构。一般常作为一些不重要工件的最终热处理,或作为某些工件的预先热处理。 随后的切削加工过程中产生变形或裂纹。 (二).淬火 为了提高硬度采取的方法,主要形式是通过加热、保温、速冷。最常用的冷却介质是盐水,水和油。盐水淬火的工件,容易得到高的硬度和光洁的表面,不容易产生淬不硬的软点,但却易使工件变形严重,甚至发生开裂。而用油作淬火介质只适用于过冷奥氏体的稳定性比较大的一些合金钢或小尺寸的碳钢工件的淬火。 (三).回火 1为经济的防火方法。 四、膨胀材料。采用钢结构防火涂料保护构件,这种方法具有防火隔热性能好、施工不受钢结构几何形体限制等优点,一般不需要添加辅助设施,且涂层质量轻,还有一定的美观装饰作用,属于现代的先进防火技术措施。 目前,高层钢结构建筑日趋增多,尤其是一些超高层建筑,采用钢结构材料更为广泛。高层建筑一旦发生火灾事故,火不是在短时间内就能扑灭的,这就要求我们在建筑设计时,加大对建筑材料的防火保护,以增强其耐火极限,并在建筑内部制订必要的应急方案,以减少人员伤亡和财产损失。 (2)常用火焰喷涂塑料材料及性能 塑料种类很多,根据塑料受热的性能,可分为热塑性塑料及热固性塑料两大类。火焰喷涂用塑料粉末一般由塑料原料加上改性材料制成,这些改性材料,包括各种填料、颜料、流平剂、增韧剂等。通过改性,使塑料粉末容易进行火焰喷涂。使制成的涂层具有所要求的颜色和各 表1聚乙烯粉末涂层的物理化学性能 注:试验采用 1.5m钢板,涂后在30~35℃条件下、酸碱浸渍10d溶剂油类分别浸渍30d 和100d后测试。 聚乙烯粉末涂层与其它涂层性能比较见表 2 表2聚乙烯等其它品种粉末涂层的性能比较 2、尼龙(聚酰胺) 尼龙是一种应用很广的热塑性塑料,最高应用温度为 80~120℃,最低使用温度为-50~-60℃。 尼龙具有良好的耐蚀性,十分耐碱和大多数盐水、稀酸。但不耐强酸和氧化性酸的腐蚀。对烃、酮、酯、油类抗蚀能力良好,不耐酚和甲酸的腐蚀。

量子尺寸效应

1.1.1量子尺寸效应 所谓的量子尺寸效应是指粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散的现象,纳米半导体粒子存在不连续的最高被占据的分子轨道 和最低未被占据的分子轨道能级,能隙变宽,由此导致纳米微粒的光、电、磁、热、 催化和超导性等特性与宏观性存在着显著的差异。如金属纳米材料的电阻随着尺寸下 降而增大,电阻温度系数下降甚至变成负值;相反,原是绝缘体的氧化物达到纳米级时,电阻反而下降;10~25nm的铁磁金属微粒矫顽力比同种宏观材料大1000倍,而当颗粒尺寸小于10nm时矫顽力变为零,表现为超顺磁性。 1.1.2小尺寸效应 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米微粒 的颗粒表面层附近原子密度减小,导致声、光、电、滋、热、力学等特性呈现新的小 尺寸效应。例如:光吸收显著增加,吸收峰的等离子共振频移,磁有序态向磁无序态 转变,超导相向正常相的转变,声子谱发生改变等,这种现象称为小尺寸效应。 1.1.3表面与界面效应 纳米材料的另一个重要特性是表面与界面效应。由于表面原子与内部原子所处的环境不同,当粒子直径比原子直径大时(如大于0.01时),表面原子可以忽略,但当 粒子直径逐渐接近原子直径时,表面原子的数目及作用就不能忽略,而且这时粒子的 比表面积、表面能和表面结合能都发生很大变化。人们把由此引起的种种特殊效应统 称表面效应[8,9]。随着粒径的减小,比表面迅速增大。当粒径为5nm时,表面原子数比例达到约50%以上,当粒径为2nm时,表面原子数达到80%,原子几乎全部集中 到纳米粒子的表面。庞大的表面原子的存在导致键态严重失配,表面出现非化学平衡、非整数配位的化学键,产生许多活性中心,从而导致纳米微粒的化学活性大大增强, 主要表现在:(1)熔点降低。就熔点来说,纳米颗粒中由于每一粒子组成原子少,表面原子处于不安定状态,使其表面晶格震动的振幅较大,所以具有较高的表面能量, 造成超微粒子特有的热性质,也就是造成熔点下降,同时纳米粉末将比传统粉末容易 在较低温度烧结,而成为良好的烧结促进材料。如金的常规熔点是1064℃当颗粒尺寸减小到10nm时,降低了270℃,当金纳米粒子尺寸为2 nm时,熔点仅为327℃;银的常规熔点为961℃,而超微银颗粒的熔点可低于100℃等。(2)比热增大。粒径越小,比热越大。(3)化学活性增加,有利于催化反应等。 1.1.4宏观量子隧道效应 微观粒子具有贯穿势垒的能力称为隧道效应。近年来,人们发现一些宏观量,如超微粒的磁化强度和量子相干器件中的磁通量等也具有隧道效应,称为宏观量子隧

纳米材料制备方法综述

纳米材料制备方法综述 摘要:纳米材料由于其特殊性质,近年来受到人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。纳米材料的制备方法按物态一般可归纳为气相法、液相法、固相法。目前,各国科学家在纳米材料的研究方面已取得了显著的成果。纳米材料将推动21世纪的信息技术、医学、环境、自动化技术及能源科学的发展, 对生产力的发展产生深远的影响。 关键字:纳米材料,制备,固相法,液相法,气相法 近年来,纳米材料作为一种新型的材料得到了人们的广泛关注。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料,具有表面与界面效应,量子尺寸效应,小尺寸效应和宏观量子隧道效应,因而纳米具有很多奇特的性能,广泛应用于各个领域。为此,本文综述了纳米材料制备的各种方法并说明其优缺点。 目前纳米材料制备采用的方法按物态可分为:气相法、液相法和固相法。 一、气相法 气相法是将高温的蒸汽在冷阱中冷凝或在衬底上沉积和生长低维纳米材料的方法。气相法主要包括物理气相沉积(PVD)和化学气相沉积(CVD),在某些情况下使用其他热源获得气源,如电阻加热法,高频感应电流加热法,混合等离子加热法,通电加热蒸发法。 1、物理气相沉积(PVD) 在PVD过程中没有化学反应产生,其主要过程是固体材料的蒸发和蒸发蒸气的冷凝或沉积。采用PVD可制备出高质量的纳米材料粉体。PVD可分为制备出高质量的纳米粉体。PVD可分为蒸气-冷凝法和溅射法。 1.1蒸气-冷凝法 此种制备方法是在低压的Ar、He等惰性气体中加热物质(如金属等),使其蒸发汽化, 然后在气体介质中冷凝后形成5-100 nm的纳米微粒。通过在纯净的惰性气体中的蒸发和冷凝过程获得较干净的纳米粉体。此方法制备的颗粒表面清洁,颗粒度整齐,生长条件易于控制,但是粒径分布范围狭窄。 1.2溅射法 用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar气(40~250Pa),两电极间施加的电压范围为0.3~1.5kv。由于两极间的辉光放电使Ar离子形成,在电场的作用下Ar离子冲击阴极靶材表面,使靶材原产从其表面蒸发出来形成超微粒子.并在附着面上沉积下来。用溅射法制备纳米微粒有许多优点:可制备多种纳米金属,包括高熔

相关文档