文档视界 最新最全的文档下载
当前位置:文档视界 › ZnO纳米粉体制备与表征

ZnO纳米粉体制备与表征

ZnO纳米粉体制备与表征
ZnO纳米粉体制备与表征

ZnO纳米粉体制备与表征

一实验目的

1.了解氧化锌的结构及应用

2.掌握“共沉淀和成核/生长隔离、水热法和微波水热、溶胶-凝胶法、反相微乳液”技术制备纳米材料的的方法与原理。

3.了解同步热分析仪、X-射线衍射仪、扫描电子显微镜(SEM)与比表面测定仪等表征手段和原理

二基本原理

2.1 氧化锌的结构

氧化锌(ZnO)晶体是纤锌矿结构,属六方晶系,为极性晶体。氧化锌晶体结构中,Zn原子按六方紧密堆积排列,每个Zn原子周围有4个氧原子,构成Zn-O4配位四面体

结构,四面体的面与正极面C(00001)平行,四面体的顶角正对向负极面(0001),晶格常

数a=342pm, c=519pm,密度为5.6g/cm3,熔点为2070K,室温下的禁带宽度为3.37eV. 如

图1-1、图1-2所示:

图1-1 ZnO晶体结构在C (00001)面的投影

图1-2 ZnO纤锌矿晶格图

2.2 氧化锌的性能和应用

纳米氧化锌(ZnO)粒径介于1- 100nm 之间, 由于粒子尺寸小, 比表面积大, 因而, 纳米ZnO 表现出许多特殊的性质如无毒、非迁移性、荧光性、压电性、能吸收和散射紫外线能力等, 利用其在光、电、磁、敏感等方面的奇妙性能可制造气体传感器、荧光体、变阻器、紫外线遮蔽材料、杀菌、图象记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。同时氧化锌材料还被广泛地应用于化工、信息、纺织、医药行业。纳米氧化锌的制备是所有研究的基础。合成纳米氧化锌的方法很多, 一般可分为固相法、气相法和液相法。本实验采用共沉淀和成核/生长隔离技术制备纳米氧化锌粉。

2.3 氧化锌纳米材料的制备原理

不同方法制备的ZnO晶形不同,如:

2.3.1 共沉淀和成核/生长隔离法

借助沉淀剂使目标离子从溶液中定量析出是材料制备领域液相法的重要技术。常规共沉淀制备是将盐溶液与碱溶液直接混合并通过搅拌的方式实现,由于混合不充分,反应界面小、存在浓度梯度、反应速度和扩散速度慢,先沉淀的粒子上形成新沉淀粒子,新旧粒子的同时存在,导致粒子尺寸分布极不均匀。使合成材料的粒子尺寸和均分散性能受到很大影响,其晶体的尺寸也很难达到纳米量级,极大限制了此类材料的应用;成核/生长隔离制备采用强

制微观混合技术,将盐溶液与碱溶液在反应器转子与定子之间的缝隙处迅速充分混合接触,反应后物质迅速脱离反应器,实现粒子的同时成核、同步生长,从而使材料具有粒子尺寸小和分布均匀的特性,粒子的尺寸可以达到10-100nm 。

2.3.2 水热法和微波水热法

常规水热法是利用高温高压的水溶液使那些在大气条件下不溶或难溶的物质溶解,或反应生成该物质的溶解产物,通过控制高压釜内溶液的温差使产生对流以形成过饱和状态而析出生长晶体的方法。水热法制备材料的特点是粒子纯度高、分散性好、晶形好且可控制,生产成本低。用水热法制备的粉体一般无需烧结和球磨,这就可以避免在烧结过程中晶粒会长大而且杂质容易混入等缺点;近年来, 水热法的一个创新是将微波引入反应体系中以更快地制备陶瓷材料。这提供了传统反应釜加热所不具有的优点,包括快速加热至晶化温度, 均匀成核以及通过氢氧化物沉淀的快速溶解达到快速过度饱和, 从而导致较低的晶化温度和较短的晶化时间。

2.3.3 溶胶-凝胶法

Sol-gel 法的原理主要是原材料的水解、缩聚反应,常用的原料一般为金属醇盐和无机化合物。作为湿化学反应方法之一,不论所用的起始原料(称为前躯物)为无机盐或金属醇盐,其主要反应步骤是前驱物溶于溶剂(水或有机溶剂)中形成均匀的溶液,溶质与溶剂产生水解或醇解反应生成物聚集成1nm 左右的粒子并组成溶胶,经蒸发干燥转变为凝胶,基本反应原理如下:

(1)溶剂化:能电力的前驱物-金属盐的金属阳离子+Z M 将吸收水分子形成溶剂单元

()+Z n O H M 2(Z 为M 离子的价数)

,为保持它的配位数而有强烈地释放+H 的趋势:()()()()++--++→H OH O H M O H M Z n Z n 1122,这时如有其它离子进入就可能产生聚合反应,但反应式极为复杂;

(2)水解反应:非电离式分子前驱物,如金属醇盐()n OR M (n 为金属M 的原子价)与水反应:()()()xROH OR OH M O xH OR M x n x n +→+-2;

反应可延续进行,直至生成()n OH M

(3) 缩聚反应:缩聚反应可分为失水缩聚:

O H M O M M HO OH M 2+---→--+-- 和失醇缩聚:

-

ROH

-

+

-

-

-

-

M

-

M

M

O

M+

OR

HO

反应生成物是各种尺寸和结构的荣胶体粒子。

2.3.4 反相微乳液法

微乳体系中包含单分散的水或油的液滴,这些液滴在连续相中不断扩散并互相碰撞,微乳液的这种动力学结构使其成为良好的纳米反应器。因为这些小液滴的碰撞是非弹性碰撞或“粘性碰撞”,这有可能使得液滴间互相合并在一起形成一些较大液滴。但由于表面活性剂的存在,液滴间的这种结合是不稳定的,所形成的较大液滴又会相互分离,重新变成小的液滴。微乳液的这种性质致使体系中液滴的平均直径和数目不随时间的改变而改变,故而,微乳体系可用于纳米粒子的合成。如果以油包水型微乳体系作为纳米反应器,由于反应物被完全限定于水滴内部,因此要使反应物相互作用,其首要步骤是水滴的合并,实现液滴内反应物之间的物质交换。当混合水相中分别溶解有反应物A和B的两种相同的微乳体系时,由于水滴的相互碰撞、结合与物质交换,最后可形成AB的沉淀颗粒。在反应刚开始时,首先形成的是生成物的沉淀核,随后的沉淀便附着在这些核上,使沉淀不断长大。当粒子的大小接近水滴的大小时,表面活性剂分子所形成的膜附着于粒子的表面,作为“保护剂”限制了沉淀的进一步生长。这就是微乳体系作为纳米反应器的原理,由于所合成的粒子被限定于水滴的内部,所以,合成出来的粒子的大小和形状也反映了水滴的大小和内部形状。

2.4 纳米氧化锌的物理性能表征

表征通常是指确定物质的结构、颗粒尺寸、形状和形貌等。

2.4.1 热分析

热分析仪技术是在程序温度控制下测量物质的物理性质随温度的变化,用于研究物质在某一特定温度时所发生的热学物理参数的变化,由此进一步研究物质的结构和性能之间的关系;物质在加热过程中发生的晶型转变、熔化、升华、挥发、还原、分解、脱水或降解、化合等物理化学变化,常伴随着热量和质量的变化。在程序温度控制下通过测量物质的热量和质量随温度的变化,研究材料(金属、矿物质、陶瓷和玻璃)的玻璃转变温度,结晶时间与结晶温度,结晶度,融化热与反应热,材料的热稳定性,材料氧化稳定性、分解动力学、估算产品寿命等,揭示物质性质的内在变化的分析方法。

根据国际热分析协会(international confederation for thermal analysis,ICTA) 规定,DSC 曲线放热峰向上,吸热峰向下。一个热效应对应的峰位置和方向反映了物质的变化本质,其宽度、高度、对称性和取决于升温速率、样品量、颗粒大小、测定条件、样品变化过程中的

各种动力学因素。

2.4.2 X射线衍射(XRD)分析

每种晶体的结构与其X射线衍射图之间都有着一一对应的关系,其特征X射线衍射图谱不会因为它种物质混聚在一起而产生变化,这就是X射线衍射物相分析方法的依据。制备各种标准单相物质的衍射花样并使之规范化,将待分析物质的衍射花样与之对照,从而确定物质的组成相,就成为物相定性分析的基本方法。鉴定出各个相后,根据各相峰的强度正比于改组分存在的量,就可对各种组分进行定量分析。目前常用衍射仪法得到衍射图谱,用“粉末衍射标准联合会(JCPDS)”负责编辑出版的“粉末衍射卡片(PDF卡片)”进行物相分析。

2.4.3 扫描电子显微镜(SEM)分析

扫描电子显微镜是依据电子与物质的相互作用。当一束高能的人射电子轰击物质表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。可以获取被测样品本身的各种物理、化学性质的信息,如形貌、组成、晶体结构、电子结构等。

2.4.4 BET比表面及孔径分布测定

物质的比表面积(1g吸附剂所具有的内外面积之和)大小和孔径分布情况,是评选催化剂、气敏材料、了解固体表面性质的重要参数。其理论依据是1938年Brunauer、Emmett 和Teller三人在1916年Langmuer吸附理论基础上,从经典统计理论推导出的多分子层吸附公式基础上,即著名的BET方程。

三、仪器与试剂

3.1 热分析仪(SDT Q600),X-射线衍射仪(BRUKER D8 ADV ANCE),比表面测定仪(Gemini V 2380)、扫描电子显微镜JSM-6510LV,电子天平,烘箱。

3.2 共沉淀和成核/生长隔离法

250 mL容量瓶2只,250ml和500 mL烧杯各2只,100mL量筒2只,玻璃搅棒,电磁搅拌器,磁子;研钵,药勺,样品袋,坩埚,计量泵、胶体磨,湘仪离心机,马弗炉;硝酸锌,(NH4)2CO3。

3.3 水热法和微波水热法

100 mL烧杯2只,高压反应釜、微波消解仪,湘仪离心机研钵,药勺,样品袋;硝酸锌,NaOH,去离子水,乙醇。

2.4 溶胶-凝胶法

研钵,药勺,样品袋,坩埚,马弗炉,磁力搅拌器、恒温水槽;醋酸锌、聚乙二醇-400、柠檬酸三铵、无水乙醇、草酸、甲醇、硬脂酸、柠檬酸、去离子水。

2.5 反相微乳液法

250 mL烧杯2只,100mL量筒4只,玻璃搅棒,电磁搅拌器,磁子,烘箱;研钵,药勺,样品袋,坩埚,马弗炉;硝酸锌,曲拉通,正丁醇,环己烷,正己醇,去离子水,碳酸钠,碳酸铵,尿素,氨水。

四、实验步骤

4.1 共沉淀和成核/生长隔离法

1. 配制0.1 mol/L (NH4)2CO3溶液250mL,0.1 mol/L Zn2+溶250 mL.

2. 成核-晶化隔离法制备ZnO 前驱体

取0.1 mol/L(NH4)2CO3溶液和0.1 mol/L Zn2+溶液各100 mL,通过计量泵以18 mL/min 的相同速率注入胶体磨中快速混合成核生成白色沉淀。室温下晶化2 h、离心洗涤后,于80℃干燥12h得到白色沉淀粉末。

3.共沉淀法制备ZnO 前驱体

取0.1 mol/L (NH4)2CO3溶液和0.1 mol/L Zn2+溶液各100 mL,在磁力搅拌下加入500ml 中混合生成白色沉淀。室温下晶化2 h、离心洗涤后,于80℃干燥12h得到白色沉淀粉末。

4. 制备的沉淀粉末取20mg左右做热分析实验,其余分别在500℃热处理2h 得ZnO 纳米颗粒待做XRD、SEM和BET实验。

4.2 水热法和微波水热法

1. 配制4.0 mol/L NaOH溶液100mL,0.5 mol/L Zn2+溶100 mL.

2. 水热法法制备ZnO

取35ml 0.5 mol/L Zn2+溶液,磁力搅拌下加入35ml4.0 mol/L NaOH溶液至白色絮状沉淀溶解,将混合溶液转移到100mL聚四氟乙烯高压釜中在180℃水热12h,将白色沉淀分别用去离子水和乙醇离心、洗涤后,于80℃在烘箱中干燥12h得到白色沉淀粉末。

3.共沉淀法制备ZnO 前驱体

取35ml 0.5 mol/L Zn2+溶液,磁力搅拌下混合,磁力搅拌下加入35ml 4.0 mol/L NaOH 溶液至白色絮状沉淀溶解。将混合溶液转移到微波消解罐中,在180℃、500W微波水热20min,将白色沉淀分别用去离子水和乙醇离心、洗涤后,于80℃在烘箱中干燥12h得到白色沉淀粉末。

4.取一定量产物粉料做XRD、SEM和BET实验。

4.3 溶胶-凝胶法

纳米ZnO的制备方法很多,溶胶-凝胶法制备纳米ZnO由于反应温度低,反应过程易于控制,制品的均匀度、纯度高,化学计量准确,易于改性,掺杂的范围宽,有利于工业化

大生产等诸多优点,从而得到了广泛的关注。

为了初步选定本实验制备纳米ZnO 的最佳络合剂,我们选择硬脂酸、柠檬酸、草酸三种络合剂进行了对比试验。试验过程如下所示:

(1)在硬脂酸体系中制备纳米ZnO

将配制好的醋酸锌()()O H AC Zn 222?溶液缓慢加入到适量熔融的硬脂酸中,在磁力加热搅拌器上加热使其溶解,搅拌一段时间脱水得到浅黄色凝胶,然后将湿凝胶自然冷却到室温放置一段时间得到浅黄色干凝胶,研磨并取20mg 左右做热分析实验,其余取大部分在800℃热处理3小时得到所需的白色粉末。制备流程如:

(2)在柠檬酸体系中制备纳米ZnO

配制一定浓度的醋酸锌()()O H AC Zn 222?溶液,加热搅拌,待加热到70℃左右,加入表面活性剂,缓慢加入柠檬酸乙醇溶液,产生白色溶胶,保温搅拌,随着去离子水与乙醇的逐渐蒸发,白色溶胶逐渐转变成为浅黄色湿凝胶。湿凝胶用无水乙醇洗涤两次,75℃干燥20小时,变成较硬的浅黄色干凝胶,研磨并取20mg 左右做热分析实验,其余取大部分在600℃煅烧3小时,得浅黄色ZnO 粉末。制备流程如:

(3)在草酸体系中制备纳米ZnO 熔融硬脂酸

加入醋酸锌

搅拌加热

浅黄色溶胶 自然冷却

浅黄色凝胶 热处理

800℃

白色粉末 醋酸锌

加入柠檬酸

乙醇溶液 白色溶胶

浅黄色湿凝胶

纳米ZnO 热处理

配制一定浓度的醋酸锌()()O H AC Zn 222?溶液,放在磁力搅拌器下搅拌边加入表面改性剂,再加入一定量的草酸无水乙醇溶液,充分反应后放入恒温水浴中,恒温加热一段时间后形成白色湿凝胶。将湿凝胶用无水乙醇洗涤两次,放入干燥箱干燥得干凝胶后,研磨并取20mg 左右做热分析实验,其余取大部分放入马弗炉中于600℃进行热处理3小时即得到白色ZnO 粉末。制备流程如:

4.4 反相微乳液法

1配制同样组成的反相微乳液两份A 和B 。以Triton X-100为表面活性剂,正己醇为助表面活性剂,环己烷为油相,按体积比1:1.2:2进行混合。

2称取一定量金属硝酸锌,加入一定量的去离子水溶解,保持浓度在0.25-0.75mol/L 。加入到A 反相微乳液中。

3将一定量的沉淀剂(碳酸铵、碳酸钠、氨水)溶于去离子水中。搅拌使其溶解;浓度约1.0mol/L 。加入到B 反相微乳液中。

4 室温下取一定量的微乳液A 缓慢加入微乳液B 中,控制pH 值在7~8,剧烈搅拌1小时,室温下静置老化24小时。

5 当烧杯底部出现絮状细粉而上部仍澄清时,进行离心分离。100℃下干燥24小时,500℃下焙烧4小时烧掉残存的表面活性剂。

5 热处理粉的XRD 、SEM 、比表面积、DSC-TGA 表征

1) 取50mg 干燥后的粉待做DSC-TGA 实验。观察粉体的热变化行为。

2)取100mg 以上热处理粉末做XRD 实验测定粉体的相组成和粒径。

3)取100mg 以上热处理粉末测定比表面积。

注意考察前驱体的合成温度(20℃、25℃、30℃和35℃)及浓度(0.25 mol/L 、0.4 mol/L 、0.5 mol/L 、醋酸锌溶液 加入表面改性剂、草酸

乙醇溶液 透明溶胶

白色凝胶 纳米ZnO

干凝胶 保温

30分钟

洗涤

干燥 煅烧

0.75 mol/L)对合成氧化锌的影响

五、结果和讨论

据DSC-TG、XRD、SEM、比表面积实验得出:1)晶相形成温度;

2)组成、晶型和晶粒度;

3)形貌;

3)比表面积及孔径分布。

镁铝尖晶石粉体的制备方法

【摘 要】:综述了目前常用的制备镁铝尖晶石粉体的各种方法的工艺过程、特点及其产物的性能特征。经分析指出纯度和粒度是粉体最重要的两个性能指标;降低合成温度、简化工艺过程是今后制备技术发展的趋势。金属醇盐可能成为获得高纯度产物最有应用前景的前驱物;水热处理、溶剂蒸发、超临界干燥等物理手段是解决粒度最有效的途径。 【关键词】:耐火材料,镁铝尖晶石,粉体,制备方法 引 言 镁铝尖晶石(Magnesium Aluminium Spinel,以下简称MAS)材料是一种熔点高、热膨胀系数小、热导率低、抗热震性好、抗碱侵蚀能力强的材料[1],主要应用于钢包内衬、平炉炉顶、水泥回转窑烧成带衬砖。MAS单晶体是一种高熔点、高硬度的晶体材料。在10GHz以上的微波段上,MAS单晶的声衰减比蓝宝石或石英低得多,可作为介质制作微波声体波器件[2]。MAS还具有优良的电绝缘性,且与Si的匹配性能好,其线膨胀系数与Si相近,因而其外延Si形成膜的形变小,是一种重要的集成电路衬底材料[3]。 近年来,制备MAS粉体的方法受到人们的广泛关注,并在原有制备工艺基础上,涌现出许多新的制备技术。本文拟总结近年来国内外对获取高性能MAS体制备方法,以期找到解决粉体的纯度、粒度、化学均匀性等问题的途径,从而在获取高性能粉体,发挥其优越性能。 1 固相法 1.1传统固相法 固相法是固体与固体之间发生化学反应生成新的固体物质的反应过程,其中反应温度高于600℃称为高温 固相反应。Lepkova D[4]等研究了MgO和Al 2O 3 的固 相反应中,添加剂对尖晶石形成温度和转化率的影响。 将α-Al 2O 3 和Mg(HCO 3 ) 2 分解后的MgO及添加剂均 匀混合后,在一定的温度下反应制备尖晶石粉,添加剂 为B 2O 3 和TiO 2 ,或B 2 O 3 和氟化物(LiF,CaF 2 ,ZnF 2 , BaF 2 )的混合物。尖晶石合成转化率在85%~95%之间, 加入B 2 O 3 和TiO 2 复合添加剂时,尖晶石粉的生成量最大。 传统固相法无疑是最简单、最方便的合成尖晶石的工艺, 存在的显著缺点是合成温度高。而添加剂又会影响产物 的纯度,无法满足高技术领域的要求。 1.2凝胶固相法 凝胶固相法是将初始原料同有机单体、交联剂、引 发剂等混合形成凝胶,干燥后经焙烧制备粉体。粉体具 有颗粒细小均匀、纯度高、分散性好等优点。仝建峰[5] 等以Mg(OH) 2 ·4MgCO 3 ·6H 2 O和Al 2 O 3 按n(Mg)∶ n(Al)=1∶2进行混合,有机单体丙烯酰胺(C 3 H 5 NO)为 凝胶,N,N′-亚甲基双丙烯酰胺为交联剂,过硫酸铵 (NH 2 ) 2 SO 6 水溶液为引发剂,4-甲基乙二胺(C 6 H 16 N 2 ) 为催化剂,选用JA-281试剂为分散剂,用NH 3 ·H 2 O 调节pH值。将干凝胶在1250℃左右保温3h,便可得到 平均粒径为0.5μm的球形MgAl 2 O 4 微粉。王修慧[6]等 先以异丙醇水溶液将高纯MgO粉体分散成浆体,再将异 丙醇铝水解得到凝胶,然后按n(Mg)∶n(Al)=1∶2配 料球磨混合24h,干燥后进行焙烧,800℃即开始出现尖 晶石相,1200℃时形成了完善的MAS相结构,最终得 到纯度高达99.99%MAS粉体。之所以能够降低合成温 度,是原因反应物之一的AlOOH凝胶替代Al 2 O 3 ,活性 高,粒度细,混合过程中可达到高度的均匀性;在加热 至500℃~600℃范围内会生成高活性Al 2 O 3 。此法解决 了产物的纯度问题,可以应用于提拉法生长尖晶石单晶 材料;但其缺点是粒度偏粗大,不适于透明多晶体的制备。 2 沉淀法 2.1 均匀沉淀法 均匀沉淀法是利用某一化学反应,将溶液中的构 晶离子从溶液中缓慢、均匀地释放出来,与溶液中的 Mg2+和Al3+生成沉淀,然后再经干燥、焙烧制得粉 体。Hokazono S[7]等采用2种溶液体系来制备MAS粉 体:一是Al(NO 3 ) 3 、Mg(NO 3 ) 2 、尿素水溶液体系;二 是Al 2 (SO 4 ) 3 、MgSO 4 、尿素水溶液体系。按n(Mg)∶ n(Al)=1∶2进行配料;其中,C 尿素 =1.8mol·L-1, C Al 3+=0.1mol·L-1,C Mg 2+= 0.08mol·L-1,分别用 HNO 3 、H 2 SO 4 调至pH值为2,在90℃水浴分别加热 22.5h和38h,生成的沉淀经离心分离后于100℃干燥 24h,在800℃~1000℃焙烧,得到比表面积为25~ 66m2·g-1的MAS粉体。硝酸盐体系制备的前驱物含 镁铝尖晶石粉体的制备方法 王修慧1,2,王程民2,司 伟2,李 刚2,曹冬鸽2,翟玉春1 (1东北大学材料与冶金学院, 沈阳 110006; 2大连交通大学材料科学与工程学院, 大连 116028) 收稿日期:2008-1-24 基金项目:国家自然科学基金资助项目,编号:50104003 作者简介:王修慧(1964-),男,博士研究生,副教授; 从事金属醇盐、高纯氧化物粉体制备研究。 E-mail:dl_wangxh@https://www.docsj.com/doc/c914650189.html, 文章编号:1001-9642(2008)07-0003-04

液相法制备超细粉体的原理及特点

液相法制备超细粉体的原理及特点 一、超细粉体材料 任何固态物质都有一定的形状,占有相应空间,即具有一定的大小尺寸。我们通常所说的粉末或细颗粒,一般是指大小为1毫米以下的固态物质。 当固态颗粒的粒径在0.1μm一10μm之间时称为微细颗粒,或称为亚超细颗粒,空气中漂浮的尘埃,多数属于这个范围。 超细粉通常是指粒径为1 ~100nm的微粒子,其处于微观粒子和宏观物体之间的过渡状态。由于极细的晶粒大量处于晶界和晶粒内,缺陷的中心原子以及其本身具有的量子体积效应、量子尺寸效应、表面效应,介电限域效应和宏观量子隧道效应,使超细粉体材料在光、电、磁等方面表现出其他材料所不具备的特性,是重要的高科技的结构和功能材料,因而受到极大的关注,目前在冶金、化工、轻工、电子、航天、医学和生物工程等领域有着广泛的应用。 目前,超细粉的研究主要有制备、微观结构、宏观性能和应用等四个方面,其中超细粉的制备技术是关键,因为制备工艺和过程控制对纳米微粒的微观结构和宏观性能具有重要的影响。 二、液相法制备的主要特征 (1)可将各种反应的物质溶于液体中,可以精确控制各组分的含量,并实现了原子、分子水平的精确混合。 (2)容易添加微量有效成分,可制成多种成分的均一粉体。 (3)合成的粉体表面活性好。 (4)容易控制颗粒的形状和粒径。 (5)工业化生产成本较低。 (6)液相法可分为物理法和化学法 三、超细粉体的液相制备方法 制备纳米粉体的液相方法主要有液相沉淀法、溶胶-凝胶法、水热法、微乳液法等。 (一)沉淀法 沉淀法是在原料溶液中添加适当的沉淀剂,使得原料液中的阳离子形成各种形式的沉淀物,

然后再经过虑、洗涤、干燥,有时还需加热分解等工艺过程制得纳米粉体的方法。沉淀法具有设备简单、工艺过程易控制、易于商业化等优点,能制取数十纳米的超细粉。沉淀法可分为共沉淀法、直接沉淀法、均匀沉淀法和水解法等。 1、共沉淀法 在混合的金属盐溶液中加入合适的沉淀剂,由于解离的离子是以均一相存在于溶液中,经反应后可以得到各种成分具有均一相的沉淀,再进行热分解得到高纯超细粉体。 如果原料溶液中有2种或2种以上的阳离子,它们以均相存在于溶液中,加入沉淀剂进行沉淀反应后,就可得到成分均一的沉淀,这就是共沉淀法。它是制备含有2种以上金属元素的复合氧化物超微粉的重要方法。 采用共沉淀法制备纳米粉体,反应物需充分混合,使反应两相间扩散距离缩短,以有利于晶核形成,同时要注意控制生成产物的化学计量比。不足之处是过剩的沉淀剂会使溶液中的全部正离子作为紧密混合物同时沉淀。利用共沉淀法制备超细粉体时,洗涤工序非常重要。此外,离子共沉淀的反应速度也不易控制。 2、直接沉淀法 这种方法是使溶液中的金属阳离子直接与沉淀剂发生化学反应而形成沉淀物。 3、均匀沉淀法 均匀沉淀法是在溶液中加入某种物质,这种物质不会立刻与阳离子发生反应生成沉淀,而是在溶液中发生化学反应缓慢地生成沉淀剂。是利用某一化学反应使溶液中的构晶离子由溶液中缓慢而均匀地产生出来的方法。 该方法的优点是颗粒均匀致密,可以避免杂质的共沉淀。缺点是反应时间过长。 4、水解沉淀法 水解沉淀法是指通过原料溶液的PH值或者通过改变原料液温度而使金属离子水解产生沉淀。 水解沉淀法以无机盐为原料,具有原料便宜、成本低的优势,是最经济的制备方法。除此之外,它还具有诸多优点,最显著的一点就是可以在常温常压条件下,采用简单的设备,于原子、分子水平上通过反应、成核、成长、收集或处理而获得高纯度的、组分均一的、尺寸达几十纳米的超细体。此外它还可以精确控制化学组成,容易添加微量的有效成分,制备粉体的表面活性好。易控制颗粒的形状和粒径。但是,因为必须通过液固分离才能得到沉淀物,要完全洗净无机杂质离子较困难;另一个需要特别重视的问题是容易形成团聚体,如控制不当,团聚将会严重影响分体的后续使用。 (二)溶胶-凝胶法 溶胶-凝胶工艺是60年代发展起来的一种超细粉体的制备工艺,它是指金属有机或无机化合

粉体材料的制备方法有几种

粉体材料的制备方法有几种?各有什么优缺点?(20分) 答:粉末的制备方法: 气相合成、湿化学合成、机械粉碎. 1. 物理方法 (1)真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。 (2)物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 (3)机械球磨法 采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 2. 化学方法 (1)气相沉积法 利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。 (2)沉淀法 把沉淀剂加入到盐溶液中反应后,将沉淀热处理得到纳米材料。其特点简单易行,但纯度低,颗粒半径大,适合制备氧化物。 (3)水热合成法 高温高压下在水溶液或蒸汽等流体中合成,再经分离和热处理得纳米粒子。其特点纯度高,分散性好、粒度易控制。 (4)溶胶凝胶法 金属化合物经溶液、溶胶、凝胶而固化,再经低温热处理而生成纳米粒子。其特点反应物种多,产物颗粒均一,过程易控制,适于氧化物和Ⅱ~Ⅵ族化合物的制备。 (5)微乳液法 两种互不相溶的溶剂在表面活性剂的作用下形成乳液,在微泡中经成核、聚结、团聚、热处理后得纳米粒子。其特点粒子的单分散和界面性好,Ⅱ~Ⅵ族半导体纳米粒子多用此法制备 2. 为什么要对粉体材料的表面进行改性?什么是物理吸附?什么是化学吸附?试举例说明。(20分) 答: 材料表面改性的目的 力学性能:表面硬化、防氧化、耐磨等 电学性能:表面导电、透明电极 光学性能:表面波导、镀膜玻璃 生物性能:生物活性、抗菌性 化学性能:催化性 装饰性能:塑料表面金属化 材料表面改性的意义 通过较为简单的方法使一个部件部件或产品产品具有更为综合的性能第一节材料表面结构的变化 粉体表面改性是指用物理、化学、机械等方法对粉体材料表面进行处理,根据应用的需要有目的改变粉体材料表面的物理化学性质,如表面组成、结构和官能团、

粉末冶金粉体常见的制备方法及综述1

粉末冶金粉体常见的制备方法及综述Powder metallurgy powder and preparation method of common 摘要:粉末冶金方法起源于公元前三千多年。制造铁的第一个方法实质上采用的就是粉末冶金方法。粉末冶金制品的应用范围十分广泛,从普通机械制造到精密仪器;从五金工具到大型机械;从电子工业到电机制造;从民用工业到军事工业;从一般技术到尖端高技术,均能见到粉末冶金工艺的身影。目前,我国粉末冶金行业整体技术水平低下、工艺装备落后,与国外先进技术水平相比存在较大差距。本文介绍了粉末冶金粉体的制备方法,包括物理方法和化学方法,物理法包括机械粉碎法,化学法包括气相沉积法、雾化法和电解法,气相沉积法、雾化法和电解法目前在工业上已经得到了广泛的应用。 关键词:粉末冶金;粉体;气相沉积法,雾化法,电解法Abstract: the method of powder metallurgy originated in three thousand years . Manufacture of iron for the first method is essentially by powder metallurgy method. Powder metallurgy products, a wide range of applications, from the ordinary machinery manufacturing of precision instrument; from the hardware to the large machinery; from electronics to motor manufacturing; from the civilian industry to the military industry; from the general technology to sophisticated high technology, can see the figure of powder metallurgy

纳米材料的制备与表征摘录(打印)

纳米材料的制备与表征方法摘录 作者姓名:彭家仁 单位:五邑大学广东江门 摘要:被誉为“21世纪最有前途的材料”的纳米材料同信息技术和生物技术一样已经成为21世纪社会经济发展的三大支柱之一和战略制高点。由于纳米材料的特殊结构以及所表现出来的特异效应和性能,使得纳米材料具有不同于常规材料的特殊用途。本文就纳米材料的结构特性和性能、应用及制备方法与表征进行了综述。旨在为纳米材料的应用及其制备提供理论指导。 关键词:纳米材料;结构特性;特异效应;应用;制备方法 Methods of Preparation and Characterization of nano-materials Kevin Peng (WUYI University Jiangmen Guangdong) Abstract:The nano-materials known as“the most promising material in the21st century”along with the information technology and the biotechnology has become one of the three pillars of the socio-economic development and the strategic high ground in the21st century.Because of the special structure of the nano-materials,as well as its specific effects and performance,thenano-materials have the special purposes other than the conventional materials. In this paper,we search for the structural properties,specific effect and the performance and the Synthesis and Characterization of nano-materials.The purpose is to provide theoretical guidance for the application and preparation of nano-materials. Keywords:nano-materials;structural properties;specific effect;applications;preparation methods 0前言 从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)。自20世纪80年代初,德国科学家Gleiter提出“纳米晶体材料”的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料已引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1~100nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域。

硅纳米管的水热法合成与表征

第26卷 第8期2005年8月 半 导 体 学 报 CHIN ESE J OURNAL OF SEMICONDUCTORS Vol.26 No.8 Aug.,2005 3教育部博士点基金资助项目(批准号:20040532014)  裴立宅 男,1977年出生,博士研究生,从事硅及相关纳米材料的研究.Email :lzpei1977@https://www.docsj.com/doc/c914650189.html, 唐元洪 通信联系人,男,1965年出生,教授,博士生导师,从事纳米信息材料的研究.Email :yhtang @https://www.docsj.com/doc/c914650189.html, 2004212214收到,2005201224定稿 Ζ2005中国电子学会 硅纳米管的水热法合成与表征 3 裴立宅 唐元洪 陈扬文 郭 池 张 勇 (湖南大学材料科学与工程学院,长沙 410082) 摘要:采用水热法成功合成了新型的硅纳米管一维纳米材料,并采用透射电子显微镜、选区电子衍射分析、能量色散光谱及高分辨透射电子显微镜对合成的硅纳米管进行了表征.研究表明硅纳米管是一种多壁纳米管,为立方金刚石结构,生长顶端呈半圆形的闭合结构,由内部为数纳米的中空结构,中部为晶面间距约0131nm 的晶体硅壁层,最外层为低于2nm 的无定形二氧化硅等三部分组成.关键词:硅纳米管;水热法;结构;表征 PACC :6146;8160C 中图分类号:TN30411 文献标识码:A 文章编号:025324177(2005)0821562205 1 引言 自从碳纳米管[1]及硅纳米线[2,3]等一维纳米材 料被成功合成后,立刻引起了诸多领域科学家的极大关注与浓厚兴趣,一维纳米材料的研究成为了当今基础和应用研究的热点.碳纳米管能否具有金属或半导体特性取决于纳米管的石墨面碳原子排列的螺旋化方向[4,5],然而到目前为止,还没有人成功制备出金属或半导体碳纳米管,因此虽然碳纳米管作为场效应晶体管(FET )及纳米电子集成电路的研究已有报道[6,7],但是碳纳米管在应用上还有很大的局限性.同时由于硅纳米一维材料与现有硅技术极好的兼容性,使其具有代替碳纳米管的潜力.目前已经采用物理及化学方法成功合成了硅的实心一维纳米材料———硅纳米线[8,9],但是由于元素硅的硅键为sp 3杂化,而不是易于形成管状具有石墨结构的sp 2杂化,所以硅的中空一维纳米材料,硅纳米管难于合成.因此,目前在硅纳米管,尤其是自组生长的硅纳米管的合成方面仍是一个极具挑战性的难题.对硅纳米管模型进行理论研究表明硅纳米管可以稳定存在,同时也发现稳定的硅纳米管结构总是具有 半导体性能[10,11].最近Sha 等人[12]以纳米氧化铝沟道(NCA )为衬底模板,以硅烷为硅源、金属Au 为催化剂,于620℃,1450Pa 时通过化学气相沉积催化生长了直径小于100nm 的硅纳米管;J eong 等人[13]在617×10-8Pa 的真空分子束外延生长(MB E )室中于400℃在氧化铝模板上溅射硅原子或硅团簇,并于600或750℃氧化处理后制备了直径小于100nm 的硅纳米管.虽然目前模板法可以制得硅纳米管,但是此法制备过程较复杂,需要模板及金属催化剂,同时实质上所得硅纳米管是硅原子在模板内壁无序堆积形成的. 水热法是制备纳米粉末的常用方法,对于制备具有一维结构的纳米材料鲜有报道.水热法成功合成了碳纳米丝及碳纳米管[14,15]表明,此法在制备一维纳米材料方面也有极大的应用潜力.水热法具有成本低廉、容易操作控制及可重复性好等特点.本文报道在没有使用催化剂及模板的前提下,采用高压反应釜,在超临界水热条件下合成了自组生长的一维纳米硅管,并用TEM ,EDS ,SA ED 和HR TEM 对其结构及成分进行了表征.这是一种真正意义上的硅纳米管,对于组装纳米器件具有重大的应用与研究意义.

纳米粉体制备方法

纳米粉体制备方法 纳米技术是当今世界各国争先发展的热点技术,纳米技术和材料的生产及其应用在中国已起步,可以产业化的只有为数不多的几个品种,纳米二氧化钛(TiO2)、纳米氧化锌(ZnO)、纳米碳酸钙(CaCO3)便是其中较具代表性的几个品种。纳米粉体的制备方法很多,可分为物理方法和化学方法。以下是对各种方法的分别阐述并举例。 1. 物理方法 (1)真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。1。金属烟粒子结晶法是早期研究的一种实验室方法。将金属原料置于真空室电极处,真空室抽空(真空度1P a)导入102到103 P a压力的氩气或不活泼性气体,然后像通常的真空蒸发那样,用钨丝蓝蒸发金属。在气体中,通过蒸发、凝聚产生的金属蒸气形成金属烟粒子,像煤烟粒子一样沉积于真空室内壁上。在钨丝篮上方或下方位置可以预先放置格网收集金属烟粒子样品,以备各类测试所用。2。流动油面上的真空蒸发沉积法(VEROS),VEROS法是将物质在真空中连续的蒸发到流动着的油面上,然后把含有纳米粒子的油回收到贮存器内,再经过真空蒸馏、浓缩,从而实现在短时间制备大量纳米粉体。 (2)物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。例,有一种制备纳米粉体材料新方法,最适用于碳化物、氮化物及部分金属粉体的制备。其方法是先对反应器抽真空,然后充入保护气体或反应气体,在反应器中设置石墨电极,在石墨电极与反应器坩埚中的金属之间通电,使之产生高温碳电弧,由高温电弧产生金属蒸汽。采用保护气体可以生产出由石墨原子包覆的纳米镍粉、铜粉、铝粉等不易团聚的金属纳米粉末;采用反应气体可以生产碳化物、氮化物纳米粉末。与现有技术相比,生产的纳米粉末不易团聚,具有成本低,电弧功率大,可以实现规模化生产,具有广泛的实用性。用冲击波处理共沉淀法制备的氧化铁与氧化锌混合物合成了铁酸锌,用XRD、TEM 和电子衍射法对这种产品进行了鉴定.与传统的高温焙烧法相比,这种产品的特点是其颗粒尺寸为纳米级.主要原因可能在于冲击波的作用时间极短,因此生成的铁酸锌不会生长成为完整的晶粒.由此可以认为,冲击波处理可能是一种制备复合金属氧化物的纳米粉体的新方法. (3)机械球磨法 采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。例,一种钛合金纳米粉体制备方法,原料包括钛合金粗粉、助磨键合剂、分散剂、表面活性剂;制备方法是,将所述原料按配比投入反应釜,反应釜转速200-300mpr、温度50℃-60℃,反应釜旋转时间15-30分钟;反应釜转速升高至达1000mpr以上,维持该转速1.5-2.5小时,温度为180℃以上;反应釜转速降到300mrp以下,在0.5-1.0小时内降低温度至40℃-50℃,停机,即完成纳米粉体的制备。它稳定地对钛合金实现了纳米化加工;由此为利用纳米粉体的小尺寸效应、表面积效应而使它的耐蚀优点得到提升得以实现,使之可作为一种活性添加剂与各种优良树脂结合成一种新型复合材料。 2. 化学方法 (1)气相沉积法 利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。例,TiCl4气相氧化法,其基本化学反应式为:TiCl4(g)+O2(g)=TiO2(s)+Cl2(g) 施利毅、李春忠等利用

纳米材料的制备以及表征教学总结

纳米材料的制备以及表征 纳米科技作为21世纪的主导科学技术,将会给人类带来一场前所未有的新的工业革命。纳米科技使我们人类认识和改造物质世界的手段和能力延伸到原子和分子。纳米材料是目前材料科学研究的一个热点,纳米材料是纳米技术应用的基础。科学家们正致力于研究对纳米材料的组成、结构、形态、尺寸、排列等的控制,以制备符合各种预期功能的纳米材料。 低维纳米材料因其具有独特的物理化学特性以及在各个同领域的广泛应用 而受到国内外许多科研小组的广泛关注。钒氧化物纳米材料因为具有良好的催化性能、传感特性及电子传导特性而成为研究低维纳米材料物理化学现象的理想体系。尤其是对钒氧化合物纳米线、纳米带、纳米管的结构与性能的研究日益深入。另外,稀土正硼酸盐纳米材料因其独特的发光性能、电磁性能引起了广大科研小组的浓厚兴趣,是低维纳米材料领域研究的一个热点内容。 1.绪论 1.1纳米材料的发展概况 早在60年代,东京大学的久保良吾(Kubo)就提出了有名的“Kubo效应”, 认为金属超微粒子中的电子数较少,而不遵守Femri统计,并证实当结构单元变得比与其特性有关的临界长度还小时,其特性就会发生相应的变化。70年代末80年代初,随着干净的超微粒子的制取及研究,“Kubo效应”理论日趋完善, 为日后纳米技术理论研究打下了基础。人们对纳米颗粒的结构、形态和特性进行了比较系统的研究,描述金属微粒费密面附近电子能级状态的久保理论日趋完善,并且用量子尺寸效应成功地解释了超微粒子的某些特性[3]。最早使用纳米颗粒 制备三维块体试样的是德国萨尔兰大学教授H.Gletier,他于1984年用惰性气体蒸发、原位加压法制备了具有清洁表面的纳米晶Pd、cu、Fe等[4],并从理论及性能上全面研究了相关材料的试样,提出了纳米晶材料的概念,成为纳米材料的创始者。1987年美国Argon实验室sigeel博士课题组用相同方法制备了纳米陶 瓷TIOZ多晶体。纳米技术在80年代末和90年代初得到了长足发展,并逐步成为一个纳米技术体系。1990年7月,第一届国际纳米科技会议在美国巴尔的摩 召开,标志着纳米科学技术的正式诞生;正式提出了纳米材料学、纳米生物学、

碳纳米管复合材料的制备_表征和电化学性能

第11卷 第2期2005年5月 电化学 ELECTROCHE M ISTRY V o.l 11 N o .2M ay 2005 文章编号:1006-3471(2005)02-0152-05 收稿日期:2004-11-02,*通讯联系人T el :(86-592)2185905,E -m a il :qfdong @x m u .edu .cn 973项目(2002CB211800),国家自然科学基金(20373058),福建省科技项目(2003H 044)资助 碳纳米管复合材料的制备、表征和电化学性能 董全峰* ,郑明森,黄镇财,金明钢,詹亚丁,林祖赓 (厦门大学化学系,厦大宝龙电池研究所,固体表面物理化学国家重点实验室,福建厦门361005) 摘要: 作为锂离子电池负极材料,碳纳米管和金属锡或其氧化物都曾引起过人们浓厚的兴趣,但由于其自 身的缺陷,这些材料均未能得到进一步的发展.本文以不同方法合成了碳纳米管和金属锡或其氧化物的复合材料,对其结构、形貌进行表征,并考察它的电化学性能. 关键词: 碳纳米管; 复合材料;制备;电化学性能中图分类号: O 646;T M 911 文献标识码: A 碳纳米管(CNT )是一种新型的碳材料[1,2] .碳纳米管在结构上与其它的碳材料有很大的不同,它不仅具有典型石墨层状结构(管壁),同时又具有无序碳的结构(内外表面的碳层及所附着的无序碳微粒),还具有与MC MB 类似的内腔结构,而且表面及边缘又存在结构缺陷,管与管之间为纳米间隙,管中还存在部分的H 原子掺杂.在制备上,碳纳米管可以通过控制一定的反应条件来调控它的几何结构参数,如管的管壁,外径、内径大小,及管的长度.基于其特殊的结构和高的导电率,吸引了众多研究者开展了大量研究工作,希望它能成为新一代锂离子电池“理想”的负极材料[3,4] . 由于碳纳米管的高比表面及其结构缺陷,锂不仅能嵌入管中的石墨层,还能嵌入它的孔隙及边缘缺陷中,使得它尽管具有高的嵌锂容量,但由于比表面积较大而表现出很大的不可逆容量.又因为在碳纳米管的结构中含有氢原子以及管壁层间和管 腔之内有间隙碳原子的存在[5] ,故其嵌锂容量出现较大的滞后现象.这些都限制了C NT 作为电极活性材料在实际中的应用,所见者只是被用作电极添加剂的报道.本文综合了碳纳米管和锡基材料的优点,规避其本身固有的缺陷,在碳纳米管的表面沉积/包覆锡或氧化锡形成CNT 复合材料,这样不仅可减少碳纳米管的比表面积,同时直接采用金属锡取代锡基氧化物,不存在氧化物的还原过程,从 而大大降低初次充电不可逆容量损失;通过控制反应条件在表面沉积过程中包覆纳米级的锡,使表面沉积/包覆锡的碳纳米管能在保持高容量的同时,也具有良好的循环寿命.此外,还提高了它的体积能量密度. 1 实 验 1.1 碳纳米管的制备 应用Sol -ge l 法制备N i -M g -O 催化剂,方法见文献[6],所用试剂N i (NO 3)2 6H 2O 、M g (NO 3)2 6H 2O 和柠檬酸均为分析纯(上海化学试剂有限公司).将制备好的催化剂称取一定量置于陶瓷舟内,放在反应器的恒温区内,于氢气氛下缓慢升温至700℃,还原一段时间后,降温到600℃稳定10m in ,然后以20m L /m i n 的流量导入C H 4气体,经反应一定时间后自然冷却至室温(冷却过程中继续通气体).用分析纯硝酸(上海化学试剂有限公司,AR 65%)处理反应后的样品,洗涤、烘干后即得到碳纳米管.反应装置是在一个水平放置的管式电炉内放一内径为5c m 的石英管(长140c m ),其恒温区为20c m ,电炉为SK -2-4-12型管式电阻炉(上海实验电炉厂),额定功率4k W ,额定温度1200℃,控温装置为A1-708P A 型程序控温仪(厦门宇光电子技术研究所),流量计为D08-4C /Z M 质量流量控制仪(北京建中机器厂).

金属超细粉体制备的研究进展

金属超细粉体制备的研究进展 摘要:简要介绍了超细粉体的制备方法,并介绍了电爆炸法和电弧等离子法制备AI、Mg 粉体的工艺技术及其研究进展。这2种方法具有产品颗粒直径分布窄、粒度大小易于控制和调节、产品纯度高、便于收集、无污染等优点,且易于工业化。它们是目前生产金属细颗粒较环保和成本较低的方法。 关键词:水反应金属燃料;Al;M g;粉体;电爆炸法;电弧等离子法 1. 引言 俄罗斯“暴风雪”超高速鱼雷利用“超空泡”(supercavitation)原理突破了水下航行体的速度限制.达到了200节航速【1】。。其所用动力推进系统为水冲压发动机,该发动机使用的燃料是“水反应金属燃料”,该鱼雷具体使用的是“Mg基水反应金属燃料”【2】。“暴风雪”鱼雷的出现引起了美、德、日等国对水冲压发动机和水反应金属燃料的极大关注,并展开大规模的研究。水反应金属燃料的优点是不仅能量特性高,而且具有充分利用雷外海水作为能源的特点,能够显著提高燃料单位体积的能量密度,使鱼雷超高速、远航程航行成为可能【3】。 目前研究所采用的水反应金属燃料的主要原料有:活性金属如Al、Mg、B、Ti、Li、Na、K、zr、w等,金属氢化物如AlH 3、M gH 2、B 2H。、ZrH:及LiAIH。及一些活性较高的金属氧化物和金属碳化物等。考虑到成本、毒性、能量密度等各方面的问题,Mg和Al 是最佳选择14】。与Mg基金属水反应燃料相比,A1的成本更低,来源更广,稳定性更好,最主要的是Al基燃料的比冲要大于Mg基燃料的比冲【5】。 对于金属燃料能否用于水冲压发动机的要求,除了看其能量密度能否满足要求外,还要看其粒度、纯度能否满足点火要求等;而决定其点火温度的主要因素是金属粒子粒度的大小。若想降低或选择合适的金属粒子的点火温度,就必须制备出超细颗粒(包括微米级、亚微米级和纳米级粒子)的金属粒子。 超细粒子的制备方法 对于超细粒子的制备已经报道了许多方法,从这些报道来看,超细粉体的制备方法可根据反应体系的不同而分为气相法、液相法和固相法【6】。 气相法一般是指用气体原料或将原料蒸发成气体,然后通过化学反应或物理作用再生成超细颗粒的方法。这类方法中包括气相化学反应、激光合成法、电爆炸法、惰性气体冷凝法和电弧等离子体法。 气相法制备金属超细粒子的特点是产品纯度高、分散性良好、粒子粒径分布窄、粒径小。此外,通过控制气氛可以制备液相法难以制备的金属、碳化物、氮化物、硼化物等非氧化物超细粉体【7】o 液相法(也称溶液反应法)是当前实验室和工业上广泛采用的合成高纯超细粉体的方法。其主要优点是能精确控制化学组成,易于添加微量有效成分,超细粒子形状和尺寸也较容易

二氧化锰纳米材料的制备与表征

二氧化锰纳米材料的制备与表征 [摘要] 研究以KMnO4为氧化剂用水热合成法制备MnO2不同纳米晶型的过程,并以X射线衍射(XRD),透射电镜(TEM)等方法对其进行了表征。结果表明,在水热反应过程中,反应时间改变会使MnO2晶型及其形貌发生转变。 [关键词] 二氧化锰晶型水热合成纳米结构α-MnO2 β-MnO2 1.引言 纳米结构无机材料因具有特殊的电、光、机械和热性质而越来越受到人们的重视。锰氧化合物不仅资源丰富、价格低廉、对环境无污染,而且具有多变的组成、复杂的结构、奇特的功能,因而在电子、电池、催化、高温超导、巨磁阻材料、陶瓷等领域显示出广阔的应用前景,所以其制备方法、结构表征、反应机理及应用的研究备受瞩目。其中MnO2作为一种重要的无机功能材料,在催化和电极材料等领域中已得到广泛的应用。 Xie 等证实空壳海胆结构的α-MnO2作为锂电池的阴极材料比实心海胆状α-MnO2和单分散α-MnO2 纳米棒更有效;Yang等报道氧化锰纳米棒对甲基蓝的氧化分解反应具有良好的催化效果;Ma等也证明了层状二氧化锰纳米带是充电锂电池理想的阴极材料。目前研究较多的是MnO2和锰酸盐,常用的制备方法有固相合成法、溶胶凝胶法、沉淀法等。 通常MnO2的活性随其所含结晶水的增加而增强,结晶水能促进质子在固体相中的扩散,因此γ- MnO2是各种晶型MnO2中活性最佳的。但在非水溶液中, MnO2 所含的结晶水反而会使它的活性下降。如在Li-MnO2电池正极材料中,以α-MnO2性能最差,含少量水分的γ-MnO2较差,无结晶水的β-MnO2较好,γβ-MnO2(混合)最好。所以γ-MnO2 在作为阴极材料之前,必须对其进行热处理,并且要除去水分,使晶型结构从γ-MnO2 转变为γβ-MnO2相(混合,以β相含量为65%~80%为最优)。再者,在固体二氧化锰有着较为复杂的晶型结构,如α、β、γ等5种主晶及30余种次晶,因此需要深入理解二氧化锰晶型转变机制。MnO2材料的微观形貌对于其应用有着重要的意义。 本实验以KMnO4和MnSO4·H2O为原料,采用水热合成法在高温反应釜条件下制备MnO2纳米晶型,并借助XRD、SEM、IR等技术对其进行了表征。 2.实验部分 2. 1 试剂与仪器 硫酸锰(分析纯),中国上海通亚精细化工厂;高锰酸钾(分析纯),宿州化学试剂厂;盐酸(分析纯),上海博河精细化学品有限公司。

纳米材料的测试与表征

报告 课程名称纳米科学与技术专业班级电气1241 姓名张伟 学号32 电气与信息学院 和谐勤奋求是创新

纳米材料的测试与表征 摘要:介绍了纳米材料的特性及测试与表征。综合使用各种不同的分析和表征方法,可对纳米材料的结构和性能进行有效研究。 关键词:测试技术;表征方法;纳米材料 引言 纳米材料具有许多优良的物理及化学特性以及一系列新异的力、光、声、热、电、磁及催化特性,被广泛应用于国防、电子、化工、建材、医药、航空、能源、环境及日常生活用品中,具有重大的现实与潜在的高科技应用前景。纳米材料的化学组成及其结构是决定其性能和应用的关键因素,而要探讨纳米材料的结构与性能之间的关系,就必须对其在原子尺度和纳米尺度上进行表征。其重要的微观特征包括:晶粒尺寸及其分布和形貌、晶界及相界面的本质和形貌、晶体的完整性和晶间缺陷的性质、跨晶粒和跨晶界的成分分布、微晶及晶界中杂质的剖析等。如果是层状纳米结构,则要表征的重要特征还有:界面的厚度和凝聚力、跨面的成分分布、缺陷的性质等。总之,通过对纳米材料的结构特性的研究,可为解释材料结构与性能的关系提供实验依据。 纳米材料尺度的测量包括:纳米粒子的粒径、形貌、分散状况以及物相和晶体结构的测量;纳米线、纳米管的直径、长度以及端面结构的测量和纳米薄膜厚度、纳米尺度的多层膜的层厚度的测量等。适合纳米材料尺度测量与性能表征的仪器主要有:电子显微镜、场离子显微镜、扫描探测显微镜Χ光衍射仪和激光粒径仪等。 紫外和可见光谱是纳米材料谱学分析的基本手段,分为吸收光谱、发射光谱和荧光光谱。吸收光谱主要用于监测胶体纳米微粒形成过程;发射光谱主要用于对纳米半导体发光性质的表征,荧光光谱则主要用来对纳米材料特别是纳米发光材料的荧光性质进行表征。红外和喇曼光谱的强度分别依赖于振动分子的偶极矩变化和极化率的变化,因而,可用于揭示纳米材料中的空位、间隙原子、位错、晶界和相界等方面的信息。纳米材料中的晶界结构比较复杂,与材料的成分、键合类型、制备方法、成型条件以及热处理过程等因素均有密切的关系。喇曼频移与物质分子的转动和振动能级有关,不同的物质产生不同的喇曼频移。喇曼频率特征可提供有价值的结构信息,利用喇曼光谱可以对纳米材料进行分子结构、键态特征分析和定性鉴定等。喇曼光谱具有灵敏度高、不破坏样品、方便快速等优点,是研究纳米材料,特别是低维纳米材料的首选方法。 目前对纳米微观结构的分析表征手段主要有扫描探针显微技术,它包括扫描隧道电子显微镜、原子力显微镜、近场光学显微镜等。利用探针与样品的不同相互作用,在纳米级至原子级水平上研究物质表面的原子和分子的几何结构及与电子行为有关的物理、化学性质。例如用STM不仅可以观察到纳米材料表面的原子或电子结构,还可以观察表面存在的原子台阶、平台、坑、丘等结构缺陷。高分辨电子显微镜用来观察位错、孪晶、晶界、位错网络等缺陷,核磁共振技术可以用来研究氧缺位的分布、原子的配位情况、运动过程以及电子密度的变化;用核磁共振技术可以研究未成键电子数、悬挂键的类型、数量以及键的结构特征等。 测试技术的发展 纳米测试技术的研究大致分为三个方面:一是创造新的纳米测量技术,建立新理论、新方法;二是对现有纳米测量技术进行改造、升级、完善,使它们能适应纳米测量的需要;三是多种不同的纳米测量技术有机结合、取长补短,使之能适应纳米科学技术研究的需要。纳米测试技术是多种技术的综合,如何将测试技术与控制技术相融合,将探测、定位、测量、控制、信号处理等系统结合在一起构成一个大系统,开发、设计、制造出实用新型的纳米测量系统,是亟待解决的问题,也是今后发展的方向。随着纳米材料科学的发展和纳米制备技术的进步,将需要更新的测试技术和手段来表征、评价纳米粒子的粒径、形貌、分散和团聚

碳纳米管ZnO纳米复合体的制备和表征

物理化学学报(Wuli Huaxue Xuebao ) Acta Phys.鄄Chim.Sin .,2007,23(2):145-151 Received:August 9,2006;Revised:November 7,2006.English edition available online at https://www.docsj.com/doc/c914650189.html, ? Corresponding author.Email:qingchen@https://www.docsj.com/doc/c914650189.html,;Fax:+8610?62757555.国家自然科学基金委国际合作项目(60440420450)、高等学校博士学科点专项科研基金(20050001055)和新世纪优秀人才支持计划资助 ?Editorial office of Acta Physico ?Chimica Sinica [Article] https://www.docsj.com/doc/c914650189.html, February 碳纳米管/ZnO 纳米复合体的制备和表征 杨闵昊 梁涛彭宇才陈 清? (北京大学电子学系,纳米器件物理与化学教育部重点实验室,北京 100871) 摘要: 通过将不同直径的ZnO 纳米颗粒与碳纳米管连接制备了碳纳米管/ZnO 纳米复合体.将团聚的ZnO 纳 米颗粒分散并用表面活性剂CTAB 使纳米颗粒带正电.化学氧化碳纳米管使其带负电.ZnO/CTAB 微团通过碳管表面羧基与CTAB 的静电作用与碳纳米管连接形成纳米复合体.研究了复合体形成的不同实验条件,表征了碳纳米管/ZnO 纳米复合体的结构并研究了纳米复合体的光学特性.研究表明,与碳纳米管连接的ZnO 纳米颗粒是互不连接的并保持量子点的特性.光致发光研究表明ZnO 纳米颗粒的激发在纳米复合体中有淬灭.关键词:ZnO ;碳纳米管;纳米复合体中图分类号:O648 Synthesis and Characterization of a Nanocomplex of ZnO Nanoparticles Attached to Carbon Nanotubes YANG Min ?Hao LIANG Tao PENG Yu ?Cai CHEN Qing ? (Key Laboratory for the Physics and Chemistry of Nanodevices of the Ministry of Education,Department of Electronics, Peking University,Beijing 100871,P.R.China )Abstract :A CNT/ZnO nanocomplex was fabricated by attaching ZnO nanoparticles with various diameters to carbon nanotubes (CNTs).The as ?prepared agglomerate ZnO nanoparticles were dispersed and positively charged by utilizing a cationic surfactant cetyltrimethylammonium bromide (CTAB).ZnO/CTAB micelles were subsequently anchored to the surface of CNTs by electrostatic interaction between carboxyl groups on the chemically oxidized nanotubes ′sidewalls and CTAB molecules.Different experimental conditions for the attachment were studied.The CNT/ZnO nanocomplex was characterized using structural and optical analysis methods.ZnO nanoparticles attached to the carbon nanotubes were found to be separated from each other maintaining characteristics of quantum dots Photoluminescence study showed that the emission of ZnO nanoparticles was quenched in the nanocomplex.Key Words :ZnO ;Carbon nanotube ;Nanocomplex Due to their unique physical and chemical properties,car-bon nanotubes (CNTs)have broad applications in nanoelectron-ics [1-6],catalysis [7],sensors [8,9],and biosensors [10].Attaching nanopar-ticles to nanotube sidewalls is expected to enhance the CNT ap-plications as in catalysis,fuel cells,or sensors.Various ap-proaches for CNT/nanoparticle complexes have been suggested,such as physical evaporation [9],chemical reaction with functional ized CNTs [11-16].Materials that have been attached to CNTs in-clude gold [12-14,17,18],platinum [7,14],and palladium [9,19]nanoparticles [15,16],proteins and small biomolecules [20],polymers [21],CdSe ?ZnS core ? shell nanocrystals [22],and ZnO clusters [23,24]. ZnO is a wide band gap (3.37eV)semiconductor having broad applications in room temperature ultraviolet lasing,chem-ical sensors,photovoltaics,piezoelectric transducers,and single electron transistors [25-28].ZnO nanoparticles have been extensive-ly studied over the past years because of their size ?dependent electronic and optical properties [25,26].Combining ZnO nanoparti-cles with CNTs is expected to produce materials with enhanced electronic and optical properties.A couple of groups have start-ed to explore this direction very recently.ZnO nanoparticles 145

相关文档