文档视界 最新最全的文档下载
当前位置:文档视界 › 柱色谱

柱色谱

柱色谱
柱色谱

过柱子总结(吸附剂与洗脱剂)

吸附剂与洗脱剂

(一)吸附剂与洗脱剂

根据待分离组分的结构和性质选择合适的吸附剂和洗脱剂是分离成败的关键。

1.吸附剂的要求

①对样品组分和洗脱剂都不会发生任何化学反应,在洗脱剂中也不会溶解。

②对待分离组分能够进行可逆的吸附,同时具有足够的吸附力,使组分在固定相与流动相之间能最快地达到平衡。

③颗粒形状均匀,大小适当,以保证洗脱剂能够以一定的流速(一般为1.5mL·min-1)通过色谱柱。

④材料易得,价格便宜而且是无色的,以便于观察。

2、常用吸附剂的种类:氧化铝、硅胶、聚酰胺、硅酸镁、滑石粉、氧化钙(镁)、淀粉、纤维素、蔗糖和活性炭等。

3、几种常见吸附剂的特性

(1)氧化铝:市售的层析用氧化铝有碱性、中性和酸性三种类型,粒度规格大多为100~150目。

碱性氧化铝(pH9—10):适用于碱性物质(如胺、生物碱)和对酸敏感的样品(如缩醛、糖苷等),也适用于烃类、甾体化合物等中性物质的分离。但这种吸附剂能引起被吸附的醛、酮的缩合。酯和内酯的水解、醇羟基的脱水、乙酰糖的去乙酰化、维生素A和K等的破坏等不良副反应。所以,这些化合物不宜用碱性氧化铝分离。

酸性氧化铝(pH3.5—4.5):适用于酸性物质如有机酸、氨基酸等以及色素和醛类化合物的分离。

中性氧化铝(pH7—7.5):适用于醛、酮、醌、苷和硝基化合物以及在碱性介质中不稳定的物质如酯、内酯等的分离,也可以用来分离弱的有机酸和碱等。

(2)硅胶:硅胶是硅酸的部分脱水后的产物,其成分是SiO2·xH2O,又叫缩水硅酸。柱色谱用硅胶一般不含粘合剂。

适用范围:非极性和极性化合物,适用于芳香油、萜类、甾体、生物碱、强心甙、蒽醌类、酸性、酚性化合物、磷脂类、脂肪酸、氨基酸,以及一系列合成产品如有机金属化合物等。(3)聚酰胺:色谱用聚酰胺主要又锦纶6(聚己内酰胺)和锦纶66(聚己二酰己二胺)两种,分子量一般在16000~20000,其亲水性和亲脂性均较好,因此既可分离水溶性成份,也可分离脂溶性成分。可溶于浓盐酸、甲酸及热的乙酸、甲酰胺和二甲基甲酰胺中;微溶于乙酸和苯酚等;不溶于醇、氯仿、丙酮、乙醚、苯等;对碱稳定,对强酸可水解。

聚酰胺色谱的原理:兼具吸附色谱和分配色谱的功能。采用强极性洗脱剂时主要为吸附色谱——正相色谱;采用弱极性洗脱剂时主要为分配色谱——反相色谱。

分离对象:能与聚酰胺形成氢键的化合物,如酚类、酸类、醌类、硝基化合物及含羟基、氨基、亚氨基的化合物及腈和醛等类化合物。

聚酰胺在水中吸附能力的规律:

形成氢键的基团(如:酚经基、按基、酪基、硝基等)越多,

则吸附力越强。如:丁二酸>丁酸

形成氢键的位置与吸附力有很大关系。对位、间位酚羟基使吸附力增大,邻位使吸附力减小。芳香核、共轭双键多者吸附力大,少者吸附人小。

若形成分了内氢键,则使化合物的吸附力减小。

(4)硅酸镁:中性硅酸镁的吸附特性介于氧化铝和硅胶之间,主要用于分离甾体化合物和某些糖类衍生物。为了得到中性硅酸镁,用前先用稀盐酸,然后用醋酸洗涤,最后用甲醇和

蒸馏水彻底洗涤至中性。

3.吸附剂的活度及其调节

吸附剂的活性取决于它们含水量的多少,活性最强的吸附剂含有最少的水。吸附剂的活性一般分为五级,分别用Ⅰ、Ⅱ、Ⅲ、Ⅳ和Ⅴ表示。数字越大,表示活性越小,一般常用Ⅱ~Ⅲ。向吸附剂中添加一定的水,可以降低其活性。反之,如果用加热处理的方法除去吸附剂中的部分水,则可以增加其活性,后者称为吸附剂的活化。各种不同活度吸附剂的含水量见表表3—6 各种不同活度的吸附剂的含水量

活度氧化铝(水%)硅胶(水%)硅酸镁(水%)

Ⅰ 0 0 0

Ⅱ 3 5 7

Ⅲ 6 15 15

Ⅳ 10 25 25

Ⅴ 15 35 35

4、实验操作

吸附剂用量的确定→柱子的选择→装柱→柱留体积的测量→加样或拌样→洗脱→分部收集→检测→合并→浓缩

氧化铝:一般选择中性,粒度150~200目,超过220目需加压;一般用量1g样品/20~50g,特例1g样品/100~200g

硅胶:吸附色谱——1g样品/20~50g ,特例1g样品/500~1000g,用前最好120烘24h,可不做活性测定。分配色谱——1g样品/100~1000g,特例1g样品/10000g。

色谱柱的选择:

有玻璃柱和不锈钢柱两种,一般不使用有机玻璃柱,实验室常用玻璃柱;

径长比一般为1:10~1 :20,特例1:40;

内壁光滑均匀,上下粗细一样,管壁无裂缝,活塞密封良好;

根据吸附剂用量(体积)确定柱子的大小,一般吸附剂应填充到柱子体积的1/4~1/5左右。装柱:有干装法和湿装法两种。

干装法——在下端减压抽气的同时,将吸附剂通过长径漏斗缓缓到入柱内。

湿装法——①准确加入一定体积的溶剂,然后缓慢加入吸附剂,必要时可轻敲柱壁,排除多余溶剂,计算主留体积;②准确量取一定体积的溶剂倒入称量好的吸附剂,间歇性搅拌数次,静置过夜,次日在搅拌下装柱,计算主留体积。

加样:

①将样品溶于合适的溶剂,在不扰动吸附剂层面的情况下,加到柱体上面。最后在用少量清洁溶剂对主壁洗涤2~3次;

②将样品溶于合适的溶剂后,在搅拌下加入样品量3~5倍的吸附剂,晾干至粉末状,然后在不扰动吸附剂层面的情况下,加到柱体上面。

洗脱

必须注意在洗脱的过程中,尤其是开始阶段,不能扰动层面。洗脱速度一般为每分钟流出

1/200柱留体积左右。对于梯度洗脱需注意标记不同溶剂的分界管号。

分部收集:一般每管收集1/20~1/10柱留体积

检测:确定目标物的位置及纯化情况

①薄层色谱或纸色谱检测;

②气相色谱或液相色谱检测;

合并:成分相同或相似的收集液合并,交叉部分单独收集。

浓缩:旋转薄膜蒸发;确保烧瓶干燥干净。

展开剂的极性规律

单一溶剂的极性大小顺序为:

石油醚(小)→环己烷→四氯化碳→三氯乙烯→苯→甲苯→二氯甲烷→氯仿→乙醚→乙酸乙酯→乙酸甲酯→丙酮→正丙醇→甲醇→吡啶→乙酸(大)

混合溶剂的极性顺序:

苯∶氯仿(1+1)→ 环己烷∶乙酸乙酯(8+2)→氯仿∶丙酮(95+5)→苯∶丙酮(9+1)→苯∶乙酸乙酯(8+2)→氯仿∶乙醚(9+1)→苯∶甲醇(95+5)→苯∶乙醚(6+4)→环己烷∶乙酸乙酯(1+1)→氯仿∶乙醚(8+2)→氯仿∶甲醇(99+1)→苯∶甲醇(9+1)→氯仿∶丙酮(85+15)→苯∶乙醚(4+6)→苯∶乙酸乙酯(1+1)→氯仿∶甲醇(95+5)→氯仿∶丙酮(7+3)→苯∶乙酸乙酯(3+7)→苯∶乙醚(1+9)→乙醚∶甲醇(99+1)→乙酸乙酯∶甲醇(99+1)→苯∶丙酮(1+1)→氯仿∶甲醇(9+1)

选择展开剂,要依据溶剂极性和他们的混溶性,溶剂对被分析物的溶解性,以及被分析物的结构。这里只讨论药典里通常使用的以硅胶为固定相主体的正相薄层,也不考虑板的活性。

列出溶剂极性参数表,方便以下比较展开剂。环已烷:-0.2、石油醚(Ⅰ类,30~60℃)、石油醚(Ⅱ类,60~90℃)、正已烷:0.0、甲苯:2.4、二甲苯:2.5、苯:2.7、二氯甲烷:3.1、异丙醇:3.9、正丁醇:3.9 、四氢呋喃:4.0、氯仿:4.1、乙醇:4.3、乙酸乙酯:4.4、甲醇:5.1、丙酮:5.1、乙腈:5.8、乙酸:6.0、水:10.2 [1] 。

关于溶剂混溶性,一般根据相似相溶原则,需要注意,极性相差大的不混溶,比如正己烷与甲醇。多元展开剂,主体的两种溶剂不能混溶,就需要通过第三种溶剂来调和。比如:石油醚、正庚烷、正已烷、戊烷、环已烷和甲醇、水之类的。

一般正相色谱,固定相为极性,被分析物质的极性越大,需要极性更大的展开剂。

了解被分析物的极性可以通过分析其结构获得,很难获得它的极性指数。物质分子化学结构中,通常由较极性部分和非极性部分两部分。例如下面以苯丙烷为极性小部分,随着极性基团部分的增加,总体的极性就增加,展开剂极性也增加了。依次为肉桂酸、阿魏酸、咖啡酸、菊苣酸、绿原酸。

相应展开剂分别为:正己烷—乙醚—冰醋酸(5:5:0.1)、苯-冰醋酸-甲醇(30:1:3)、氯仿-甲醇-甲酸(9:1: 0.5)、石油醚-乙酸乙酯-甲酸(3:6: 1)、醋酸丁酯-甲酸-水(7:2.5:2.5)。(由于薄层板、比移值不同的原因,展开剂极性比较是相对的,并非绝对的后者大于前者)。

现在最重要的问题是,不同化合物,怎么定它的极性,又用什么标准来定它对应的展开剂呢?以下分开讨论不同化合物极性情况及其对应的展开剂。

首先是极性较小的挥发性物质。比如:冰片:石油醚(30~60 ℃)—醋酸乙酯(17:3)、厚朴酚:苯-醋酸乙酯(9:1.5)、α-香附酮:苯-醋酯乙酯-冰醋酸(92:5:5)、丹皮酚:环己烷-醋酸乙酯(3:1),这类化合物,以石油醚、正构烷和苯为体积百分数比较大的溶剂,通常起溶解和分离化合物的作用,而用醋酸乙酯为调节Rf(比移值)的溶剂。为了减少拖尾之类其他相似相溶原则以外的影响,适当加入添加剂,如有机酸或者有机碱。

极性较小的不挥发性物质。比如:β -谷甾醇:环己烷-醋酸乙酯-甲醇(6:2.5:1)或者环己烷-丙酮(5:2) 、熊果酸:甲苯-醋酸乙酯-冰醋酸(12:4:0.5)、齐墩果酸:氯仿-甲醇(40:1)、猪去氧胆酸:氯仿-乙醚-冰醋酸(2:2:1)、大黄素:苯—醋酸乙酯—甲醇(15:2:0.2)或者苯—乙醇(8:1) 、丹参酮ⅡA:苯-醋酸乙酯-甲酸(40:25:4) 、穿心莲内酯:氯仿-无水乙醇(9:1)、靛玉红、靛蓝氯仿-乙醇(9:1)或者苯-氯仿-丙酮(5:4:1)。这类物质展开剂极性比极性较小的挥发性物质洗脱力强一些,因为这类物质极性小的母核大,而极性大的基团通常可以形成氢键,比如羧酸、羟基。以上物质,母核分子量减小、母核结构中不饱和健的

增加(尤其是出现苯环),极性基团的增加,都使极性增加,展开剂极性也增大。这个范围内的物质很多,一般展开剂大百分数的溶剂可以从环己烷—〉甲苯—〉二甲苯—〉苯—〉氯仿的顺序,按照极性要求选择。这里注意,异丙醇、正丁醇极性指数也比较小,在这范围的化合物很少用,因为粘性大、展开慢,造成斑点扩散;另外,羟基的氢键作用力也有不利。调节Rf值的溶剂,从醋酸乙酯—〉甲醇—〉丙酮—〉乙醇。挥发性物质也有很多带羰基、羟基的,但从它的挥发性就可以明白,分子间作用力不强,另外,母核与石油醚、正构烷和苯的结构差异小,估计更容易脱离硅胶吸附,更快进入溶剂中,而不需要通过提高展开剂的极性。

皂苷类。人参皂苷:氯仿-甲醇-水(65:35:10)10℃以下放置的下层溶液或正丁醇-醋酸乙酯-水(4:1:5)的上层溶液或氯仿-醋酸乙酯-甲醇-水(15:40:22:10)10℃以下放置的

下层溶液、芍药苷:氯仿-醋酸乙酯-甲醇-甲酸(40:5:10:0.2)、黄芩苷:醋酸乙酯-丁酮-醋酸-水(10:7:5:3)、橙皮苷:苯—醋酸乙酯—甲酸—水(1:12:2.5:3)的上层溶液、葛根素:氯仿-甲醇-水(14:5:0.5)、芦丁:醋酸乙酯-甲酸-水(8:1:1)。这类物质,由于存在糖的多羟基结构,苷元的结构影响变小。展开剂中使用极性大的有机溶剂(氯仿、醋酸乙酯、甲醇、正丁醇)和水。乙酸和甲酸的使用,一方面增大展开剂极性,另外也可以抑制硅胶羟基的作用,减少拖尾。由于混溶性和硅胶耐酸能力的限制,水和酸的使用是有限度的。

极性大的小分子有机酸。没食子酸:氯仿-醋酸乙酯-甲酸(5:4:1)、阿魏酸、咖啡酸、菊苣酸、绿原酸、异绿原酸。这类物质多数是苯乙烯母核的,这个结构的极性本身比较大,另外有酚羟基和羧酸基团,个别有多羟基配基。皂苷的展开剂差不多,极性大。注意甲酸通常指的是浓度85%左右的,含有水。

含氮有机物。盐酸小檗碱:苯-醋酸乙酯-甲醇-异丙醇-浓氨试液(12:6:3:3:0.6)(氨蒸气饱和) 或正丁醇-冰醋酸-水(7:1:2)、麻黄碱:氯仿-甲醇-浓氨试液(20:5:0.5) 或正丁醇-冰醋酸-水(8:2:1)、甘草酸铵:醋酸乙酯-甲酸-冰醋酸-水(15:1:1:2)。由于NH2硅醇基的作用很强,在强极性展开剂加有机酸、有机碱扫尾。对于极性化合物,使用正丁醇对斑点扩散影响较小,因为化合物和硅胶的作用强。

进行薄层分析基本可以根据母核、基团,选择相似的化合物对号入座。当然,具体的条件优化则需要根据实际情况了。遇到较困难的分离,需要使用到设计优化方法的,已经不属于本文讨论范围了。

液相色谱柱的选择

液相色谱柱的选择、使用、维护和常见故障及排除液相色谱的柱子通常分为正相柱和反相柱。正相柱大多以硅胶为柱,或是在硅胶表面键合 -CN,-NH3等官能团的键合相硅胶柱;反相柱填料主要以硅胶为基质,在其表面键合非极性的十八烷基官能团(ODS)称为C18柱,其它常用的反相柱还有C8,C4,C2和苯基柱等。另外还有离子交换柱,GPC柱,聚合物填料柱等。本文重点介绍反相色谱柱的选择和使用: 一、反相色谱柱的选择 1.柱子的PH值使用范围 反相柱优点是固定相稳定,应用广泛,可使用多种溶剂。但硅胶为基质的填料,使用时一定要注意流动相的PH范围。一般的C18柱PH值范围都在2-8,流动相的PH值小于2时,会导致键合相的水解;当PH值大于7时硅胶易溶解;经常使用缓冲液固定相要降解。一旦发生上述情况,色谱柱人口处会塌陷。同样填料各种不同牌号的色谱柱不尽相同。如果流动相PH较高或经常使用缓冲液时,建议选择PH范围大的柱子,例如戴安公司的Acclaim柱PH 2-9或Zorbax的PH 2-11. 5的柱子。 2.填料的端基封尾(或称封口) 把填料的残余硅羟基采用封口技术进行端基封尾,可改善对极性化合物的吸附或拖尾;含碳量增高了,有利于不易保留化合物的分离;填料稳定性好了,组分的保留时间重现性就好。如果待分析的样品属酸性或碱性的化合物,最好选用填料经端基封尾的色谱柱。 3.戴安公司Acclaim柱子介绍—极性封尾C16固定相柱 戴安公司有28种类型的柱子,Acclaim反相柱填料高纯,金属含量极低,完全封尾。PH 2-9范围内兼容,低流失,高柱效。尤其是2003年推出的Acclaim极性封尾C16柱,是最先商品化的磺酰氨-O链接键的色谱柱,具极低的硅羟基活性,能在极性溶剂甚至100%水的条件下长期使用。对酸

色谱柱知识

1.仪器都有个梯度精度的参数指标,那这个参数的好坏是取决于泵和比例阀两个东西吗?还是还有别的影响? 2.液相泵分为串联泵和并联泵,请问两种形式的泵有什么区别?各有什么优点? 3.在检测四元比例阀是否漏液时,“将管路里吸入一小段气泡”是在一个管路里吸入气泡吗? 如果是,那么另外三个管路的吸滤头是放在流动相中,还是提起来呢? 4.如果没有那个压力曲线可查,在平常维护仪器时,是否应该检测四元比例阀是否漏液,多久一次? 5.我的Agilent1200二元泵A泵前一段时间出口单向阀漏液,怀疑是压力过大顶坏了,换了一个单向阀,但是换完之后就是走梯度的时候在前几分钟的压力不稳,波动比较大,相应的色谱图也有一些问题,找工程师说是有盐析出,需要用长时间冲洗,但是效果一直不好,不得已只能走等度的样品了,想请你给点意见! 6.二元高压梯度系统的阻尼器在泵后的三通后边,四元低压梯度系统的阻尼器在泵的两个柱塞杆之间阻尼器位置不同有什么影响呢? 7.一时冲动,就去把入口单向阀给拆了,结果装不回来了,感觉那里面也没有什么太多的元件啊,就一个小铁圆柱,弹簧一个,一个小黑色橡胶垫圈,一个透明圆形垫片,怎么装回的时候就不能将两个部件密闭好呢?有没有单向阀的构件图片呢? 8.泵头里的溶剂通过出口球阀压入第二个腔体中,此时第二个腔体吸收全部第一个腔体溶剂,然后打出一半?还是第二个腔体吸收一半,剩下的一半直接流到色谱柱里去了? 9.用混合有机相(乙腈:甲醇)的时候,二元高压泵混合器以及出口单向阀那里经常堵,随着实验时间延长,压力也越来越高。所以不得不用了一段时间就拆下来超声清洗。这个可能是什么原因导致压力升高?还有使用的此流动相,柱子的寿命明显就缩短了【用的是乙腈甲醇混合有机相,磷酸水(添加三乙胺)】,是不是这样的流动相容易导致填料的流失或结构的破坏? 10. 蠕动泵清洗时,只是清洗泵的柱塞杆,还是对单向阀也有清洗作用? 11.您说了,高压有利于溶剂的混合,那么低压四元梯度,如何有效保证溶剂的混合?不知道混合池的结果怎么样? 12.Waters、安捷伦、岛津您能就三种品牌的泵、单向阀等构造做下简介和对比说明吗?他们的优势都在那里? 13.目前市场上关于安捷伦,沃特斯,岛津的液相色谱卖的最多,在泵的性能上,各个厂家有都在宣传彩页上写的非常好,以前记得有一句话:岛津的检测器,安捷伦的柱子,沃特斯的泵!但是现在好像沃特斯的泵的指标在三个厂家中最差,是不是现在安捷伦和岛津泵比沃特斯的好啊?而且三个厂家的泵的主要特点及内部材质有何不同? 14.四元梯度,日常用A和D,那么B和C长时间闲置,该如何维护保养?放在甲醇溶剂里,会不会对系统有影响?放在空瓶里,管路有气泡会不会影响到其他两路? 15.您讲座里提到的压力曲线,我们几乎从来没有调用过,要怎么调出来? 16.我们的是WATERS的,那个四元比例阀的地方一直有液体漏出来,流动相是缓冲盐,是不是结晶了还是那个弹簧坏了啊。要怎么维护啊,工程师说要用热水冲洗。要不要拆开看看啊? 17.有根柱子的柱压过大,反接冲洗后效果也不明显,还有其他的方法吗? 18.我们那个老仪器比例阀经常出现漏液,有什么好的办法可以解决?是不是因为拆卸次数多了引起的呢?还有那个曲线是不是需要经常做? 19.aligent1100在线脱气,有机相一切正常,水相当流速为0.8ml/min时压力稳定,大于0.

怎样选择色谱柱

怎样选择色谱柱 现代高效液相色谱中,分离效果好坏很大程度上取决于色谱填料的选择。但 是色谱填料的选择范围很宽,要做合适的选择,必须对此有一定的认识和了解。 1、正相色谱 正相色谱用的固定相通常为硅胶(Silica),以及其他具有极性官能团,如胺基团 (NH2,APS)和氰基团(CN,CPS)的键合相填料。 由于硅胶表面的硅羟基(SiOH)或其他团的极性较强,因此,分离的次序是依据样品 中的各组份的极性大小,即极性强弱的组份最先被冲洗出色谱柱。 正相色谱使用的流动相极性相对比固定相低,如:正乙烷(Hexane),氯仿(Chloroform),二氯甲烷(Methylene Chloride)等。 2、反相色谱 反相色谱填料常是以硅胶为基础,表面键合有极性相对较弱的官能团的键合相。 反相色谱所使用的流动相极性较强,通常为水,缓冲液与甲醇,已腈等混合物。 样品流出色谱柱的顺序是极性较强组合最先被冲出,而极性弱的组份会在色谱柱上有 更强的保留。 常用的反相填料有C18(ODS)、C8(MOS)、C4(B)、C6H5(Phenyl)等。 二、聚合物填料

聚合物调料多为聚苯乙烯-二乙烯基苯或聚甲基丙酸酯等,其主要优点是在PH值为1~ 14均可使用。 相对与硅胶基质的C18填料,这类填料具有更强的疏水性;大孔的聚合物填料对蛋白 质等样品的分离非常有效。 现在的聚合物填料的缺点是相对硅胶基质填料,色谱柱柱效较低。 三、其他无机填料 其它HPLC的无机填料色谱柱也已经商品化。由于其特殊的性质,一般仅限于特殊的 用途。如石墨化碳也用于正逐渐成为反相色谱填料。这种填料的分离不同与硅胶基质烷基 键合相,石墨化碳的表面即是保留的基础,不再需其它的表面改性,该柱填料一般比烷基 键合硅胶或多孔聚合物填料的保留能力更强,石墨化碳可用于分离某些几何导构体,又由 于HPLC流动相中不会被溶解,这类柱可在任何PH与温度下使用。氧化铝也可用于HPLC, 氧化铝微粒刚性强,可制成稳定的色谱柱柱床,其优点是可在PH高达12的流动相中使用。 但由于氧化铝与碱性化合物作用也很强,应用范围受到一定的限制,所以未能广泛应用, 新型氧化锆填料也可用于HPLC,商品化的仅有聚合物涂层的多孔氧化锆微球色谱柱,应 用PH范围1~14,温度可达100℃。由于氧化锆填料几年才开始研究,加之面临的实验难 度,其重要用途与优势尚在进行中。

色谱分析仪基础知识培训

在线色谱分析仪基础知识 色谱法,又称色层法或层析法,是一种物理化学分析法,它利用不同溶质(样品)与固定相和流动相之间的作用力(分配、吸附、离子交换等)的差别,当两相做相对移动时,各溶质在两相间进行多次平衡,使各溶质达到相互分离。它的英文名称为:chromatography 这个词来源于希腊字chroma和graphein,直译成英文时为color和writing两个字;直译成中文为色谱法。但也有人意译为色层法或层析法。 1906年由俄国科学家茨维特研究植物色素分离,提出色谱法概念;他在研究植物叶的色素成分时,将植物叶子的萃取物倒入填有碳酸钙的直立玻璃管,然后加入油醚使其自由流下,结果色素中各组分互相分离形成各种不同颜色的谱带。按光谱的命名式,这种法因此得名为色谱法。以后此法逐渐应用于无色物质的分离,“色谱”二字虽已失去原来的含义,但仍被人们沿用至今。 茨维特经典色谱分析实验示意图 9.1基础知识 固定相——色谱法中,静止不动的一相(固体或液体)称为固定相(stationary phase);流动相——运动的一相(一般是气体或液体)称为流动相(mobile phase)。 按固定相的几形式色谱分析法分为: 柱色谱法(column chromatography)

柱色谱法是将固定相装在一金属或玻璃柱中或是将固定相附着在毛细管壁上做成色谱柱,试样从柱头到柱尾沿一个向移动而进行分离的色谱法。目前在线色谱仪采用的是柱色谱法。 纸色谱法(paper chromatography) 纸色谱法是利用滤纸作固定液的载体,把试样点在滤纸上,然后用溶剂展开,各组分在滤纸的不同位置以斑点形式显现,根据滤纸上斑点位置及大小进行定性和定量分析。 薄层色谱法(thin-layer chromatography, TLC) 薄层色谱法是将适当粒度的吸附剂作为固定相涂布在平板上形成薄层,然后用与纸色谱法类似的法操作以达到分离目的。 简单的说,色谱分析仪就是基于色谱法原理用色谱柱先将混合物分离开来,然后再用检测器对各组分进行检测。与前面介绍的几种气体成分分析仪不同,色谱分析仪能对被测样品进行全面的分析,既能鉴定混合物中的各种组分,还能测量出各组分的含量。因此色谱分析仪在科学实验和工业生产中应用的越来越广泛。 色谱分离基本原理: 由以上法可知,在色谱法中存在两相,一相是固定不动的,我们把它叫做固定相;另一相则不断流过固定相,我们把它叫做流动相。 色谱法的分离原理就是利用待分离的各种物质在两相中的分配系数、吸附能力等亲和能力的不同来进行分离的。 使用外力使含有样品的流动相(气体、液体)通过一固定于柱中或平板上、与流动相互不相溶的固定相表面。当流动相中携带的混合物流经固定相时,混合物中的各组分与固定相发生相互作用。 由于混合物中各组分在性质和结构上的差异,与固定相之间产生的作用力的大小、强弱不同,随着流动相的移动,混合物在两相间经过反复多次的分配平衡,使得各组分被固定相保留的时间不同,从而按一定次序由固定相中先后流出,色谱柱的出口安装一个检测器,当有组分从色谱柱流入检测器中,检测器将输出对应于该组分浓度人小的电信号,通过记录仪把各个组分对应的输出信号记录下来,就形成了色谱图,如下图所示。根据各组分在色谱图中出现的时问以及峰值大小可以确定混合物的组成以及各组分的浓度。

液相色谱仪色谱柱使用及维护

液相色谱仪色谱柱使用及 维护 Prepared on 22 November 2020

液相色谱仪色谱柱使用及维护 每天用足够的时间来平衡色谱柱,您就会在处理问题方面获得最大的"补偿",而且您的色谱柱的寿命也会变得更长!------ 一定得做! 新的色谱柱在使用之前应该在您自己的液相色谱仪上进行性能测试,即使用色谱柱附带的检验报告上测试条件和样品来测定该色谱柱的柱效。并且,在以后的使用中,应时常对色谱柱进行测试。 卡套柱的安装(不加预柱) 1.将卡套架套入柱芯 2.将两片夹套片嵌入柱芯的凹槽,使柱芯高于夹套(见左图) 3.将已套到柱芯上的卡套架向上推,直至高过夹套片 4.将卡套帽和卡套架旋在一起,然后用手拧紧 5.然后依同样的顺序连接好柱子的另一端 6.连接到液相色谱仪,PEEK接头手拧即可;若为不锈钢接头应使用专用扳手 注意:使用卡套柱时,两端的卡套应时刻连接在柱芯上。不管您是平衡色谱柱或是清洗,任何时候都不能将卡套取下来,否则会造成填料的流失。 卡套柱的安装(加预柱) 1.将卡套架套入柱芯 2.将两片夹套片嵌入柱芯的凹槽,使夹套高于柱芯(见左图) 3.将已套到柱芯上的卡套架向上推,直至高过夹套片 4.将"子弹头"预柱放入卡套片内

5.将卡套帽和卡套架旋在一起,然后用手拧紧 6.然后依同样的顺序连接好柱子的另一端 7.连接到液相色谱仪,PEEK接头手拧即可;若为不锈钢接头应使用专用扳手 更换色谱柱滤网和玻璃棉过滤片(同时可以修补色谱柱) 注意:在取出反相柱芯的滤网和玻璃片之前,应该将色谱柱充分用水和甲醇/乙腈冲洗,而且修补工具的头部也应该蘸取少量的甲醇/乙腈,以避免在取出滤网和玻璃棉滤片时带出柱子内的填料。 1.将修补工具中的2套入柱芯的顶端 2.将修补工具中的3轻轻地旋入已套着2的柱芯中,并顺时针方向旋转到旋紧 3.一手握柱芯,另一只手轻轻地向外拉3,取出柱芯顶端的滤网 4.用一个小铲子轻轻地取出滤网下面的玻璃棉以及被污染的填料 5.将新的填料用甲醇润湿,然后填入挖去的部位,压平 6.照(左图)装上新的玻璃棉滤网,并用修补工具中的4将玻璃棉压入柱芯顶端 7.柱芯顶端套上2,然后参照(左图)将滤网放入 8.压紧,然后取下2,再用4将滤网的边缘压平 平衡色谱柱反相色谱柱在经过出厂测试后是保存在乙腈/水中的。请一定确保您所使用的流动相和乙腈/水互溶。由于色谱柱在储存或运输过程中可能会

HILIC色谱柱介绍

亲水作用色谱(HILIC)是近年来色谱领域研究的热点之一。本文简介了HILIC的起源、定义、分离特点;比较了HILIC和反相色谱(RPLC)的选择特性,讨论了HILIC与质谱联用技术的特点,并对其使用中的注意事项进行了总结。 1. HILIC的概念 亲水色谱(HILIC)是一种用来改善在反相色谱中保留较差的强极性物质保留行为的色谱技术。它通过采用强极性固定性,并且结合高比例有机相/低比例水相组成的流动相来实现这一目的。而这样的流动相组成尤其有利于提高电喷雾离子化质谱(ESI-MS)的灵敏度。2. HILIC的分离机制 HILIC的分离机理在目前还存在着争议,主要包括以下三个方面:(1)分配机理(2)离子交换(3)偶极-偶极相互作用。更多的试验现象则表明HILIC的保留机理包含氢键作用、偶极作用和静电作用等多种次级效应,很难将其区分开来。 3.HILIC影响保留的主要因素 普遍认为HILIC保留行为受到多种参数的影响,如固定相的官能团、有机改性剂的含量、流速、柱温、流动相缓冲体系的pH值、缓冲盐的种类和浓度。 影响样品在固定相上的保留行为的最主要因素都是流动相中有机相的比例,例如乙腈的含量的增加会显著增加样品的保留因子。在HILIC分离模式中,溶剂洗脱能力由弱到强为:四氢呋喃<丙酮<乙腈<异丙醇<乙醇<甲醇<水, 流动相中水是最强的洗脱溶剂。一般采用乙腈-水体系作为流动相,其中水相的比例为5%-40%以保证其显著的亲水作用。如图1所示,将流动相中的水相用甲醇、乙醇、异丙醇代替,随着流动相极性的减小,待测物在柱上的保留就会增强。 Figure 1. HILIC retention as a function of polar modifier. 100 mm length ACQUITY UPLC BEH HILIC column. Peaks: 1 = methacrylic acid, 2 = cytosine, 3 = nortriptyline, 4 = nicotinic acid. 4. HILIC与RP-HPLC的比较 传统的反相色谱(RPLC)对强极性和亲水性的小分子物质的保留和分离能力较弱,通常流动相需要采用高比例的水相才能实现其保留,然而高比例的水相会导致一系列问题,比如固定相的反浸润和ESI-MS灵敏度的下降。 HILIC正好可以解决这些问题,它提供了一种与传统RPLC互补的保留方式,能够使在RPLC 上保留较弱或没有保留的物质在HILIC柱上提供合适的保留,如图2所示:

色谱柱基本知识

色谱柱 色谱柱由柱管、压帽、卡套(密封环)、筛板(滤片)、接头、螺丝等组成。目录 1简介 2构造 3填料 4分类 1. 4.1 安装 2. 4.2 流动相 3. 4.3 样品制备 4. 4.4 保存操作 5发展方向 6性能评价 7注意事项 8新进展

柱效;对于同系物分析,只要500即可;对于较难分离物质对则可采用高达2万的柱子,因此一般 10~30cm左右的柱长就能满足复杂混合物分析的需要。 柱效受柱内外因素影响,为使色谱柱达到最佳效率,除柱外死体积要小外,还要有合理的柱结构(尽可能减少填充床以外的死体积)及装填技术。即使最好的装填技术,在柱中心部位和沿管壁部位的填充情况总是不一样的,靠近管壁的部位比较疏松,易产生沟流,流速较快,影响冲洗剂的流形,使谱带加宽,这就是管壁效应。这种管壁区大约是从管壁向内算起30倍粒径的厚度。在一般的液相色谱系统中,柱外效应对柱效的影响远远大于管壁效应。 2构造 色谱柱由柱管、压帽、卡套(密封环)、筛板(滤片)、接头、螺丝等组成。柱管多用不锈钢制成,压力不高于70 kg/cm2 时,也可采用厚壁玻璃或石英管,管内壁要求有很高的光洁度。为提高柱效,减小管壁效应,不锈钢柱内壁多经过抛光。也有人在不锈钢柱内壁涂敷氟塑料以提高内壁的光洁度,其效果与抛光相同。还有使用熔融硅或玻璃衬里的,用于细管柱。色谱柱两端的柱接头内装有筛板,是烧结不锈钢或钛合金,孔径0.2~20µm(5~10µm),取决于填料粒度,目的是防止填料漏出。 色谱柱按用途可分为分析型和制备型两类,尺寸规格也不同:①常规分析柱(常量柱),内径 2~5mm(常用4.6mm,国内有4mm和5mm),柱长10~30cm;②窄径柱(narrow bore,又称细管径柱、半微柱semi-microcolumn),内径1~2mm,柱长10~20cm;③毛细管柱(又称微柱microcolumn),内径0.2~0.5mm;④半制备柱,内径>5mm;⑤实验室制备柱,内径20~40mm,柱长10~30cm;⑥生产制备柱内径可达几十厘米。柱内径一般是根据柱长、填料粒径和折合流速来确定,目的是为了避免管壁效应。 3填料 常见的分配柱填料:碳十八柱[1](ODS/C18)、碳八柱(MOS/C8)、碳六柱(Hexyl/C6)、 碳四柱(Butyl/C4)、碳一柱(Methyl/C1)、阴离子交换柱(SAX)、 阳离子交换柱(SCX)、苯基柱(Phenyl)、氨基柱(Amino/NH2)、 氰基柱(Cyano/CN/Nitrile) 常见的吸附柱填料:硅胶柱 4安装 1、首先应确认柱和仪器的接头以及管路是否匹配。为减少死体积,进样阀、柱子、检测器之间

(完整版)色谱柱的使用及维护

前言 液相色谱的分离原理是,在色谱柱流动相中样品的不同组分与固定相发生吸附、分配、离子吸引、排阻、亲和等作用,由于作用力的大小、强弱不同,各种组分在固定相中滞留的时间也不同,因而先后从以 固定相中流出而得到分离。因此液相色谱分离的关键之一是色谱柱中的固定相。柱效的好坏直接影响目标化合物的分析和检测。但在液相色谱运行过程中,色谱柱极易发生问题,因此掌握正确使用和维护 色谱柱的知识非常必要。色谱柱使用过程中容易发生柱堵塞引起系统压力过高;柱效低引起峰拖尾、变宽;柱污染、损坏导致鬼峰等问题。引起这些问题的内在原因有: (1) 硅羟基的死吸附。色谱柱的基材硅胶粒子表面存在硅胶羟基。任何物质在色谱柱中都存在双分配效应,即在流动相与固定相之间进行分配,又在流动相与硅羟基之间进行分配。被分析物质被硅羟基吸附称为非特异性吸附,或称死吸附。当硅羟基对被分析物质的吸附趋近于饱和状态时,色谱柱柱效下降,峰形出现拖尾、变宽。 (2) 重金属。色谱柱的基材硅胶粒子无论纯度多高,无论怎样处理,都会有不少于5 ×10- 6 的重金属以金属氧化物的形式残存在硅胶粒子的表面,这些金属氧化物很容易与其它化合物形成螯合物,使其被氧化,产生不对称峰或拖尾峰。例如儿茶素和大多数中药,因含有多酚结构,极易被金属氧化物氧化,影响其分离效果。 (3) 碳流失。固定相经长期使用,会有部分碳链被流动相洗脱下来,随流动相一起流出色谱柱外, 造成碳流失。 (4) 缓冲液中盐的析出。在做色谱分析时,有时流动相中会含有缓冲盐溶液。分析结束后,如果没有先用含一定配比的水相流动相冲洗,而直接用纯有机相冲洗,瞬间柱子中的微环境是高有机相、低水相。这时流动相中的缓冲盐溶液极易析出盐,将柱子堵塞,使柱压升高,柱效下降。 (5) 色谱柱变干。如果对色谱柱保存不当,使色谱柱中的保存液全部挥发,柱子内部变干,造成色谱柱的损伤,影响分离效果。 2 色谱柱的使用 新柱使用前应先检查产品包装、外观是否完好。认真阅读说明书及性能测试报告,了解新柱子的最佳性能指标,如某色谱条件下的柱压、柱效等。有时分析用的流动相与柱子的保存试剂不同,故在分析样品之前,应使用合适的试剂将柱子中的保存试剂清洗出来。要注意清洗用的流动相与保存溶剂的相溶性。反相C18 柱通过出厂测试后多保存在乙腈中,可用10~20 倍柱体积的甲醇或乙腈来平衡色谱柱。流速要缓慢提高,如开始0. 3~0. 5mL/ min , 10~15min 后可慢慢加快。 硅胶柱和极性色谱柱通过出厂测试后一般保存在正庚烷中。如果分析时需要使用含水的流动相,则使用前须用乙醇或异丙醇冲洗,流速0. 1~0. 3mL/ min ,将正庚烷冲洗干净后,再用流动相平衡。 实验过程中可以记录色谱柱的一些性能指标,如柱效、柱压等,供今后参考。每次分析样品前,要用流动相对色谱柱进行平衡,待基线平稳后再进样分析。梯度洗脱用初始流动相平衡。一次样品分离完成后,要有足够的时间使系统恢复平衡,再进行下一次分析。一般流动相平衡时间为30min ,若系统中有盐或水,平衡时间应延长。 3 色谱柱的清洗与保存 色谱柱清洗是日常的重要维护工作。如果样品分子残留在柱子、接头、流通池中,会污染系统,影响对其它样品的分析,降低柱效。因此分析工作结束后,要用适当的溶剂清洗系统中残留的样品。在反相系统中, 若流动相中无酸、碱、盐类物质, 可用90 %甲醇冲洗30~60min ,若含酸、碱、盐类物质,则要先用10 %甲醇或乙腈,或用与分析用流动相相同的

常用色谱柱简介

常用色谱柱简介 气相色谱毛细柱 (键合,聚二甲基硅氧烷) HP-1,DB-1,P-1,CP-SIL5CB, Ultra-1,007-1,RTx-1,AT-1 类似固定相:SE-30,SP-2100,OV-1,OV-101,使用 温度:-60℃-320℃ 应用范围:烷烃,芳烃,多环芳烃,醇,酚,酮,酯,醛,胺,卤代烃,吡啶,糖衍生物,氨基酸衍 生物,维生素衍生物,镇痛药,农药,溶剂,胆固SPB-50型中等极性柱 醇,香料,咖啡,食品添加剂等。 (键合, 50%二苯基,50%二甲基聚硅氧烷) 对照品牌:HP-50,HP-17,DB-17,RTx-50,AT-50 SPB-5型弱极性柱 类似固定相:OV-17, SP-2250,使用温度:30℃-310℃(键合,5%苯基,95%甲基聚硅氧烷) 应用范围:烷烃,低沸点芳烃,多环芳烃,醇,甘 对照品牌:HP-5,DB-5,BP-5,CP-SIL 8CB, 油三酸酯,喹啉,卤素化合物,香料,农药,酯,Ultra-2, ,RTx-5,AT-5 镇痛药,除草剂等。 类似固定相:SE-54,SE-52,OV-73 使用温度: -60℃-320℃ PTE-5,PTE-5QTM型弱极性柱

应用范围:烷基苯,多环芳烃,醇,酚,酮,脂肪(MS专用柱,键合,5%苯基,95%甲基聚硅氧烷) 酸酯,苯二甲酸酯,硝基芳烃,芳胺,烷基胺,联 对照品牌:HP-5 MS,DB-5 MS, DB-5.625,XTI-5, 苯胺,卤代烃,多氯联苯,,糖类衍生物,维生素衍BPX625,半挥发污染物分析柱(US EPA方法525, 生物,有机酸,镇痛药,农药,抗组胺药,溶剂,625.5,625) 生物碱,防腐剂,香料等。 类似固定相:SE-54,SE-52 使用温度:-60℃-320℃ 应用范围:多氯联苯,胺,有机磷,有机氯农药,SUPELCOWAX 10型极性柱 含氯除草剂,酚,苯胺,香料等。 (键合,聚乙二醇二万) 对照品牌:HP-Wax,DB-Wax,BP-20,CP-Wax 52CB,SPB-1701型中等极性柱 HP-INNO Wax,AT-Wax (键合, 14%氰丙基,86%二甲基聚硅氧烷) 类似固定相:PEG-20M, CARBOWAX-20M,使用温 对照品牌:HP-1701,DB-1701,RTx-1701,AT-1701,度:35℃-280℃ BP-10,CPSil19CB 应用范围:低沸点芳烃,醇,酮,酸,酯,醛,醚, 类似固定相:OV-1701,SP-2250 使用温度:室温-280 乙二醇,丙二醇,甘油,吡啶,胺,亚硝胺,卤代 ℃ 烃,胆汁酸衍生物,冰片,薄荷,精油,香料,酒,

如何正确选择色谱柱

如何正确选择色谱柱 色谱分析技术主要是应用在化学医药实验室或研究所等领域内,主要是用来分析液体或气体样品的内部成分情况。色谱柱是色谱分析系统中非常的关键的核心部件,它的作用是使得样品内部成分以不同的速率通过色谱柱,而让检测器检测通过色谱柱成分的各个不同色谱峰,最终确定其成分。下面我们来了解一下如何正确选择色谱柱: 一、选择色谱柱时,首先根据其所需要进行成分含量分析的样品进行大致的类型分类,例如可以根据分离规模来进行选择色谱柱的类别,如色谱柱根据其直径的大小尺寸不同具有非常多的型号。如直径较大的是制备柱,它的尺寸一般大于10mm,还有分析柱的直径尺寸大概是2-5mm,一些微型柱,包括有纳米柱毛细管管柱等。 二、其次,可以从需要分析样品的物理和化学性质入手,如在选柱前提前找好关于该物质的资料,包括其分子量、溶解性、是否会出现解离现象等等详细的信息,然后根据这些找出合适的色谱柱类型。如脂溶性的样品适合的色谱柱是调料式的孔径,而水溶性非离子型的则比较适合反向色谱柱法等。 三、当具体到选择哪一款色谱柱时,应当保证填料所能耐受的ph范围符合分析条件的要求。因为如果其硅胶材质不与需要测量的样品的酸碱值不能够相适应,就会发生键合相水解或者是硅胶溶解的多种现象,当然其填料的孔径也要选择与色谱柱相适应的,不然很可能会导致分析结果不准确。

四、色谱柱的规格情况:色谱柱的规格包括它的长度,内外径等,细内经色谱柱的优点是比较节约溶剂、且灵敏度较高,成分测量测量也比较准确,但是它对整个色谱系统的分析精度也要求较高;如果是组分较多的色普柱,则就适合长度较长的色谱柱,才能达到更好的分离和分析的效果。 综上所述,在众多型号和尺寸的色谱柱中选择一款合适的色谱柱来使用,进行分析相应样品的成分是需要一定的技巧的。不仅要考虑考虑到该样品可能具有哪些物理和化学性质,还要考虑到色谱柱的规格尺寸以及它的填料材质和直径尺寸等,当然色谱柱售后有保障也是需要考虑的,只有考虑到多方面相关的知识和注意要点才能选到合适的评价高的色谱柱。

COSMOSIL高效液相色谱柱使用说明书一序言二使用注意

COSMOSIL高效液相色谱柱使用说明书 一. 序言 非常感谢您购买我们的COSMOSIL色谱柱。为了保证色谱柱能够发挥最高性能和保持更长的寿命,我们建议您在使用前仔细阅读本说明书。 COSMOSIL色谱柱由不锈钢制成,其内部填料以超纯多孔球状硅胶为基质。我们的COSMOSIL系列覆盖了几乎所有的正反相色谱的一般应用和特殊应用,此外还具有分析目的和制备目的的色谱柱。请联系我们的经销商或直接联系Nacalai Tesque咨询最适合您的色谱柱。 二. 使用注意 1. 避免冲击和震动。 2. 按照标签上标明的方向连接色谱柱。 3. 将色谱柱连接到检测器之前,先使用20~30ml流动相通过色谱柱。 4. 请使用完全脱气的流动相。气泡会导致检测噪音并且会加速色谱柱的恶化。 5. 请使用HPLC级溶剂。 6. 包装盒内的检验报告书中记载了色谱柱出厂时的内部溶剂成分。给流动相中添加缓冲液 时,请确认检验报告书中的成分表以避免色谱柱内产生沉淀。 7. 请将流动相的pH值范围保持在2~7.5之内。缓冲液浓度范围通常为0.005~0.02M。使用 流动相前先将流动相通过孔径0.5μm以下的薄膜滤器。使用三氟乙酸时,请将浓度保持在0.1%以下。 8. 请将压力保持在200kgf/cm2以下。在使用高粘度流动相时需要特别注意。 9. 使用完反相色谱柱后,请先用不含酸或盐的溶剂清洗色谱柱,再用乙腈或甲醇清洗色谱 柱,紧栓保存。 10. 使用完正相色谱柱后,请将色谱柱内部的溶剂置换为无卤素非极性溶剂(如正己烷或正 庚烷),紧栓保存。 11. 注入样品前请务必过滤样品。另外,将样品注入到流动相内时,请注意不要产生沉淀。 12. 拆下色谱柱的端螺帽或端部滤片会造成色谱柱性能的大幅下降。 13. 不要将螺帽拧的太紧。 14. 使用制备柱时,请先使用分析柱确定样品的分离状态。注意:可能会有保留时间长于目 标物质或无紫外吸收的杂质存在。

色谱柱相关知识总结

第二章气相色谱柱 第一节气相色谱柱的类型 气相色谱法(gas chromatography, 简称GC)亦称气体色谱法,气相层析法。其核心即为色谱柱。 气相色谱柱有多种类型。从不同的角度出发,可按色谱柱的材料、形状、柱内径的大小和长度、固定液的化学性能等进行分类。色谱柱使用的材料通常有玻璃、石英玻璃、不锈钢和聚四氟乙烯等,根据所使用的材质分别称之为玻璃柱、石英玻璃柱、不锈钢柱和聚四氟乙烯管柱等。在毛细管色谱中目前普遍使用的是玻璃和石英玻璃柱,后者应用范围最广。对于填充柱色谱, 大多数情况下使用不锈钢柱,其形状有U型的和螺旋型的,使用U 型柱时柱效较高。按照色谱柱内径的大小和长度,又可分为填充柱和毛细管柱。前者的内径在2~4mm,长度为1~10m左右;后者内径在0.2~0.5mm,长度一般在25~100m。在满足分离度的情况下,为提高分离速度,现在也有人使用高柱效、薄液膜的10m短柱。 根据固定液的化学性能,色谱柱可分为非极性、极性与手性色谱分离柱等。固定液的种类繁多,极性各不相同。色谱柱对混合样品的分离能力,往往取决于固定液的极性。常用的固定液有烃类、聚硅氧烷类、醇类、醚类、酯类以及腈和腈醚类等。新近发展的手性色谱柱使用的是手性固定液,主要有手性氨基酸衍生物、手性金属配合物、冠醚、杯芳烃和环糊精衍生物等。其中以环糊精及其衍生物为色谱固定液的手性色谱柱,用于分离各种对映体十分有效,是近年来发展极为迅速且应用前景相当广阔的一种手性色谱柱。 在进行气相色谱分析时,色谱柱的选择是至关重要的。不仅要考虑被测组分的性质,实验条件例如柱温、柱压的高低,还应注意和检测器的性能相匹配。有关内容我们将在以后章节中加以详细讨论。 第二节填充气相色谱柱 填充气相色谱柱通常简称填充柱,在实际分析工作中的应用非常普遍。据资料统计,日常色谱分析工作大约有80%是采用填充柱完成的。填充柱在分离效能和分析速度方面比毛细管柱差,但填充柱的制备方法比较简单,定量分析的准确度较高,特别是在某些分析领域(例如气体分析、痕量水分析)具有独特用途。从发展上看,虽然毛细管柱有逐步取代填充柱的趋势(例如已有一些日常分析使用PLOT柱代替过去常用的气固色谱填充柱),但至少在目前一段时期内,填充柱在日常分析中仍是一种十分有价值的分析分离手段。 填充柱主要有气固色谱柱和气液色谱填充柱两种类型。在色谱柱中关键的部分是固定相。在本节我们将首先介绍柱管的选择及其处理方法,然后再分别重点讨论气固色谱柱和气液色谱填充柱有关固定相的内容。

如何选择色谱柱

如何选择色谱柱? 要选择色谱柱,首先需要确定要使用的是填充柱还是毛细管柱。 填充柱或毛细管柱?填充柱比毛细管柱具有更高的样品容量,虽然这一差距由于HP 发明了大孔 530mm 毛细管而大大缩小。检测器灵敏度的改进也减少了对大剂量样品的需要。填充柱可能具有优势的领域是气体样品的分析。 对于几乎所有的其他样品,毛细管柱具有高很多的效率(窄峰),这可以大大改进峰分离。实际上,分离能力很大,以至于许多分析物在很简单的分析中使用非常短的色谱柱就可以完成分离了。节省的时间可以直接转化为循环时间的缩短和样品通量的增加。 对于新的或更新的方法,如果没有非常具有说服力的理由使用填充柱的话,我们推荐使用毛细管柱。 色谱柱材料 这种材料必须尽可能是惰性的,尤其是对于痕量分析或容易拖尾的化合物,例如硫醇或类似的活性化合物。对于毛细管柱,熔融石英是可选的材料。 有两种类型的熔融石英毛细管柱:壁涂开管柱 (WCOT) 色谱柱和多孔层开管柱(PLOT) 色谱柱。WCOT 色谱柱是固定相液膜涂渍在去活的色谱柱壁上。这是气相色谱中最常用的色谱柱。PLOT 色谱柱中固定相是固体物质涂渍到色谱柱壁上。填充柱可以是玻璃或金属,通常是不锈钢的。金属虽然比较有活性,但其对非极性物质比较稳定。但是如果样品中有极性组分需要分析,请选择玻璃柱。如果玻璃柱还是活性强(引起峰拖尾、样品丢失等),请进行去活处理。 固定相 选择毛细管柱时,首先需要确定是否需要 PLOT 色谱柱。下面是 3 种 PLOT 色谱柱的典型应用领域: 分子筛不挥发气体,对水比较敏感 二乙烯基苯 (DVB) — HP-PLOT Q C1 到 C3 全部异构体的分离,部分 C4 和更高的(直到 C14)的异构体分离,极性化合物,挥发性溶剂可以允许含水 氧化铝 Al2O3 C1 到 C10 异构体的分离, 对水比较敏感 如果上面提到的应用没有感兴趣的,则您可以选择一个 WCOT 类型色谱柱。 当面对一种未知样品时,首先尝试目前在 GC 上的色谱柱。如果不能获得满意的结果,请考虑所了解的样品信息。基本原理是分析物与具有相似化学性质的固定相间更容易相互作用。这意味着了解的样品信息越多,越容易找到最佳分离固定相。 最重要的步骤是确定分析物的极性特征: § 非极性分子—通常只包含碳氢原子没有偶极距。 § 直链碳氢化合物(n-烷烃)是非极性化合物的例子。 § 极性分子—主要包含碳氢,也包含氮、氧、磷、硫或卤原子。例如醇、胺、硫醇、酮、腈、有机卤化物等。 § 可极化的分子—主要包含碳氢,也包含不饱和键。例如烯烃、炔烃和芳香族化合物。 针对特定分离需要提供正确的固定相:样品是具有相同化学类型的非极性物质的混合物吗?例如大多数石油馏分中的碳氢化合物?请尝试非极性色谱柱,如 HP-1,可以将它们按(近似)沸点顺序分离。如果怀疑有一些芳香族化合物,请尝试 HP-5 或 HP-35 等适用苯基化合物的色谱柱。

色谱柱的使用和维护注意事项

色谱柱的使用和维护注意事项 色谱柱的正确使用和维护十分重要,稍有不慎就会降低柱效、缩短使用寿命甚至损坏。在色谱操作过程中,需要注意下列问题,以维护色谱柱。 1、避免压力和温度的急剧变化及任何机械震动。温度的突然变化或者使色谱柱从高处掉下都会影响柱内的填充状况;柱压的突然升高或降低也会冲动柱内填料,因此在调节流速时应该缓慢进行,在阀进样时阀的转动不能过缓(如前所述)。 2、应逐渐改变溶剂的组成,特别是反相色谱中,不应直接从有机溶剂改变为全部是水,反之亦然。 3、一般说来色谱柱不能反冲,只有生产者指明该柱可以反冲时,才可以反冲除去留在柱头的杂质。否则反冲会迅速降低柱效。 4、选择使用适宜的流动相(尤其是pH),以避免固定相被破坏。有时可以在进样器前面连接一预柱,分析柱是键合硅胶时,预柱为硅胶,可使流动相在进入分析柱之前预先被硅胶"饱和",避免分析柱中的硅胶基质被溶解。 5、经常用强溶剂冲洗色谱柱,清除保留在柱内的杂质。在进行清洗时,对流路系统中流动相的置换应以相混溶的溶剂逐渐过渡,每种流动相的体积应是柱体积的20倍左右。 6、保存色谱柱时应将柱内充满乙腈或甲醇,柱接头要

拧紧,防止溶剂挥发干燥。绝对禁止将缓冲溶液留在柱内静置或更长时间。 7、色谱柱使用过程中,如果压力升高,一种可能是烧结滤片被堵塞,这时应更换滤片或将其取出进行清洗;另一种可能是大分子进入柱内,使柱头被污染;如果柱效降低或色谱峰变形,则可能柱头出现塌陷,死体积增大。在后两种情况发生时,小心拧开柱接头,用洁净小钢将柱头填料取出 1-2mm高度(注意把被污染填料取净)再把柱内填料整平。然后用适当溶剂湿润的固定相(与柱内相同)填满色谱柱,压平,再拧紧柱接头。这样处理后柱效能得到改善,但是很难恢复到新柱的水平。柱子失效通常是柱端部分,在分析柱前装一根与分析柱相同固定相的短柱(5-30mm),可以起到保护、延长柱寿命的作用。采用保护柱会损失一定的柱效,这是值得的。通常色谱柱寿命在正确使用时可达2年以上。以硅胶为基质的填料,只能在pH2-9范围内使用。柱子使用一段时间后,可能有一些吸附作用强的物质保留于柱顶,特别是一些有色物质更易看清被吸着在柱顶的填料上。 8、新的色谱柱在使用一段时间后柱顶填料可能塌陷,使柱效下降,这时也可补加填料使柱效恢复。每次工作完后,最好用洗脱能力强的洗脱液冲洗,例如ODS柱宜用甲醇冲洗至基线平衡。当采用盐缓冲溶液作流动相时,使用完后应用无盐流动相冲洗。含卤族元素(氟、氯、溴)的化合物可能会

色谱柱的使用和维护

一.安装、启用和维护中重点注意事项 色谱柱既是液相色谱仪的最核心部件,价格相对昂贵,请牢记它是高档仪器中的高档部件,给它以足够的尊重和关怀。如避免强烈的碰撞和震动,尽管色谱柱从1米高的实验台掉落到水泥地上不至于100%会损坏,但50%的可能损坏你也承受不起。另外不要让柱床变干,避免在严寒环境受冻等。 1. 柱头类型和不锈钢毛细管接头的匹配 色谱柱是消耗品,不是仪器原配的情况很多。上图表明柱连接的6种不同方式(数字单位是英寸),如果两者类型不匹配将会产生漏液或者死体积过大的现象。接头比柱头深度长,不易拧紧而漏液;接头比柱头深度短,柱头内留有空隙而产生死体积,使谱带展宽和峰拖尾。

2. 溶剂的匹配转换 色谱柱内保存溶剂和仪器系统内存留溶剂,如果和流动相不匹配,使用前需进行转换。特别是流动相含缓冲盐时,如保存溶剂是纯有机相或有机相比例高,直接将新柱接入使用,会导致缓冲盐在柱内结晶析出,最严重会将新柱永久不可逆地损坏。正相柱保存溶剂一般为正己烷,如果要转换成HILIC柱模式使用,由于正己烷和甲醇乙腈的互溶性不好,转换中间需用二氯甲烷或乙酸乙酯过渡。 3. 新柱使用前的平衡和老化 厂家出厂检验时一般都已进行过平衡,但色谱柱到最终用户时间不一,用户正式测定前最好对色谱柱再次平衡。最好的平衡兼老化一起进行的方法是运行几次完整的分析程序(包括进样),直到观察到峰形、保留时间和峰面积稳定为止。所谓“老化”是借用了气相的术语,目的是达到分析物在色谱柱以及整个液相系统流路中的吸附饱和。对某些特定的待测物,如分子量大于1000的,因扩散速度慢,老化时间相应要长,可采取大浓度进样或在同一个洗脱周期内连续进样多针的方式加快老化。 4. pH使用范围 一般认为硅胶基质柱子的pH使用范围是2-8,这是很粗略的。硅胶类型、使用温度、硅胶表面所键合的固定相类型以及缓冲盐的不同,对此均有影响。硅胶比孔容小、键合密度大的填料pH耐受范围要大

气相色谱柱的基本知识

气相色谱柱的基本知识 本文简单介绍了气相色谱柱固定相极性、保留机制、基本柱参数,以及气相柱固定相选择的方法。仅供参考。 1、固定相极性:极性或非极性。相似相容原理:非极性化合物-非极性固定相 80%的应用使用最普遍的固定相:ZB-1、ZB-5、ZB-WAX;其他20%的应用使用特殊固定相。 Q Q 3 0 9 3 3 5 7 4 0 5 2、固定相保留机制:(1)色散力;(2)永久偶极;(3)诱导偶极;(4)H-键合;(5)π-π键合(1)色散力:非极性相互作用,最弱的作用力,按沸点差别分离 对应色谱柱:ZB-1、ZB-1ms、ZB-5、ZB-5ms (2)偶极-偶极:极性相互作用,中等强度,最普遍用于含O、N或卤化的化合物 对应色谱柱:ZB-624、ZB-1701、ZB-wax、ZB-waxplus、ZB-FFAP (3)H-键合:极性相互作用,最强的相互作用(有时是不利的) 对应色谱柱:ZB-wax、ZB-waxplus、ZB-FFAP (4)π-π作用:π电子的相互作用,中等强度,如芳香族、腈类、羰类和烯/炔 对应色谱柱:ZB-5、ZB-5ms、ZB-35、ZB-50、ZB-624、ZB-1701 3、气相柱基本柱参数,膜厚、柱容量、色谱柱极限温度 图1 色谱柱规格描述 (1)膜厚:一根气相柱的膜厚度会影响到几个重要的色谱参数 ①保留:厚膜柱对低沸点化合物有更强保留 ②柱效:膜越薄柱效越高 ③活性:膜越厚对酸碱的活性越低 ④载样量:膜越厚载样量越大 ⑤流失:膜越薄流失越低 (2)柱容量:色谱柱对溶质可容纳的最大值,超过该值,峰型会发生畸变。 与柱容量相关的因素:①固定相与溶质极性的匹配性;②膜厚;③内径;④柱长

如何选择色谱柱

如何选择色谱柱,比较一下C-18及C-8柱的硅烷基质 C-18和C-8硅烷色谱柱是高效液相色谱(HPLC)中最常使用的色谱柱,而且,在美国市场上有多于100种C-18和C-8色谱柱出售。面对这么多可供选择的色谱柱,分析工作者很难从中选出适当的色谱柱来具体使用,同时更难选择出一根合适的替换柱。 对于非极性样品(如小分子芳烃)或弱极性样品(如对羟基苯甲酸酯),C-18和C-8色谱柱是最容易选择的。对于这类样品,色谱柱之间的主要差异在于保留因子(k);而在选择性方面却只有微小的差异。但对于极性和中等极性样品色谱柱的选择却相当困难。例如含氨基或酸性基团的药物化合物。分析工作者会发现极性样品在保留时间、选择性和峰形都有很大的差别。 色谱柱的选择性和峰形受到担体硅胶的影响远大于键合相的影响。另外,有研究报道在反相色谱中表面硅烷醇、硅酸及金属杂质的影响。在特殊情况下,选择性的差异可由填料制备时使用的键合过程决定的。 通常情况下,色谱工作者选择HPLC色谱柱是通过比较由色谱柱供应商所提供的填料介质的规格来决定的。这些规格内容包括:表面积、末端封尾、含碳量、颗粒形状、颗粒尺寸、孔径、孔容积、装填密度和键合度。含碳量和键合度仅由色谱制造商提供,没有这些规格使用者不可能计算出碳的克数,也不可能计算出一根色谱柱中键合相的微分子数。分析工作者可使用这两个数据来估计一根色谱柱的疏水性质。然而,即使制造商提供所有上述规格数据,使用者也不可能精确地预测出色谱柱对含有极性官能团的化合物的选择性。 由于色谱的保留时间是基于分析物和填充基质之间许多微妙的相互作用,我们建议使用混合物测试来比较填充基质的规格与性能。Engelhardt 和他的同伴回顾了硅烷反相色谱的特性,并且提出用溶解物试验来描述固定相的疏水性和亲硅基醇特性。另外有一些人也改进了测试条件和方法来解释那些色谱数据,但他们只测试了很少的商品色谱柱,并且在他们的测试混合物中没有羧酸。在本文中,我们使用了一个含有羧酸的测试混合物来收集了86根C-18和C-8硅烷色谱柱(见表1)的数据。我们将测试结果详细描述如下。表1:研究中所使用的色谱柱的生产商(略)。 在我们的比较中,我们使用了含有6种物质的测试混合物,此6种物质列于图1。每一种物质在测试混合物中都起特殊的作用。尿嘧啶是用于产生空体积。甲苯是测试色谱柱的疏水性。吡啶和N,N-二甲基苯胺是用来测试硅醇基对碱性物质的活性的碱性胺类物质。苯酚是一种弱酸,用于与吡啶联合起来确定活性担体硅的数量。4-正丁基苯甲酸是一种用于测试硅醇基对酸性物质的活性羧酸,此方面是色谱柱制造者开发碱性去活色谱柱来作胺类物质分析时经常忽略的。 我们使用的流动相是含有65%的乙腈和35%的浓度为0.05M的磷酸钾混合溶液,pH值为3.2。pH=3.2的缓冲溶液可使4-正丁基苯甲酸质子化,同时可提高吡啶和N,N-二甲基苯胺的保留时间的重现性。我们发现使用没有加缓冲溶液的流动相,如65%乙腈和35%水,即使我们使用同一瓶流动相,也无法得到重现性较好的保留时间和峰形。高离子强度的缓冲溶液,如本次测试所使用的0.05M的缓冲溶液,会抑制一些硅醇基的活性(2,5),但对于将胺从一些非碱性去活的反相色谱柱中洗脱下来,有一些抑制作用是必要的。 我们测试过另外两种缓冲溶液,但它们的作用均少于pH=3.2的0.05M磷酸钾溶液。0.01M 磷酸钾缓冲溶液在pH=3.2时,胺类化合物在有些色谱柱中产生前移峰。0.05M磷酸钾缓冲溶液在pH=7时,胺类物质产生的峰形比在pH=3.2时更好。吡啶和N,N-二甲基苯胺的pKa 均大约为5.2;因此,这些组分在pH=7时未质子化并且呈中性,同时并不与强酸性的硅醇基发生离子交换作用。 液相色谱柱原理

相关文档