文档视界 最新最全的文档下载
当前位置:文档视界 › 纳米材料在人类生活中的应用

纳米材料在人类生活中的应用

纳米材料在人类生活中的应用
纳米材料在人类生活中的应用

纳米材料在人类生活中的应用

“纳米”是英文nanometer的译名,是一种度量单位,1纳米为百万分之一毫米,即一毫微米,也就是十亿分之一米,只相当于十几个中等原子串起来那么长。

纳米材料的主要用途

21世纪的纳米材料与人们的生活息息相关,很多重要的国民领域都需要纳米材料来助阵。纳米材料在医学,军事乃至于人们的衣食住行都有十分重要的作用。下面简要介绍一下纳米材料在21世纪的人们的生活中的影响。

1.在医药中的应用

药品颗粒小容易被人体吸收,使用纳米技术能使药品生产过程越来越精细,并在纳米的尺度上直接利用原子、分子的排布制造具有特定功能的药品。纳米级粒子将使药物在人体内的传输更为方便,用数层纳米粒子包裹的智能药物进入人体后可主动搜索并攻击癌细胞或修补损伤组织,将来还有可能制造出纳米机器直接进入人体杀死癌细胞、医治患者的病变、修复损坏的器官、进行人体肢体再生、人体整容等。在人工器官外面涂上纳米粒子可预防移植后的排异反应;使用纳米技术的新型诊断仪器只需检测少量血液,就能通过其中的蛋白质和DNA(脱氧核糖核酸)诊断出各种疾病。纳米粉用在毛巾、枕巾等日用品上还可以杀菌,如大肠杆菌、金黄色葡萄球菌、白色念珠菌等。

2.在军事中的应用

雷达波吸收材料(简称吸波材料)系指能有效地吸收入射雷达波并使其散射衰减的一类功能材料。吸波材料的研究在国防上具有重大的意义,这种“隐身材料”的发展和应用,是提高武器系统生存和突防能力的有效手段。纳米微粉是一种非常有发展前途的新型军用雷达波吸收剂。纳米金属氧化物由于质量轻、厚度薄、颜色浅、吸波能力强等优点,而成为吸波材料研究的热点之一。将纳米涂料涂在飞机上就可以制造出隐形飞机。

3.在家电中的应用

用纳米材料制成的纳米多功能塑料,具有抗菌、除味、防腐、抗老化、抗紫外线等作用,用作电冰箱、空调外壳里的抗菌除味塑料。

将一定量的超细Zn0穧Ca(OH)2穧AgNO3等加入磷酸盐溶液中,经混合、干燥、粉碎等再制成涂层涂于电话机、微机上,有很好的抗菌性能。

彩电等家电一般都是黑色,被称为黑色家电,这是因材料中需加入炭黑进行静电屏蔽。而利用纳米技术,已研制出可静电屏蔽的纳米涂料,通过控制纳米微粒的种类,人们可进而控制涂料颜色,黑色家电将变成彩色家电。

4.在环境保护中的应用

环境科学领域将出现功能独特的纳米膜。这种膜能够探测到由化学和生物制剂造成的污染,并能够对这些制剂进行过滤,从而消除污染。

纳米材料的特性及相关应用

纳米材料的研究属于一种微观上的研究,纳米是一个十分小的尺度,而一些物质在纳米级别这个尺度,往往会表现出不同的特性。纳米技术就是对此类特性进行研究、控制。那么,关于纳米材料的特性及相关应用有哪些呢?下面就来为大家例举介绍一下。 一、纳米材料的特性 当粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。比方说:被广泛研究的II-VI族半导体硫化镉,其吸收带边界和发光光谱的峰的位置会随着晶粒尺寸减小而显著蓝移。按照这一原理,可以通过控制晶粒尺寸来获得不同能隙的硫化镉,这将大大丰富材料的研究内容和可望获得新的用途。我们知道物质的种类是有限的,微米和纳米的硫化镉都是由硫和镉元素组成的,但通过控制制备条件,可以获得带隙和发光性质不同的材料。也就是说,通过纳米技术获得了全新的材料。纳米颗粒往往具有很大的比表面积,每克这种固体的比表面积能达到几百甚至上千㎡,这使得它们可作为高活性的吸附剂和催化剂,在氢气贮存、有机合成和环境保护等领域有着重要的应用前景。对纳米体材料,我们可以用“更轻、更高、更强”这六个字来概括。“更轻”是指借助于纳米材料和技术,我们可以制备体积更小性能不变甚至更好的器件,减小器件的体

积,使其更轻盈。如现在小型化了的计算机。“更高”是指纳米材料可望有着更高的光、电、磁、热性能。“更强”是指纳米材料有着更强的力学性能(如强度和韧性等),对纳米陶瓷来说,纳米化可望解决陶瓷的脆性问题,并可能表现出与金属等材料类似的塑性。 二、纳米材料的相关应用 1、纳米磁性材料 在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十倍。超顺磁的强磁性纳米颗粒还可制成磁性液体,用于电声器件、阻尼器件、旋转密封及润滑和选矿等领域。 2、纳米陶瓷材料 传统的陶瓷材料中晶粒不易滑动,材料质脆,烧结温度高。纳米陶瓷的晶粒尺寸小,晶粒容易在其他晶粒上运动,因此,纳米陶瓷材料具有极高的强度和高韧性以及良好的延展性,这些特性使纳米陶瓷材料可在常温或次高温下进行冷加工。如果在次高温下将纳米陶瓷颗粒加工成形,然后做表面退火处理,就可以使

纳米技术在生活中的应用

纳米技术在生活中的应用 论文摘要:本文介绍了纳米技术、纳米材料的基本概念、原理、特征和各种纳米材料在涂料领域的应用;阐述了纳米材料在应用中所存在的技术问题,以及纳米技术在涂料领域的发展前景。 论文关键词:纳米技术纳米材料涂料 1纳米简介 所谓纳米技术,是指在0.1~100纳米的尺度里,研究电子、原子和分子内的运动规律和特性的一项崭新技术。科学家们在研究物质构成的过程中,发现在纳米尺度下隔离出来的几个、几十个可数原子或分子,显著地表现出许多新的特性,而利用这些特性制造具有特定功能设备的技术,就称为纳米技术。 纳米技术与微电子技术的主要区别是:纳米技术研究的是以控制单个原子、分子来实现设备特定的功能,是利用电子的波动性来工作的;而微电子技术则主要通过控制电子群体来实现其功能,是利用电子的粒子性来工作的。人们研究和开发纳米技术的目的,就是要实现对整个微观世界的有效控制。 纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。1993年,国际纳米科技指导委员会将纳米技术划分为纳米电子学、纳米物理学、纳米化学、纳米生物学、纳米加工学和纳米计量学等6个分支学科。其中,纳米物理学和纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最重要的内容。 纳米是一个微小的长度单位,1纳米等于10亿分之一米。根头发丝有7万到8万纳米。纳米技术这个词汇出现在1974年。纳米科学、纳米技术是在0。10 到100纳米尺度的空间内研究电子、原子和分子运动规律及特性。纳米材料是纳米技术的重要的组成部分,也是国际上竞争的热点和难点。碳纳米管自从1991年被发现以来,就一直被誉为未来的材料。碳纳米管在强度上大约比钢强100倍,其传热性能优于所有已知的其它材料。碳纳米管具有良好的导电性,在常温下导电时,几乎不产生电阻。纳米陶瓷材料在1600摄氏度高温下能像橡皮泥那样柔软,在室温下也能自由弯曲。从1998年世界上第一只纳米晶体管制成,到1999年100纳米芯片问世,使20世纪最后10年世界上出现的“纳米热”进一步升温。 我国在纳米技术领域占有一度之地,处于国际先进行列。已成功制备出包括金属、合金、氧经化物、氢化物、碳化物、离子晶体和半导体等多种纳米材料,合成出多种同轴纳米电缆,掌握了制备纯净碳纳米管技术,能大批量制备长度为2至3毫米的超长纳米管。合成的最细的碳纳米管的直径只有0.33纳米,这不但打破了我国科学家自已不久前创造的直径只为0.5纳米的世界纪录,而且突破了日本科学家1992年所提出的0.4纳米的理论极限值 纳米技术应用前景十分广阔,经济效益十分巨大。纳米技术未来的应用将远远超过计算机工业。纳米复合、塑胶、橡胶和纤维的改性,纳米功能涂层材料的设计和应用,将给传统产生和产品注入新的高科技含量。专家指出,纺织、建材、化工、石油、汽车、军事装备、通讯设备等领域,将免不了一场因纳米而引发的“材料革命”现在我国以纳米材料和纳米技术注册的公司有近100个,建立了10多条纳米材料和纳米技术的生产线。纳米布料、服装已批量生产,象电脑工作装、无静电服、防紫外线服等纳米服装都已问世。加入纳米技术的新型油漆,不仅耐洗刷性提高了十几倍,而且无毒无害无异味。一张纳米光盘上能存几百部,

纳米材料应用现状及发展趋势

NANO MATERIAL NANO MATERIAL NANO MATERIAL 纳米材料 应用现状及发展趋势 北京有色金属研究总院李明怡 摘要纳米材料是近期发展起来的多功能材料,本文概述了纳米材料的结构特性、主要制备工艺及应用现状和发展趋势,由于纳米材料具有许多特殊功能和效应,将在工业和国防等领域中发挥巨大潜力,并将为人类社会带来巨大影响。 关键词纳米结构功能材料制备工艺应用现状发展趋势 1前言 纳米材料是指由极细晶粒组成,特征维度尺寸在1~100纳米范围内的一类固体材料,包括晶态、非晶态和准晶态的金属、陶瓷和复合材料等,是80年代中期发展起来的一种新型多功能材料。由于极细的晶粒和大量处于晶界和晶粒内缺陷中心的原子,纳米材料在物化性能上表现出与微米多晶材料巨大的差异,具有奇特的力学、电学、磁学、光学、热学及化学等诸方面的性能,目前已受到世界各国科学家的高度重视。以纳米材料及其应用技术为重要组成部分的纳米科学技术,被认为对当代科学技术的发展有着举足轻重的作用。美国IB M公司首席科学家Ar mstrong认为:/正像70年代微电子技术产生了信息革命一样,纳米科学技术将成为下一代信息的核心。0我国科学家钱学森也指出:/纳米左右和纳米以下的结构将是下一阶段科学技术发展的重点,会是一次技术革命,从而将引起21世纪又一次产业革命。0由于纳米科学技术具有极其重要的战略意义,美、英、日、德等国都非常重视这一技术的研究工作。美国国家基金会把纳米材料列为优先支持项目,拨巨款进行专题研究。英国从1989年起开始实施/纳米技术研究计划0。日本把纳米技术列为六大尖端技术探索项目之一,并提供1187亿美元的专款发展纳米技术。我国组织实施的新材料高技术产业化专项中也将纳米材料列为其中之一。纳米材料正在向国民经济和高技术各个领域渗透,并将为人类社会进步带来巨大影响。 2纳米材料的结构和特性 我们所使用的常规材料在三维方向上都有足够大的尺寸,具有宏观性。纳米材料则是一些低维材料,即在一维、二维甚至三维方向上尺寸极小,为纳米级(无宏观性),故纳米材料的尺寸至少在一个方向上是几个纳米长(典型为1~10nm)。如果在三维方向上都是几个纳米长,为3D纳米微晶,如在二维方向上是纳米级的,为2D纳米材料,如丝状材料和纳米碳管;层状材料或薄膜等为1D纳米材料。纳米颗粒可以是单晶,也可以是多晶,可以是晶体结构,也可以是准晶或无定形相(玻璃态);可以是金属,也可以是陶瓷、氧化物或复合材料等。纳米微晶的突出特征是晶界原子的比例很大,有时与晶内的原子数相等。这表明纳米微晶内界面很多,平均晶粒直径越小,晶界 20

纳米材料的发展及应用

课程名称:化工新材料概论姓名:邓元顺 学号:1208110201 专业:化学工程与工艺班级:化工122

浅析纳米材料的发展及应用 摘要:纳米材料是纳米级结构材料的简称。狭义是指纳米颗粒构成的固体材料, 其中米颗粒的尺寸最多不超过100nm。广义是指微观结构至少在一维方向上受纳米尺度(1-100nm)限制的各种固体超细材料。【2】纳米技术是当今世界最有前途的决定性技术。纳米材料在力学、磁学、电学、热学、光学和生命等方面的重要作用和应用前景。 Abstract:Nanometer material is the abbreviation of nano structured materials.The narrow sense refers to the solid material of nano particles, in which the size of the meter particles is not more than 100nm. Generalized refers to a variety of solid ultrafine materials which are limited by nano scale (1-100nm) in the one-dimensional direction at least in one dimension.. Nanotechnology is the most promising technology in the world today. Nano materials in mechanics, magnetism, electricity, heat, optics and life and so on the important role and the application prospect. 关键词:纳米材料纳米技术发展应用 前言:纳米材料和纳米结构无论在自然界还是在工程界都不是新生事物。在自然界存在大量的天然纳米结构,只不过在透射电镜的应用以前人们没有发现而已。在工程方面,纳米材料80年代初发展起来的,纳米材料其粒径范围在1—100nm之间,故纳米材料又称超微晶材料。它包括晶态、非晶态、准晶态的金属、陶瓷和复合材料等。由于极细的晶粒和大量处于晶界和晶粒缺陷中心的原子,纳米材料的物化性能与微米多晶材料有着巨大的差异,具有奇特的力学、电学、瓷学、光学、热学及化学等多方面的性能,从而使其作为一种新型材料在电子、冶金、宇航、化工、生物和医学等领域展现出广阔的应用前景。目前已受到世界各国科学家的高度重视。美国的“星球大战计划”、“信息高速公路”,欧共体的“尤里卡计划”等都将纳米材料的研究列入重点发展计划;日本在10年内将投资250亿日元发展纳米材料和纳米科学技术;英国也将发展纳米材料科学技术作为重振英国工业的突破;我国的自然科学基金“863”计划、“793”计划以及国家重点实验室都将纳米材料列为优先资助项目。【1】美国科学技术委员会把“启动纳米技术的计划看作是下一次工业革命的核心” 一、纳米材料的发展史 1965年诺贝尔物理学奖获得者、美国加利福尼亚工学院教授费曼(R.P.Feynman)曾在1959年预言:“如果有一天可以按照人的意志来安排一个个原子,将会产生怎样的奇迹?”

纳米技术的应用与前景

纳米技术的应用与前景 纳米技术作为一种高新科技,我认为其本质不亚于当年的电子与半导体科技,有着我们未所发掘到潜能与实用价值,在这个世代,各种技术的发展迅速,随着纳米技术的进一步发展,可以作为一种催化剂,促使各行各业的迅猛发展。 纳米技术是近年来出现的一门高新技术。“纳米”主要是指在纳米(一种长度计量单位,等于1/1000,000,000米)尺度附近的物质,其表现出来的特殊性能用于不同领域而称之为“纳米技术”,其具体定义见词条“纳米科技”。 纳米技术目前已成功用于许多领域,包括医学、药学、化学及生物检测、制造业、光学以及国防等等。本词条为纳米技术应用的总纲,包括如下领域: 1、纳米技术在新材料中的应用 2、纳米技术在微电子、电力等领域中的应用 3、纳米技术在制造业中的应用 4、纳米技术在生物、医药学中的应用 5、纳米技术在化学、环境监测中的应用 6、纳米技术在能源、交通等领域的应用 尽管从理论到实践是一个相当困难的过程,但纳米技术已经证明,可以利用扫描隧道电子显微镜等工具移动原子个体,使它们形成在自然界中永远不可能存在的排列方式,如IBM 公司的标志图案、比例为百亿分之一的世界地图、或一把琴弦只有50纳米粗的亚显微吉他。纳米材料的应用有着诱人的技术潜力,它的应用范围包括从制造工业、航天工业到医学领域等。美国全国科学基金会曾发表声明说:“当我们进入21世纪时,纳米技术将对世界人民的健康、财富和安全产生重大的影响,至少如同20世纪的抗生素、集成电路和人造聚合物那样。”科学家们预计,纳米技术在新世纪中的应用前景广阔,已经涵盖了材料、测量、机械、电子、光学、化学、生物等众多领域,信息技术与纳米技术的关系已密不可分。 从纳米科技发展的历史来看,人们早在1861年建立所谓肢体化学时即开始了对纳米肢体的研究。但真正对纳米进行独立的研究,则是1959年,这一年,著名美国物理学家、诺贝尔奖金获得者德·费曼在美国物理学年会上作了一次报告。他在报告中认为,能够用宏观的机器来制造比其体积小的机器,而这较小的机器又可制作更小的机器,这样一步步达到分子程度。费曼还幻想在原子和分子水平上操纵和控制物质。 在70年代末,美国MIT(麻省理工大学)的W.R.Cannon等人发明了激光气相法合成数十纳米尺寸的硅基陶瓷粉末。80年代初,德国物理学家H.Gleiter等人用气体冷凝发制备了具有清洁表面的纳米颗粒,并在超真空条件下原位压制了多晶纳米固体。现在看来,这些研究都属于纳米材料的初步探索。 科学家预言,尺寸为分子般大小、厚度只有一根头发丝的几百万分之一的纳米机械装置将在今后数年内投入使用。学术实验室和工业实验室的研究人员在开发分子马达、自组装材料等纳米机械部件方面取得了飞速进展。纳米机器具有可以操纵分子的微型“手指”和指挥这些手指如何工作、如何寻找所需原材料的微型电脑。这种手指完全可以由碳纳米管制成,碳纳米管是1991年发现的一种类似头发的碳分子,其强度是钢的100倍,直径只有头发的五万分之一。美国康奈尔大学的研究人员利用有机物和无机物组件开发出一个分子大小的马达,一些人称之为纳米技术领域的“T型发动机”。 纳米科技中具有主导或牵头作用的是纳米电子学,因为它是微电子学发展的下一代。纳米电子学是来自电子工业,是纳米技术发展的一个主要动力。纳米电子学立足于最新的物理理论和最先进的工艺手段,按照全新的理念来构造电子系统,并开发物质潜在的储存和处理

纳米金属材料的发展与应用综述

纳米金属材料的发展与应用 摘要:纳米技术的诞生将对人类社会产生深远的影响,可能许多问题的发展都与纳米材料的发展息息相关。在纳米金属材料的研究中,它的制备、特性、性能和应用是比较重要的方面。本文概要的论述了纳米材料的发现发展过程,并结合当今纳米金属材料研究领域最前沿的技术和成果,简述了纳米材料在各方面的应用及其未来的发展前景。 关键词:纳米金属材料、纳米技术、应用 一、前言 纳米级结构材料简称为纳米材料(nanomater material),是指其结构单元的尺寸介于1纳米~100纳米范围之间。由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。 纳米粒子异于大块物质的理由是在其表面积相对增大,也就是超微粒子的表面布满了阶梯状结构,此结构代表具有高表能的不安定原子。这类原子极易与外来原子吸附键结,同时因粒径缩小而提供了大表面的活性原子。 纳米技术在世界各国尚处于萌芽阶段,美、日、德等少数国家,虽然已经初具基础,但是尚在研究之中,新理论和技术的出现仍然方兴未艾。我国已努力赶上先进国家水平,研究队伍也在日渐壮大。 二、纳米材料的发现和发展 1861年,随着胶体化学的建立,科学家们开始了对直径为1~100nm的粒子体系的研究工作。1990年7月在美国召开了第一届国际纳米科技技术会议(International Conference on Nanoscience &Technology),正式宣布纳米材料科学为材料科学的一个新分支。自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段: 第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。 第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材料研究的主导方向。 第三阶段(1994年至今):纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。国际上把这类材料称为纳米组装材料体系或者纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。 三、纳米材料的应用 1、纳米磁性材料 在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十

浅谈纳米技术的研究与应用

浅谈纳米技术的研究与应用 1.引言 当集成电路代替电子管和半导体晶体管的初期,1959年美国诺贝尔奖获得者查理·费曼(Richard Phillips Feynman),在美国加州理工学院召开的美国物理年会上预言:“如果人们能够在原子/分子的尺度上来加工材料,制造装置,将会有许多激动人心的新发现,人们将会打开一个崭新的世界。”这在当时只是一个美好的梦想。 如今,这个预言和梦想终于实现了。费曼所预言的材料就是现在的纳米。 今天,不少科学家又在预言,纳米科技将在新世纪里得到惊人的发展,纳米科技将给人类的科学技术和生活带来革命性的变化。科学家认为,纳米时代的到来不会很久,它在未来的应用将远远超过计算机,并成为未来信息时代的核心。 我国著名科学家钱学森早在1991年就指出:“纳米左右和纳米以下的结构将是下一阶段科技发展的重点,会是一次技术革命,从而将是21世纪的又一次产业革命。” 英国理论物理学家斯蒂芬·霍金是继爱因斯坦之后最杰出的物理学家。他预测:“未来一千年人类有可能对DNA基因重新设计。而生化纳米材料则是设计DNA基因所必须具备的医药材料基础。” 近年来,科学家勾画了一幅若干年后的蓝图:纳米电子学将使量子元件代替微电子备件,巨型计算机可装入口袋;通过纳米化,易碎的陶瓷可以变成韧性的;世界还将出现1μm以下的机器甚至机器人;纳米技术还能给药物的传输提供新的方式和途径,对基因进行定点等。 海内外科技界广泛认为,纳米材料和技术的大规模应用可望在10年内实现。现阶段纳米材料和技术正向新材料、微电子、计算机、医学、航天航空、环境、能源、生物技术和农业等诸多领域渗透,并已得到不同程度的应用。 1998年8月20日,《美国商业周刊》发表文章指出,21世纪有三个领域可能取得重大突破:生命科学和生物技术;纳米材料和纳米技术;从外星球获得能源。并指出这是人类跨入21世纪所面临的新的挑战和机遇。诺贝尔奖获得者罗雷尔也曾说过:“70年代重视微米的国家如今都成为发达国家,现在重视纳米技术的国家很可能成为21世纪先进国家。” 1974年,Taniguchi最早使用纳米技术(Nanotechnology)一词描述精细机械加工。1977年美国麻省理工学院的德雷克斯勒也提倡纳米科技的研究。但当时多数主流科学家对此持怀疑态度。1982年发明了扫描隧道显微镜(STM),以空前的分辨率揭示了一个“可见的”原子、分子世界。到80年代末,STM已不

纳米材料及其应用前景

纳米材料及其应用前景 摘要:21世纪,纳米技术、纳米材料在科技领域将扮演重要角色。纳米技术是当今世界最有前途的决定性技术之一。本文简要地概述了纳米材料的基本特性以及其在力学、磁学、电学、热学等方面的主要应用,并简单展望了纳米材料的应用前景。 关键词:纳米材料;功能;应用; 一、纳米材料的基本特性 所谓纳米材料是指材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料。由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增 殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和 增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50 多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直 难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、 强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。 使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油 钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用 变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面 有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作 用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的 隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体 器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管 放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室 温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研 制出由碳纳米管组成的逻辑电路。

纳米材料新进展及应用

纳米材料应用的新进展 来源:全球电源网 世界上已经研制成功四种贮氢合金材料:即稀土镧镍系、铁一钛系、镁系以及钒、铌、锆等多元素系合金材料。但它们全都是非纳米材料。最近几年世界各国在大力开发纳米贮氢电极材料,一系列纳米贮氢材料不断问世。它们的进展为更好利用氢能带来了福音。目前开发的主要材料系列有镁镍合金、碳纳米管和纳米铁钛合金。三种纳米材料的开发已经形成热潮。美洲和欧洲国家开发工作最集中的是镍金属氢化物电池用的镁镍合金和碳纳米管,其次是燃料电池用的铁钛合金及碳纳米管。包括中国在内的亚洲国家开发纳米镁镍合金主要是针对镍金属氢化物电池的应用,开发纳米铁钛合金及碳纳米管主要是针对燃料电池的应用。在开发金属氢化物储氢方面,过去的主要问题是贮氢量低,成本高及释氢温度高。现在在开发纳米储氢材料过程中这些问题仍是值得注意的问题。本文介绍目前科研人员针对上述问题开发纳米储氢材料方面的进展。1 镁镍合金开发继续升温镁系贮氢合金是最具开发前途的贮氢材料之一,所以目前开发最热的是镁镍合金。镁镍合金成本低,其贮氢质量高,若以CD ( H )代表合金贮氢的质量分数, 理论上纯镁的质量分数为7.6% ,而稀土LaNi5 的只有1.4% ,钛系TiFe 只为1.9%。这就是形成镁系合金开发热潮的原因。以前主要使用熔铸法和快速凝固法生产镁合金。能够体现出高技术的发展水平是现在的机械研磨技术。也就是先在600 C以上使镁与镍形成合金,经过检测确定是Mg2Ni合金以后,然后进行机械研磨。目前普遍用机械研磨法生产多元纳米贮氢合金、纳米复合贮氢合金。新型纳米镁镍合金同稀土系、钛系和锆系贮氢材料相比具有许多优点。镁系合金中最典型的是Mg2Ni 合金。其氢化物Mg2NiH4 合金贮氢量为3.6%。1.1 代换镁的金属呈增加趋势国内外制备传统镁系合金采取的措施是添加铝、铁、钴、铬、钒、锰、铜、钛及镧等元素来替换镁,使其形成多元镁镍合金。第二种是将 纯镁粉与低稳定性的贮氢合金复合。第三种是把镁系合金与别的合金混合制成复 合贮氢材料。最后就是将负极浸入铜、镍-硼或镍-磷等镀液里,使镀上一层金属膜,镀

浅谈纳米材料与生活

浅谈纳米材料与生活 摘要:人类迈着欢快的步伐轻松地进入二十一世纪。二十世纪是计算机技术革命蓬勃发展的时期,计算机技术得到了卓越的发展。现在人类进入了又一世纪,在这个日新月异的新的世纪里,科学家通过运用的发达的计算机技术,为我们奏起了“纳米技术”发展的号角。“纳米技术”主要是围绕开发纳米材料为核心而发展的技术,它有着广阔的发展前景,随着纳米技术的发展纳米材料也不断有着新的开发。“纳米材料”的有效发掘及其利用必定会给人们的生活带来又一翻天覆地变化,给人们的衣、食、住、行、医疗卫生事业带来极大便利。本文主要是通过给大家说明纳米材料的本质这一基点,向大家普及纳米材料的特性,以使更多的人能对纳米材料有整体的认识。除此之外更重要的就是联系生活实际,向大家说明纳米材料是如何影响人们生活的。到目前为止,它的发展的确已经给我们生活带来了很多便利,我相信在纳米技术不断进步、发展的未来,纳米材料一定有更广阔的空间。 关键词:纳米、纳米技术、纳米材料、应用 现如今,科学界普遍认为,纳米技术是21世纪经济增长的一台主要发动机,他将成为超过网络技术和基因技术的“决定性技术”,并将成为最有前途的材料,它所见具有的独特物理和化学性质,可以节省资源、合理利用能源并且能够净化生存环境,它的发展研究会对化工行业带来新的机遇。 纳米材料的特性: 纳米材料是英文“napometer”的译音,是一个物理学上的长度单位。1纳米是1米的十亿分之一,用我们能看见的最小微粒院子来表示的话,相当于45个远在啊排列起来的长度。自然界只有生物具有纳米尺度,遗传基因DNA螺旋结构的半径约1纳米左右,一个典型的病毒大约100纳米长,相当于万分之一的头发丝的粗细。纳米科技就是一门以0.1至100纳米这样的尺度为研究对象的前沿科学。作为尺度单位的纳米,并没有物理内涵,当物质到纳米尺度后,

浅谈纳米材料应用及发展前景

Jiangsu University 浅谈纳米材料应用及发展前景

摘要 纳米材料展现了异常的力学、电学、磁学、光学特性、敏感特性和催化以及光活性,为新材料的发展开辟了一个崭新的研究和应用领域。纳米技术在精细陶瓷、微电子学、生物工程、化工、医学等领域的成功应用及其广阔的应用前景使得纳米材料及其技术成为目前科学研究的热点之一,被认为是世纪的又一次产业革命。纳米材料向国民经济和高新科技等各个领域的渗透以及对人类社会的进步的影响是难以估计的。 关键词:纳米材料;纳米应用;量子尺寸效应 1.前言 纳米材料和纳米结构无论在自然界还是在工程界都不是新生事物。在自然界存在大量的天然纳米结构,只不过在透射电镜的应用以前人们没有发现而已。 在工程方面,纳米材料80年代初发展起来的,纳米材料其粒径范围在1—100nm之间,故纳米材料又称超微晶材料。它包括晶态、非晶态、准晶态的金属、陶瓷和复合材料等。由于极细的晶粒和大量处于晶界和晶粒缺陷中心的原子,纳米材料的物化性能与微米多晶材料有着巨大的差异,具有奇特的力学、电学、瓷学、光学、热学及化学等多方面的性能,从而使其作为一种新型材料在电子、冶金、宇航、化工、生物和医学等领域展现出广阔的应用前景。目前已受到世界各

国科学家的高度重视。美国的“星球大战计划”、“信息高速公路”,欧共体的“尤里卡计划”等都将纳米材料的研究列入重点发展计划;日本在10年内将投资250亿日元发展纳米材料和纳米科学技术;英国也将发展纳米材料科学技术作为重振英国工业的突破;我国的自然科学基金“863”计划、“793”计划以及国家重点实验室都将纳米材料列为优先资助项目[1]。美国科学技术委员会把“启动纳米技术的计划看作是下一次工业革命的核心”[2]。 2.纳米材料的制备 现行的纳米材料制备方法很多。但是真正能够高效低成本制备纳米材料的方法还是现在各个国家研究的重点。目前已报的工艺方法主要有以下几种:物理气相沉积法(PVD)和化学气相沉积法(CVD)、等离子体法、激光诱导法、真空成型法、惰性气体凝聚法、机械合金融合法、共沉淀法、水热法、水解法、微孔液法、溶胶—凝胶法等等。 3.纳米材料的主要应用 3.1纳米材料在工程方面的应用 纳米材料的小尺寸效应使得通常在高温下才能烧结的材料如SiC 等在纳米尺度下在较低的温度下即可烧结,另一方面,纳米材料作为烧结过程中的活性添加剂使用也可降低烧结温度,缩短烧结时间。纳米粉体可用于改善陶瓷的性能,其原因在于微小的纳米微粒不仅比表面积大,而且扩散速度快,因而进行烧结时致密化的速度就快,烧结

纳米材料研究现状及应用前景要点

纳米材料研究现状及应用前景 摘要:文章总结了纳米粉体材料、纳米纤维材料、纳米薄膜材料、纳米块体材料、纳米复合材料和纳米结构的制备方法,综述了纳米材料的性能和目前主要应用领域,并简单展望了纳米科技在未来的应用。 关键词:纳米材料;纳米材料制备;纳米材料性能;应用 0 引言 自从1984年德国科学家Gleiter等人首次用惰性气体凝聚法成功地制得铁纳米微粒以来,纳米材料的制备、性能和应用等各方面的研究取得了重大进展。纳米材料的研究已从最初的单相金属发展到了合金、化合物、金属无机载体、金属有机载体和化合物无机载体、化合物有机载体等复合材料以及纳米管、纳米丝等一维材料,制备方法及应用领域日新月异。 纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料,包括纳米粉体( 零维纳米材料,又称纳米粉末、纳米微粒、纳米颗粒、纳米粒子等) 、纳米纤维( 一维纳米材料) 、纳米薄膜( 二维纳米材料) 、纳米块体( 三维纳米材料) 、纳米复合材料和纳米结构等。纳米粉体是一种介于原子、分子与宏观物体之间的、处于中间物态的固体颗粒,一般指粒度在100nm以下的粉末材料。纳米粉体研究开发时间最长、技术最成熟,是制备其他纳米材料的基础。纳米粉体可用于:高密度磁记录材料、吸波隐身材料、磁流体材料、防辐射材料、单晶硅和精密光学器件抛光材料、微芯片导热基片与布线材料、微电子封装材料、光电子材料、先进的电池电极材料、太阳能电池材料、高效催化剂、高效助燃剂、敏感元件、高韧性陶瓷材料、人体修复材料、抗癌制剂等。纳米纤维指直径为纳米尺度而长度较大的线状材料,如纳米碳管,可用于微导线、微光纤( 未来量子计算机与光子计算机的重要元件) 材料、新型激光或发光二极管材料等。纳米薄膜分为颗粒膜与致密膜。颗粒薄膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜;致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。可用于气体催化材料、过滤器材料、高密度磁记录材料、光敏材料、平面显示器材料、超导材料等。纳米块体是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料,主要用途为超高强度材料、智能金属材料等。纳米复合材料包括纳米微粒与纳米微粒复合( 0- 0 复合) 、纳米微粒与常规块体复合( 0- 3复

浅谈纳米材料与技术的应用与发展

浅谈纳米材料与技术的应用与发展 二十一世纪是信息技术、生命科学和纳米技术的世纪,科学技术的飞速发展以及国民经济的提高为纳米材料与技术这一专业的发展奠定了坚实的基础。纳米材料不同于传统的材料,拥有其他材料不具备的优异性能,同时,纳米材料应用范围十分广泛,可应用在环境保护、航空航天、生物医学、防护装置等各个方面,因此,发展纳米材料与技术具有十分重要的意义。本文主要论述了纳米材料与技术的应用,并对其发展前景进行了阐述,期望能为我国的纳米材料与技术的发展提供一些建议。 标签:纳米材料与技术;应用;发展 一、引言 纳米材料是物质的颗粒大小属于纳米级,主要是通过压制、烧结由金属、无机物或者聚合纳米微颗粒产生的材料。它处于1-100纳米这个范围空间,拥有着特殊的性能,是一种介于微观和宏观物质结构之间的特殊材料[1]。納米材料与技术概念率先提出于20世纪60年代,在1984年纯物质纳米细粉的制得则标志着其研究进入了新的阶段;而在1990年7月,纳米材料科学正式成为材料科学新的分支。二十一世纪以来,纳米技术是二十一世纪三大科技之一,纳米材料进入高速发展的阶段,各国不断加大对纳米材料研究的投资,例如美国的NNI,欧盟的“地平线2020”,以及我国在“八五”期间,将“纳米材料科学”列入国家项目之中,并于2006 年启动了纳米技术科学研究计划。现在纳米材料逐渐步入2.0时代,与医药、测量技术等学科的结合研究已走上日程,相信在未来,纳米材料在安全、环境、健康方面的研究也会不断深入,更好的应用于我们社会的各个领域[2]。 二、纳米材料与技术的应用 2.1 在环境保护上的应用。 随着科学技术的发展,我国的工业越来越强,但是在发展过程中污染了环境,所排放的废气废水已经严重超过环境自身的承载力,其恢复效果十分差,给人们的生活以及身体健康带来了十分不利的影响。但纳米材料的发现,其良好的性能有助于保护环境。工业发展过程中汽油、柴油的使用,因其含有硫的化合物在燃烧时产生有害气体,过量排放导致了大气污染,纳米材料和纳米技术的应用能够解决这些有毒气体的污染问题。具有良好性能的纳米钛酸钴,有良好的催化效果,催化后的石油含硫量满足了国际要求,有效地抑制了有毒气体的排放。污水中包含有毒物质、泥沙、悬浮物、细菌病毒等,将这些有害物质去除就是污水处理。使用纳米材料与技术可以提炼出污水中的金属材料,以便继续使用。污水中的有毒有害物质可以使用纳米微粒光催化作用将这些污染物转化为矿化物。 2.2 在防护装置上的应用。

纳米材料的应用和发展前景概要

一、文献调研部分(获取综述的参考文献—精读全文)1.利用中文(期刊、学位论文、会议论文)数据库,检出中文切题题录(批量),选择记录文摘格式10篇(其中学位论文要求不少于2篇、期刊论文6篇); [1]叶灵. 纳米材料的应用与发展前景[J]. 科技资讯. 2011(20) 摘要: 很多人都听说过"纳米"这个词,但什么是纳米,什么是纳米技术,可能很多人并不一定清楚。着名的诺贝尔奖获得者Feyneman在20世纪60年代曾经预言:如果我们对物体微小规模上的排列加以某种控制的话,我们就能使物体得到大量的异乎寻常的特性,就会看到材料的性能产生丰富的变化。他所说的材料就是现在的纳米材料。 [2]赵雪石. 纳米技术及其应用前景[J]. 适用技术市场. 2000(12) 摘要: 纳米技术在精细陶瓷、微电子学、生物工程、化工、医学等领域的成功应用及其广阔的前景,使得纳米技术成为目前科学研究的热点之一,被认为是21世纪的又一次产业革命。 [3]何燕,高月,封文江. 纳米科技的发展与应用[J]. 沈阳师范大学学报(自然科学版). 2010(02) 摘要:纳米科技是21世纪的主导产业,世界各国把纳米科技的研究和应用作为战略重点。在第五次科学技术革命中,新材料家族被推上新一轮科技革命的顶峰。在新材料和新技术中,纳米材料和纳米技术无疑将成为核心材料和核心技术。纳米技术的最终目标是直接操纵单个原子和分子,制造新功能器件,从而开拓人类崭新的生活模式。文章概述了纳米科技的发展过程及纳米材料的性质与制备,介绍了纳米技术在部分领域的应用,并简述了纳米技术对未来社会的巨大影响及潜在的、令人鼓舞的发展前景。 [4]何彦达. 纳米材料的应用及展望[J]. 科技风. 2010(01) 摘要:纳米材料(尺寸在1-100纳米范围内)又称超细微粒、超细粉末,是处在原子簇和宏观物体交界过渡区域的一种典型系统,其结构既不同于体块材料,也不同于单个的原子。其特殊的结构层次使它拥有一系列新颖的物理和化学特性,在众多领域特别是在光、电、磁、催化等方面具有非常重大的应用价值。 [5]樊东黎. 纳米技术和纳米材料的发展和应用[J]. 金属热处理. 2011(02) 摘要:<正>2005年12月在克利夫兰召开了由美国金属学会和克利夫兰纳摩网主办的美国纳米技术应用峰会。许多实体企业,如波音、福特、通用、洛克希德、蒂姆肯等公司高管出席会议和发言。会议的特点是着重于纳米。 [6]张桂芳. 纳米材料应用与发展前景概述[J]. 黑龙江科技信息. 2009(16) 摘要:由于独特的微结构和奇异性能,纳米材料引起了科学界的极大关注,成为世界范围内的研究热点,以下概述了纳米材料的应用与发展前景。 [7]杨萍. 多功能复合纳米材料的制备及其光分析应用研究[D]. 中国科学技术大学 2012 摘要:纳米材料具有独特的化学、物理和生物性能,引起了人们的极大关注。多功能复合结构纳米材料能够将不同功能的纳米材料整合到一个纳米器件中,从而为现代工业、生物医学

纳米材料的热学特性

纳米材料的热学特性 【摘要】:纳米材料的应用及其广泛,涉及到各个领域。本文将从纳米材料的热容,晶格参数,结合能,内聚能,熔点,溶解焓,溶解熵及纳米材料参与反应时反应体系的化学平衡等方面对纳米材料的热学性质的研究进行阐述,并对纳米材料热学的研究和应用前景进行了展望。 【关键词】:纳米材料热学特性发展前景 【正文】: (一)纳米材料 纳米材料是一种既不同于晶态,又不同于非晶态的第三类固体材料,通常指三维空间尺寸至少有一维处于纳米量级( 1 n m~1 0 0 n m)的固体材料。由于纳米材料粒径小,比表面积大,处于粒子表面无序排列的原子百分比高达l 5 ~5 0 %。纳米粒子的这种特殊结构导致其具有不同于传统材料的物理化学特性。 纳米材料的高浓度界面及原子能级的特殊结构使其具有不同于常规块体材料和单个分子的性质,纳米材料具有表面效应,体积效应,量子尺寸效应宏观量子隧道效应等,从而使得纳米材料热力学性质具有特殊性,纳米材料的各种热力学性质如晶格参数,结合能,熔点,熔解焓,熔解熵,热容等均显示出尺寸效应和形状效应。可见,纳米材料热力学性质在各方面均显现出与块体材料的差异性,研究纳米材料的热力学性质具有极其重要的科学意义和应用价值。 (二)热学特性 一热容 1996年,在低温下测定了纳米铁随粒度变化的比热,发现与正常的多晶铁相比,纳米铁出现了反常的比热行为,低温下的电子比热系数减50 %。1998年,通过研究了粒度和温度对纳米粒子热容的影响,建立了一个预测热容的理论模型,结果表明:过剩的热容并不正比于纳米粒子的比表面,当比表面远小于其物质的特征表面积时,过剩的热容可以认为与粒度无关。2002年,又把多相纳米体系的热容定义为体相和表面相的热容之和,因为表面热容为负值,所以随着粒径的减小和界面面积的扩大,将导致多相纳米体系总的热容的减小,二.晶格参数,结合能,内聚能 纳米微粒的晶格畸变具有尺寸效应,利用惰性气体蒸发的方法在高分子基体上制备了1. 45nm 的pd纳米微粒,通过电子微衍射方法测试了其晶格参数,发现Pd 纳米微粒的晶格参数随着微粒尺寸的减小而降低。结合能的确比相应块体材料的结合能要低。通过分子动力学方法,模拟Pd 纳米微粒在热力学平衡时的稳定结构,并计算微粒尺寸和形状对 晶格参数和结合能的影响,定量给出形状对晶格参数和结合能变化量的贡献研究表明:在一定的形状下,纳米微粒的晶格参数和结合能随着微粒尺寸的减小而降低,在一定尺寸时,球形纳米微粒的晶格参数和结合能要高于立方体形纳米微粒的相应量。 三纳米粒子的熔解热力学 熔解温度是材料最基本的性能,几乎所有材料的性能如力学性能,物理性能以及化学性能都是工作温度比熔解温度( T /Tm )的函数,除了熔解温度外,熔解焓和熔解熵也是描述材料熔解热力学的重要参量;熔解焓表示体系在熔解的过程中,吸收热量的多少,而熔解熵则是体系熔解过程中熵值的变化。几乎整个熔解热力学理论就是围绕着熔解温度,熔解熵和

浅谈纳米技术及其应用

浅谈纳米技术及其应用 1 概述 1.1 引言 纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物。纳米技术兴起于20世纪80年代,随着它的逐步发展和完善,人类将必然在认识和改造自然方面进入一个前所未有的新阶段。 1.2 纳米技术的发展 最早提出纳米尺度上科学和技术问题的是著名物理学家、诺贝尔奖获得者理查德·费曼教授[1]。1959年他在一次题为《在底部还有很大空间》的演讲中提出:物理学的规律不排除用单个原子制造物品的可能。也就是说,人类能够用最小的机器制造更小的机器。直至达到分子或原子状态,最后可以直接按意愿操纵原子并制造产品。这正是关于纳米技术最早的构想。 20世纪70年代,科学家开始从不同角度提出有关纳米技术的构想。美国康奈尔大学Granqvist和Buhrman[2]利用气相凝集的手段制备出纳米颗粒,提出了纳米晶体材料的概念,成为纳米材料的创始者。之后,麻省理工学院教授德雷克斯勒[3]积极提倡纳米科技的研究并成立了纳米科技研究小组。 纳米科技的迅速发展是在20世纪80年代末、90年代初。1981年发明了可以直接观察和操纵微观粒子的重要仪器——扫描隧道显微镜(STM)、原子力显微镜(AFM),为纳米科技的发展起到了积极的促进作用。1984年德国学者格莱特[4]把粒径6nm的金属粉末压成纳米块,经研究其内部结构,指出了它界面奇异结构和特异功能。1987年,美国实验室用同样的方法制备了纳米TiO 多晶体。 2

对纳米材料的认识

浅谈对纳米材料的认识 “纳米”这个词语我们并不陌生,生活中常见的有“纳米洗衣机”、“纳米羊绒衫”等等。纳米材料几乎无处不在,在这里简单谈谈我对纳米材料的认识。 纳米级结构材料简称为纳米材料(nanometer material)是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。它从思维方式的概念表明生产和科研的对象将向更小的尺寸、更深的层次发展,将从微米层次深人至纳米层次。纳米技术未来的目标是按照需要,操纵原子、分子构建纳米级的具有一定功能的器件或产品。 纳米材料具有许多的特殊性质。由于纳米级尺寸与光波波长、德布罗意波长以及超导态的相干长度等物理特征尺寸相当或更小,使得晶体周期性的边界条件被破坏纳米微粒的表面层附近的原子密度减小;电子的平均自由程很短,而局域性和相干性增强。尺寸下降还使纳米体系包含的原子数大大下降,宏观固定的准连续能带转变为离散的能级。这些导致纳米材料宏观的声、光、电、磁、热、力学等的物理效应与常规材料有所不同,体现为量子尺寸效应、小尺寸效应、表面效应和宏观隧道效应等。 纳米科学与技术主要包括:纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学、纳米力学等七个相对独立又相互渗透的学科和纳米材料、纳米器件、纳米尺度的检测与表征三个研究领域。 经过几十年对纳米技术的研究探索。现在科学家已经能够在实验室操纵单个原子.纳米技术有了飞跃式的发展。纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪四大领域高速发展。 目前,不少国家纷纷制定相关计划,投入巨资抢占纳米技术的战略高地。每一种新科技的出现,似乎都包涵着无限可能,尤其是纳米机器人具有不可限量的应用前景。用不了多久,个头只有分子大小的神奇纳米机器人将源源不断地进入人类的日常生活。

相关文档
相关文档 最新文档