文档视界 最新最全的文档下载
当前位置:文档视界 › 微纳粉体材料与技术方向pdf

微纳粉体材料与技术方向pdf

微纳粉体材料与技术方向pdf
微纳粉体材料与技术方向pdf

纳米粉体材料

纳米粉体材料 简介 纳米材料分为纳米粉体材料、纳米固体材料、纳米组装体系三类。纳米粉体材料是纳米材料中最基本的一类。纳米固体是由分体材料聚集,组合而成。而纳米组装体系则是纳米粉体材料的变形。 纳米粉体也叫纳米颗粒,一般指尺寸在1-100nm之间的超细粒子,有人称它是超微粒子。它的尺度大于原子簇而又小于一般的微粒。按照它的尺寸计算,假设每个原子尺寸为1埃,那么它所含原子数在1000个-10亿个之间。它小于一般生物细胞,和病毒的尺寸相当。 细微颗粒一般不具有量子效应,而纳米颗粒具有量子效应;一般原子团簇具有量子效应和幻数效应,而纳米颗粒不具有幻数效应。 纳米颗粒的形态有球形、板状、棒状、角状、海绵状等,制成纳米颗粒的成分可以是金属,可以是氧化物,还可以是其他各种化合物。 纳米粉体材料的基本性质 它的性质与以下几个效应有很大的关系: (1).小尺寸效应 随着颗粒的量变,当纳米颗粒的尺寸与光波、传导电子德布罗意波长以及超导态的相干长度或透射深度等物理尺寸特征相当或更小时,周期边界性条件将被破坏,声、光、电、磁、热、力等特性均会出现质变。由于颗粒尺寸变小所引起的宏观物理性质的变化成为小尺寸效应。 (2).表面与界面效应 纳米微粒尺寸小、表面大、位于表面的原子占相当大的比例。由于纳米粒径的减小,最终会引起表面原子活性增大,从而不但引起纳米粒子表面原子输送和构型的变化,同时也引起表面电子自旋构象和电子能谱的变化。以上的这些性质被称为“表面与界面效应”。 (3)量子尺寸效应 当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变成离散能级的现象成为量子尺寸效应。 具体从各方面说来有以下特性: (1)热学特性

粉体材料科学与工程培养方案

粉体材料科学与工程培养方案 一、专业简介 粉体材料科学与工程”专业依托“材料科学与工程”一级国家重点学科建设,设有博士点、博士后科研流动站,是国家特色专业和国家本科质量工程重点建设专业,是首批国家“卓越工程师”专业。本专业涉及金属或化合物粉末的制备、并以此为原料制备先进材料,研究材料成分、制备工艺、组织结构和性能之间相互关系,以满足航空航天、新能源技术、生物技术、微电子、汽车工业、国防军工等领域对关键新材料的迫切需求。本专业培养具有坚实的专业理论基础以及材料科学知识、较强的新材料研发能力和创新能力的粉末冶金技术高级专门人才。 二、培养目标 本专业秉承“厚基础、宽专业、高素质、强能力”的人才标准,培养政治思想正确、具有高度的社会责任感、优良的科学文化素养和创新精神、坚实的专业基础、较强的工程实践和工程创新能力、组织和管理能力以及良好国际化视野的高层次、复合型人才。能在材料科学与工程领域,特别是在粉末冶金基础理论、粉末冶金材料(如难熔金属与硬质合金、磁性材料、摩擦减磨材料、粉末高温合金、特种陶瓷材料、电工电子材料)等研究和制造领域从事科学研究与技术开发、工艺设计、材料加工制备、性能检测和生产经营管理、具有国际竞争力的高级专门人才。学生毕业后可在高等院校、科研院所和高新技术企业等从事教学、科研、生产、新材料与材料制备新技术开发以及相关管理方面的工作。 三、培养要求 1、知识要求 拥有良好的人文与社会知识、学科基础知识、专业基础与专业知识。 ①人文与社会知识:掌握一定的哲学、政治学、法学、社会学、心理学等知识。掌握一定的经济、管理等知识,满足工程应用中管理和交流的需要。 ②外语及计算机知识:掌握一门外国语,能顺利地阅读和翻译专业外文技术资料,有较强的听说读写能力;了解计算机基本原理,掌握一种以上计算机语言,能熟练应用计算机解决本专业问题。 ③学科基础知识:掌握材料科学与工程学科所需的数学、物理、化学等自然科学基础的知识

功能粉体材料作业

微纳粉末制备中的晶体结构控制 谌伟学号123511026 摘要:具有特殊形貌和尺寸的无机纳米/微米粉末的可控合成已成为现代材料合成和纳米器件制造过程中一个研究热点本,本文分析了研究晶体宏观形貌与内部结构关系的几种主要理论,分别从晶核的形成和长大,以及其影响因素与结晶模式,分析了粉末制备中控制晶体结构的机理。 关键词:微纳粉末;晶体结构;晶体习性;结晶控制 晶体形态的变化,受内部结构和外部生长环境的控制。晶体形态是其成份和内部结构的外在反映,一定成份和内部结构的晶体具有一定的形态特征,因而晶体外形在一定程度上反映了其内部结构特征。外部生长条件的变化通过内部结构影响晶体的形态,晶体形态随外界条件的变化而发生规律性的变化,因此可以通过晶体的外形特征来认识、掌握晶体的生长条件。在晶形分析过程中,内部结构对晶形的控制是基础,通过晶体结构特征对晶体形态作出比较准确的分析和推断,是进一步研究晶体形态与生长条件关系的前提。结晶学是研究晶体的生长、外部形貌、内部构造、化学组成、物理性质、人工制造和破坏以及它们之间关系的一门经典自然科学。结晶学是岩石学、矿物学、地质学和药物学等许多学科的基础,也是材料科学的重要基础科学之一。无论是材料制品的研究、生产制造还是实际应用,都离不开结晶学理论知识的指导。 1晶核的形成 任何晶体的生长都有晶核形成和晶核长大两个阶段,二者受不同因素控制。前一阶段热力学条件起着决定性作用,后一阶段主要受动力学条件控制。晶体的生长是一个相变过程,晶核的形成就是相变的开始。一个体系内能否形成晶核取决于相变进行的方向,而晶核的长大则取决于相变进行的限度。从热力学理论可知,只有在体系的相变驱动力足够大时,相变才能自发地进行,即自发进行的过程是在吉布斯自由能减小而相变驱动力增到足够大的过程。 (1)均匀成核作用:在均匀的没有相界面存在的体系内,自发地发生相变而形成晶核的作用,称为均匀成核作用。所谓均匀成核只是统计性的宏观看法。实际上体系内的某个局部在某瞬间总是存在着偏离平衡态的组成密度起伏或热起伏的。原始态的原子和分子有可能聚集在一起形成新相的质点集团,这种质点

超细粉体概念与特性

超细粉体的概念 世界化工网_https://www.docsj.com/doc/ba16278777.html, 任何固态物质都占有相应的空间,并且具有一定的形状和大小,即具有一定的体积.通常我们所说的粉末或细颗粒,一般是指大小为1mm一下的固态物质.当固态颗粒的粒径在0.1~10μm之间时,可称为微细颗粒,或称为亚超细颗粒/而当粒径达到0.1μm以下时,则称为超细颗粒.因此,超细粉体材料即指粒径在1~100nm范围内介于院子,分子与宏观物体之间的粉体材料. 超细颗粒按其大小可以分为三个档次: 大超细颗粒:粒径在0.1~0.01μm之间; 中超细颗粒:粒径在0.01~0.002μm之间; 小超细颗粒:粒径在0.002μm以下; 超细粉体的特性 超细粉体是介于大块物质和院子或分子之间的中间物质,是处于原子簇和宏观物体交接的区域.从微观和宏观的观点看.它即不是典型的微观系统,也不是典型的宏观系统,是介于二者之间的介观系统.它具有一些列新异的物理化学特征.这里涉及到体相材料中所忽略的活根本不具有的基本物理化学问题.由于超细粉体保持了原有物质的化学性质,而在热力学上又是不稳定的,所以对它

们的研究与开发,是了解微观世界如何过渡到宏观世界的关键.随着研究手段,特别是电子显微镜的迅速发展,使得可以清楚的看到超细颗粒的大小和形状,对超细粉体的研究更加深入了. 超细颗粒具有熔点低,化学活跃性高,磁性强,热传导性,对电磁波一场吸收等特性,使它具有广阔的应用前景。 超细颗粒的直径越小,其熔点的降低越显著。例如,块状银的熔点是900℃,而银的超细颗粒的熔点可降至100℃以下,能溶于热水;块状金的熔点为1064℃,而粒径为0.002μm的超细金粉其熔点仅为327℃.超细粉体的熔点低使得在较低的温度下可以对金属,合金或化合物的粉末进行烧结,制造各种机械部件.这样不仅能节省能耗,降低制造工艺的难度,更重要的是可以得到性能优异的部件.如高熔点材料WC,SiC,BN,Si3N4 等作为结构材料,其制造工艺需要高温烧结,当使用超细颗粒时,就可以再很低的温度下进行,并且不需要添加剂就可以获得高密度烧结体.这对高性能无机结构材料的广泛应用提供了更具现实意义的制造工艺. 超细颗粒具有很高的化学活性.这是由于它的直径越小,其总表面积就越大,表面能相应增加,使其化学活性增大.据此特性可作为高校催化剂,用于火箭固体燃料的助燃添加剂.研究表明,以

高分子材料中粉体表面改性的作用

超细粉体材料进行表面改性的作用分析 (上海汇精亚纳米新材料有限公司刘涛) (凤阳汇精纳米新材料科技有限公司) 高新技术的发展对材料的要求越来越高,而材料又是技术进步的关键和后盾。随着科技的发展,我们经常需要既能适应高温、高压、高硬度条件的材料,又具有能发光、导电、电磁、吸附等特殊性能的材料。因此,对材料特殊性能及品质要求的提高,为适应发展需要,人们不断地开发超微细粉体这一新兴填料体系。但由于超细粉体间普遍存在着范德华力(分子间作用力)、库仑力(静电力),粉体的细化过程实质上是以粒子的内部结合力不断被破坏,体系总能量不断增加的过程。因此从热力学角度来看,超细粉体有自发凝聚的倾向,而且颗粒越细小,团聚越严重。因此如何使团聚解聚,使颗粒均匀分散成为超细粉体材料得到很好应用的首要问题。研究表明,影响超细粉体分散的主要原因是:1:液桥力(液体的表面张力):当粉体受潮时,此力最大;2:范德华力;3:库仑力,不同电荷吸引力是粉体团聚的第三大因素。而对于超细粉体在高分子材料中的分散,一是常温下的分散混合,二是熔融状态下的分散混合,这两个过程都要求做到分散均匀。表面改性就是指在保持材料或制品原性能的前提下,赋予其表面新的性能,如生物相容性、抗静电性能、染色性能及良好的分散性能等。汇精公司粉体材料的表面改性产品就是用偶联剂及表面活性剂在粉体表面进行,其可以降低粉体表面能,提高相容性,阻止或减轻团聚体的形成,提高其分散性,并使得粉体在高分子材料中得到迅速、均匀的分散。若超细粉体不加任何处理就加入到高分子材料中去,材料与聚合物之间就会存在明显的界面,如果在基体树脂中存在的许多空洞,在外力作用下能承受外力的有效截面积减少,填充材料的力学性能就会变差。因此超细粉体在表面处理水份控制以及选择合适的表面改性剂是非常关键的。 上海汇精亚纳米新材料有限公司、凤阳汇精纳米新材料科技有限公司利用自身丰富粉体应用技术资源,采用专业的配方,使用SLG加热式连续性表面改性机对超细粉体材料进行表面改性处理,使得超细粉体材料在各行业的使用性能得到大大提升,更赋予它新的功能;使得超细粉体的各项性能得到更好的发挥,适应了时代发展的趋势需求。

新能源材料学习心得

研究生课程结课综述 ------新能源材料心得体会 姓名: 学院: 专业: 学号: 新能源材料 一、新能源概况 新能源的各种形式都是直接或者间接地来自于太阳或地球内部伸出所产生

的热能,包括了太阳能、风能、生物质能、地热能、核聚变能、水能和海洋能以及由可再生能源衍生出来的生物燃料和氢所产生的能量。一般地说,常规能源是指技术上比较成熟且已被大规模利用的能源,而新能源通常是指尚未大规模利用、正在积极研究开发的能源。因此,煤、石油、天然气以及大中型水电都被看作常规能源,而把太阳能、风能、现代生物质能、地热能、海洋能以及核能、氢能等作为新能源。 以新能源中的太阳能为例,新能源具有无可替代的资源优势:太阳能资源取之不竭,太阳能是地球上分布最广泛的可再生能源,每年到达地球陆地上的太阳辐射能量约27万亿吨标准煤,是目前世界能源消费总量的2000多倍。可开发的风能资源为53000 TWh,是目前全球发电量的两倍,水力发电资源量的三倍。太阳能、风能已成为各国实施可持续发展的重要选择,是一种朝阳的产业,孕育着巨大的潜在经济利益为维持技术优势、占领市场的需要。 二、我国发展新能源的重要性 太阳能、风能已成为各国实施可持续发展的重要选择。同国外相比,我国的能源系统更加不具备可持续发展特点:能源枯竭的威胁可能来的更早。人口多,人均资源占有量仅及世界的一半,石油和天然气资源仅占世界人均量的17.1%和13.2%;加之能源利用技术落后,效率低下,能耗高,枯竭速度可能会比国外更加迅速,能源匮乏的威胁可能来的更早、能源供需缺口将越来越大。2020年全国需求量27亿吨TOE,尚缺4.8亿吨标煤;2050年一次需求量达到40亿吨标煤,缺口达10亿吨标煤,短缺25%以上。过度依赖煤炭,环境影响更加严重。煤炭几乎满足了我国一次能源需求的70%,66%的城市大气颗粒物的含量和22%的城市的二氧化硫含量均超过国家空气质量二级标准,在冬季这些污染物的浓度更大,通常为夏季的2倍。环境专家估计,大气中90%的二氧化硫和70%的烟尘来自于燃煤。 煤废料的处理仍是问题。煤炭开发利用过程中产生的大量的矸石、腐蚀性水、煤泥、灰渣和飞灰等,已构成对工农业生产和生态环境的危害,成为制约所在地区可持续发展的一个制约因素。 在我国,近13亿人中约80%居住在农村,每年消耗6亿多吨标煤的能量,其中约一半来自可再生能源,但这些能源目前还是以传统的利用方式为主。另外我国还有700万户无电人口,无法用常规电网延伸解决用电问题。 发展新能源可以满足安排剩余劳动力的需要。如丹麦的风力发电制造业,1999年风机制造、维护、安装和咨询服务,即为丹麦提供了1.2万至1.5万个工作机会;它的风机零部件的供应遍及全球,同时还创造了约6,000个工作机会。 发展新能源同时可以维护生态建设成果、改善农村生活环境。目前有2亿多人面临沙漠化的威胁,但燃烧传统生物质能源在很多地区仍是主要的生活用能方

超细粉体材料的制备技术现状及应用形势

文章编号:1008-7524(2005)03-0034-03 超细粉体材料的制备技术现状及应用形势* 房永广1,梁志诚2,彭会清3 (1.江西理工大学环建学院,江西赣州341000;2.化工部连云港设计研究院, 江苏连云港222004;3.武汉理工大学资环学院,湖北武汉430070) 摘要:综述了国内超细粉体材料的制备工艺、设备现状及进展,并介绍了超细粉体材料在电子信息、医药、农药、模具、军事、化工等方面的应用。 关键词:超细粉体;制备;综述 中图分类号:TD921+.4文献标识码:A 0引言 从上世纪50年代日本首先进行超细材料的研究以后,到上世纪80~90年代世界各国都投入了大量的人力、物力进行研究。我国早在上世纪60年代就对非金属矿物超细粉体技术、装备进行了研究,对于超细粉体材料的系统的研究则开始于上世纪80年代后期。 超细粉体从广义上讲是从微米级到纳米级的一系列超细材料,在狭义上讲是从微米级、亚微米级到100纳米以上的一系列超细材料。材料被破碎成超细粉体后由于粒度细、分布窄、质量均匀,因而具有比表面积大、表面活性高、化学反应速度快、溶解速度快、烧结体强度大以及独特的电性、磁性、光学性等,因而广泛应用于电子信息、医药、农药、军事、化工、轻工、环保、模具等领域。可以预见超细粉体材料将是21世纪重要的基础材料。1超细粉体的制备设备 超细粉体的制备方法有很多,但从其制备的原理上分主要有两种:一种是化学合成法,一种是物理粉碎法。化学合成法是通过化学反应或物相转换,由离子、原子、分子经过晶核形成和晶体长大而制备得到粉体,由于生产工艺复杂、成本高、而产量却不高,所以化学合成法在制备超细粉体方面应用不广。物理粉碎法是通过机械力的作用,使物料粉碎。物理粉碎法相对于化学合成法,成本较低,工艺相对简单,产量大。因此,目前制备超细粉体材料的主要方法为物理粉碎法。常用的超细粉碎设备有气流粉碎机、机械冲击粉碎机、振动磨、搅拌磨、胶体磨以及球磨机等。 1.1气流粉碎机 自从1892年美国人戈麦斯第一次提出挡板式气流粉碎机的模型并申请专利以来,经过百余年的发展,目前气流磨已经发展成熟,成为国内外用于超细粉体加工的主要设备。我国研制气流粉碎机开始于上世纪80年代初。目前气流粉碎机可分为圆盘式、对喷式、靶式、循环式、流化床式等。 气流粉碎机又称流能磨或喷射磨,由高压气体通过喷射嘴产生的喷射气流产生的巨大动能,使颗粒相互碰撞、冲击、摩擦、剪切而实现超细粉碎。粉碎出的产品粒度细,且分布较集中;颗粒表面光滑,形状完整;纯度高,活性大,分散性好。目前超细粉碎机有很多的机型,其中流化床式气流粉碎机是其效率最高的。其工作原理为物料进入粉碎室,超音速喷射流在下部形成向心逆喷射流场,在压差作用下,使磨底物料流态化,被加速的物料在多喷嘴的交汇点汇合,产生剧烈的冲击碰撞,摩擦而粉碎,被粉碎的细粉随气流一起运动至上部的涡轮分级机处,在离心力作用下,将符合细度要求的微粉排出。其优点是粉碎效率高,能耗 # 34 # *收稿日期:2004-09-24

粉体材料的制备方法有几种

粉体材料的制备方法有几种?各有什么优缺点?(20分) 答:粉末的制备方法: 气相合成、湿化学合成、机械粉碎. 1. 物理方法 (1)真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。 (2)物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 (3)机械球磨法 采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 2. 化学方法 (1)气相沉积法 利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。 (2)沉淀法 把沉淀剂加入到盐溶液中反应后,将沉淀热处理得到纳米材料。其特点简单易行,但纯度低,颗粒半径大,适合制备氧化物。 (3)水热合成法 高温高压下在水溶液或蒸汽等流体中合成,再经分离和热处理得纳米粒子。其特点纯度高,分散性好、粒度易控制。 (4)溶胶凝胶法 金属化合物经溶液、溶胶、凝胶而固化,再经低温热处理而生成纳米粒子。其特点反应物种多,产物颗粒均一,过程易控制,适于氧化物和Ⅱ~Ⅵ族化合物的制备。 (5)微乳液法 两种互不相溶的溶剂在表面活性剂的作用下形成乳液,在微泡中经成核、聚结、团聚、热处理后得纳米粒子。其特点粒子的单分散和界面性好,Ⅱ~Ⅵ族半导体纳米粒子多用此法制备 2. 为什么要对粉体材料的表面进行改性?什么是物理吸附?什么是化学吸附?试举例说明。(20分) 答: 材料表面改性的目的 力学性能:表面硬化、防氧化、耐磨等 电学性能:表面导电、透明电极 光学性能:表面波导、镀膜玻璃 生物性能:生物活性、抗菌性 化学性能:催化性 装饰性能:塑料表面金属化 材料表面改性的意义 通过较为简单的方法使一个部件部件或产品产品具有更为综合的性能第一节材料表面结构的变化 粉体表面改性是指用物理、化学、机械等方法对粉体材料表面进行处理,根据应用的需要有目的改变粉体材料表面的物理化学性质,如表面组成、结构和官能团、

超细粉体的应用及制备

应用与开发 超细粉体的应用及制备 刘宏英,李春俊,白华萍,李凤生 (南京理工大学超细粉体与表面科学技术研究所,江苏南京210094) 摘要:介绍了超细粉体在国民经济各领域的应用,研究了各种超细粉体的制备技术、分级技术及设备的性能特点,分析了国内外相关技术,对超细粉体技术今后的发展和研究方向提出了建议。 关键词:超细粉碎;制备;分级 中图分类号:T B44 文献标识码:A 文章编号:1002-1116(2001)01-0030-03 超细粉体技术是指制备与使用超细粉体及其相关的技术。其研究内容包括超细粉体的制备技术,分级技术,分离技术,干燥技术,输送、混合与均化技术,表面改性技术,粒子复合技术,检测及应用技术等。南京理工大学超细粉体与表面科学技术研究所在国内率先开展了易燃易爆材料、纤维材料、塑性材料和刚柔混合材料等特殊材料的超细粉碎、混合、乳化、分级与表面改性技术研究。经过多年的研究和实际应用,取得了一些成功的经验。目前该技术与设备已广泛用于军民各个领域,为国防现代化和国民经济的发展作出了一定的贡献。由于超细粉体技术是一门综合性很强的技术,涉及知识面很广,本文就超细粉体的应用、超细粉碎技术、分级技术作简要综述。 1 超细粉体应用的研究进展 超细粉体不仅本身是一种功能材料,而且为新的功能材料的复合与开展展现了广阔的应用前景[1]。超细粉体由于粒度细、分布窄、质量均匀,因而具有比表面积大、表面活性高、化学反应速度快、溶解速度快、烧结体强度大以及独特的电性、磁性、光学性等,因而广泛应用于许多高新技术领域。 1.1 在材料领域的应用 超细粉体在材料领域应用广泛。如磁性材料、隐身隐形材料、高耐磨及超塑材料、新型冶金材料及建筑材料。利用超细陶瓷粉可制成超硬塑性抗冲击材料,可用其制造坦克和装甲车复合板,这种复合板较普通坦克钢板重量轻30%~50%,而抗冲击强度较之提高1~3倍,是一种极好的新型复合材料[2]。将固体氧化剂、炸药及催化剂超细化后,制成的推进剂的燃烧速度较普通推进剂的燃烧速度可提高1~10倍[3],这对制造高性能火箭及导弹十分有利。1.2 在化工领域的应用 将催化剂超细化后可使石油的裂解速度提高1~5倍,赤磷超细化后不仅可制成高性能燃烧剂,而且与其它有机物反映可生成新的阻燃材料。油漆、涂料、染料中固体成分超细化后可制成高性能高附着力的新型产品。在造纸、塑料及橡胶产品中,其固体填料如:重质碳酸钙、氧化钛、氧化硅等超细化后可生产出高性能的铜板纸、塑料及橡胶产品。 1.3 在生物医药领域的应用 医药经超细化后,外用或内服时可提高吸收率、疗效及利用率,适当条件下可改变剂型,如微米、亚微米及纳米药粉可制成针剂使用[4]。在医疗诊断方面可将超细粉经适当处理后注入或服入人体内进行各种病理诊断。 南京理工大学超细粉体与表面科学技术研究所已成功地为上海XX医药公司、常州XX公司及浙江XX公司等单位生产了大量超细硫糖铝及超细阿基诺维奇等药,产品性能提高,达到国际标准,因而大 第29卷第1期2001年2月 江苏化工 Jiangsu Chem ical Industry V ol.29N o.1  Feb.2001 收稿日期:2000-10-18 作者简介:刘宏英(1954年出生),女,江苏南京人,高级工程师,1980年毕业于华东工学院机械制造专业,长期从事超细粉体物料的制备、粉碎、分级等技术研究,已发表论文数篇。

粉体材料与工程专业培养计划(草稿)

粉体材料科学与工程专业培养计划 一、培养目标: 本专业培养适应社会主义现代化建设需要,德、智、体、美全面发展,并具有较好的社会科学基础和一定的人文、艺术基础,具有创新精神和实践能力,获得工程师基本训练的高级工程技术专门人才。毕业生具备粉体材料工程领域的基础知识,系统掌握粉体材料科学与工程的基本理论、基本的实验技能和科学创新的研究方法的高级应用型人才。 二、培养规格与要求: 本专业人才应具有以下知识、能力和素质: 1、知识结构要求 工具性知识:外语、计算机及信息技术应用等方面的知识。 人文社会科学知识:哲学、思想道德、政治学、法学、心理学等方面的知识。 自然科学知识:数学、物理学、化学等方面的知识。 工程技术知识:工程图学、机械基础、电工电子学等方面的知识。 经济管理知识:经济学、管理学等方面的知识。 专业知识:了解粉体材料科学与工程领域的一般原理和专业知识;掌握粉体材料合成制备、加工、结构与性能测定及应用等方面的基础知识、基本原理和基本实验技能;熟悉国家关于粉体材料科学与工程研究、开发及相关的产业政策、国内外知识产权等方面的法律法规;了解粉体材料科学与工程专业的理论前沿、应用前景和最新发展动态,以及粉体材料科学与工程产业的发展状况;具有研究、改进粉体材料性能、开发、设计新材料的初步能力。 2、能力结构要求 获取知识的能力:具有良好的自学能力、表达能力、社交能力、计算机及信息技术应用能力。 应用知识能力:具有综合应用知识解决问题能力、综合实验能力、工程实践能力。 创新能力:具有创造性思维能力、创新实验能力、科技开发能力。 3、素质结构要求 思想道德素质:热爱祖国,拥护中国共产党的领导,树立科学的世界观、人生观和价值观;具有责任心和社会责任感;具有法律意识,自觉遵纪守法;热爱本专业、注重职业道德修养;具有诚信意识和团队精神。 文化素质:具有一定的文学艺术修养、人际沟通修养和现代意识。 专业素质:掌握科学思维方法和科学研究方法;具备求实创新意识和严谨的科学素养;具有一定的工程意识和效益意识。 身心素质:具有较好的身体素质和心理素质。 三、主干学科:材料科学与工程,化学工程与技术 四、核心课程: 马克思主义基本原理、高等数学、大学物理、物理实验、大学计算机基础、大学英语、工程图学、电工与电子技术、无机化学、分析化学、有机化学、物理化学、纳米材料科学导论,材料科学基础、材料物理性能、材料研究与测试方法、粉体工程、材料合成与加工工程及热工过程及设备。 五、主要实践性教学环节: 基础实验、专业实验,机械制造(金工)实习、电工电子工艺实习、计算机上机、课程实习、创新设计、认识实习、生产实习、毕业实习、科技方法训练(工程设计训练)、毕业设计(毕业论文)等集中实践周共44周。 六、主要指标: 课内(普通教育和专业教育)总学时2496(其中实验232学时、上机120学时、听力64学时),集中实践环节共44周;普通教育和专业教育总计200学分,综合教育40学分。 七、学制:四年 八、授予学位:工学学士

“硅时代”的那些未来材料

有人提出硅时代的核心法则“摩尔定律”其实讲的不是数据科学,而是材料学每隔18个月就能将芯片的组成成分翻倍。 材料科学一直是物质进步的基础,无论是石器时代、青铜时代还是铁器时代,都是以人类制造和使用的材料来命名的。但是进入“硅时代”后,难道科技进步就只存在于如何控制二进制的1和0吗? 答案是否定的。今天,材料问题比以往任何时候都更重要。北京理工大学材料学院曹传宝教授告诉记者,现在虽然不再以材料发展来划分时代,但是材料依然是各个学科的基础,没有材料学其他学科都发展不起来。 “比如我们生活中必不可少的计算机,它的芯片就是以硅材料为基础的,有了先进的硅才能发展数字技术。而能源方面的太阳能电池也是取决于材料的转换效率。因此材料发展是其他学科的助力。”曹传宝说,“医学上的人造器官也是用材料做成的,像透析用的人工肾其实与生物的关系已经不大了,主要就是看吸附材料的发展。目前这方面材料还不理想,制约了人工器官的发展,由此看出如果材料学进步缓慢也会成为其他学科的‘瓶颈’。” 一直以来,单独材料本身只能粗放使用,只有与其他科技结合才能产生更高的价值。在硅时代,材料学与其他学科交叉将越来越普遍。“就像现在已经有与生物交叉的生物材料学,与计算机交叉的计算材料学等,”曹传宝说。 鉴于材料的重要作用,有人提出硅时代的核心法则“摩尔定律”其实讲的不是数据科学,而是材料学每隔18个月就能将芯片的组成成分翻倍。像芯片一样,目前实验室中更智能、更安全、更结实的材料未来都有可能改变我们的生活。 电子皮肤 皮肤的作用不仅在于保护身体,还能帮我们传导感觉。通过把电子材料变得柔软和肉感,工程师已经发现了一种方法使得人工移植皮肤和假肢也能有感觉。美国伊利诺斯州大学的研究者创造了一种足够轻薄柔韧的电路,把它覆盖在手指尖,可以将压力转换成电子信号。 目前,斯坦福大学开发的一款凝胶可以储存电能,用作可塑性电池。卡内基梅隆大学carmel majidi教授也正在研制把橡胶变为压力和摩擦力的传感器,他把液体金属槽放进橡胶里,一旦液体流动,电流就会发生变化。此外,电子皮肤还可以用于人类之外的更宽广领域,比如用这种工程学方法使机器人更逼真、更具有人类特性。 蜘蛛丝移植 看过《蜘蛛侠》的人都知道蜘蛛丝比钢铁还强韧,而人体自身的组织却很脆弱、容易撕裂。美国犹他州,研究人员正在用蜘蛛丝修复受损的肩膀和膝盖。他们培育转基因羊以生产大量蜘蛛丝蛋白,纺成股,做出仿蜘蛛丝纤维。这些纤维保留了蜘蛛丝特有的延展性,同时比人类韧带和筋腱分别强劲100倍和20倍。让移植的骨骼更加强韧,麻省理工学院研究员已经成功地将蜘蛛丝蛋白和胶原蛋白组合在一起。研究人员估计,2030年以前蜘蛛丝移植技术将批准对人类使用。 能发电的运动鞋 早在100年前,工程师就尝试通过发电器将机械能转化为电能,但是直到现在通过反复走动产生的能量依然不足以给一个ipod充电。主要原因在于目前制作发电器的压电材料不仅难以生产,还含有有毒金属,比如镍和铅。 如今,美国能源部劳伦斯伯克利国家实验室的研究人员一次性解决了这两个难题,他们使用的方法是采用经过特殊处理的无害病毒,这种病毒可以自发形成一层膜覆盖在发电器上。把它装进鞋里,走路时发电器感受到压力,病毒的螺旋蛋白就会旋转、扭曲,产生电荷。邮票大小的病毒压电材料样本可以产生400毫伏电力,足够点亮一个小lcd显示屏。未来5-10年,这项技术可帮助振动产生的能量来发电,如建筑物的振动和心跳,包括给ipod充电。

新能源材料学习心得

新能源材料学习心得 班级:094 姓名:刘建德学号:200910204428 一、新能源概况 新能源的各种形式都是直接或者间接地来自于太阳或地球内部伸出所产生的热能,包括了太阳能、风能、生物质能、地热能、核聚变能、水能和海洋能以及由可再生能源衍生出来的生物燃料和氢所产生的能量。一般地说,常规能源是指技术上比较成熟且已被大规模利用的能源,而新能源通常是指尚未大规模利用、正在积极研究开发的能源。因此,煤、石油、天然气以及大中型水电都被看作常规能源,而把太阳能、风能、现代生物质能、地热能、海洋能以及核能、氢能等作为新能源。 以新能源中的太阳能为例,新能源具有无可替代的资源优势:太阳能资源取之不竭,太阳能是地球上分布最广泛的可再生能源,每年到达地球陆地上的太阳辐射能量约27万亿吨标准煤,是目前世界能源消费总量的2000多倍。可开发的风能资源为53000 TWh,是目前全球发电量的两倍,水力发电资源量的三倍。太阳能、风能已成为各国实施可持续发展的重要选择,是一种朝阳的产业,孕育着巨大的潜在经济利益为维持技术优势、占领市场的需要。 二、我国发展新能源的重要性 太阳能、风能已成为各国实施可持续发展的重要选择。同国外相比,我国的能源系统更加不具备可持续发展特点:能源枯竭的威胁可能来的更早。人口多,人均资源占有量仅及世界的一半,石油和天然气资源仅占世界人均量的17.1%和13.2%;加之能源利用技术落后,效率低下,能耗高,枯竭速度可能会比国外更加迅速,能源匮乏的威胁可能来的更早、能源供需缺口将越来越大。2020年全国需求量27亿吨TOE,尚缺4.8亿吨标煤;2050年一次需求量达到40亿吨标煤,缺口达10亿吨标煤,短缺25%以上。过度依赖煤炭,环境影响更加严重。煤炭几乎满足了我国一次能源需求的70%,66%的城市大气颗粒物的含量和22%的城市的二氧化硫含量均超过国家空气质量二级标准,在冬季这些污染物的浓度更大,通常为夏季的2倍。环境专家估计,大气中90%的二氧化硫和70%的烟尘来自于燃煤。 煤废料的处理仍是问题。煤炭开发利用过程中产生的大量的矸石、腐蚀性水、

超细粉体在材料领域的应用

超细粉体在材料领域的应用 超细粉体在国民经济及社会生活各个领域中都具有举足轻重的作用,下面对超细粉体在材料领域的应用进行简单介绍。 超细颗粒表面能高,表面原子数多,这些表面原子近邻配位不全,活性大,因此超细颗粒熔化时所需的内能较小,这使其熔点急剧下降,一般为块状材料熔点的30%一50%,这种性质可使其烧结温度显著降低,又由于超细粉体具有流动性大、渗透力强、烧结收缩磁性大等烧结特性,可以作为烧结过程的活性剂使用,以加快烧结过程、缩短烧结时间、降低烧结温度,例如普通钨粉需在3000℃高温时烧结,而当加入0.1%-0.5%的超细镍粉后,烧结成型温度可降低到1200-1311℃。 超细粉体可以显著改善陶瓷材料的显微组织,优化其性能。通常的陶瓷是借助于高温高压使各种颗粒融合在一起制成的。超细颗粒压成块材后,由于颗粒之间界面的高能量,在较低温度下烧结就能达到致密化的目的,且性能优异,因此特别适用于电子陶瓷的制备,所制备的陶瓷具有塑性强、硬度高、耐高温、耐腐蚀、耐磨等性能,而且还具有高磁化率、高矫顽力、低饱和磁矩、低磁耗以及光吸收效应,这将成为超细材料开拓应用的一个崭新领域。 超细粉体可制成特种功能材料,例如,将超细三氧化二铝和超细二氧化错烧结制成的材料,具有高硬度、超耐磨等特性,广泛用于特种模具行业及轴瓦和耐磨件的内衬。装甲材料通常是采用各种合金来提高其抗冲击性能和韧性,以防御炮弹的攻击,将超细 金属材料采用新工艺烧结后,可制成新型高强度超硬材料,用于装甲防护。用超细材料制成的耐高温、散热、导电、防腐涂层可广泛用于宇航飞行器、机场、军用码头、军用油库、弹药库、舰船等特种场合的防护。 超细粉体具有高比表面积、高活性、特殊物理性质,致使它对外界环境(如温度、光、湿气等)十分敏感,外界环境的改变会迅速引起其表面或表面离子价态和电子运输的变化,即引起其阻值的显著变化,超细粉体的这种特有性能使之成为在传感器方面最有应用前途的材料,可研制出响应速度快、灵敏度高、选择性好的各种不同用途的传感器。仅需微量的超细颗粒就可分发挥很大的作用。利用铁、钴、镍等金属超细离子制备高密度磁带,记录密度可达107- 108位/in(in=25.4mm),降低噪音,提高信噪比。利用超细颗粒对光强烈的吸收能力,可做防紫外线、防雷达的隐身材料,电磁波、光波吸收材料等。 在特种材料领域,超细粉体也有十分重要的应用。如赤磷是强可燃物,但超细赤磷可以制成发火点低、灵敏度高的高性能燃烧剂和烟火剂。当赤磷超细化到l0um以下后可以和其他有关的有机物合成高性能阻燃材料。硫磺超细化后可以作为农药载体,提高农药在水中的悬浮性,制造高性能的农药;用在制糖工业作处理剂时,可以制得性能更好的白糖。炸药超细化后可使燃料或爆炸性能更敏感更好,当以炸药作为燃气发生器的气源时,颗粒越小,发火和起爆就越容易,这样可以确保汽车行驶过程发生事故时气囊能及时充气,确保驾乘人员安全。强氧化剂高氯酸氨是固体火箭推进剂的一种重要成分,当其颗粒直径在100--200 u m时,固体推进剂的燃烧速度达10-20 mm/s;而当其颗粒超细化到粒径小于2um 时,在相同条件下固体推进剂的燃速可达80-100 mm/s 。 超细粉体的特殊的光学性质和光学化学性质,在口常生活和高科技领域也具有广泛的应用前景。己有的研究表明,利用半导体超细粉体可以制备出光电转化效率更高的,即使在阴雨天也能正常工作的新型太阳能电池,这种新型的太

常用无机粉体材料种类及作用

常用无机粉体材料种类及作用 目前,在中国每年至少有400万吨的无机粉体材料作为原料的一部分被用于塑料制品的生产。用无机粉体材料替代部分石油产品,一方面,每年可以节约数百万吨石油;另一方面,对于所生成的塑料制品而言,不但有利于降低原材料成本,而且可以使填充塑料材料的某些性能按照预定的方向得到改善,从而提高塑料制品的巿场竞争力。 常用无机粉体材料种类及作用 据统计,中国500余家碳酸钙厂家生产的约500万吨产品中,有一半就是销往塑料行业的。此外,滑石粉、煅烧高岭土、硅灰石粉等多种无机粉体材料也被广泛应用,有的甚至成为功能性塑料材料不可缺少的组成部分。 碳酸钙 碳酸钙就是塑料加工时用得最广、用量最大的无机粉体填料。据中国无机盐工业协会钙镁分会统计,每年用于塑料填充的碳酸钙总量在二百多万吨,就是各种用途中所占份额最大的,约50%左右。 根据加工方法不同,碳酸钙分为轻质与重质两种。轻质碳酸钙(简称轻钙)就是由石灰石经煅烧、消化、碳化而成的,其间经历了化学反应,而重质碳酸钙就是经研磨(干法或湿法)而成的,只有粒径大小的变化而无化学反应过程。目前在塑料薄膜中使用的碳酸钙都就是1250目的重质碳酸钙,已大量用于PE包装袋的生产,在农用地膜中因透光性受到影响,虽然可以使用,但添加量较小。 1) 重钙的细度对PE薄膜力学性能的影响十分明显,见表1。 表1 重质细度对PE薄膜力学性能的影响 2) 碳酸钙粒子的分散对PE薄膜的性能具有决定性作用 PE薄膜生产企业对重钙的添加量十分关心,希望添加量越多越好,但同时力学性能、耐老化性能、透光性都不要受到过大的影响。特别就是在农用地膜中到底能够使用多少碳酸钙就是非常值得努力探讨的问题。宝鸡云鹏塑料科技有限公司对此进行了有益的探索,并取得喜人的成果。表2列出纯LLDPE地膜及分别添加10%、15%、20%、33%云鹏公司生产的纳米改性塑料复合材料的LLDPE地膜的力学性能。

粉末冶金技术在新能源材料中的应用探讨

粉末冶金技术在新能源材料中的应用探讨 摘要:新能源的使用和普及是人类社会发展必经之路,新能源的使用所需要的 新能源材料是使用新能源的关键,对新能源材料和储存新能源材料的制备发挥作 用的技术上,粉末冶金技术是首选。本文将介绍什么是粉末冶金技术,并对粉末 冶金技术在新能源运用和储存中的作用进行分析和探讨。 关键词:粉末冶金技术;新能源储存 一、引言 随着人类社会经济的不断发展,人们生活变得越来越快节奏,越来越注重生 活品质的提升,与人们的需求相契合的是一切方便人们生活,出行等各方面的改变,如塑料制品越来越多,汽车等的普及。而这一切在为人们的生活带来方便的 同时,给我们的环境带来了压力,造成资源的短缺。为响应国家“统筹兼顾”、等 保护环境节约资源的政策措施,除了从衣食住行进行节约以外,我们还需要找出 一些可替代能源。本文将介绍粉末冶金技术在新能源技术中的应用。 二、粉末冶金技术介绍 粉末冶金是一种具有传统传统熔铸工艺无法获得的、独特的物理化学性质的 技术工艺。粉末冶金通过制备金属粉末能够做出半致密或者完全致密的工艺品, 不仅包括金属,现如今许多3D成型的制品均由粉末冶金技术制成。与传统工艺 相比,不需要切削便可制造出刀具、齿轮等还有更多精密成型的工具。 粉末冶金技术具有四个主要的特点。首先,粉末冶金能够传统工艺制造工具 时出现的合金偏聚现象,这是由于其能够在制备之前制备出合金的粉末,从根本 上解决合金偏聚的发生。其次,粉末冶金技术还能够制备出一些晶体,比如非晶、微晶等高性能非平衡材料,这些材料在电学、力学、磁学等领域具有超高的价值。再次,粉末冶金技术还能够实现多种类型材料的复合,例如金属-陶瓷材料的复合,这是一种极其低成本高性能的进行材料复合的工艺技术。最后,它还能够制 备出普通传统工艺无法制备的特殊结构、特殊材料的工艺制品,在我们的生活之中,许多机加工刀具、五金模具实际中就是由粉末冶金技术制备的。 三、新能源的定义和特点 新能源是除了传统的能源例如水、石油、天然气等人们日常使用的为人熟知 的能源以外的或者还在研究中和制备中的、未来能够最为某一种传统能源替代品 进入人们生活的能源。比如说我们经常提到的太阳能、氢能、核聚变能等等,都 属于新能源。这些新能源对于环境保护、节约能源来说十分的重要,如果我们能 够很好的加以利用,它们必然能够发挥自身优势,为人们的生活,为地球的环境 等等做出贡献。 四、粉末冶金技术的引进与使用 前文已述,粉末冶金技术的诸多优点,不论是制造生活所用的刀具,抑或是 制备具有良好性能,难以制备的具有超高力学性能的晶体,对它来说都不再话下。对于粉末冶金技术所需要的粉末冶金的材料是属于信息类的一种材料,主要是软 磁材料。随着一些科研学家在进行科研等活动中运用到的磁记录材料的需求的增多,粉末冶金技术也越来越变得不可或缺,极大的满足了人们的需求。同时,粉 末冶金技术在能源领域也发挥着作用,对着新能源的不断创新和发展,对于新能 源的储存和运行都需要粉末冶金技术材料的支持。例如能够满足航空航天工业的 足够强度和硬度的材料都需要粉末冶金技术来制成。 五、粉末冶金技术在新能源运用中的作用

金属超细粉体制备的研究进展

金属超细粉体制备的研究进展 摘要:简要介绍了超细粉体的制备方法,并介绍了电爆炸法和电弧等离子法制备AI、Mg 粉体的工艺技术及其研究进展。这2种方法具有产品颗粒直径分布窄、粒度大小易于控制和调节、产品纯度高、便于收集、无污染等优点,且易于工业化。它们是目前生产金属细颗粒较环保和成本较低的方法。 关键词:水反应金属燃料;Al;M g;粉体;电爆炸法;电弧等离子法 1. 引言 俄罗斯“暴风雪”超高速鱼雷利用“超空泡”(supercavitation)原理突破了水下航行体的速度限制.达到了200节航速【1】。。其所用动力推进系统为水冲压发动机,该发动机使用的燃料是“水反应金属燃料”,该鱼雷具体使用的是“Mg基水反应金属燃料”【2】。“暴风雪”鱼雷的出现引起了美、德、日等国对水冲压发动机和水反应金属燃料的极大关注,并展开大规模的研究。水反应金属燃料的优点是不仅能量特性高,而且具有充分利用雷外海水作为能源的特点,能够显著提高燃料单位体积的能量密度,使鱼雷超高速、远航程航行成为可能【3】。 目前研究所采用的水反应金属燃料的主要原料有:活性金属如Al、Mg、B、Ti、Li、Na、K、zr、w等,金属氢化物如AlH 3、M gH 2、B 2H。、ZrH:及LiAIH。及一些活性较高的金属氧化物和金属碳化物等。考虑到成本、毒性、能量密度等各方面的问题,Mg和Al 是最佳选择14】。与Mg基金属水反应燃料相比,A1的成本更低,来源更广,稳定性更好,最主要的是Al基燃料的比冲要大于Mg基燃料的比冲【5】。 对于金属燃料能否用于水冲压发动机的要求,除了看其能量密度能否满足要求外,还要看其粒度、纯度能否满足点火要求等;而决定其点火温度的主要因素是金属粒子粒度的大小。若想降低或选择合适的金属粒子的点火温度,就必须制备出超细颗粒(包括微米级、亚微米级和纳米级粒子)的金属粒子。 超细粒子的制备方法 对于超细粒子的制备已经报道了许多方法,从这些报道来看,超细粉体的制备方法可根据反应体系的不同而分为气相法、液相法和固相法【6】。 气相法一般是指用气体原料或将原料蒸发成气体,然后通过化学反应或物理作用再生成超细颗粒的方法。这类方法中包括气相化学反应、激光合成法、电爆炸法、惰性气体冷凝法和电弧等离子体法。 气相法制备金属超细粒子的特点是产品纯度高、分散性良好、粒子粒径分布窄、粒径小。此外,通过控制气氛可以制备液相法难以制备的金属、碳化物、氮化物、硼化物等非氧化物超细粉体【7】o 液相法(也称溶液反应法)是当前实验室和工业上广泛采用的合成高纯超细粉体的方法。其主要优点是能精确控制化学组成,易于添加微量有效成分,超细粒子形状和尺寸也较容易

粉体科学与工程

1、影响颗粒堆积的因素及致密堆积的经验:影响颗粒堆积的主要因素:一类是颗粒本身的几何特性, 如颗粒大小、粒度分布及颗粒;一类是颗粒间接触状态和颗粒堆积条件,如颗粒间接触点作 用力形式、堆积空间的形状与大小、堆积速度和外力施加方式与强度等条件。致密堆积经验:(1)用单一粒径尺寸的颗粒不能满足致密堆积对颗粒级配的要求(2)采用多组分且组分粒径尺寸相差较大(一般相差4~5倍)的颗粒,可较好的满足致密堆积对粒度与级配的要求(3)细颗粒数量应足够填充堆积体的空隙,两组分时,粗细数量比例约为7:3,三组分时,粗中细比例为7:1:2,相对而言,可以更好地满足致密堆积对粒度与级配的要求(4)在可能的条件下,适当增大临界颗粒尺寸可较好的满足致密堆积对粒度与级配的要求。 2、颗粒尺寸大小对颗粒的熔点、溶解度、热容得影响,并简要解释:晶体颗粒的熔点:晶体颗粒尺寸越小,其熔点也越低。1)基于晶体饱和蒸气压的解释: 颗粒尺寸越小,饱和蒸汽压越高,熔点越低。2)基于晶体熔化能量的解释:颗粒尺寸越小, 表面能越高,晶体颗粒熔点越低。晶体颗粒的溶解度:颗粒尺寸越小,溶解度越大。尺寸越小,饱和蒸汽压越大。当温度 一定时,溶质在溶液中的浓度随着饱和蒸汽压的提高而增大。晶体颗粒的比热:颗粒尺寸越小,德拜温度越低,晶格比热越大。晶体吸热是通过激发 晶格振动(声子振动)和激发电子,以及生成热缺陷等来完成的。颗粒尺寸减小意味着颗粒 表而原子相对数量的增加,即化学键被截断的表而质点数量的相对增加。由于表面原子在一侧失去最近邻原子的成键力,而引起表面原子

的扰动,使得表而原子和次表面原子距离被拉 开到大于体内原子的距离。造成表面质点的振幅大于体内质点的振幅,产生所谓“振动弛豫”, 即表而质点振动频率的降低,晶格比热容和德拜温度的比值有以下关系Cv=12π4RT3/5Q3。 3、为什么导体颗粒具有接触荷电特性,其机理是什么?颗粒荷电的主要方式有接触电荷、电场荷电、碰撞荷电和粉碎荷电。接触荷电是指两个不带电且功函数不同的导体颗粒,因相互接触,而后分离,使两个颗粒带上极性相反的等量的电荷;碰撞荷电:(1)颗粒与运动离子的碰撞荷电(2)颗粒与器壁的碰撞荷电;电场荷电:在常压下,当两个大小差别很大的电极上有足够大的电位差时,会引起空气电离,产生大量的空间电荷,形成电晕电流。其中阳离子和电子在想异性电极的有序运动中与电场内的颗粒碰撞失速,而吸附在颗粒表面,使颗粒荷电;粉碎荷电:颗粒粉碎时,连接质点的键被切断,且正负电荷相对于破裂面呈现电量不等的分布,使颗粒荷电。1)粗颗粒易带正电,细颗粒易带负电,且颗粒尺寸越小,比 电荷就越大。2)粉碎过程中还存在着颗粒间、颗粒与设备壁而间的相互摩擦引起的摩擦带 电。 3)颗粒粉碎荷电,是以零电荷为中心的正、负对称分布,且单位颗粒表而积的电荷数分布,近似为正态分布。 4、颗粒的光吸收机理是什么,光吸收现象有何应用意义?机理:由于光传播时的交变电磁场与颗粒分子的相互作用,使颗粒分子中的电子出现受迫振动,而维持电子振动所消耗 的能量,变为其他形式的能量而耗散掉。应用:光照吸收材料应用在电镜、核磁共振、波普仪

相关文档
相关文档 最新文档