文档视界 最新最全的文档下载
当前位置:文档视界 › 2020年高考数学 大题专项练习 数列 一(15题含答案解析)

2020年高考数学 大题专项练习 数列 一(15题含答案解析)

2020年高考数学 大题专项练习 数列 一(15题含答案解析)
2020年高考数学 大题专项练习 数列 一(15题含答案解析)

2020年高考数学大题专项练习数列一(15题含答案解析)

高中高中数学

题号一总分

得分

一、解答题

1.已知数列的前项和为,,,求.

2.设等差数列{a n}满足,,

(1)求{a n}的通项公式;

(2)设{a n}的前项和为,求满足成立的值。

3.设数列A:, ,… (N≥2)。如果对小于n(2≤n≤N)的每个正整数k都有<

,则称n是数列A的一个“G时刻”。记“G(A)是数列A 的所有“G时刻”组成的集合。

(1)对数列A:-2,2,-1,1,3,写出G(A)的所有元素;

(2)证明:若数列A中存在使得>,则G(A)≠;

(3)证明:若数列A满足-≤1(n=2,3, …,N),则G(A)的元素个数不小于 -。

4.设数列的前项和为,且.

(1) 求的值,并用表示;

(2) 求数列的通项公式;

(3) 设,求证:.

5.已知在数列{a n }中,a 1=1,a n a n +1=n .(12

)

(1)求证:数列{a 2n }与{a 2n -1}都是等比数列;

(2)若数列{a n }的前2n 项的和为T 2n ,令b n =(3-T 2n )·n·(n +1),求数列{b n }的最大项. 6.单调递增数列{a n }的前项和为,且满足.

(1)求数列{a n }的通项公式;(2)数列{b n }满足,求数列{b n }的前项和

7.已知等差数列

的前n 项和为,且.(1)求数列的通项公式;

(2)求证:.

8.已知为等差数列,前n 项和为,是首项为2的等比数列,且公比

大于0,

,,.

(Ⅰ)求和的通项公式;

(Ⅱ)求数列的前n项和.

9.已知数列的前项和为,,且满足

(1)求及通项公式;

(2)若,求数列的前项和.

10.各项均为正数的数列{a n}的前n项和为S n,已知点(a n,a n+1)(n∈N*)在函数

的图象上,且.

(1)求数列{a n}的通项公式及前n项和S n;

(2)已知数列{b n}满足b n=4﹣n,设其前n项和为T n,若存在正整数k,使不等式T n >k有解,且(n∈N*)恒成立,求k的值.

11.在等差数列中,,,

(1)求数列的通项公式;

(2)求数列的前项和.

12.在数列{a n}中,,

(1)写出这个数列的前4项,并猜想这个数列的通项公式;

(2)证明这个数列的通项公式.

13.数列{a n}的前项和为.

(1)求{a n}的通项公式;

(2)设,求数列{b n}的前项和.

为等差数列的前n项和,且记,其中表示不超过14.

x的最大整数,如.

(I)求;

(II)求数列的前1 000项和.

15.已知数列的前n项和S n=3n2+8n,是等差数列,且

(Ⅰ)求数列的通项公式;

(Ⅱ)令求数列的前n项和T n.

2020年高考数学大题专项练习数列五(15题含答案解

析)答案解析

一、解答题

1.答案为:

2.

3.解:

4.

高考文科数学数列经典大题训练(附答案)

1.(本题满分14分)设数列{}n a 的前n 项和为n S ,且34-=n n a S (1,2,)n =, (1)证明:数列{}n a 是等比数列; (2)若数列{}n b 满足1(1,2,)n n n b a b n +=+=,12b =,求数列{}n b 的通项公式. ; 2.(本小题满分12分) 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== 1.求数列{}n a 的通项公式. 2.设 31323log log ......log ,n n b a a a =+++求数列1n b ?? ???? 的前项和. … 3.设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S 。

~ 4.已知等差数列{a n}的前3项和为6,前8项和为﹣4. (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n. % 5.已知数列{a n}满足,,n∈N×. (1)令b n=a n+1﹣a n,证明:{b n}是等比数列; (2)求{a n}的通项公式. {

、 ~

、 1.解:(1)证:因为34-=n n a S (1,2,)n =,则3411-=--n n a S (2,3,)n =, 所以当2n ≥时,1144n n n n n a S S a a --=-=-, 整理得14 3 n n a a -=. 5分 由34-=n n a S ,令1n =,得3411-=a a ,解得11=a . 所以{}n a 是首项为1,公比为4 3 的等比数列. 7分 (2)解:因为14 ()3 n n a -=, ' 由1(1,2,)n n n b a b n +=+=,得114 ()3 n n n b b -+-=. 9 分 由累加得)()()(1231`21--++-+-+=n n n b b b b b b b b

例谈高中数学一题多解和一题多变的意义

例谈高中数学一题多解和一题多变的意义 杨水长 摘 要:高中数学教学中,用一题多解和一题多变的形式,可以使所学的知识得到活化,融会贯通,而且可以开阔思路,培养学生的发散思维和创新思维能力,从而达到提高学生的学习兴趣,学好数学的效果。 关键词:一题多变 一题多解 创新思维 数学效果 很大部分的高中生对数学的印象就是枯燥、乏味、不好学、没兴趣.但由于高考“指挥棒”的作用,又只能硬着头皮学.如何才能学好数学?俗话说“熟能生巧”,很 多人认为要学好数学就是要多做.固然,多做题目可以 使学生提高成绩,但长期如此,恐怕也会使学生觉得数学越来越枯燥。 我觉得要使学生学好数学,首先要提高学生的学 习兴趣和数学思维能力。根据高考数学“源于课本, 高于课本”的命题原则,教师在教学或复习过程中可 以利用书本上的例题和习题,进行对比、联想,采取 一题多解与一题多变的形式进行教学.这是提高学生数学学习兴趣和思维能力的有效途径。下面举例说明: 例题: 已知tanα=4 3 ,求sinα,cosα的值 分析:因为题中有sinα、cosα、tanα,考虑他们之间的关系,最容易想到的是用同角三角函数关系式和方程解此题: 法一 根据同角三角函数关系式tanα= 4 3= α αcos sin , 且sina2α + cos2α =1。 两式联立,得出:cos2α=2516,cosα= 5 4 或者 cosα= -54 ;而sinα=53或者sinα=-53 。 分析:上面解方程组较难且繁琐,充分利用用同角三角函数关系式“1”的代换,不解方程组,直接求解就简洁些: 法二 tanα=4 3 :α在第一、三象限 在第一象限时: cos2α = ααcos sin cos 2 2 2 5+=αtan 2 11+=2516 cosα=5 4 sinα=αcos 21-=5 3 而在第三象限时: cosa=- 5 4 sina=- 53 分析:利用比例的性质和同角三角函数关系式,解此题更妙: 法三 tanα= 43= αα cos sin ?4cos α= 3sin α ?4cos α= 3sin α= ± 3 4cos sin 2 2 2 2 ++α α ∴sinα=53,cosα= 54 或sinα=-53,cosα=-54 分析: 上面从代数法角度解此题,如果单独考虑sinα、cosα、tanα,可用定义来解此题。初中时,三角函数定义是从直角三角形引入的,因此我们可以尝试几何法来解之: 法四 当α为锐角时,由于tana=4 3,在直角△ABC 中,设α=A,a=3x,b=4x ,则勾股定理,得,c=5x sinA=AB BC = 53 ,cosA=AB AC =5 4

高考数学《数列》大题训练50题含答案解析

一.解答题(共30小题) 1.(2012?上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值; (2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k; (3)设,.当b1=1时,求数列{b n}的通项公式. 2.(2011?重庆)设{a n}是公比为正数的等比数列a1=2,a3=a2+4. (Ⅰ)求{a n}的通项公式; ( (Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n. 3.(2011?重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*). (Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3. (Ⅱ)求证:对k≥3有0≤a k≤. 4.(2011?浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n 项和为S n,且,,成等比数列. (Ⅰ)求数列{a n}的通项公式及S n; ` (Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小. 5.(2011?上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,

(1)写出c1,c2,c3,c4; (2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…; (3)求数列{c n}的通项公式. 6.(2011?辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10 * (I)求数列{a n}的通项公式; (II)求数列{}的前n项和. 7.(2011?江西)(1)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{a n}唯一,求a的值; (2)是否存在两个等比数列{a n},{b n},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列若存在,求{a n},{b n}的通项公式;若不存在,说明理由. 8.(2011?湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5. (I)求数列{b n}的通项公式; ] (II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列. 9.(2011?广东)设b>0,数列{a n}满足a1=b,a n=(n≥2) (1)求数列{a n}的通项公式; (4)证明:对于一切正整数n,2a n≤b n+1+1.

数列常见题型总结经典(超级经典)

数列常见题型总结经典(超 级经典) -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

高中数学《数列》常见、常考题型总结 题型一 数列通项公式的求法 1.前n 项和法(知n S 求n a )???-=-11n n n S S S a ) 2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T 1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。 2、若数列}{n a 的前n 项和32 3-= n n a S ,求该数列的通项公式。 3、设数列}{n a 的前n 项和为n S ,数列}{n S 的前n 项和为n T ,满足22n S T n n -=, 求数列}{n a 的通项公式。 2.形如)(1n f a a n n =-+型(累加法) (1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法.

例 1. 已知数列{a n }满足)2(3,1111≥+==--n a a a n n n ,证明2 13-=n n a 1. 已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 2. 已知数列}{n a 满足31=a ,)2() 1(11≥-+=-n n n a a n n ,求此数列的通项公式. 3.形如)(1n f a a n n =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =11-?n q a . (2)当f(n)为n 的函数时,用累乘法. 例1、在数列}{n a 中111 ,1-+==n n a n n a a )2(≥n ,求数列的通项公式。 1、在数列}{n a 中111 1,1-+-==n n a n n a a )2(≥n ,求n n S a 与。

高三数学《一题多解 一题多变》试题及详解答案

高三《一题多解 一题多变》题目 一题多解 一题多变(一) 原题:482++=x mx x f )( 的定义域为R ,求m 的取值范围 解:由题意0482≥++x mx 在R 上恒成立 0>∴m 且Δ0≤,得4≥m 变1:4823++=x mx x f log )(的定义域为R ,求m 的取值范围 解:由题意0482>++x mx 在R 上恒成立 0>∴m 且Δ0<,得4>m 变2:)(log )(4823++=x mx x f 的值域为R ,求m 的取值范围 解:令=t 482++x mx ,则要求t 能取到所有大于0的实数, ∴ 当0=m 时,t 能取到所有大于0的实数 当0≠m 时,0>m 且Δ0≥4≤0?m < 40≤≤∴m 变3:182 23++=x n x mx x f log )(的定义域为R,值域为[]20,,求m,n 的值 解:由题意,令[]911 82 2,∈+++=x n x mx y ,得0-8--2=+n y x x m y )( m y ≠时,Δ0≥016-)(-2≤++?mn y n m y - ∴ 1和9时0162=++-)(-mn y n m y 的两个根 ∴ 5==n m ∴ 当m y =时,08 ==m n x - R x ∈ ,也符合题意 ∴5==n m 一 题 多 解- 解不等式523<<3-x 解法一:根据绝对值的定义,进行分类讨论求解

(1)当03-≥x 2时,不等式可化为53-<x x x x ?-3-或且 综上:解集为}{0x 1-<<<<或43x x 解法三:利用等价命题法 原不等式等价于 -33-2x 5-53-<<<<或x 23,即0x 1-<<<<或43x 解集为}{0x 1-<<<<或43x x 解法四:利用绝对值的集合意义 原不等式可化为 2 5 23<<23-x ,不等式的几何意义时数轴上的点23到x 的距离大于 23,且小于2 5 ,由图得, 解集为} {0x 1-<<<<或43x x 一题多解 一题多变(二) 已知n s 是等比数列的前n 想项和,963s s s ,,成等差数列,求证: 852a a a ,,成等差数列 法一:用公式q q a s n n 一一111)(=,

高考数学数列大题训练答案版

高考数学数列大题训练 1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前 解析: (1)设该等差数列为{}n c ,则25a c =,33a c =,42a c =Q 533222()c c d c c -==- ∴2334()2()a a a a -=-即:223111122a q a q a q a q -=- ∴12(1)q q q -=-,Q 1q ≠, ∴121, 2q q ==,∴1164()2n a -=g (2)121log [64()]6(1)72n n b n n -==--=-g ,{}n b 的前n 项和(13)2n n n S -= ∴当17n ≤≤时,0n b ≥,∴(13)2 n n n n T S -== (8分) 当8n ≥时,0n b <,12789n n T b b b b b b =+++----L L 789777()()2n n n S b b b S S S S S =-+++=--=-L (13)422 n n -=- ∴(13)(17,)2(13)42(8,)2 n n n n n T n n n n -?≤≤∈??=?-?-≥∈??**N N 2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S 解:(1)由151241=+=-a a a n n 及知,1234+=a a 解得:,73=a 同理得.1,312==a a (2)由121+=-n n a a 知2211+=+-n n a a

2019-2020年高考数学一题多解含17年高考试题(III)

2019-2020年高考数学一题多解含17年高考试题(III) 1、【2017年高考数学全国I 理第5题】函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]- B .[1,1]- C .[0,4] D .[1,3] 【答案】D 【知识点】函数的奇偶性;单调性;抽象函数;解不等式。 【试题分析】本题主要考察了抽象函数的奇偶性,单调性以及简单的解不等式,属于简单题。 【解析】 解析二:(特殊函数法)由题意,不妨设()f x x =-,因为21()1x f --≤≤,所以121x -≤-≤,化简得13x ≤≤,故选D 。 解析三:(特殊值法)假设可取=0x ,则有21()1f --≤≤,又因为1(12)()f f ->=-,所以与21()1f --≤≤矛盾,故=0x 不是不等式的解,于是排除A 、B 、C ,故选D 。 2、【2017年高考数学全国I 理第11题】设xyz 为正数,且235x y z ==,则 A .235x y z << B .523z x y << C .352y z x << D .325y x z << 【答案】D 【知识点】比较大小;对数的运算;对数函数的单调性; 【试题分析】本题主要考察了对数的比较大小,其中运用到了对数的运算公式,对数的单调性等。属于中档题。 【解析】 解析一:令()2350x y z t t ===>,则2log x t =,3log y t =,5log z t =, 2lg 22log 1lg 22t x t ==,3lg 33log 1lg33t y t ==,5lg 5log 1lg55 t z t ==, 要比较2x 与3y ,只需比较1lg 22,1lg 33,即比较3lg 2与2lg3,即比较lg 8,lg 9,易知lg8lg9<,故23x y >.

高考数学大题题型解答技巧

高考数学大题题型解答技巧 六月,有一份期待,年轻绘就畅想的星海,思想的热血随考卷涌动,灵魂的脉搏应分 数澎湃,扶犁黑土地上耕耘,总希冀有一眼金黄黄的未来。下面就是小编给大家带来 的高考数学大题题型解答技巧,希望大家喜欢! 高考数学大题必考题型(一) 排列组合篇 1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。 2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。 3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单 的应用问题。 4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。 5.了解随机事件的发生存在着规律性和随机事件概率的意义。 6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件 的概率。 7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事 件的概率乘法公式计算一些事件的概率。 8.会计算事件在n次独立重复试验中恰好发生k次的概率. 立体几何篇 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的 课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从 历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是 常考常新的热门话题。 知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺 少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握

高中数列经典题型 大全

高中数学:《递推数列》经典题型全面解析 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足211=a ,n n a a n n ++=+2 11 ,求n a 。 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。 例:已知31=a ,n n a n n a 2 3131 +-=+ )1(≥n ,求n a 。 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:递推式:()n f pa a n n +=+1。解法:只需构造数列{}n b ,消去()n f 带来的差异. 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (1n n n a pa rq +=+, 其中p ,q, r 均为常数) 。 例:已知数列{}n a 中,65 1=a ,11)2 1(31+++=n n n a a ,求n a 。 类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。 解法一(待定系数——迭加法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求数列{}n a 的通项公式。 解法二(特征根法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征 方程是:02532=+-x x 。 32,121= =x x Θ,∴1 2 11--+=n n n Bx Ax a 1)3 2(-?+=n B A 。又由b a a a ==21,,于是 ???-=-=??? ? ? ?+=+=)(32332b a B a b A B A b B A a 故1)32)((323--+-=n n b a a b a 例:已知数列{}n a 中,11=a ,22=a ,n n n a a a 3 1 3212+=++,求n a 。

高考数学数列题型专题汇总

高考数学数列题型专题 汇总 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

高考数学数列题型专题汇总 一、选择题 1、已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞ →lim .下列 条件中,使得()*∈q a (B )6.07.0,01-<<-q a (D )7.08.0,01-<<-

A .{}n S 是等差数列 B .2{}n S 是等差数列 C .{}n d 是等差数列 D .2{}n d 是等差数列 【答案】A 二、填空题 1、已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则 6=S _______.. 【答案】6 2、无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意 *∈N n ,{}3,2∈n S ,则k 的最大值为________. 【答案】4 3、设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2a n 的最大值 为 . 【答案】64 4、设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则 a 1= ,S 5= . 【答案】1 121

2017年高考数学一题多解——江苏卷

江苏卷 2017年江苏卷第5题:若tan 1-=46πα?? ???,则tan α= 【答案】75 【知识点】两角和与差的正切公式 【试题分析】本题主要考查了两角和与差的正切公式,属于基础题。 解法一:直接法 由61)4tan(=-π α,得6 1tan 4tan 14tan tan =+-αππ α,故可知57tan =α 解析二:整体代换 11tan()tan 7644tan tan[()]1445 1tan()tan 1446 ππαππααππα+-+=-+===---. 解法三:换元法 令t =-4π α,则61tan =t ,t +=4πα.所以57tan 11tan )4tan(tan =-+=+=t t t πα 2017年江苏卷第9题(5分)等比数列{a n }的各项均为实数,其前n 项为S n ,已知S 3=,S 6= ,则a 8= . 法二:65436144 7463a a a s s ++==-=- 84 71433 21654===++++q a a a a a a

S 3=,∴ ,得a 1=,则a 8==32. 法三:9133 2165432136=+=+++++++=q a a a a a a a a a s s ∴q=2 ∴,得a 1=,则a 8==32. 2017年江苏卷第15题.(14分)如图,在三棱锥A ﹣BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E 、F (E 与A 、D 不重合)分别在棱AD ,BD 上,且EF ⊥AD . 求证:(1)EF ∥平面ABC ; (2)AD ⊥AC . 法二: 在线段CD 上取点G ,连结FG 、EG 使得FG ∥BC ,则EG ∥AC , 因为BC ⊥BD ,所以FG ⊥BD , 又因为平面ABD ⊥平面BCD ,

2018年高考数学一题多解——全国I卷

全国I 卷 1、【2017年高考数学全国I 理第5题】函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]- B .[1,1]- C .[0,4] D .[1,3] 【答案】D 【知识点】函数的奇偶性;单调性;抽象函数;解不等式。 【试题分析】本题主要考察了抽象函数的奇偶性,单调性以及简单的解不等式,属于简单题。 【解析】 解析二:(特殊函数法)由题意,不妨设()f x x =-,因为21()1x f --≤≤,所以121x -≤-≤,化简得 13x ≤≤,故选D 。 解析三:(特殊值法)假设可取=0x ,则有21()1f --≤≤,又因为1(12)()f f ->=-,所以与21()1f --≤≤矛盾,故=0x 不是不等式的解,于是排除A 、B 、C ,故选D 。 2、【2017年高考数学全国I 理第11题】设xyz 为正数,且235x y z ==,则 A .235x y z << B .523z x y << C .352y z x << D .325y x z << 【答案】D 【知识点】比较大小;对数的运算;对数函数的单调性; 【试题分析】本题主要考察了对数的比较大小,其中运用到了对数的运算公式,对数的单调性等。属于中档题。 【解析】 解析一:令()2350x y z t t ===>,则2log x t =,3log y t =,5log z t =, 2lg 22log 1lg 22t x t == ,3lg 33log 1lg33t y t ==,5lg 5log 1lg55 t z t ==, 要比较2x 与3y ,只需比较1lg 22,1 lg 33,即比较3lg 2与2lg3,即比较lg 8,lg 9,易知lg8lg9<, 故23x y >.

数列典型例题(含答案)

《2.3 等差数列的前n项和》测试题 一、选择题 1.(2008陕西卷)已知是等差数列,,,则该数列前10项和 等于( ) A.64 B.100 C.110 D.120 考查目的:考查等差数列的通项公式与前项和公式及其基本运算. 答案:B 解析:设的公差为. ∵,,∴两式相减,得,.∴,. 2.(2011全国大纲理)设为等差数列的前项和,若,公差, ,则( ) A.8 B.7 C.6 D.5 考查目的:考查等差数列通项公式的应用、前项和的概念. 答案:D 解析:由得,,即,将, 代入,解得. 3.(2012浙江理)设是公差为的无穷等差数列的前项和,则下列命题错误的是( ) A.若,则数列有最大项 B.若数列有最大项,则 C.若数列是递增数列,则对任意,均有 D.若对任意,均有,则数列是递增数列 考查目的:考查等差数列的前项和公式及其性质. 答案:C 解析:根据等差数列的前项和公式,可得,因为,所以其图像表示的一群孤立的点分布在一条抛物线上. 当时,该抛物线开口向下,所以这群孤立的点中一定有最高点,即数列有最大项;反之也成立,故选项A、B的两个命题是正确的. 选项C的命题是错误的,举出反例:等差数列-1,1,3,5,7,…满足数列是 递增数列,但.对于选项D的命题,由,得, 因为此式对任意都成立,当时,有;若,则,与矛盾,所以一定有,这就证明了选项D的命题为真. 二、填空题

4.(2011湖南理)设是等差数列的前项和,且,,则 . 考查目的:考查等差数列的性质及基本运算. 答案:81. 解析:设的公差为. 由,,得,. ∴,故. 5.(2008湖北理)已知函数,等差数列的公差为. 若 ,则 . 考查目的:考查等差数列的通项公式、前项和公式以及对数的运算性质,考查运算求解能力. 答案:. 解析:∵是公差为的等差数列,∴,∴ ,∴,∴ . 6.(2011广东理)等差数列前9项的和等于前4项的和. 若,,则 ____. 考查目的:考查等差数列的性质及基本运算. 答案:10. 解析:设等差数列前项和为. ∵,∴;∵ ,∴. ∴,故. 三、解答题 7.设等差数列的前项和为,且,求: ⑴的通项公式及前项和; ⑵. 考查目的:考查等差数列通项公式、前项和的基本应用,考查分析问题解决问题的能力. 答案:⑴;.⑵ 解析:设等差数列的公差为,依题意,得,解得. ⑴; ⑵由,得.

高考理科数学试题汇编(含答案)数列大题

(重庆)22.(本小题满分12分,(1)小问4分,(2)小问8分) 在数列{}n a 中,()2 1113,0n n n n a a a a a n N λμ+++=++=∈ (1)若0,2,λμ==-求数列{}n a 的通项公式; (2)若()0 001,2,1,k N k k λμ+= ∈≥=-证明:01 0011 223121 k a k k ++<<+++ 【答案】(1)132n n a -=?;(2)证明见解析. 试题分析:(1)由02λμ==-,,有212,(n N )n n n a a a ++=∈

若存在某个0n N +∈,使得0n 0a =,则由上述递推公式易得0n 10a +=,重复上述过程可得 10a =,此与13a =矛盾,所以对任意N n +∈,0n a ≠. 从而12n n a a +=()N n +∈,即{}n a 是一个公比q 2=的等比数列. 故11132n n n a a q --==?. (2)由0 1 1k λμ= =-,,数列{}n a 的递推关系式变为 21101 0,n n n n a a a a k +++ -=变形为2101n n n a a a k +??+= ?? ?()N n +∈. 由上式及13a =,归纳可得 12130n n a a a a +=>>>>>>L L 因为22220010000 11111 1 11n n n n n n n a a k k a a k k k a a a k k +-+= = =-+? ++ +,所以对01,2n k =L 求和得() () 00011211k k k a a a a a a ++=+-++-L 01000010200000011111 111111112231313131 k a k k k k a k a k a k k k k k ??=-?+?+++ ? ?+++????>+?+++=+ ? ++++??L L 另一方面,由上已证的不等式知001212k k a a a a +>>>>>L 得 00110000102011111 111k k a a k k k k a k a k a +??=-?+?+++ ? ?+++?? L 0000011111 2221212121 k k k k k ??<+ ?+++=+ ?++++??L 综上:01001 12231 21 k a k k ++ <<+ ++ 考点:等比数列的通项公式,数列的递推公式,不等式的证明,放缩法.

高考数学典型题一题多解系列三

第11题 一道根式函数题的6种解法 设t t =求的取值范围(江苏高考解答题中的一个小题) 解法一:(平方化为二次函数)对t =两边平方得22t =+ 011≤-≤ 224,0t t ∴≤≤≥又 2t ≤≤ , 故t 的取值范围是?? 解法二:(三角换元法)注意到 ))()211x + =-≤≤, 可用三角换元法,如下: 2sin ,0,2πααα??==∈???? 得 2sin 4t πααα? ?==+ ??? 由 32sin 24 4 424π π ππαα? ?≤+ ≤ ≤+≤ ?? ? t ∴的取值范围是?? 解法三:(三角换元法)[]11,cos ,0,x x θθπ-≤≤∴=∈令, 则有 cos sin cos sin 2222t θθ θθ??==+=+???? 以下解法同解法二,这两种换元法本质上是一样的,只不过是从不同角度看问 题的, 解法二,注意到了平方和为一个常数,解法三则由定义域[]1,1x ∈-入手. 解法四:(双换元法),u v x ==消去得: 2 2 2u v +=,问题转化为方程组2 2 02 u v t u v u v +=?≤≤≤≤?+=?在条件下有解时, 求t 的取值范围,即动直线u v t +=与圆弧222(0u v u v +=≤≤≤≤有公共点时, 求t 的取值范围,以下用数形结合法解(略)。

解法五:(构造等差数列)由t =22 t =?, 2t 成等差数列。 22 t t d d =-=+, 消去x 得2 22222,442t d t d =+=-,由20d ≥知 22444t d =-≤,得2t ≤。 0。 222 d d ≤≤- ≤≤ 221 444422 t d ∴=-≥-?=2t ≤≤ 解法六:(构造向量法)设向量(1,1),(1p q x ==+,两向量的夹角为α, 则112cos 2t p q t αα=?=+=∴≤ 由图像知:当点位于坐标轴上时,cos α取最小值。 01,01,x t x t =====-=即得即也得 2t ≤≤ 解题反思:上述六种解法一个共同特点,都是从函数式的结构特点出发,或变更形式,或巧妙换元,或数形结合,或构造向量,都是数学转化思想的有效应用,但对六种方法作一对比,不难看出,方法一最为简单,究其原因,仍是平方后的结构简洁的特点所致,因此,函数结构特征决定求解方法。 通过解一道高考题,探索其多种解法,体现了换元法、向量法、解析几何 法以及数形结合、转化与化归等数学思想在求无理函数最值(值域)中的应用。 数学知识有机联系纵横交错,解题思路灵活多变,解题方法途径众多,但最终却能殊途同归,即使一次性解题合理正确,也未必保证一次解题就是最佳思路与最优最简捷的解法,不能解完题就此罢手,应该进一步反思,探求一题多解,开拓思路,勾通知识,掌握规律,权衡解法优劣,培养学生发散思维能力;探求一题多变,做到举一反三,在更高层次更富有创造性地去学习,摸索总结,使自己的解题能力能更上一层楼。 第12题 特值压缩法求解参数取值范围 已知函数()f x =2x ax b ++,()g x =()x e cx d +,若曲线()y f x =和()y g x =曲线都过点P(0,2),且在点P 处有相同的切线42y x =+。

高中数列经典题型大全

高中数列经典题型大全 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

高中数学:《递推数列》经典题型全面解析 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321= a ,n n a n n a 11+=+,求n a 。 例:已知31=a ,n n a n n a 2 3131+-=+ )1(≥n ,求n a 。 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:递推式:()n f pa a n n +=+1。解法:只需构造数列{}n b ,消去()n f 带来的差异. 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (1n n n a pa rq +=+,其中p ,q, r 均为常数) 。 例:已知数列{}n a 中,651=a ,11)2 1(31+++=n n n a a ,求n a 。 类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。 解法一(待定系数——迭加法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求数列{}n a 的通项公式。 解法二(特征根法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征 方程是:02532=+-x x 。 32,121==x x ,∴1211--+=n n n Bx Ax a 1)3 2(-?+=n B A 。又由b a a a ==21,,于是 ???-=-=??? ???+=+=)(32332b a B a b A B A b B A a 故1)32)((323--+-=n n b a a b a

高考数学数列大题专题

高考数学数列大题专题 1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前 2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S 3.已知数列{}n a 的前n 项和为n S ,且有12a =,11353n n n n S a a S --=-+(2)n ≥ (1)求数列n a 的通项公式; (2)若(21)n n b n a =-,求数列n a 的前n 项的和n T 。 4.已知数列{n a }满足11=a ,且),2(22*1N n n a a n n n ∈≥+=-且. (Ⅰ)求2a ,3a ;(Ⅱ)证明数列{n n a 2}是等差数列; (Ⅲ)求数列{n a }的前n 项之和n S

5.已知数列{}n a 满足31=a ,1211-=--n n n a a a . (1)求2a ,3a ,4a ; (2)求证:数列11n a ??? ?-?? 是等差数列,并写出{}n a 的一个通项。 622,,4,21121+=-===++n n n n n b b a a b a a . 求证: ⑴数列{b n +2}是公比为2的等比数列; ⑵n a n n 221-=+; ⑶4)1(2221-+-=++++n n a a a n n Λ. 7. .已知各项都不相等的等差数列}{n a 的前六项和为60,且2116a a a 和为 的等比中项. (1)求数列}{n a 的通项公式n n S n a 项和及前; (2)若数列}1{,3),(}{11n n n n n b b N n a b b b 求数列且满足=∈=-*+的前n 项和T n .

高中数学真题与经典题一题多解解法与解析

函数篇 【试题1】(2016全国新课标II 卷理16)若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln (1)y x =+的切线,b = . 【标准答案】1ln 2- 解法一:设直线y kx b =+与曲线ln 2y x =+和ln (1)y x =+切点分别是 11(,ln 2)x x +和22(,ln (1))x x +. 则切线分别为:111ln 1y x x x =?++,()2 2221ln 111x y x x x x = ++-++ ∴()12 2 12 21 11ln 1ln 11x x x x x x ?=?+?? ?+=+-?+? 解得112x = 21 2x =- ∴解得1ln 11ln 2b x =+=- 解法二:设直线y kx b =+与曲线ln 2y x =+和ln (1)y x =+切点分别是11(,)x y 和 22(,)x y . ∵曲线ln 2y x =+通过向量()1,2平移得到曲线()ln 1y x =+ ∴2121(,)(1,2)x x y y --= ∴两曲线公切线的斜率2k =,即112x =,所以1 ln 11ln 22 b =+=- 【试题2】【2015新课标12题】设函数()(21)x f x e x ax a =--+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( ) A.32[,1)e - B 33,24e - ()C.33[,)24e D.3 [,1) 2e

解法一:由题意可知存在唯一的整数0x 使得000(21)x e x ax a -<-,设 ()(21),()x g x e x h x ax a =-=-由'()(21)x g x e x =+,可知()g x 在1(,)2 -∞-上单调递减, 在1 (,)2-+∞上单调递增,故 (0)(0) (1)(1)h g h g >-≤-?? ?得312a e ≤< 解法二:由题意()0f x <可得(21)(1)x e x a x -<- ①当1x =时,不成立; ②当1x >时,(21)1x e x a x ->-,令(21) ()1 x e x g x x -=-,则22 (23)'()(1)x e x x g x x -=-, 当3(1,)2x ∈时,()g x 单调递减,当3(,)2 x ∈+∞时,()g x 单调递增 所以32 min 3()()42 g x g e ==,即3 24a e >,与题目中的1a <矛盾,舍去。 ③当1x <时,(21)1x e x a x -<-,令(21) ()1 x e x g x x -=- 同理可得:当(,0)x ∈-∞时,()g x 单调递增,当(0,1)x ∈时,()g x 单调递减 所以max ()(0)1g x g ==,即1a <,满足题意。 又因为存在唯一的整数0x ,则3(1)2a g e ≥-= 此时3 [ ,1)2a e ∈ 综上所述,a 的取值范围是3[ ,1)2e 解法三:根据选项,可以采取特殊值代入验证,从而甄别出正确答案。 当0a =时,()(21)x f x e x =-,'()(21)x f x e x =+,可知()f x 在1(,)2 -∞-递减,在1(,)2 -+∞递增,又(0)10f =-<,1(1)30f e --=-<,不符合题意,故0a =不成立,排除答案A 、B. 当34 a =时,33()(21)4 4 x f x e x x =--+,3'()(21)4 x f x e x =+-,因为3'()(21)4 x f x e x =+-为增函数,且31'(0)104 4 f =-=>,13'(1)04 f e --=--<,所以存在(1,0)t ∈-,使得'()0f t =,则()f x 在(,)t -∞递减,在(,)t +∞递增,又3 (0)104 f =-+<,13(1)302 f e --=-+>,

相关文档
相关文档 最新文档