文档视界 最新最全的文档下载
当前位置:文档视界 › 概率论典型例题第5章

概率论典型例题第5章

概率论典型例题第5章
概率论典型例题第5章

概率论第五章习题解答(科学出版社)

概率论第五章习题解答(科学出版社) 1、据以往的经验,某种电器元件的寿命服从均值为100h 的指数分布,现随机地取16只,设它们的寿命是相互独立的,求这16只元件的寿命的总和1920h 的概率。 解 设这16只元件的寿命为i X ,1,2, ,16i =,则16 1 i i X X ==∑, 因为()100i E X μθ===,22()10000i D X σθ=== 于是随机变量 16 16 1600 1600 400 i i X n X X Z μ -?--= = = ∑∑近似的服从(0,1)N 160019201600{1920}{ }400400X P X P -->=>1600 {0.8}400X P -=> 1600 1{0.8}400 X P -=-<1(0.8)=-Φ=10.78810.2119=-=. 2\(1)一保险公司有10000个汽车保险投保人,每个投保人索赔金额的数学期望为280美元,标准差为800美元,求索赔总金额不超过2700000美元的概率; (2)一公司有50张签约保险单,每张保险单的索赔金额为i X ,1,2, ,50i =(以千美元 计)服从韦布尔分布,均值()5i E X =,方差()6i D X =求50张保险单索赔的合计总金额大于300的概率。 解 (1)设每个投保人索赔金额为i X ,1,2,,10000i =,则索赔总金额为10000 1 i i X X == ∑ 又 ()280i E X =,2()800i D X =,所以, 索赔总金额不超过2700000美元的概率 {2700000}1`{270000}P X P X >=-≤ 10000 1 28010000 27000002800000 1{ }800100 80000 i i X P =-?-=-≤ ?∑ 10000 1 2800000 101{ }80000 8 i i X P =-=-≤- ∑ 10000 1 2800000 1{ 1.25}80000 i i X P =-=-≤-∑近似的服从(0,1)N

概率论第五章答案

习题5-1 1. 设随机变量X 的方差为2, 用切比雪夫不等式估计{||2}P X E X -()≥. 解 由切比雪夫不等式, 对于任意的正数ε, 有 2 () {()}D X P X E X εε -≥≤ , 所以 1{||2} 2 P X E X -()≥≤. 2. 设随机变量X , Y 的数学期望分别是2和-4, 方差分别是1和4, 而相关系数为0.5. 则根据切比雪夫不等式估计 {|2|P X Y +≥12}. 解 {2}2()() 22(4) E X Y E X E Y +=+=?+-=, {2}4()()22Cov(,)D X Y D X D Y X Y +=+-? 840.5124=-???=. 所以, {|2|P X Y +≥12}≤ 2 4112 36 = . 3. 设随机变量X 的数学期望E (X ) = μ, 方差D (X ) = σ2 , 由切比雪夫不等式估计P {|X -μ|≥3σ}. 解 令ε = 3σ, 则由切比雪夫不等式P {|X -μ|}≥ε}≤ 2 () D X ε , 有 P {|X -μ|≥3σ}≤ 22 1(3) 9 σ σ= . 4. 独立重复地做一项试验, 假设每次试验成功的概率为0.7 5. 用切比雪夫不等式求: 至少需要做多少次 试验, 才能以不低于0.90的概率使试验成功的频率保持在0.74和0.76之间? 解 假设做n 次试验, 才能以0.90的概率使试验成功的频率保持在0.74和0.76之间. 用X 表示试验成功的次数, 从而~(,0.75)X B n , 由题设, 要使 {0.740.76}{ 0.750.01}0.90X X P P n n < <=-<≥. 又由切比雪夫不等式得 2 2 ( )0.750.25{0.740.76}{ 0.750.01}110.01 0.01 X D X X n P P n n n ?< <=-<- =- ?≥. 要满足题意, 只需2 0.750.2510.900.01 n ?- ?≥即可. 解之得 2 0.750.25 187500.010.10 n ? =?≥ . 习题 5-2 1. 一本书有十万个印刷符号, 排版时每个符号被排错的概率为0.0001, 用中心极限定理求排版后错误不多于15个的概率. 解 设

天津理工大学概率论与数理统计第五章习题答案详解

第 5 章 大数定律与中心极限定理 一、 填空题: 1.设随机变量μξ=)(E ,方差2 σξ=)(D ,则由切比雪夫不等式有≤≥-}|{|σμξ3P 9 1 . 2.设n ξξξ,,, 21是 n 个相互独立同分布的随机变量, ),,,(,)(,)(n i D E i i 218===ξμξ对于∑== n i i n 1ξξ,写出所满足的切彼雪夫不等式 2 28εεξεμξn D P =≤ ≥-)(}|{| ,并估计≥ <-}|{|4μξP n 21 1- . 3. 设随机变量129,,,X X X 相互独立且同分布, 而且有1i EX =, 1(1,2,,9)i DX i == , 令9 1 i i X X ==∑, 则对任意给定的0ε>, 由切比雪夫不等式 直接可得{} ≥<-ε9X P 2 9 1ε- . 解:切比雪夫不等式指出:如果随机变量X 满足:()E X μ=与2()D X σ=都存在, 则对任意给定的0ε>, 有 22{||}P X σμεε-≥≤, 或者2 2{||}1.P X σμεε -<≥- 由于随机变量129,,,X X X 相互独立且同分布, 而且有 1,1(1,2,9),i i EX DX i === 所以 99 9111()()19,i i i i i E X E X E X μ===??===== ???∑∑∑ 99 9 2 111()()19.i i i i i D X D X D X σ===??===== ???∑∑∑ 4. 设随机变量X 满足:2 (),()E X D X μσ==, 则由切比雪夫不等式, 有{||4}P X μσ-≥ 1 16 ≤ . 解:切比雪夫不等式为:设随机变量X 满足2 (),()E X D X μσ==, 则对任意 的0ε>, 有22{||}.P X σμεε-≥≤由此得 221 {||4}.(4)16 P X σμσσ-≥≤=

概率论与数理统计(第三版)课后答案习题5

概率论与数理统计(第三版)课后答案习题5

第五章 大数定律与中心极限定理 1. 设随机变量ξ的方差为 2.5。利用契贝雪夫不等式估计: {}5.7||≥-ξξE P 的值。 解:由契贝雪夫不等式:2 }|{|εξ εξξD E P ≤ ≥-,又已知 5.7,5.2==εξD ,故 044 .05.75 .2}5.7|{|2 =≤≥-ξξE P 。 2. 已知某随机变量ξ的方差D ξ=1,但数学期望E ξ=m 未知,为估计m ,对ξ进行n 次独立观测,得样本观察值ξ1,ξ2,…,ξn 。现用 {}∑=≥<-=n i i p m P m n n 1 5.0||1ξξξ多大时才可能使问当估计, 。 解:因∑=== n i i m E n E 1 ,1ξξ又ξ1,ξ2,…,ξn 相互独立, 故 ∑∑=== ==n i n i i i n D n n D D 11 21 )(1)1(ξξξ,根据契贝雪夫不等 式,有 2 5.01}5.0|{|ξξξD E P - ≤<-,即n m P 4 1}5.0|{|- ≤<-ξ, 再由 p n p n -≥≥- 14,41得。 3. 设在由n 个任意开关组成的电路的实验中,每次试验时一个开关开或关的概率各为12 。设m 表示在这n 次试验中遇到的开电次数,欲使开电频率m n 与开电概率p =0.5的绝对误差小于ε =0.01,并且要有99%以上的可靠性来保证它实现。试用德莫佛-拉普拉斯定理来估计,试验的次数n 应该是多少?

从参数为p 的二点分布,且E i ξ=p , D i ξ=p (1-p )≤1/4,而 ∑ === n i i n n 1 ξξ η是n 个独立同分布的 随机变量之和,故由中心极限定理知) 1,0(~N D E η η η-, 因此有 ?? ????<-ξξD p n P 21 122222/-??? ??Φ=???? ??Φ≈?? ???????? <-=n D D D D D E P ηξηξη ηη, 为使 6 ,16.5,99.0122≥>≥-?? ? ??Φn n n 即查表得。 6. 一个养鸡场购进一万只良种鸡蛋,已知每只鸡蛋孵化成雏鸡的概率为0.84,每只雏鸡育成种鸡的概率为0.9,试计算由这些鸡蛋得到种鸡不少于7500只的概率。 解:定义承机变量?? ?=., 0, ,1鸡只鸡蛋不能育成种第鸡只鸡蛋能育成种第k k k ξ) 10000,,2,1(Λ=k 。 则k ξ)10000,,2,1(Λ=k 是独立同分布的,且756.09.084.0}1{=?==k P ξ, 224 .0756.01}0{=-==k P ξ。显然∑==10000 1 k k ξξ表示10000只鸡蛋 中能育成种鸡的个数。此为n =10000,p =0.756的贝努利概型,由隶莫弗——拉普拉斯定理可得 92.0)1(75001)1(7500)1(}7500{=??? ? ??--Φ-=??????????--≥--=≥p np np p np np p np np P P ξξ。 7. 某印刷厂在排版时,每个字符被排错的概率为0.0001,试求在300000个字符中错误不多于50个的概率。 解:令?? ?=. , 0, ,1个字未排错第个字排错第i i i ξ则∑==50000 1 i i ξξ是服从参数n =50000,p =0.0001的贝努利概型,因此由隶莫弗——拉普拉斯定理可得

概率论与数理统计课后习题答案

习题1.1解答 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)} 2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。 解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω; {})1,3(),2,2(),3,1(),1,1(=AB ; {})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ; Φ=C A ;{})2,2(),1,1(=BC ; {})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A 3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。试用C B A ,,表示以下事件: (1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。 解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++; (4)BC A C B A C AB ++; (5)C B A ++; (6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++ 4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A , 313221A A A A A A ++. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。 5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和:C B A ++,C AB +,AC B -. 解:如图:

概率论课后作业及答案

1. 写出下列随机试验的样本空间及事件中的样本点: 1) 将一枚均匀硬币连续掷两次,记事件 =A {第一次出现正面}, =B {两次出现同一面}, =C {至少有一次正面出现}. 2) 一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5,从中同时取3只球. 记事件 =A {球的最小号码为1}. 3) 10件产品中有一件废品,从中任取两件,记事件=A {得一件废品}. 4) 两个口袋各装一个白球与一个黑球,从第一袋中任取一球记下其颜色后放入第二袋,搅均后再 从第二袋中任取一球.记事件=A {两次取出的球有相同颜色}. 5) 掷两颗骰子,记事件 =A {出现点数之和为奇数,且其中恰好有一个1点}, =B {出现点数之和为偶数,但没有一颗骰子出现1点}. 答案:1) }),(),,(),,(),,({T T H T T H H H =Ω, 其中 :H 正面出现; :T 反面出现. }),(),,({T H H H A =; }),(),,({T T H H B =; }),(),,(),,({H T T H H H C =. 2) 由题意,可只考虑组合,则 ? ?? ?? ?=)5,4,3(),5,4,2(),5,3,2(),4,3,2(),5,4,1(),5,3,1(),4,3,1(),5,2,1(),4,2,1(),3,2,1(Ω; {})5,4,1(),5,3,1(),4,3,1(),5,2,1(),4,2,1(),3,2,1(=A . 3) 用9,,2,1 号表示正品,10号表示废品.则 ??? ? ????? ?????????=)10,9()10,8()10,2(,),4,2(),3,2()10,1(,),4,1(),3,1(),2,1( Ω; {})10,9(,),10,2(),10,1( =A . 4) 记第一袋中的球为),(11b w ,第二袋中的球为),(22b w ,则 {}),(),,(),,(),,(),,(),,(112121112121b b b b w b w w b w w w =Ω; {}),(),,(),,(),,(11211121b b b b w w w w A =.

李贤平 第2版《概率论基础》第五章答案

1 第5章 极限定理 1、ξ为非负随机变量,若(0)a Ee a ξ <∞>,则对任意x o >,{}ax a P x e Ee ξξ-≥≤。 2、若()0h x ≥,ξ为随机变量,且()Eh ξ<∞,则关于任何0c >, 1{()}()P h c c Eh ξξ-≥≤。 4、{}k ξ各以 12 概率取值s k 和s k -,当s 为何值时,大数定律可用于随机变量序列1,,,n ξξL L 的算术平均值? 6、验证概率分布如下给定的独立随机变量序列是否满足马尔可夫条件: (1)1{2}2 k k P X =±= ; (2)(21) 2{2}2 ,{0}12k k k k k P X P X -+-=±===-; (3)1 1 2 21{2},{0}12 k k k P X k P X k --=±===-。 7、若k ξ具有有限方差,服从同一分布,但各k 间,k ξ和1k ξ+有相关,而1,(||2)k k l ξξ-≥是独立的, 证明这时对{}k ξ大数定律成立。 8、已知随机变量序列12,,ξξL 的方差有界,n D c ξ≤,并且当||i j -→∞时,相关系数0ij r →,证明 对{}k ξ成立大数定律。 9、对随机变量序列{}i ξ,若记11()n n n ηξξ= ++L ,11 ()n n a E E n ξξ=++L ,则{}i ξ服从大数定律的充要条件是22()lim 01()n n n n n a E a ηη→∞?? -=??+-?? 。 10、用斯特灵公式证明:当,,n m n m →∞→∞-→∞,而 0m n →时, 2 221~2n m n n n m -???? ???-?? ??。 12、某计算机系统有120个终端,每个终端有5%时间在使用,若各个终端使用与否是相互独立的,试 求有10个或更多终端在使用的概率。

概率论与数理统计第五章习题解答.dot资料

第五章 假设检验与一元线性回归分析 习题详解 5.01 解:这是检验正态总体数学期望μ是否为32.0 提出假设:0.32:, 0.32:10≠=μμH H 由题设,样本容量6n =, 21.12=σ,1.121.10==σ,所以用U 检验 当零假设H 0成立时,变量:)1,0(~61 .10 .320 N X n X U -= -= σμ 因检验水平05.0=α,由05.0}|{|=≥λU P ,查表得96.1=λ 得到拒绝域: 96.1||≥u 计算得: 6.31)6.318.310.326.310.306.32(6 1=+++++?=x 89.061 .10 .326.310 0-=-= -= n x u σμ 因 0.89 1.96u =< 它没有落入拒绝域,于是不能拒绝H 0,而接受H 0,即可以认为 0.32=μ,所以可以认为这批机制砖的平均抗断强度μ显著为 32.0kg/cm 2。 5.02 解:这是检验正态总体数学期望μ是否大于10 提出假设:10:, 10:10>≤μμH H 即:10:, 10:10>=μμH H 由题设,样本容量5n =,221.0=σ,1.01.020==σ,

km x 万1.10=,所以用U 检验 当零假设H 0成立时,变量:)1,0(~51 .010 N X n X U -= -= σμ 因检验水平05.0=α,由05.0}{='≥λU P ,查表得64.1'=λ 得到拒绝域: 64.1≥u 计算得: 24.251 .010 1.100 =-= -= n x u σμ 因 2.24 1.64u => 它落入拒绝域,于是拒绝零假设 H 0,而接受备择假设H 1,即可认为10>μ 所以可以认为这批新摩托车的平均寿命μ有显者提高。 5.03 解:这是检验正态总体数学期望μ是否小于240 提出假设:240:,240:10<≥μμH H 即:240:, 240:10<=μμH H 由题设,样本容量6n =,6252=σ,256250==σ,220=x ,所以用U 检验 当零假设H 0成立时,变量:)1,0(~625 240 N X n X U -= -= σμ 因检验水平05.0=α,由05.0}{='-≤λU P ,查表得64.1'=λ 得到拒绝域: 64.1-≤u 计算得:959.1625 240 2200 -=-= -= n x u σμ 因 1.959 1.64u =-<-

概率论与数理统计复旦大学出版社第五章课后答案

概率与数理统计 习题五 答案 1.一颗骰子连续掷4次,点数总和记为X .估计P {10

根据独立同分布的中心极限定理得 0.8n i X n P ??-??≤≤???? ∑ 0.9,=Φ-Φ≥ 整理得 0.95,10?Φ≥ ?? 查表 1.64,≥ n ≥268.96, 故取n =269. 3. 某车间有同型号机床200部,每部机床开动的概率为0.7,假定各 机床开动与否互不影响,开动时每部机床消耗电能15个单位.问 至少供应多少单位电能才可以95%的概率保证不致因供电不足 而影响生产. 【解】设需要供应车间至少15m ?个单位的电能,这么多电能最多能 同时供给m 部车床工作,我们的问题是求m 。 把观察一部机床是否在工作看成一次试验,在200次试验中, 用X 表示正在工作的机床数目,则~(200,0.7)X B , ()2000.7140, ()(1)2000.70.342,E X np D X np p ==?==-=??= 根据题意,结合棣莫弗—拉普拉斯定理可得 0.95{}P X m P =≤=≤=Φ 查表知 1.64,= ,m =151. 所以供应电能151×15=2265(单位).

概率论第五章习题

第五章 一、填空题 1.设随机变量X 的数学期望E (X )=μ ,方差D (X )=σ 2,则根据契比雪夫不等式估计P {|X -μ|

(A)2 1 (B)4 1 (C)81 (D) 16 1 3.设随机变量X 1, ..., X 16相互独立同分布, E (X i )=1, D (X i )=1, i =1,...,16.令S 16=∑ =16 1i i X ,则对任意ε >0,从契比雪夫不等式直接可得__________ (A) P {|161S 16-1|<ε}≥1-216ε (B) P {|S 16-16|<ε}≥1-216ε (C) P {| 16 1S 16-1|<ε}≥1- 2 1 ε (D) P {|S 16-16|<ε}≥1- 2 1 ε 4.设随机变量X 1, X 2, ..., X n , ...相互独立,它们满足大数定理,则X i 的分布可以是__________ (A) P {X i =m }= 3m c , m =1,2,... (B) X i 服从参数为i 1的指数分布 (C) X i 服从参数为i 的泊松分布 (D) X i 的密度函数f (x )= ) 1(1 2 x +π 5.设随机变量X 1, X 2, ...相互独立同服从参数为λ的指数分布,则__________(其中φ(x )=dt e x t ?∞ -- 2 2 21π ) (A))(}{lim 1x x n n X P n i i n φλ=≤-∑=+∞ → (B)) (}{lim 1x x n n X P n i i n φ=≤-∑ =+∞ → (C)) (}{lim 1 x x n X P n i i n φλ λ=≤-∑ =+∞ → (D)) (}{lim 1 x x n X P n i i n φλ λ=≤-∑ =+∞ → 三、计算题 1.随机地掷6个骰子,利用契比雪夫不等式估计6个骰子出现点数之和在15点到27点之间的概率 2.对某一目标进行多次同等规模的轰炸,每次轰炸命中目标的炸弹数目是一个随机变量,假设其数学期望为2,标准差为1.3,计算在100次轰炸命中目标的炸弹总数在180颗到220颗的概率

概率论第四章课后习题解答

概率论第四章习题解答 1(1)在下列句子中随机地取一个单词,以X 表示取到的单词所饮食的字母个数,写出X 的分布律并求数学期望()E X 。 “THE GIRL PUT ON HER BEAUTIFUL RED HAT ” (2)在上述句子的30个字母中随机地取一个字母,以Y 表示取到的字母所在单词所包含的字母数,写出Y 的分布律并求()E Y (3)一人掷骰子,如得6点则掷第二次,此时得分为6加第二次得到的点数;否则得分为第一次得到的点数,且不能再掷,求得分X 的分布律。 解 (1)在所给的句子中任取一个单词,则其所包含的字母数,即随机变量X 的取值为:2,3,4,9,其分布律为 所以 1 51115()234988884 E X =?+? +?+?=。 (2)因为Y 的取值为2,3,4,9 当2Y =时,包含的字母为“O ”,“N ”,故 1 21{2}3015 C P Y == =; 当3Y =时,包含的3个字母的单词共有5个,故 135151 {3}30302 C P Y == == 当4Y =时,包含的4个字母的单词只有1个,故 1442{4}303015 C P Y == == 当9Y =时,包含的9个字母的单词只有1个,故 993{9}303010 P Y ==== 112314673 ()234915215103015 E Y =? +?+?+?==。 (3)若第一次得到6点,则可以掷第二次,那么他的得分为:X =7,8,9,10,11,12; 若第一次得到的不是6点,则他的得分为1,2,3,4,5。由此得X 的取值为: 1,2,3,4,5,7,8,9,10,11,12。

浙大版概率论与数理统计答案---第五章

第五章 大数定律及中心极限定理 注意: 这是第一稿(存在一些错误) 1、 解(1)由于{0}1P X ≥=,且()36E X =,利用马尔科夫不等式,得 () {50}0.7250 E X P X ≥≤ = (2)2 ()2D X =,()36E X =,利用切比雪夫不等式,所求的概率为: 223 {3240}1(364)10.75164 P X P X <<=--≥≥-== 2、解:()500,0.1i X B :, 500500121 1500111610%5%192.8%5000.05125i i i i D X P X ==?? ???? ?-<≥-==???? ∑∑ 3、 解 ξ服从参数为的几何分布,1 1(),(2,3,4)2n P n n ξ-?? === ? ?? L 可求出2 ()()3,()2n E nP n D ξξξ∞ == ===∑ 于是令 ()2 a b E ξ+=,2b a ε-=,利用切比雪夫不等式,得 有2 () ()1(())175%D P a b P E ξξξξεε <<=--≥≥-= 从而可以求出()3()3a E b E εξεξε==-=-=+=+4、解:()()()() ()() () 1,,n n n X n n n x F x P X x P X x X x F x a =≤=≤≤==L ,()0,x a ∈。 则() ()()() ()1 1 n n n X n nx p x n F x p x a --==,()0,x a ∈。 ()()10 1 n n a X n nx n E x x dx a a n -=?=+? , ()()()() 2 12 22 121n n a X n nx n n D x x dx a a a n n n -??=?-= ?+??++? 。

概率论第五章 习题解答

第五章 数理统计的基础知识 I 教学基本要求 1、理解总体、个体、样本、统计量、样本均值和样本方差的概念,会根据样本数据计算样本均值和样本方差; 2、了解经验分布函数的概念,了解直方图、茎叶图的作法; 3、了解2χ分布、t 分布、F 分布的定义,会查表计算分位数; 4、了解正态总体的常用抽样分布. II 习题解答 A 组 1、某学校学生会进行问卷调查了解大学生使用手机的情况,该项研究中总体和样本各是什么? 解:该项研究中总体是该学校全体大学生;样本是该学校被问卷调查的大学生. 2、为了解经济系管理专业本科毕业生工作后的就业情况,调查了某地区30名2010年毕业的管理专业本科生工作后的月薪情况.该项研究中总体和样本各是什么?样本容量是多少? 解:总体是该地区2010年毕业的经济系管理专业本科生的月薪;样本是被调查的30名2010年毕业的经济系管理专业本科生的月薪;样本容量是30. 3、某厂生产的晶体管的使用寿命服从指数分布,为了解其平均寿命,从中抽出n 件产品检测,什么是总体、样本?样本的分布是什么? 解:总体是该厂生产的晶体管的寿命,其分布是指数分布()E λ;样本是从该厂抽出的 n 个晶体管的寿命;记第i 个晶体管的寿命为i x ,则~()i x E λ(1 ,2,,)i n =,样本的分布为 ∑==-=-∏n i i i x n n i x e e 1 1 λ λλλ. 4、某工厂通过抽样调查得到5名工人一周内生产的产品数为149、156、160、138、149. 求样本均值和样本方差? 解:样本均值 5111 (149156160138149)150.455 i i x x ===++++=∑; 样本方差 52 21 1()51i i s x x ==--∑ 2221 [(149150.4)(156150.4)(149150.4)]70.34 =-+-++-=.

中北大学概率统计习题册第五章完整答案(详解)

1. 设随机变量X 的数学期望()E X μ=,方差2 ()D X σ=,则由契比雪夫不等式 {}≤ ≥-σμ3X P 1 9 。 2. 设随机变量X 和Y 的数学期望都是2,方差分别为1和4,相关系数为,则根据契比雪夫不等式{} ≤ ≥-6Y X P 1 12 。 3. 在一次试验中,事件A 发生的概率为2 1 , 利用契比雪夫不等式估计是否可以用大于的概率确信,在1000次独立重复试验中,事件A 发生的次数在400~600的范围内 解: X 表示在1000次重复独立试验中事件A 发 生的次数,则1~1000,2X B ? ? ?? ?.于是: 1 ()1000500, 2E X np ==?=11 ()100025022 D X =??= (400600)(500100)P X P X <<=-< 2 250 (100)10.975100 P X EX =-<≥- =.因此可以用大于的概率确信,在1000次独立重复试验中,事件A 发生的次数在400~600的范围内. 4.用契比雪夫不等式确定当掷一均匀铜币时,需投多少次,才能保证使得正面出现的频率在和 之间的概率不小于90% 解:设n μ表示掷n 次铜币正面出现的次数,则1 (,)2n B n μ:,1()2n E n μ= ,1()4n D n μ= {0.40.6}{ 0.50.1}n n P P n n μμ≤ ≤=-≤ 2() 25110.90.1n D n n μ≥- =-≥250n ?≥ 注:事实上,由中心极限定理 {0.40.6}{0.40.6}n n P P n n n μμ≤ ≤=≤ ≤≈Φ-Φ (210.9=Φ-≥ (()0.95 1.96Φ≥=Φ 1.96≥ 解之得 96.0365n ≥,所以,至少需投掷97次,才能保证使得正面出现的频率在和 之间的概率不小于90%。 5.一个复杂的系统,由100个相互独立起作用的部件所组成,在整个运行期间,每个部件损坏的概率为,为了使整个系统起作用,至少需85个部件工作,求整个系统工作的概率。 解:设整个系统中有X 个部件能正常工作, 则()~100,0.9X B ,系统工作的概率为 ()()85184P X P X ≥=-≤ 1≈-Φ ()()1220.9772=-Φ-=Φ= 6.设ΛΛ,,,,21n X X X 为独立随机变量序列,且(1,2,)i X i =L 服从参数为λ的指数分 布,试求:??? ? ??? ???????≤-∑=∞ →x n n X P n i i n 1lim λ。 解:因i X 服从参数为λ的指数分布,故:

概率论与数理统计(刘建亚)习题解答——第5章

概率论与数理统计(刘建亚)习题解答——第五章 5-1 解: (1)样本空间:n R ;密度函数:212()(,,)exp 2i n n x f x x m s 轾--犏= 犏犏臌 ? (2)431,,T T T 是统计量(不含未知参数);652,,T T T 不是统计量(含未知参数)。 5-2 解:∵ ~()X P l , (),()E X D X l l == ∴11()()()i i E X E X E X E X n n l 骣÷?====÷?÷?桫邋 2111()()()()i i D X D X D X D X n n n n l ====邋 2222222222111()()()()1()()()()11[][]n i i i E S E X X E X X E X E X n n n D X E X D X E X n n n n n n l l l l l 轾轾犏犏=-=-=-犏犏臌臌 轾轾=+-+犏犏臌臌-=?-+=邋 ? 5-3 解:∵ 2~(,)X N n s m ,∴ ~(0,1)X N (1) ( )1021111[(2[12(10.9875)0.025 P X P P X X P P ->=-?- 轾骣骣犏=-犏犏臌=-F -F -=-F =-= (2)

15155 55(max(,,)12)1(max(,,)12) 12101[(12)]1[()]2 1[(1)]0.5785P X X P X X P X >=- -=-?-F =-F = (3) 1515555(min(,,)8)1(min(,,)8) 1[1(1(8))] [1(1)][(1)]0.4215P X X P X X P X >=- =--- =-F -=F = 5-4 解:∵)2.0,0(~2N X k ,∴ )1,0(~2.0N X k ,28 2221()~(8)0.20.04k k k X X c c ===?? 222()( )1()0.950.040.040.040.04k k k X X a a P X a P P <=<=-?邋? ∴ 2()0.050.040.04k X a P ?? 查2c 表,20.05 (8)15.50715.5070.620280.04a a c =?? 5-5 解:设需检查n 个灯泡,)250,2500(~2N X k ~(0,1)X N ( )24501(1[10.99X X P X P P 骣骣>===-F -=--F =F = 查表得: 22.3325 2.33136n =?椿 5-6 解:~(),0.0015X E l l = ∴ 0.00150.00150 ()00x e x f x x -ì?>?=í?£??

《概率论与数理统计》(复旦大学出版社)第五章习题

习题五 1.一颗骰子连续掷4次,点数总和记为X .估计P {10

整理得0.95,Φ≥?? 查表 1.64,10≥ n ≥268.96, 故取n =269. 3. 某车间有同型号机床200部,每部机床开动的概率为0.7,假定各机床开动与否互不影响, 开动时每部机床消耗电能15个单位.问至少供应多少单位电能才可以95%的概率保证不致因供电不足而影响生产. 【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m 要满足200部机床中同时开动的机床数目不超过m 的概率为95%,于是我们只要供应15m 单位电能就可满足要求.令X 表同时开动机床数目,则X ~B (200,0.7), ()140,()42,E X D X == 0.95{0}().P X m P X m =≤≤=≤=Φ 查表知 1.64,= ,m =151. 所以供电能151×15=2265(单位). 4. 一加法器同时收到20个噪声电压V k (k =1,2,…,20),设它们是相互独立的随机变量, 且都在区间(0,10)上服从均匀分布.记V = ∑=20 1 k k V ,求P {V >105}的近似值. 【解】易知:E (V k )=5,D (V k )= 100 12 ,k =1,2,…,20 由中心极限定理知,随机变量 20 205 ~(0,1).k V Z N -?= =∑近似的 于是105205{105}10P V P ????-?? >=> 1000.3871(0.387)0.348,V P ????-?? =>≈-Φ=? ???? 即有 P {V >105}≈0.348 5. 有一批建筑房屋用的木柱,其中80%的长度不小于3m.现从这批木柱中随机地取出100 根,问其中至少有30根短于3m 的概率是多少?

概率论第五章习题答案

数理统计习题答案 习题5.1解答 1. 设总体服从()λP 分布,试写出样本n X X X ,,,21 的联合分布律. 解:()的分布律为: 即X P X ,~λ ()! k e k X P k λ λ-==, ,,,2,1,0n k = n X X X ,,,21 的联合分布律为: ()n n x X x X x X P ===,,,2211 = ()()()n n x X P x X P x X P === 2211 = n x x x x e x e x e n λ λ λλλλ---? 2 1 2 1 = λλn n x x x e x x x n -+++! !!212 1 , n i n x i ,,2,1,,,2,1,0 == 2. 设总体X 服从()1,0N 分布,试写出样本n X X X ,,,21 的联合分布密度. 解:()1,0~N X ,即X 分布密度为:()22 21x e x p -= π ,+∞<<-∞x n X X X ,,,21 的联合分布密度为: ()∏==n i i n x p x x x p 1 2 1 * )(,...,= 2 22 222 21212121n x x x e e e --? -π π π =() }21exp{21 2 2 ∑=-- n i i x n π n i x i ,,2,1, =+∞<<∞-. 3. 设总体X 服从() 2,σμN 分布,试写出样本n X X X ,,,21 的联合分布密度. 解:() 2,~σμN X ,即X 分布密度为: ()x p = ()}2exp{212 2σμσ π--x ,∞<<∞-x n X X X ,,,21 的联合分布密度为: ()()∏==n i i n x p x x x p 1 2 1 * ,..., =()})(21exp{211 222∑--??=-n i i n n x μσσπ, n i x i ,,2,1, =+∞<<∞-. 4. 根据样本观测值的频率分布直方图可以对总体作什么估计与推断? 解:频率分布直方图反映了样本观测值落在各个区间长度相同的区间的频率大小,可以估计 X 取值的位置与集中程度, 由于每个小区间的面积就是频率,所以可以估计或推断X 的分布密度. 5. 略. 6. 略.

概率论与数理统计 课后习题及参考答案

概率论与数理统计第五章课后习题及参考答案 1.用切比雪夫不等式估计下列各题的概率. (1)废品率为03.0,1000个产品中废品多于20个且少于40个的概率; (2)200个新生儿中,男孩多于80个而少于120个的概率(假设男孩和女孩的概率均为5.0). 解:(1)设X 为1000个产品中废品的个数,则X ~)1000,03.0(B ,有 30)(=X E ,1.29)(=X D , 由切比雪夫不等式,得 ) 3040303020()4020(-<-<-=<

相关文档