文档视界 最新最全的文档下载
当前位置:文档视界 › 全概率公式和贝叶斯公式练习题

全概率公式和贝叶斯公式练习题

全概率公式和贝叶斯公式练习题

1.设某工厂有两个车间生产同型号家用电器,第一车间的次品率为0.15,第二车间的次品率为0.12,两个车间的成品都混合堆放在一个仓库,假设第1,2车间生产的成品比例为2:3,今有一客户从成品仓库中随机提一台产品,求该产品合格的概率。

解:设B={从仓库中随机提出的一台是合格品}

A i ={提出的一台是第i 车间生产的},i=1,2

则有分解B=A 1B ∪A 2B

由题意P(A1)=2/5,P(A2)=3/5,P(B|A1)=0.85,P(B|A2)=0.88

由全概率公式P(B)= P(A 1) P(B|A 1)+ P(A 2) P(B|A 2)=0.4*0.85+0.6*0.88=0.868.

2. 盒中有a 个红球,b 个黑球,今随机地从中取出一个,观察其颜色后放回,并加上同色球c 个,再从盒中第二次抽取一球,求第二次抽出的是黑球的概率。 解:设A={第一次抽出的是黑球},B={第二次抽出的是黑球},则B AB AB =+, 由全概率公式()()()()()P B P A P B A P A P B A =+, 由题意(),(|),(),(|)b b c a b P A P B A P A P B A a b a b c a b a b c +====++++++ 所以()()()()()()b b c ab b P B a b a b c a b a b c a b

+=+=+++++++ 3. 设某公路上经过的货车与客车的数量之比为2:1,货车中途停车修理的概率为0.02,客车为0.01,今有一辆汽车中途停车修理,求该汽车是货车的概率。 解:设B={中途停车修理},A1={经过的是货车},A2={经过的是客车},则B=A 1B ∪A 2B ,由贝叶斯公式有

111112220.02()()3()0.80.21()()()()0.020.0133

P A P B A P A B P A P B A P A P B A ?===+?+? 4.已知甲袋中有6只红球,4只白球;乙袋中有8只红球,6只白球。求下列事件的概率:

(1) 随机取一只袋,再从该袋中随机取一球,该球是红球;

(2) 合并两只袋,从中随机取一球,该球是红球。

解 (1) 记=B {该球是红球},=1A {取自甲袋},=2A {取自乙袋},已知10/6)|(1=A B P ,14/8)|(2=A B P ,所以

70411482110621)|()()|()()(2211=?+?=

+=A B P A P A B P A P B P (2) 1272414)(==

B P

全概率公式和贝叶斯公式

单位代码:005 分类号:o1 西安创新学院本科毕业论文设计 题目:全概率公式和贝叶斯公式 专业名称:数学与应用数学 学生姓名:行一舟 学生学号:0703044138 指导教师:程值军 毕业时间:二0一一年六月

全概率公式和贝叶斯公式 摘要:对全概率公式和贝叶斯公式,探讨了寻找完备事件组的两个常用方法,和一些实际的应用.全概率公式是概率论中的一个重要的公式,它提供了计算复杂事件概率的一条有效的途径,使一个复杂事件的概率计算问题化繁就简.而贝叶斯公式则是在乘法公式和全概率公式的基础上得到的一个著名的公式. 关键词:全概率公式;贝叶斯公式;完备事件组

The Full Probability Formula and Bayes Formula Abstract:To the full probability formula and bayes formula for complete,discusses the two commonly used methods of events,and some practical applications.Full probability formula is one of the important full probability formula of calculation,it provides an effective complex events of the way the full probability of a complex events,full probability calculation problem change numerous will Jane.And the bayes formula is in full probability formula multiplication formula and the basis of a famous formula obtained. Key words:Full probability formula;Bayes formula;Complete event group;

全概率公式、贝叶斯公式推导过程

全概率公式、贝叶斯公式推导过程 (1)条件概率公式 设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为: P(A|B)=P(AB)/P(B) (2)乘法公式 1.由条件概率公式得: P(AB)=P(A|B)P(B)=P(B|A)P(A) 上式即为乘法公式; 2.乘法公式的推广:对于任何正整数n≥全概率公式、贝叶斯公式推导过程 (1)条件概率公式 设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为: P(A|B)=P(AB)/P(B) (2)乘法公式 1.由条件概率公式得: P(AB)=P(A|B)P(B)=P(B|A)P(A) 上式即为乘法公式; 2.乘法公式的推广:对于任何正整数n≥2,当P(A1A2...A n-1) > 0 时,有: P(A1A2...A n-1A n)=P(A1)P(A2|A1)P(A3|A1A2)...P(A n|A1A2...A n-1) (3)全概率公式 1. 如果事件组B1,B2,.... 满足 1.B1,B 2....两两互斥,即B i ∩ B j = ?,i≠j ,i,j=1,2,....,且P(B i)>0,i=1,2,....; 2.B1∪B2∪....=Ω ,则称事件组B1,B2,...是样本空间Ω的一个划分 设 B1,B2,...是样本空间Ω的一个划分,A为任一事件,则: 上式即为全概率公式(formula of total probability) 2.全概率公式的意义在于,当直接计算P(A)较为困难,而P(B i),P(A|B i) (i=1,2,...)的计算较为简单时,可以利用全概率公式计算P(A)。思想就是,将事件A分解成几个小事件,通过求小事件的概率,然后相加从而求得事件A的概率,而将事件A进行分割的时候,不是直接对A进行分割,而是先找到样本空间Ω的一个个划分B1,B2,...B n,这样事件A就被事

全概率公式与贝叶斯公式解题归纳

全概率公式与贝叶斯公式解题归纳 来源:文都教育 在数学一、数学三的概率论与数理统计部分,需要用到全概率公式及其贝叶斯公式来解题. 这类题目首先要区分清楚是“由因导果”,还是“由果索因”,因为全概率公式是计算由若干“原因”引起的复杂事件概率的公式,而贝叶斯公式是用来计算复杂事件已发生的条件下,某一“原因”发生的条件概率. 它们的定义如下: 全概率公式:设n B B B ,,,21 为样本空间Ω的一个划分,如果()0,i P B > 1,2,,i n =L ,则对任一事件A 有 )|()()(1 i n i i B A P B P A P ∑==. 贝叶斯公式 :设n ,B ,,B B 21 是样本空间Ω的一个划分,则 .,,2,1,)|()() |()()|(1n i B A P B P B A P B P A B P n j j j i i i ==∑= 例1 从数字1, 2, 3, 4中任取一个数,记为X ,再从1,…,X 中任取一个数,记为Y ,则(2)P Y == . 解 由离散型随机变量的概率分布有: (1)(2)(3)(4)14P X P X P X P X ========. 由题意,得 (21)0,(22)12,P Y X P Y X ====== (23)13,(24)14P Y X P Y X ======,则根据全概率公式得到

(2)(1)(21)(2)(22)P Y P X P Y X P X P Y X =====+=== (3)(23)(4)(24)P X P Y X P X P Y X +===+=== 111113(0).423448 =?+++= 例2 12件产品中有4件次品,在先取1件的情况下,任取2件产品皆为正品,求先取1件为次品的概率. 解 令A={先取的1件为次品},则,A A 为完备事件组,12(),(),33 P A P A = =令B={后取的2件皆为正品},则2821128(),55C P B A C ==2721121(),55C P B A C == 由贝叶斯公式得 128()()()2355().128221()()()()()5 355355 P A P B A P AB P A B P B P A P B A P A P B A ?====+?+? 若随机试验可以看成分两个阶段进行,且第一阶段的各试验结果具体结果怎样未知,那么:(1)如果要求的是第二阶段某一个结果发生的概率,则用全概率公式;(2)如果第二个阶段的某一个结果是已知的,要求的是此结果为第一阶段某一个结果所引起的概率,一般用贝叶斯公式,类似于求条件概率. 熟记这个特征,在遇到相关的题目时,可以准确地选择方法进行计算,保证解题的正确高效.

贝叶斯公式的经验之谈

贝叶斯公式的经验之谈 一、综述 在日常生活中,我们会遇到许多由因求果的问题,也会遇到许多由果溯因的问题。比如某种传染疾病已经出现.寻找传染源;机械发生了故障,寻找故障源就是典型的南果溯因问题等。在一定条件下,这类由果溯因问题可通过贝叶斯公式来求解。以下从几个的例子来说明贝叶斯公式的应用。 文【1】主要应用贝叶斯公式的简单情形,从“疾病诊断”,“说谎了吗”,“企业资质评判”,“诉讼”四个方面讨论其具体应用。文【2】用市场预测的实例,介绍了贝叶斯公式在市场预测中的应用。贝叶斯市场预测能对信息的价值是否需要采集新的信息做出科学的判断。文【3】、文【4】介绍贝叶斯过滤技术的工作原理及技术原理,讨论了邮件过滤模块,通过分析研究该模块中垃圾邮件关键词的统计概率分布,提出了基于贝叶斯概率模型的邮件过滤算法,并对该算法的合理性和复杂度进行了分析。可以根据垃圾邮件内容的特征,建立贝叶斯概率模型,计算出一封邮件是垃圾邮件的概率,从而判断其是否为垃圾邮件。文【5】基于贝叶斯公式中概率统计的重要性与在日常生活中应用的广泛性,概述了贝叶斯统计的基本思想及其与其他统计学派的争论,并对作为贝叶斯统计基石的贝叶斯公式进行了归纳。 二.内容 1.疾病诊断. 资料显示, 某项艾滋病血液检测的灵敏度( 即真有病的人检查为阳性) 为95%, 而对没有得病的人,种检测的准确率( 即没有病的人检查为阴性) 为99%. 美国是一个艾滋病比较流行的国家, 估计大约有千分之一的人患有这种病. 为了能有效地控制、减缓艾滋病的传播, 几年前有人建议对申请新婚登记的新婚夫妇进行这种血液检查. 该计划提出后, 征询专家意见, 遭到专家的强烈反对, 计划

最新全概率公式和贝叶斯公式练习题

1.设某工厂有两个车间生产同型号家用电器,第一车间的次品率为0.15,第二车间的次品率为0.12,两个车间的成品都混合堆放在一个仓库,假设第1,2车间生产的成品比例为2:3,今有一客户从成品仓库中随机提一台产品,求该产品合格的概率。 解:设B={从仓库中随机提出的一台是合格品} A i ={提出的一台是第i 车间生产的},i=1,2 则有分解B=A 1B ∪A 2B 由题意P(A1)=2/5,P(A2)=3/5,P(B|A1)=0.85,P(B|A2)=0.88 由全概率公式P(B)= P(A 1) P(B|A 1)+ P(A 2) P(B|A 2)=0.4*0.85+0.6*0.88=0.868. 2. 盒中有a 个红球,b 个黑球,今随机地从中取出一个,观察其颜色后放回,并加上同色球c 个,再从盒中第二次抽取一球,求第二次抽出的是黑球的概率。 解:设A={第一次抽出的是黑球},B={第二次抽出的是黑球},则B AB AB =+, 由全概率公式()()()()()P B P A P B A P A P B A =+, 由题意(),(|),(),(|)b b c a b P A P B A P A P B A a b a b c a b a b c +====++++++ 所以()()()()()()b b c ab b P B a b a b c a b a b c a b +=+=+++++++ 3. 设某公路上经过的货车与客车的数量之比为2:1,货车中途停车修理的概率为0.02,客车为0.01,今有一辆汽车中途停车修理,求该汽车是货车的概率。 解:设B={中途停车修理},A1={经过的是货车},A2={经过的是客车},则B=A 1B ∪A 2B ,由贝叶斯公式有 111112220.02()()3()0.80.21()()()()0.020.0133P A P B A P A B P A P B A P A P B A ?===+?+? 4.已知甲袋中有6只红球,4只白球;乙袋中有8只红球,6只白球。求下列事件的概率: (1) 随机取一只袋,再从该袋中随机取一球,该球是红球; (2) 合并两只袋,从中随机取一球,该球是红球。 解 (1) 记=B {该球是红球},=1A {取自甲袋},=2A {取自乙袋},已知10/6)|(1=A B P ,14/8)|(2=A B P ,所以

全概率公式和贝叶斯公式练习题

例题讲解: 例题 1.市场上某产品由三家厂家提供,根据以往的记录,这三个厂家的次品率分别为,0.020.,0.01,0.03,三个厂家生产的产品所占的市场份额分别0.15,0.8,0.05.产品出厂后运到仓库,见面后再进入市场,设这三个厂家的产品在仓库是均匀混合 (1)在仓库中随机的取一个产品,求它的次品的概率。 (2)在仓库中随机的取一个产品,发现为次品,如果你是管理者,该如何追究三个厂家的责任? 例题2 保险公司把被保险人分成三类”谨慎的”,”一般的”和”冒险的”,统计资料表明,上述三种人在一年内发生事故的概率依次为,0. 5. 0.15. 和0.30. 如果”谨慎的”被保险人占20%”一般的”,被保险人占50%,”冒失的”被保险人占30%,确认一个被保险人在一年内出事故的概率。

练习: 1.设某工厂有两个车间生产同型号家用电器,第一车间的次品率为0.15,第二车间的次品率为0.12,两个车间的成品都混合堆放在一个仓库,假设第1,2车间生产的成品比例为2:3,今有一客户从成品仓库中随机提一台产品,求该产品合格的概率。 解:设B={从仓库中随机提出的一台是合格品} A i ={提出的一台是第i 车间生产的},i=1,2 则有分解B=A 1B ∪A 2B 由题意P(A1)=2/5,P(A2)=3/5,P(B|A1)=0.85,P(B|A2)=0.88 由全概率公式P(B)= P(A 1) P(B|A 1)+ P(A 2) P(B|A 2)=0.4*0.85+0.6*0.88=0.868. 2. 盒中有a 个红球,b 个黑球,今随机地从中取出一个,观察其颜色后放回,并加上同色球c 个,再从盒中第二次抽取一球,求第二次抽出的是黑球的概率。 解:设A={第一次抽出的是黑球},B={第二次抽出的是黑球},则B AB AB =+, 由全概率公式()()()()()P B P A P B A P A P B A =+, 由题意(),(|),(),(|)b b c a b P A P B A P A P B A a b a b c a b a b c +====++++++ 所以()()()()()()b b c ab b P B a b a b c a b a b c a b +=+=+++++++ 3. 设某公路上经过的货车与客车的数量之比为2:1,货车中途停车修理的概率为0.02,客车为0.01,今有一辆汽车中途停车修理,求该汽车是货车的概率。 解:设B={中途停车修理},A1={经过的是货车},A2={经过的是客车},则B=A 1B ∪A 2B ,由贝叶斯公式有 111112220.02()()3()0.80.21()()()()0.020.0133 P A P B A P A B P A P B A P A P B A ?===+?+? 4.已知甲袋中有6只红球,4只白球;乙袋中有8只红球,6只白球。求下列事件的概率: (1) 随机取一只袋,再从该袋中随机取一球,该球是红球; (2) 合并两只袋,从中随机取一球,该球是红球。 解 (1) 记=B {该球是红球},=1A {取自甲袋},=2A {取自乙袋},已知10/6)|(1=A B P ,14/8)|(2=A B P ,所以 70411482110621)|()()|()()(2211=?+?= +=A B P A P A B P A P B P (2) 12 72414)(== B P

全概率公式贝叶斯公式推导过程

全概率公式贝叶斯公式 推导过程 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

全概率公式、贝叶斯公式推导过程 (1)条件概率公式 设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为: P(A|B)=P(AB)/P(B) (2)乘法公式 1.由条件概率公式得: P(AB)=P(A|B)P(B)=P(B|A)P(A) 上式即为乘法公式; 2.乘法公式的推广:对于任何正整数n≥ (1)条件概率公式 设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为: P(A|B)=P(AB)/P(B) (2)乘法公式 1.由条件概率公式得: P(AB)=P(A|B)P(B)=P(B|A)P(A) 上式即为乘法公式; 2.乘法公式的推广:对于任何正整数n≥2,当P(A 1A 2 ...A n-1 ) > 0 时, 有: P(A 1A 2 ...A n-1 A n )=P(A 1 )P(A 2 |A 1 )P(A 3 |A 1 A 2 )...P(A n |A 1 A 2 ...A n-1 ) (3)全概率公式 1. 如果事件组B 1,B 2 ,.... 满足 ,B 2....两两互斥,即 B i ∩ B j = ,i≠j , i,j=1,2,....,且 P(B i )>0,i=1,2,....; ∪B 2∪....=Ω,则称事件组 B 1 ,B 2 ,...是样本空间Ω的一个划分 设B 1,B 2 ,...是样本空间Ω的一个划分,A为任一事件,则: 上式即为全概率公式(formula of total probability) 2.全概率公式的意义在于,当直接计算P(A)较为困难,而P(B i ),P(A|B i ) (i=1,2,...)的计算较为简单时,可以利用全概率公式计算P(A)。思想就是,

贝叶斯公式浅析

说起贝叶斯公式,学过概率论的人肯定学过(如果没学过,那就去了解下"条件概率”),一个条件概率的转换公式,如下: P(A|E)=[ P(E|A)P(A)] / P(E),稍微变形下就是最简单的等式了P(A|E)P(E)= [P(E|A)P(A) 这么一个简单的公式为什么能引起科学上的革命? 这是一个统计学上的公式,但是却被证明是人类唯一能够运用自如的东西。伯克利大学心理学家早在2004年就证明,Bayesian统计法是儿童运用的唯一思考方法,其他方法他们似乎完全不会。 废话不多说,举个例子来说明就很明白了:假设在住所门口看到自己“女朋友or男朋友”(没有的自己找去,这里不负责介绍,还假设她or他在外地)你会产生三种假设(很多人都会这么想): A1=男朋友or女朋友没告诉你就跑来你的城市 A2=自己看模糊了 A3=那个人跟自己男朋友or女朋友确实长得很像 那么这三种假想哪个更有可能? 更准确地说就是,在“事实”(看到了男朋友or女朋友的情况)那种假设更有可能呢?解释成数学语言就是 P(A1|E), P(A2|E), P(A3|E)。哪个更大些? 于是脑子就开始启动贝叶斯程序, 计算比较这三个的概率到底哪个更大: 因为P(E)对于三个式子来说都是一样的,所以贝叶斯公式可以看成P(A|E)正相关于P(E|A)P(A),先看看P(A)是什么? P(h)在这个公式里描述的是你对某个假想h的可信程度。(不用考虑当前的事实是什么) P( A1)=男朋友or女朋友没告诉你就跑来你的城市,可能性比较低 P( A2)=自己看模糊了,可能性比较高 P( A3)=那个人跟自己男朋友or女朋友确实长得很像,可能性比较高 P(E|A)表示的就是假想产生对应的这个事实的可能性多大 P(E| A1)=男朋友or女朋友想给你惊喜,来找你的,当然很高的概率出现在你住所门

对全概率公式和贝叶斯公式的理解

对全概率公式和贝叶斯公式的理解 我该怎么来理解这2个公式呢?打个比方,假设学校的奖学金都采取申请制度,只有满足一定的条件你才能拿到这比奖学金。那么有哪些原因能够使你有可能拿到奖学金呢?1、三好学生,拿到奖学金的概率是p(A1)=0.3。 2、四好学生,拿到奖学金的概率是p(A2)=0.4。3、五好学生,拿到奖学金的概率是p(A3)=0.5。4、六好学生,拿到奖学金的概率是p(A4)=0.6。这些学生只能是三好四好五好六好学生种的一种,不能跨种类。这个学校学生是三好学生的概率是p(B1)=0.4,四好学生的概率是p(B2)=0.3,五好学生的概率是p(B3)=0.2,六好学生的概率是p(B4)=0.1。现在问题出来了,一个学生能够拿到奖学金的概率是多少? 慢慢来分析,导致一个学生拿到奖学金的方式有哪些?这个学生是三好学生,刚好他又凭借三好学生的身份申请到了奖学金 p1=p(A1)*p(B1|A1)=0.4*0.3=0.12;这个学生是四好学生,刚好凭借他四好学生的身份拿到了奖学金,p2=p(A2)*p(B2|A2)=0.3*0.4=0.12;这个学生是五好学生,刚好凭借他五好学生的身份拿到奖学金,p3=p(A3)*p(B3|A3)=0.2*0.5=0.10;这个学生是六好学生,刚好凭借他六好学生的身份拿到了奖学金, p4=p(A4)*p(B4|A4)=0.1*0.6=0.06。四种方式都能导致一个学生拿到奖学金,那么拿到奖学金的概率为p=p1+p2+p3+p4=0.4.所以这么理解全概率公式:导致一个事件发生的原因有很多种(各种原因互斥),那么这个事件发生的概率就是每种原因引起该事件发生的概率的总和。 一个学生已经拿到了奖学金,这个学生是三好学生的概率是多少? p=p1/(p1+p2+p3+p4)=0.3。怎么理解呢?一个事件已经发生了,有很多原因都能导致这个事件发生。那么其中的一种原因导致该事件发生的概率是多少?这就是贝叶斯概率公式解决的问题。就正如一本书现在已经被别人借走了(事件已经发生),已知只有可能是张三,李四,王五这3个人借走(事件发生的所有原因)。那么这本书被张三借走的概率会是多大呢? 现在是不是已经理解了这2个公式呢。

贝叶斯定理及应用

贝叶斯定理及应用 中央民族大学 孙媛

一贝叶斯定理 一、贝叶斯定理 贝叶斯定理(Bayes‘ theorem)由英国数学家托马斯贝叶斯(Thomas Bayes) ·Thomas Bayes 在1763年发表的一篇论文中,首先提出了这个定理。用来描述两个条件概率之间的这个定理 关系,比如P(A|B) 和P(B|A)。

一、贝叶斯定理 一贝叶斯定理 所谓的贝叶斯定理源于他生前为解决一个“逆概”问题写的一篇文章,而这篇文章是在他死后才由他的一位朋友发表出来的。 在贝叶斯写这篇文章之前,人们已经能够计算“正向概率”,如假设袋子里面有N 个白球,M 个黑球,你伸手进去摸一如“假设袋子里面有N个白球M个黑球你伸手进去摸一把,摸出黑球的概率是多大”。而一个自然而然的问题是反过来:“如果我们事先并不知道袋子里面黑白球的比例,而是闭着眼睛摸出一个(或好几个)球,观察这些取出来的球的颜色之后,那么我们可以就此对袋子里面的黑白球的比例作出什么样的推测。这个问题,就是所谓的逆向概率问题。 样的推测”。这个问题就是所谓的逆向概率问题。

一、贝叶斯定理 一贝叶斯定理 ←实际上就是计算"条件概率"的公式。 p y, ←所谓"条件概率"(Conditional probability),就是指在事件B发生的情况下,事件A发生的概率,用P(A|B)来表示。 的先验概率之所以称为先验是因为它不考虑任何←P(A)是A的先验概率,之所以称为先验是因为它不考虑任何B 的因素。 ←P(A|B)是在B发生时A发生的条件概率,称作A的后验概率。←P(B)是B的先验概率。 ←P(B|A)是在A发生时B发生的条件概率,称作B的后验概率。

浅谈贝叶斯公式及其应用.

浅谈贝叶斯公式及其应用 摘要 贝叶斯公式是概率论中很重要的公式,在概率论的计算中起到很重要的作用。本文通过对贝叶斯公式进行分析研究,同时也探讨贝叶斯公式在医学、市场预测、信号估计、概率推理以及工厂产品检查等方面的一些实例,阐述了贝叶斯公式在医学、市场、信号估计、推理以及产品检查中的应用。为了解决更多的实际问题,我们对贝叶斯公式进行了推广,举例说明了推广后的公式在实际应用中所适用的概型比原来的公式更广。从而使我们更好地了解到贝叶斯公式存在于我们生活的各个方面、贝叶斯公式在我们的日常生活中非常重要。 关键词:贝叶斯公式应用概率推广

第一章引言 贝叶斯公式是概率论中重要的公式,主要用于计算比较复杂事件的概率,它实质上是加法公式和乘法公式的综合运用。贝叶斯公式出现于17世纪,从发现到现在,已经深入到科学与社会的许多个方面。它是在观察到事件B已发生的条件下,寻找导致B发生的每个原因的概率.贝叶斯公式在实际中生活中有广泛的应用,它可以帮助人们确定某结果(事件B)发生的最可能原因。 目前,社会在飞速发展,市场竞争日趋激烈,决策者必须综合考察已往的信息及现状从而作出综合判断,决策概率分析越来越显示其重要性。其中贝叶斯公式主要用于处理先验概率与后验概率,是进行决策的重要工具。 贝叶斯公式可以用来解决医学、市场预测、信号估计、概率推理以及产品检查等一系列不确定的问题。本文首先分析了贝叶斯公式的概念,再用贝叶斯公式来解决实际中的一些问题。然后将贝叶斯公式推广,举例说明推广后的贝叶斯公式在实际应用中所适用的概型。

第二章 叶斯公式的定义及其应用 2.1贝叶斯公式的定义 给出了事件B 随着两两互斥的事件12,,...,n A A A 中某一个出现而出现的概率。如果反 过来知道事件B 已出现,但不知道它由于12,,...,n A A A 中那一个事件出现而与之同时出现, 这样,便产生了在事件B 已经出现出现的条件下,求事件(1,2,...)i A i n =出现的条件概率的问题,解决这类问题有如下公式: 2.1.1定义 设12,...,n B B B 为Ω 的一个分割,即12,...,n B B B 互不相容,且 1n i i B ==Ω,如果 P( A ) > 0 ,()0i P B = (1,2,...,)i n = ,则1()(/) (/),1,2,...,()(/)i i i n j j j P B P A B P B A i n P B P A B ===∑。 证明 由条件概率的定义(所谓条件概率,它是指在某事件B 发生的条件下,求另一事件A 的概率,记为(/)P A B ) ()(/)() i i P AB P B A P A = 对上式的分子用乘法公式、分母用全概率公式, ()()(/)i i i P AB P B P A B = 1()()(/)n i i j P A P B P A B ==∑ 1()(/) (/),1,2,...,()(/)i i i n j j j P B P A B P B A i n P B P A B ===∑ 结论的证。

全概率公式和贝叶斯公式

单位代码: 005 分类号: o1 西安创新学院本科毕业论文设计 题目:全概率公式和贝叶斯公式 专业名称:数学与应用数学 学生姓名:行一舟 学生学号: 0703044138 指导教师:程值军 毕业时间:二0一一年六月

全概率公式和贝叶斯公式 摘要:对全概率公式和贝叶斯公式,探讨了寻找完备事件组的两个常用方法,和一些实际的应用.全概率公式是概率论中的一个重要的公式,它提供了计算复杂事件概率的一条有效的途径,使一个复杂事件的概率计算问题化繁就简.而贝叶斯公式则是在乘法公式和全概率公式的基础上得到的一个著名的公式. 关键词:全概率公式;贝叶斯公式;完备事件组

The Full Probability Formula and Bayes Formula Abstract:To the full probability formula and bayes formula for complete, discusses the two commonly used methods of events, and some practical applications. Full probability formula is one of the important full probability formula of calculation, it provides an effective complex events of the way the full probability of a complex events, full probability calculation problem change numerous will Jane. And the bayes formula is in full probability formula multiplication formula and the basis of a famous formula obtained. Key words:Full probability formula; Bayes formula; Complete event group;

全概率公式与贝叶斯公式

全概率公式与贝叶斯公式

全概率公式与贝叶斯公式 1. 完备事件组(或样本空间Ω的划分)n 个事件满足: 12B ,B ,,B n B B ,,1,2,,i j i j n =Φ= (1) 两两互不相容. (2) 和事件为必然事件. 1 B n k k ==Ω ∑ΩB 2 B 1B n …

2. 全概率公式 则对任一事件A ,有1 ()P(B )(/B ) n k k k P A P A ==∑设为完备事件组,且12B ,B ,,B n P(B )0,1,2,,k k n >= ①取合适的完备事件组,从导致该事件 发生的各种条件、原因着手;②各B k 的概率及有关条件概率易于计算. 类比集合分类计数思想,可得到一种计算复杂事件概率的方法.运用公式的关键 全概率公式与贝叶斯公式

证明: 由完备事件组的性质可知 1 B B ,,1,2,,B i j n k k i j n ==Φ==Ω ∑ 1 1B B ,(B )(B )n n k k i j k k A A A A A A ===Ω===Φ∑∑1 1 ()(B )(B ) n n k k k k P A P A P A ====∑∑1 (B )(/B )n k k k P P A ==∑(由乘法公式)

()i P B A = 1 ()()()(),1,2,,i i n k k k P B P A B P B P A i n B ==∑ 3. 贝叶斯公式 设为完备事件组,则 12B ,B ,,B n 利用条件概率公式与全概率公式可得到贝叶斯公式.P(A)>0,P(B )0,1,2,,k k n >= 其中:全概率公式与贝叶斯公式 ()()i P AB P A 已知结果A ,分析导致出现此结果的第i 个原因B i 发生的概率.

数学分布(泊松分布、二项分布、正态分布、均匀分布、指数分布)生存分析贝叶斯概率公式全概率公式讲解

数学期望:随机变量最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。它是简单算术平均的一种推广。例如某城市有10 万个家庭,没有孩子的家庭有1000 个,有一个孩子的家庭有9 万个,有两个孩子的家庭有6000 个,有 3 个孩子的家庭有3000 个,则此城市中任一个家庭中孩子的数目是一个随机变量,记为X ,它可取值0,1,2,3,其中取0 的概率为0.01,取 1 的概率为0.9,取 2 的概率为0.06,取 3 的概率为0.03,它的数学期望为 0×0.01+1×0.9+2×0.06+3×0.03 等于 1.11,即此城市一个家庭平均有小孩 1.11 个,用数学式子表示为:E(X)=1.11。 也就是说,我们用数学的方法分析了这个概率性的问题,对于每一 个家庭,最有可能它家的孩子为 1.11 个。 可以简单的理解为求一个概率性事件的平均状况。 各种数学分布的方差是: 1、一个完全符合分布的样本 2、这个样本的方差 概率密度的概念是:某种事物发生的概率占总概率(1)的比例,越大就说明密度越大。比如某地某次考试的成绩近似服从均值为 80 的正态分布,即平均分是80 分,由正态分布的图形知 x=80 时的函数值最大,即随机变量在 80 附近取值最密集,也即考试成绩在 80 分左右的人最多。 下图为概率密度函数图(F(x)应为f(x) ,表示概率密度):

离散型分布:二项分布、泊松分布 连续型分布:指数分布、正态分布、X2分布、t 分布、F 分布 抽样分布 抽样分布只与自由度,即样本含量(抽样样本含量)有关 二项分布(binomial distribution):例子抛硬币 1、重复试验(n 个相同试验,每次试验两种结果,每种结果概率恒定 伯努利试验) 2、

贝叶斯公式与全概率公式的运用

1-3 全概率公式与贝叶斯公式的运用举例一、全概率公式 A1,A2…A i是一个完备事件组并且P A i>0i=1,2,3…n,则对任意事件B有 P(B)=P A i P(B|A i) n i=1 全概率公式针对的是某一个过程中已知条件求出最后结果的概率,解题步骤如下: ①找出条件事件里的某一个完备事件组,分别命名为A i ②命名目标的概率事件为事件B ③带入全概率公式求解 下面是具体实例对全概率公式的运用 1、甲盒子里面有4个红球3个白球,乙口袋有2个红球,5个白球,从甲口袋随机拿出一个球放到乙口袋,然后从一口袋中随机拿一个球,求这个球是红球的概率。 解:①完备事件组命名A1=“甲口袋里拿出的是红球” A2="甲口袋里拿出的是白球” ②目标事件B=“从乙里面取出红球” ③全概率公式求解 P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)=4 7×3 8 +3 7 ×2 8 =9 28 2、甲袋中有5只白球, 7 只红球;乙袋中有4只白球, 2只红球.从两个袋子中任取一袋, 然后从所取到的袋子中任取一球,求取到的球是白球的概率. 解:①完备事件组命名A1=“取到的袋子是甲袋” A2="取到的袋子是乙袋” ②目标事件B=“从袋子里面取出白球” ③全概率公式求解 P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)=1 2×5 12 +1 2 ×4 6 =13 24 3、某射击小组共有20名射手,其中一级射手4人, 二级射手8人, 三级射手7人, 四级射手1人. 一、二、 三、四级射手能通过选拔进入比赛的概率分别是0.9、0.7、0.5、0.2 . 求任选一名射手能通过选拔进入比赛的概率. 解:①完备事件组命名A i=“选到的射手是i级射手” ②目标事件B=“射手通过选拔赛” ③全概率公式求解 P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)+P(A4)P(B|A4) =1 4×9 10 +1 4 ×7 10 +1 4 ×1 2 +1 4 ×1 5 =23 40

全概率公式和贝叶斯公式

3.全概率公式和贝叶斯公式 【教学内容】:高等教育出版社浙江大学盛骤,谢式千,潘承毅编的《概率论与数理统计》第一章第§5的条件概率中的全概率公式和贝叶斯公式 【教材分析】:前面讲到的条件概率是概率论的基本概念,下一节的独立性和条件概率关系紧密,而乘法公式、全概率公式和贝叶斯公式是与条件概率有密切关系的公式,因此掌握此概念及计算公式为后续学习打下基础。 【学情分析】: 1、知识经验分析 前一节已经学习了条件概率和乘法公式,学生已经掌握了事件的概率的基本计算方法。 2、学习能力分析 学生虽然具备一定的基础知识和理论基础,但概念理解不透彻,解决问题的能力不高,方法应用不熟练,知识没有融会贯通。 【教学目标】: 1、知识与技能 掌握全概率公式和贝叶斯公式以及计算。 2、过程与方法 由本节内容的特点,教学中采用启发式教学法,应用实际问题逐步推导出全概率公式和贝叶斯公式。 3、情感态度与价值观 通过学习,培养学生学习数学的良好思维习惯和兴趣,树立学生善于创新的思维品质和严谨的科学态度。 【教学重点、难点】: 重点:掌握全概率公式和贝叶斯公式并会适当的应用。 难点:全概率公式和贝叶斯公式各自的适用条件及不同的情形。 【教学方法】:讲授法启发式教学法 【教学课时】:1个课时 【教学过程】: 一、问题引入 引例:三个罐子分别编号为 1, 2,3,1号装有 2 红 1 黑球, 2号装有 3 红 1 黑球,

3号装有 2 红 2 黑球。 某人从中随机取一罐,再从中任意取出一球,求取得红球的概率。 解:记 i B ={ 球取自i 号罐 } i =1, 2, 3; A ={ 取得红球 },显然 A 的发生总是伴随着 123B B B ,,之一同时发生,即123+A AB AB AB =+,且123,,AB AB AB 两两互斥。 123()()+()()P A P AB P AB P AB =+3 1 ()(|)i i i P B P A B ==∑P (A |B 1)=2/3, ()23 4 P A B = ()312 P A B = 代入数据计算得:()0.639P A = 【设计意图】:让学生感受到数学与生活“零距离”,从而激发学生学习数学的兴趣,使学生获得良好的价值观和情感态度。 二、全概率公式 1、全概率公式: 定义 3 若 n 个事件 12......n B B B , 满足 1 n i i B S ==U , i j B B =Φ(),,1,2,i j i j n ≠=L ,则称 12......n B B B , 为 S 的一个划分, 或称其是一 个完备事件组。 定理 设 12......n B B B ,是 S 的一个划分,且 ()0,1,2,....i P B i n >= 则对任一事件 A S ?,有1 ()()(|)n i i i P A P B P A B ==∑ 例1有一批同一型号的产品,已知其中由一厂生产的占 30% ,二厂生产的占 50% ,三厂生产的占 20%,又知这三个厂的产品次品率分别为2% , 1%,1%,问从这批产品中任取一件是次品的概率是多少? 解: 设事件A 为“任取一件为次品”, 摂,1,2, 3.i B i i =事件为任取一件为厂的产品123, B B B S =U U ,,1,2,3.i j B B i j =?=由全概率公式得

贝叶斯公式论文

哈尔滨学院本科毕业论文(设计)题目:贝叶斯公式公式在数学模型中的应用 院(系)理学院 专业数学与应用数学 年级2009级 姓名鲁威学号09031213 指导教师张俊超职称讲师 2013 年6月1 日

目录 摘要 (1) Abstract (2) 前言 (3) 第一章贝叶斯公式及全概率公式的推广概述..................................... 错误!未定义书签。 1.1贝叶斯公式与证明 (5) 1.1贝叶斯公式及其与全概率公式的联系 (5) 1.3贝叶斯公式公式推广与证明 (6) 1.3.1贝叶斯公式的推广 (6) 1.4贝叶斯公式的推广总结 (7) 第二章贝叶斯公式在数学模型中的应用 (8) 2.1数学建模的过程 (8) 2.2贝叶斯中常见的数学模型问题 (9) 2.2.1 全概率公式在医疗诊断中的应用 (9) 2.2.2全概率公式在市场预测中的应用 (11) 2.2.3全概率公式在信号估计中的应用. ...................................... 错误!未定义书签。 2.2.4全概率公式在概率推理中的应用 (15) 2.2.5全概率公式在工厂产品检查中的应用 ................................ 错误!未定义书签。 2.3全概率公式的推广在风险决策中的应用 (17) 2.3.1背景简介 (17) 2.3.2风险模型 (18) 2.3.3实例分析 (18) 第三章总结 (21) 3.1贝叶斯公式的概括 (21) 3.2贝叶斯公式的实际应用 (21) 结束语 (23) 参考文献 (24) 后记 (25)

刘涛--全概率公式与贝叶斯公式--教学设计电子教案

刘涛--全概率公式与贝叶斯公式--教学设 计

概率论与数理统计教学设计

1.引导课题…………3分钟

钟) (i ),,,1,2,i j B B i j i j n φ=≠=L (ii )1n i i B S =?= 则称1,2,n B B B L 为样本空间S 的一个划分。 若1,2,n B B B L 是样本空间的一个划分,那么,对每次试验,事件1,2,n B B B L 中必有一个且仅有一个发生。 在新的结论下,划分(完备事件组) 可以不这样要求,只要满足如下即可: (1)1n i i B A ==U (2)B 发生当且仅当B 与1,2,...n A A A 之 一同时发生,此处并不要求1n i i A S ==U 事实上,只要1n i i B A =?U 即可。 2.全概率公式 设试验E 的样本空间为S ,A 为E 的事 件,1,2,n B B B L 为S 的一个划分,且()0(1,2,),i P B i n >=L 则1()(|)()n i i i P A P A B P B ==∑ 称为全概率公式。 证明:因为 1212()n n A AS A B B B AB AB AB ==???=??L L 由假设()0(1,2,),i P B i n >=L 且 ()(),,,1,2,i j AB AB i j i j n φ=≠=L 故:1()(|)()n i i i P A P A B P B ==∑ 再次回到体育彩票问题,使用全概率公式具体 求解第一人和第二人分别摸到奖卷的概率。 教师给予引导,回归到刚提出的问题上,对日常生活中买体育彩票这个事件的样本空间进行划分。为给出全概率公式做准备。 通过对概率公式的讲 解,具体解

贝叶斯定理

贝叶斯定理有条件概率和全概率组成: 条件概率 如果两个事件A 和B 不是互相独立的,并且知道事件B 中的一个事件已经发生,我们就能得到关于P(A)的信息。这反映为A 在B 中的条件概率,记为P(A︱B) : 无条件概率P(A)通常称为先验概率,而条件概率通常称为后验概率。 注意:条件可以在任何一个中发生: 贝叶斯定理 假设样本空间S 被分成一个含有n 个互斥事件的集合,每个事件称为S 的一个划分: 考虑S 中的一个任意事件B,如下图所示: 事件B 可以写成由n 个不相交(互斥)事件BA1,,BA2,..., BA n 组成,记为: 这隐含了全概率定理: 用全概率定理和条件概率的定义可以得到贝叶斯定理: 例子: 考虑一个由10 个水样组成的集合。3 个水样已被污染。定义事件如下: P(C)=0.3(基于10 个样本中有3 个被污染)

假设样本分析技术不完美。通过校准检验: P(D︱C)=0.9 成功检测出 P(D︱C’)=0.4 错误警报 贝斯定理(用C 代替A1,用C’代替A2,用D 代替B): 贝叶斯定理用于投资决策分析是在已知相关项目B的资料,而缺乏论证项目A的直接资料时, 通过对B项目的有关状态及发生概率分析推导A项目的状态及发生概率。 如果我们用数学语言描绘,即当已知事件Bi的概率P(Bi)和事件Bi已发生条件下事件A的概率P(A│Bi), 则可运用贝叶斯定理计算出在事件A发生条件下事件Bi的概率P(Bi│A)。 按贝叶斯定理进行投资决策的基本步骤是: 1 列出在已知项目B条件下项目A的发生概率,即将P(A│B)转换为P(B│A); 2 绘制树型图; 3 求各状态结点的期望收益值,并将结果填入树型图; 4 根据对树型图的分析,进行投资项目决策; 搜索巨人Google和Autonomy,一家出售信息恢复工具的公司,都使用了贝叶斯定理(Bayesian principles)为数据搜索提供近似的(但是技术上不确切)结果。 研究人员还使用贝叶斯模型来判断症状和疾病之间的相互关系,创建个人机器人,开发能够根据数据和经验来决定行动的人工智能设备。 贝叶斯定理是机器学习的核心。 question1:如果袋子里有M个白球,N个黑球,则伸手拿到黑球的概率是多大? question2:如果我们事先不知道袋子里黑球和白球的个数,而是闭着眼睛摸出一个(或几个)球,观察这些取出来的球的颜色后,来判断黑白球的比例。 具体地说,我们需要做两件事情: 1. 算出各种不同猜测的可能性大小。 2. 算出最靠谱的猜测是什么。 第一个就是计算特定猜测的后验概率,对于连续的猜测空间则是计算猜测的概率密度函数。第二个则是所谓的模型比较,模型比较如果不考虑先验概率的话就是最大似然方法。

相关文档
相关文档 最新文档