文档视界 最新最全的文档下载
当前位置:文档视界 › 电力电子器件的发展及应用

电力电子器件的发展及应用

电力电子器件的发展及应用
电力电子器件的发展及应用

电力电子器件的发展及应用

研1506 苏智清 s2*******

摘要:本文简单介绍了电力技术的分类, 回顾了电力电子技术及其器件的发展过程, 说明了现在主流的电力电子器件的工作原理、应用范围及其优缺点, 探讨了在本世纪中新型电力电子器件的应用。

关键词:复合型电力电子器件;新型材料的电力电子器件;电力电子器件的应用1引言

电力电子学是电工学的一个分支,是由电力系统、控制理论与电子学等学科共同发展起来的一个新型边缘性学科。电力电子学的主要特点是具有很强的应用性,同时与其他学科有着很好的交叉融合性,这也是电力电子学的基础理论与应用技术能够在短短几十年间飞速发展的一个相当重要的因素。目前,电力电子技术的应用已经从机械、石化、纺织、冶金、电力、铁路、航空、航海等一系列领域,进一步扩展到汽车、现代通信、家用电器、医疗设备、灯光照明等各个领域。进入 21 世纪,伴随着新理论、新器件、新技术的不断涌现,尤其是与微电子技术的日益融合,电力电子技术作为信息产业和传统产业之间的桥梁,在国民经济中必将占有越来越重要的地位,在各领域中的应用也必将不断得到拓展。

2电力电子器件的发展

2.1半控型器件

上世纪50年代,美国通用电气公司发明世界上第个晶闸管,标志电力电子技术的诞生。此后,晶闸管得到了迅速发展,器件容量越来越大,性能得到不断提高,并产生大量派生器件,如快速晶闸管逆导晶闸管等等。但是,晶闸管作为半控型器件,只能通过门极导通,不能控制关断。要关断必须通过强迫换相电路,从而装置体积增大,复杂程度提高,效率降低。另外,晶闸管为双极型器件,有少子效应,所以工作频率低,由于这些原因,使得晶闸管的应用受到限制。

虽然晶闸管有以上缺点,但由于它的大电压大电流特性,使在高压直流输电静止无功补偿,大功率和高压变频调速等方面仍占有重要位置。

2.2全控型器件

2.2.1门极可关断晶闸管(GTO)

GTO有对称,非对称和逆导三种类型。对称GTO通态压降小,抗浪涌能力强,易于提高耐压能力。逆导型GTO是在同一芯片上将GTO与整流二极管反并联制成的集成器件,不能承受反向电压,主要用于中等容量的牵引驱动中。

在当前各种自关断器件中,GTO容量做大,工作最低。GTO是电流控制型器件,因而关断需要很大的反向驱动电流。目前,GTO在低于2000V某些领域被GTR和IGBTDE所替代,但在大功率电力牵引有明显优势。

2.2.2大功率晶体管(GTR)

GTR是一种电流控制的双极双结电力电子器件,它既具备晶体管的固有特性,又增加功率容量,因此,由它组成的电路灵活,成熟,开关损耗小,开关时间短,在电源电机控制,通用逆变器等中等容量,中等频率的电路中广泛应用。GTR的缺点驱动电流较大,耐浪涌电流能力差,易受二次击穿损坏。在开关电源GTR渐渐被功率MOSFET和IGBT代替。

2.2.3功率MOSFET

功率MOSFET 是一种电压控制型单极晶体管,它是通过栅极电压来控制漏极电流的,因而它的一个显著特点是驱动电路简单、驱动功率小;仅由多数载流子导电,无少子存储效应,高频特性好,工作频率高达100k Hz 以上,为所有电力电子器件中频率之最,因而最适合应用于开关电源、高频感应加热等高频场合;没有二次击穿问题,安全工作区广,耐破坏性强。功率MOSFET 的缺点是电流容量小、耐压低、通态压降大,不适宜运用于大功率装置。

2.3复合型电力电子器件

2.3.1绝缘门极双极型晶体管(IGBT)

IGBT 可视为双极型大功率晶体管与功率场效应晶体管的复合。通过施加正向门极电压形成沟道、提供晶体管基极电流使 IGBT 导通;反之,若提供反向门极电压则可消除沟道、使 IGBT 因流过反向门极电流而关断。IGBT 集 GTR 通态压降小、载流密度大、耐压高和功率 MOSFET 驱动功率小、开关速度

快、输入阻抗高、热稳定性好的优点于一身,因此备受人们青睐。它的研制成功为提高电力电子装置的性能,特别是为逆变器的小型化、高效化、低噪化提供了有利条件。

比较而言,IGBT 的开关速度低于功率 MOSFET,却明显高于 GTR;IGBT 的通态压降同 GTR 相近,但比功率 MOSFET 低得多;IGBT 的电流、电压等级与 GTR 接近,而比功率 MOSFET 高。由于 IGBT 具有上述特点,在中等功率容量 (600V 以上)的UPS、开关电源及交流电机控制用 PWM 逆变器中,IGBT 已逐步替代 GTR 成为核心元件。

2.3.2MOS控制晶闸管(MCT)

MCT 最早由美国 GE 公司研制,是由 MOSFET 与晶闸管复合而成的新型器件。每个 MCT 器件由成千上万的 MCT 元组成,而每个元又是由一个 PNPN 晶闸管、一个控制 MCT 导通的MOSFET 和一个控制 MCT 关断的 MOSFET 组成。MCT 工作于超掣住状态,是一个真正的 PNPN 器件,这正是其通态电阻远低于其它场

效应器件的最主要原因。MCT 既具备功率 MOSFET 输入阻抗高、驱动功率小、开关速度快的特性,又兼有晶闸管高电压、大电流、低压降的优点。其芯片连续电流密度在各种器件中最高,通态压降不过是 IGBT 或 GTR 的 1/3,而开关速度则超过 GTR。此外,由于 MCT 中的 MOSFET 元能控制 MCT 芯片的全面积通断,故 MCT 具有很强的导通 di/dt 和阻断 d V/dt 能力,其值高达 2000A/s 和2000V/s。其工作结温亦高达 150~200℃。

2.3.3功率集成电路(PIC)

PIC 是电力电子器件技术与微电子技术相结合的产物,是机电一体化的关键接口元件。将功率器件及其驱动电路、保护电路、接口电路等外围电路集成在一个或几个芯片上,就制成了 PIC。一般认为,PIC 的额定功率应大于 1W。功率集成电路还可以分为高压功率集成电路(HVIC)、智能功率集成电路(SPIC)和智能功率模块(IPM)。

HVIC 是多个高压器件与低压模拟器件或逻辑电路在单片上的集成,由于它的功率器件是横向的、电流容量较小,而控制电路的电流密度较大,故常用于小型电机驱动、平板显示驱动及长途电话通信电路等高电压、小电流场合。已有110V/13A 和 550V/0.5A、80V/2A/200k Hz 以及 500V/600m A 的HVIC 分别用于上述装置。

SPIC 是由一个或几个纵型结构的功率器件与控制和保护电路集成而成,电流容量大而耐压能力差,适合作为电机驱动、汽车功率开关及调压器等。

IPM 除了集成功率器件和驱动电路以外,还集成了过压、过流、过热等故障监测电路,并可将监测信号传送至 CPU,以保证 IPM 自身在任何情况下不受损坏。当前,IPM 中的功率器件一般由 IGBT 充当。由于 IPM 体积小、可靠性高、使用方便,故深受用户喜爱。IPM 主要用于交流电机控制、家用电器等。已有400V/55k W/20k Hz IPM 面市。自 1981 年美国试制出第一个 PIC 以来,PIC 技术获得了快速发展;今后,PIC 必将朝着高压化、智能化的方向更快发展并进入普遍实用阶段。

2.4新型材料的电力电子器件

2.4.1砷化稼材料

GaAs是一种很有发展前景的半导体材料。与Si相比,GaAs有两个独特的优点:①禁带宽度能量为1. 4eV,较Si的1. leV要高。正因如此,GaAs整流元件可在350℃的高温卜工作(Si整流元件只能达200 0C ),具有很好的耐高温特性,有利于模块小型化;② GaAs材料的电子迁移率为8000cm2/Vs,是Si材料的5倍,因而同容量的器件几何尺寸更小,从而可减小寄生电容,提高开关频率(1MH:以上)。

当然,由于GaAs材料禁带宽度大,也带来正向压降比较大的不利因素,不

过其电子迁移率可在一定程度上补偿这种影响。

2.4.2碳化硅材料

SiC是目前发展最成熟的宽禁带半导体材料,作为Si和GaAs的重要补充,可制作出性能更加优异的高温(300500 0C )、高频、高功率、高速度、抗辐射器件。SiC高功率、高压

器件对于公电输运和电动汽车的节能具有重要意义。

碳化硅与其他半导体材料相比,具有下列优异的物理特点:高的禁带宽度,高的饱和电子漂移速度,高的击穿强度,低的介电常数和高的热导率。上述这些优异的物理特性,决定了碳化硅在高温、高频率、高功率的应用场合是极为理想的半导体材料。在同样的耐压和

电流条件下,SiC器件的漂移区电阻要比硅低200倍,即使高耐压的SiC场效应管的导通压降,也比单极型、双极型硅器件的导通压将低得多。而且,SiC器件的开关时间可达lOns量级,并具有十分优越的FBSOA。

SiC可以用来制造射频和微波功率器件,各种高频整流器,MESFETs, MOSFETs 和IFETs等。高电压的SiC整流器和其他SiC低频功率器件,用于工业和电力系统。理论分析表明,SiC功率器件非常接近于理想的功率器件。可以预见,各种SiC器件的研究与开发,必将成为功率器件研究领域的主要潮流之一。

3电力电子器件的应用

3.1在新能源和电力系统中的应用

电力系统是电力电子技术应用中最重要和最有潜力的市场领域,电力电子技术在电能的发生、输送、分配和使用的全过程都得到了广泛而重要的应用。从用电角度来说,要利用电力电子技术进行节能技术改造,提高用电效率;从发、输配电角度来说,必须利用电力电子技术提高发电效率和提高输配电质量。

3.2在轨道交通和电动汽车中的应用

电力电子技术在轨道交通牵引系统中的应用主要分为三个方面:主传动系统、辅助传动系统、控制与辅助系统中的稳压电源。在电力电子技术的带动下,电传动系统由直流传动走向现代交流传动。电力电子器件容量和性能的提高、封装形式的改进,以及功能单元的模块化设计技术促进了传动系统装置的简约化,促进牵引电传动系统、辅助系统和控制与辅助电流稳压电源的发展。电动汽车的电机用蓄电池为能源,靠电力电子装置来进行电力变换与驱动控制,其蓄电池的充电也是离不开电力电子技术的。

3.3工业电机节能应用

电动机作为电能最大的消费载体,具有很大的节电潜力。我国“十五”和“十

一五”计划都将电机系统节能列为节能的重点项目。而随着电力电子技术、计算机技术、自动控制技术的迅速发展,电气传动技术面临着一场历史革命,即交流调速取代直流调速、计算机数字控制技术取代模拟控制。

3.4在消费类电子中的应用

电力电子技术在消费类电子中的应用主要集中于各类家电中电机的驱动、感应加热、照明驱动和各类个人电子用品电源管理,家用电器依托变频技术,主要瞄准高功能和省电。

3.5在国防军工中的应用

电力电子技术及电力电子装置已日益广泛地应用和渗透到能源、环境、制造业、交通运输业中,特别是与国家安全和国防有关的先进能源技术、激光技术、空天技术、高档数控机床与基础制造技术等许多重要领域,电力电子技术是关系到上述领域中的核心技术所在。电力电子在现代化国防中得到越来越广泛的应用,所有现代国防装备的特种供电电源、电力驱动、推进、控制等均涉及到电力电子核心技术。

4结论

未来一个时期,电力电子行业将迎来良好的发展前景,而自主创新是电力电子行业发展的持久动力。只有通过自主创新,用创新精神引领企业,掌握核心技术,才能提高企业的竞争力;只有通过自主创新、才能摆脱目前低水平重复建设和低价格恶性竞争的局面,进一步发展和壮大企业,才能尽快缩短与发达国家的差距,促进电力电子行业的高速发展。为缩短与发达国家的差距,促进我国新型电力电子器件的早日问世,电力电子行业加强自主创新是当务之急。未来几年,全行业要着眼前沿技术,努力打造自主品牌,加大技术研究力量和资金投入,积极推动自主创新能力的提高。而电力电子器件正在进入以新型器件为主的新时代,作为电力电子技术发展的决定性因素,电力电子器件的研发及关键技术突破,必然会促进电力电子技术的迅速发展,进而促进以电力电子技术为基础的传统工业和高新技术产业的迅速发展。

参考文献

[1]高艳青.电力电子器件发展与展望.吕梁市工业技术研究所

[2]钱照明,张军明,盛况.电力电子器件及其应用的现状和发展.中国电机工程

学报2014年29期

[3]李现兵,师宇杰,王广州,王桂荣. 浅谈现代电力电子器件的发展. 《电力电子》

2005年3期

[4]孟庆宗.国内外电力电子器件发展现状.电力设备2003年2期

[5]赵定远,赵莉华. 现代电力电子器件的发展.成都大学学报2007年3期

[6]肖向锋. 电力电子器件产业发展战略研究. 电力电子2011年1期

电力电子器件应用指南

目录 电力电子器件应用指南 (1) 晶闸管、二极管主要参数及其含义 (8) 晶闸管、二极管简易测试方法 (11) 中频感应加热电源常见故障与维修 (13) 水冷散热器的安装与使用 (20) 晶闸管水冷散热器重复使用中应注意的问题 (23) 电焊机用晶闸管模块的选择与应用 (25) 电力半导体器件用散热器选择及使用原则 (32) 风冷散热器的选配 (34) 高频晶闸管新特性 (36) 改进的晶闸管高di/dt性能 (39) 门极触发强度对晶闸管开通特性的影响 (42) 晶闸管串、并联配对选择及使用要求 (47) 晶闸管在低温条件下的使用 (52) 功率器件技术与电源技术的现状和发展 (53) 晶闸管保护电路 (60)

电力电子器件应用指南 一、参数说明 1本手册参数表中所给出的数据,I TSM、I2t、dv/dt、di/dt指的是元件所能满足的最小值,Q r、V TM、V TO、r T指元件可满足(不超过)的最大值。 2通态平均电流额定值I TAV(I FAV) I TAV(I FAV)指在双面冷却条件下,在规定的散热器温度时,允许元件流过的最大正弦半波电流平均值。I TAV(I FAV)对应元件额定有效值I RMS=1.57 I TAV。实际使用中,若不能保证散热器温度低于规定值,或散热器与元件接触热阻远大于规定值,则元件应降额使用。 3晶闸管通态电流上升率di/dt 参数表中所给的为元件通态电流上升率的临界重复值。其对应不重复测试值为重复值的2倍以上,在使用过程中,必须保证元件导通期任何时候的电流上升率都不能超过其重复值。 4晶闸管使用频率 晶闸管可工作的最大频率由其工作时的电流脉冲宽度t p,关断时间t q以及从关断后承受正压开始至其再次开通的时间t V决定。f max=1/(t q+t p+t V)。根据工作频率选取元件时必须保证元件从正向电流过零至开始承受正压的时间间隔t H>t q,并留有一定的裕量。随着工作频率的升高,元件正向损耗E pf和反向恢复损耗E pr随之升高,元件通态电流须降额使用。 二、元件的选择 正确地选择晶闸管、整流管等电力电子器件对保证整机设备的可靠性及降低设备成本具有重要意义。元件的选择要综合考虑其使用环境、冷却方式、线路型式、负载性质等因素,在保证所选元件各参数具有裕量的条件下兼顾经济性。由于电力电子器件的应用领域十分广泛,具体应用形式多种多样,下面仅就晶闸管元件在整流电路和单项中频逆变电路中的选择加以说明。

大功率电力电子器件的新进展

大功率电力电子器件前沿技术分析 贾海叶山西吕梁供电 摘要:本文对大功率电力电子器件技术进行了简述,阐述了大功率电力电子器件发展热点,并对其前沿技术和未来的发展方向进行了分析。 关键词:大功率、电子电力器件,前沿技术 1 引言 随着半导体制造工艺的进步和对电力电子设备容量增大的需求,对电力电子器件的性能和功率要求也越来越高,由此产生了耐高压、大功率的电力电子器件。近来,伴随着器件的大功率化,新的HVIGBT(HighVoltage Insulated Gate BipolarTran-sistor Module)高压绝缘栅双极型半导体模块、HVIPM(High Voltage Intelligent Power Module)高压智能电力模块的MOS型电力电子器件的开发、GCT(Gate Commutated Turn-off Thyristor)闸门换相关断可控硅器件的开发,都有了较大的进展。以新一代器件问世为标志,必然在电力电子设备的开发方面,向着小型化、高效率化、高速控制化的目标飞跃前进。 1.1 大功率电力电子器件的分类 大功率电力电子器件主要分为:二极管、可控硅、光触发可控硅、GTO(Gate Turn-off Thyristor)闸门关断可控硅、GCT、HVIGBT及HVIPM器件。 从1960年开发初期的1英寸硅片开始至今,发展到直径为6英

寸硅片的耐高压、大功率电力电子器件系列化产品,其容量和当初相比,提高了100多倍。而且在使用上减少了串联或并联元件的数量,提高了可靠性,减小了设备的体积。 按照电力电子器件能够被控制电路信号所控制的程度分类,大功率电力电子器件分为: 1.半控型器件,例如晶闸管; 2.全控型器件,例如GTO(门极可关断晶闸管)、GTR(电力晶体管),MOSFET(电力场效应晶体管)、IGBT(绝缘栅双极晶体管); 3.不可控器件,例如电力二极管; 按照驱动电路加在电力电子器件控制端和公共端之间信号的性质分类: 1.电压驱动型器件,例如IGBT、MOSFET、SITH(静电感应晶闸管); 2.电流驱动型器件,例如晶闸管、GTO、GTR; 根据驱动电路加在电力电子器件控制端和公共端之间的有效信号波形分类: 1.脉冲触发型,例如晶闸管、GTO; 2.电子控制型,例如GTR、MOSFET、IGBT; 按照电力电子器件内部电子和空穴两种载流子参与导电的情况分类: 1.单极型器件,例如电力二极管、晶闸管、GTO、GTR; 2.双极型器件,例如MOSFET、IGBT;

常用电力电子器件特性测试

实验二:常用电力电子器件特性测试 (一)实验目的 (1)掌握几种常用电力电子器件(SCR、GTO、MOSFET、IGBT)的工作特性;(2)掌握各器件的参数设置方法,以及对触发信号的要求。 (二)实验原理 图1.MATLAB电力电子器件模型 MATLAB电力电子器件模型使用的是简化的宏模型,只要求器件的外特性与实际器件特性基本相符。MATLAB电力电子器件模型主要仿真了电力电子器件的开关特性,并且不同电力电子器件模型都具有类似的模型结构。 模型中的电阻Ron和直流电压源Vf分别用来反映电力电子器件的导通电阻和导通时的门槛电压。串联电感限制了器件开关过程中的电流升降速度,模拟器件导通或关断时的动态过程。MATLAB电力电子器件模型一般都没有考虑器件关断时的漏电流。 在MATLAB电力电子器件模型中已经并联了简单的RC串联缓冲电路,在参数表中设置,名称分别为Rs和Cs。更复杂的缓冲电路则需要另外建立。对于MOSFET模型还反并联了二极管,在使用中要注意,需要设置体内二极管的正向压降Vf和等效电阻Rd。对于GTO和IGBT需要设置电流下降时间Tf和电流拖尾时间Tt。 MATLAB的电力电子器件必须连接在电路中使用,也就是要有电流的回路,

但是器件的驱动仅仅是取决于门极信号的有无,没有电压型和电流型驱动的区别,也不需要形成驱动的回路。尽管模型与实际器件工作有差异,但使MATLAB电力电子器件模型与控制连接的时候很方便。MATLAB的电力电子器件模型中含有电感,因此具有电流源的性质,所以在模块参数中还包含了IC即初始电流项。此外也不能开路工作。 含电力电子模型的电路或系统仿真时,仿真算法一般采用刚性积分算法,如ode23tb、ode15s。电力电子器件的模块上,一般都带有一个测量输出端口,通过输出端m可以观测器件的电压和电流。本实验将电力电子器件和负载电阻串联后接至直流电源的两端,给器件提供触发信号,使器件触发导通。 (三)实验内容 (1)在MATLAB/Simulink中构建仿真电路,设置相关参数。 (2)改变器件和触发脉冲的参数设置,观察器件的导通情况及负载端电压、器件电流的变化情况。 (四)实验过程与结果分析 1.仿真系统 Matlab平台 2.仿真参数 (1)Thyristor参数设置: 直流源和电阻参数:

碳化硅电子器件发展分析报告

碳化硅电力电子器件的发展现状分析 目录 1.SiC器件的材料与制造工艺 (2) 1.1 SiC单晶 (2) 1.2 SiC外延 (3) 1.3 SiC器件工艺 (4) 2. SiC二极管实现产业化 (5) 3. SiC JFET器件的产业化发展 (7) 4. SiC MOSFET器件实用化取得突破 (7) 5. SiC IGBT器件 (8) 6. SiC功率双极器件 (9) 7. SiC 功率模块 (10) 8. 国内的发展现状 (11) 9. SiC电力电子器件面对的挑战 (11) 9.1 芯片制造成本过高 (11) 9.2 材料缺陷多,单个芯片电流小 (12) 9.3 器件封装材料与技术有待提高 (12) 10. 小结 (12)

在过去的十五到二十年中,碳化硅电力电子器件领域取得了令人瞩目的成就,所研发的碳化硅器件的性能指标远超当前硅基器件,并且成功实现了部分碳化硅器件的产业化,在一些重要的能源领域开始逐步取代硅基电力电子器件,并初步展现出其巨大的潜力。碳化硅电力电子器件的持续进步将对电力电子技术领域的发展起到革命性的推动作用。随着SiC单晶和外延材料技术的进步,各种类型的SiC器件被开发出来。SiC器件主要包括二极管和开关管。SiC二极管主要包括肖特基势垒二极管及其新型结构和PiN 型二极管。SiC开关管的种类较多,具有代表性的开关管有金属氧化物半导体场效应开关管(MOSFET)、结型场效应开关管(JFET)、绝缘栅双极开关管(IGBT)三种。 1.SiC器件的材料与制造工艺 1.1 SiC单晶 碳化硅早在1842年就被发现了,但直到1955年,飞利浦(荷兰)实验室的Lely 才开发出生长高品质碳化硅晶体材料的方法。到了1987年,商业化生产的SiC衬底进入市场,进入21世纪后,SiC衬底的商业应用才算全面铺开。碳化硅分为立方相(闪锌矿结构)、六方相(纤锌矿结构)和菱方相3大类共260多种结构,目前只有六方相中的4H-SiC、6H-SiC才有商业价值,美国科锐(Cree)等公司已经批量生产这类衬底。立方相(3C-SiC)还不能获得有商业价值的成品。 SiC单晶生长经历了3个阶段, 即Acheson法、Lely法、改良Lely法。利用SiC 高温升华分解这一特性,可采用升华法即Lely法来生长SiC晶体。升华法是目前商业生产SiC单晶最常用的方法,它是把SiC粉料放在石墨坩埚和多孔石墨管之间,在惰性气体(氩气)环境温度为2 500℃的条件下进行升华生长,可以生成片状SiC晶体。由于Lely法为自发成核生长方法,不容易控制所生长SiC晶体的晶型,且得到的晶体尺寸很小,后来又出现了改良的Lely法。改良的Lely法也被称为采用籽晶的升华法或物理气相输运法 (简称PVT法)。PVT法的优点在于:采用 SiC籽晶控制所生长晶体的晶型,克服了Lely法自发成核生长的缺点,可得到单一晶型的SiC单晶,且可生长较大尺寸的SiC单晶。国际上基本上采用PVT法制备碳化硅单晶。目前能提供4H-SiC晶片的企业主要集中在欧美和日本。其中Cree产量占全球市场的85%以上,占领着SiC晶体生长及相关器件制作研究的前沿。目前,Cree的6英寸SiC晶片已经商品化,可以小批量供货。此外,国内外还有一些初具规模的SiC晶片供应商,年销售量在1万片上下。Cree生产的SiC晶片有80%以上是自己消化的,用于LED衬底材料,所以Cree是全球

电力电子器件大全及使用方法详解(DOC 42页)

第1章电力电子器件 主要内容:各种二极管、半控型器件-晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,器件的选取原则,典型全控型器件:GTO、电力MOSFET、IGBT,功率集成电路和智能功率模块,电力电子器件的串并联、电力电子器件的保护,电力电子器件的驱动电路。 重点:晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,器件的选取原则,典型全控型器件。 难点:晶闸管的结构、工作原理、伏安特性、主要静态、动态参数。 基本要求:掌握半控型器件-晶闸管的结构、工作原理、伏安特性、主要静态、动态参数,熟练掌握器件的选取原则,掌握典型全控型器件,了解电力电子器件的串并联,了解电力电子器件的保护。 1 电力电子器件概述 (1)电力电子器件的概念和特征 主电路(main power circuit)--电气设备或电力系统中,直接承担电能的变换或控制任务的电路; 电力电子器件(power electronic device)--可直接用于处理电能的主电路中,实现电能的变换或控制的电子器件; 广义上电力电子器件可分为电真空器件和半导体器件两类。 两类中,自20世纪50年代以来,真空管仅在频率很高(如微波)的大功率高频电源中还在使用,而电力半导体器件已取代了汞弧整流器(Mercury Arc Rectifier)、闸流管(Thyratron)等电真空器件,成为绝对主力。因此,电力电子器件目前也往往专指电力半导体器件。 电力半导体器件所采用的主要材料仍然是硅。 同处理信息的电子器件相比,电力电子器件的一般特征: a. 能处理电功率的大小,即承受电压和电流的能力,是最重要的参数;

电力电子器件的最新发展趋势

电力电子器件的最新发展趋势 现代的电力电子技术无论对改造传统工业(电力、机械、矿冶、交通、化工、轻纺等),还是对新建高技术产业(航天、激光、通信、机器人等)至关重要,从而已迅速发展成为一门独立学科领域。它的应用领域几乎涉及到国民经济的各个工业部门,毫无疑问,它将成为本世纪乃至下世纪重要关键技术之一。近几年西方发达的国家,尽管总体经济的增长速度较慢,电力电子技术仍一直保持着每年百分之十几的高速增长。 从历史上看,每一代新型电力电子器件的出现,总是带来一场电力电子技术的革命。以功率器件为核心的现代电力电子装置,在整台装置中通常不超过总价值的20%~30%,但是,它对提高装置的各项技术指标和技术性能,却起着十分重要的作用。 众所周知,一个理想的功率器件,应当具有下列理想的静态和动态特性:在截止状态时能承受高电压;在导通状态时,具有大电流和很低的压降;在开关转换时,具有短的开、关时间,能承受高的di/dt和dv/dt,以及具有全控功能。 自从50年代,硅晶闸管问世以后,20多年来,功率半导体器件的研究工作者为达到上述理想目标做出了不懈的努力,并已取得了使世人瞩目的成就。60年代后期,可关断晶闸管GTO实现了门极可关断功能,并使斩波工作频率扩展到1kHz以上。70年代中期,高功率晶体管和功率MOSFET问世,功率器件实现了场控功能,打开了高频应用的大门。80年代,绝缘栅门控双极型晶体管(IGBT) 问世,它综合了功率MOSFET和双极型功率晶体管两者的功能。它的迅速发展,又激励了人们对综合功率MOSFET和晶闸管两者功能的新型功率器件- MOSFET门控晶闸管的研究。因此,当前功率器件研究工作的重点主要集中在研究现有功率器件的性能改进、MOS门控晶闸管以及采用新型半导体材料制造新型的功率器件等。下面就近几年来上述功率器件的最新发展加以综述。 一、功率晶闸管的最新发展 1.超大功率晶闸管 晶闸管(SCR)自问世以来,其功率容量提高了近3000倍。现在许多国家已能稳定生产8kV / 4kA的晶闸管。日本现在已投产8kV / 4kA和6kV / 6kA的光触发晶闸管(LTT)。美国和欧洲主要生产电触发晶闸管。近十几年来,由于自关断器件的飞速发展,晶闸管的应用领域有所缩小,但是,由于它的高电压、大电流特性,它在HVDC、静止无功补偿(SVC)、大功率直流电源及超大功率和高压变频调速应用方面仍占有十分重要的地位。预计在今后若干年内,晶闸管仍将在高电压、大电流应用场合得到继续发展。 现在,许多生产商可提供额定开关功率36MVA ( 6kV/ 6kA )用的高压大电流GTO。传统GTO的典型的关断增量仅为3~5。GTO关断期间的不均匀性引起的“挤流效应”使其在关断期间dv/dt必须限制在500~1kV/μs。为此,人们不得不使用体积大、昂贵的吸收电路。另外它的门极驱动电路较复杂和要求较大的驱动功率。但是,高的导通电流密度、高的阻断电压、阻断状态下高的dv/dt耐量和有可能在内部集成一个反并二极管,这些突出的优点仍使人们对GTO感到兴趣。到目前为止,在高压(VBR > 3.3kV )、大功率(0.5~20 MVA)牵引、工业和电力逆变器中应用得最为普遍的是门控功率半导体器件。目前,GTO的最高研究水平为6in、6kV / 6kA以及9kV/10kA。为了满足电力系统对1GVA以上的三相逆变功

电力电子器件的发展分析

电力电子技术课程论文 电力电子器件的发展分析 摘要:电力电子器件发展至今已有近60年的历史,本文简单介绍了电力电子器件的发展历程,然后对IGCT、IGBT、MCT等新型电力电子器件的发展状况及其优缺点进行了分析,最后, 展望了电力电子器件的未来发展。 关键字:电力电子器件;IGCT;ICBT;MCT; 1、引言 电力电子技术包括功率半导体器件与IC技术、功率变换技术及控制技术等几个方面,其中,电力电子器件是电力电子技术的重要基础,也是电力电子技术发展的“机车”。 电力电子器件的发展时间并不长,但是至今已经发展出多个种类的产品,其中最早为人们所应用的是普通晶闸管,普通晶闸管是由美国通用电气公司在1958年时研制并投产的,它为之后的电力电子器件发展奠定了基础,在1964年时,美国公司又成功研制了可关断的GT0;到了二十世纪七十年代,电力电子器件的研究有了又一成果——GTR系列产品,二十世纪八九十年代,以功率M0SFET和IGBT为代表的,集高频、高压和大电流于一身的功率半导体复合器件,标志着传统电力电子技术已经进入现代电力电子时代。 2、电力电子器件发展史

电力电子器件又称作开关器件,相当于信号电路中的A-D采样,称之为功率采样,器件的工作过程就是能量过渡过程,其可靠性决定了装置和系统的可靠性。根据可控程度以及构造特点等因素可以把电力电子器件分成四类: (1)半控型器件——第一代电力电子器件 2O世纪5O年代,由美国通用电气公司发明的硅晶闸管的问世,标志着电力电子技术的开端。到了2O世纪7O年代,已经派生出了许多半控型器件,这些电力电子器件的功率也越来越大,性能日渐完善,但是由于晶闸管的固有特性,大大限制了它的应用范围。 (2)全控型器件一一第二代电力电子器件 从2O世纪7O年代后期开始,可关断晶闸管(GTO)、电力晶体管(GTR或BJT)及其模块相继实用化。此后,各种高频率的全控型器件不断问世,并得到迅速发展。这些器件主要有:电力场控晶体管(即功率MOSFET)、静电感应晶体管(SIT)、静电感应晶闸管(SITH)等,这些器件的产生和发展,已经形成了一个新型的全控电力电子器件的大家族。 (3)复合型器件——第三代电力电子器件 前两代电力电子器件中各种器件都有其本身的特点。近年来,又出现了兼有几种器件优点的复合器件。如:绝缘门极双极晶体管IGBT(Insulated Gate Bipolar Transistor)。它实际上是MOSFET驱动双极型晶体管,兼有M0sFET的高输入阻抗和GTR的低导通压降两者的优点。它容量较大、开关速度快、易驱动,成为一种理想的电力电子器件。 (4)模块化器件——第四代电力电子器件 随着工艺水平的不断提高,可以将许多零散拼装的器件组合在一起并且大规模生产,进而导致第四代电力电子器件的诞生。以功率集成电路PIC(Power Intergrated Circuit)为代表,其不仅把主电路的器件,而且把驱动电路以及具有过压过流保护,甚至温度自动控制等作用的电路都集成在一起,形成一个整体。 3、电力电子器件的最新发展 现代电力电子器件仍然在向大功率、易驱动和高频化方向发展。其中,电力电子模块化是电力电子器件向高功率密度发展的重要一步。下面介绍几种新型电力电子器件: 3.1 IGCT IGCT(Intergrated Gate Commutated Thyristors)是一种用于巨型电力电子成套装置中的新型电力半导体器件[1]。它是将GTO芯片与反并联二极管和门极驱动电路集成在一起,再与其门极驱动器在外围以低电感方式连接,它是结合了晶体管和晶闸管两种器件的优点,即晶体管的稳定的关断能力和晶闸管的低通态损耗的一种新型器件。IGCT在导通阶段发挥晶闸管的性能,关断阶段呈类似晶体管的特性。IGCT具有电流大、电压高、开关频率高、可靠性高、结构紧凑、损耗低的特点。此外,IGCT还像GT0一样,具有制造成本低和成品率高的

现代电力电子技术的发展、现状与未来展望综述上课讲义

现代电力电子技术的发展、现状与未来展 望综述

课程报告 现代电力电子技术的发展、现状与 未来展望综述 学院:电气工程学院 姓名: ********* 学号: 14********* 专业: ***************** 指导教师: *******老师 0 引言

电力电子技术就是使用电力半导体器件对电能进行变换和控制的技术,它是综合了电子技术、控制技术和电力技术而发展起来的应用性很强的新兴学科。随着经济技术水平的不断提高,电能的应用已经普及到社会生产和生活的方方面面,现代电力电子技术无论对传统工业的改造还是对高新技术产业的发展都有着至关重要的作用,它涉及的应用领域包括国民经济的各个工业部门。毫无疑问,电力电子技术将成为21世纪的重要关键技术之一。 1 电力电子技术的发展[1] 电力电子技术包含电力电子器件制造技术和变流技术两个分支,电力电子器件的制造技术是电力电子技术的基础。电力电子器件的发展对电力电子技术的发展起着决定性的作用,电力电子技术的发展史是以电力电子器件的发展史为纲的。 1.1半控型器件(第一代电力电子器件) 上世纪50年代,美国通用电气公司发明了世界上第一只硅晶闸管(SCR),标志着电力电子技术的诞生。此后,晶闸管得到了迅速发展,器件容量越来越大,性能得到不断提高,并产生了各种晶闸管派生器件,如快速晶闸管、逆导晶闸管、双向晶闸管、光控晶闸管等。但是,晶闸管作为半控型器件,只能通过门极控制器开通,不能控制其关断,要关断器件必须通过强迫换相电路,从而使整个装置体积增加,复杂程度提高,效率降低。另外,晶闸管为双极型器件,有少子存储效应,所以工作频率低,一般低于400 Hz。由于以上这些原因,使得晶闸管的应用受到很大限制。 1.2全控型器件(第二代电力电气器件) 随着半导体技术的不断突破及实际需求的发展,从上世纪70年代后期开始,以门极可关断晶闸管(GTO)、电力双极晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展。全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。此外,这些器件的开关速度普遍高于晶闸管,可用于开关频率较高的电路。这些优点使电力电子技术的面貌焕然一新,把电力电子技术推进到一个新的发展阶段。 1.3电力电子器件的新发展 为了解决MSOFET在高压下存在的导通电阻大的问题,RCA公司和GE公司于1982年开发出了绝缘栅双极晶体管(IGBT),并于1986年开始正式生产并逐渐系列化。IGBT是MOS?FET和BJT得复合,它把MOSFET驱动功率小、开关速度快的优点和BJT通态压降小、载流能力大的优点集于一身,性能十分优越,使之很快成为现代电力电子技术的主导器件。与IGBT 相对应,MOS 控制晶闸管(MCT)和集成门极换流晶闸管(IGCT)都是MOSFET和GTO的复合,它们都综合

电力电子技术的发展趋势及应用

电力电子的现代运用 半导体的出现成为20世纪现代物理学的一项最重大的突破,标志着电子技术的诞生。而由于不同领域的实际需要,促使半导体器件自此分别向两个分支快速发展,其中一个分支即是以集成电路为代表的微电子器件,而另一类就是电力电子器件,特点是功率大、快速化。自20世纪五十年代末第一只晶闸管问世以来,电力电子技术开始登上现代电气传动技术舞台,以此为基础开发的可控硅整流装置,是电气传动领域的一次革命,使电能的变换和控制从旋转变流机组和静止离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子的诞生。 电子电力技术包括电力电子器件、变流电路和控制电路3部分,是以电力为处理对象并集电力、电子、控制三大电气工程技术领域之间的综合性学科。电力技术涉及发电、输电、配电及电力应用,电子技术涉及电子器件和由各种电子电路所组成的电子设备和系统,控制技术是指利用外加的设备或装置使机器设备或生产过程的某个工作状态或参数按照预定的规律运行。电力电子器件是电力电子技术的基础,电力电子器件对电能进行控制和转换就是电子电力技术的利用。在21世纪已经成为一种高新技术,影响着人们生活的各种领域,因此对对电子电力技术的研究具有时代意义。 传统电力电子技术是以低频技术处理的,现代电力电子的发展向着高频技术处理发展。其发展先后经历了整流器时代、逆变器时代和变频器时代,在不断的发展中促进了现代电力电子技术的广泛应用。电力电子技术在1947年晶体管诞生开始形成,接着1956的晶闸管的出现标志电力电子技术逐渐形成一门学科开始发展,以功率MOS-FET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件的出现,表明已经进入现代电子电力技术发展时代。 1.整流器时代 在60年代到70年代被称为电力电子技术的整流时代。该期间主要是大功率硅整流管和晶闸管的开发与应用。1948年的晶体管的出现引发了电子工业革命,半导体器件开始应用与通信领域,1957年,晶闸管的诞生扩展了半导体器件功率控制范围,属于第一代电力电子器件。大功率硅整流器能够高效率地把工频交流电转变为直流电,当地办硅整流器厂逐渐增多,大功率的工业用电由工频50Hz)交流发电机提供,其中电解、牵引、和直流传动是以直流形式消费。 2.逆变器时代 20世纪70年到80年代期间成为逆变器时代,该期间的电力电子技术已经能够实现逆变,但是仅局限在中低频范围内。当时变频调速装置因为能节能大量普及,巨型功率晶体管(GTR)、门极可关断晶闸管(GTO)和大功率逆变用的晶闸管成为当时电力电子器件的主流。它们属于第二代电力电子器件。 3.变频器时代 进入80年代,功率MOSFET和绝缘栅极双极晶体管(IGBT)的问世,电力电子技术开始向高频化发展,高压、高频和大电流的功率半导体复合器件为第三代电器元件的大规模集成电路技术迅速发展,他们的性能更进一步得到了完善,具有小、轻和高效节能的特点。 4.现代电力时代 20世纪以来,电力电子作为自动化、节材、节能、机电一体化、智能化的基础,正朝着应用技术高频化、产品性能绿色化、硬件结构模块化的现代化方向发展。在1995年,功率MOSFET和GTR在功率半导体器件出现并广泛被人们应用,功率器件和电源单元的模块

电力电子器件的发展及应用

电力电子器件的发展及应用 研1506 苏智清 摘要:本文简单介绍了电力技术的分类, 回顾了电力电子技术及其器件的发展过程, 说明了现在主流的电力电子器件的工作原理、应用范围及其优缺点, 探讨了在本世纪中新型电力电子器件的应用。 关键词:复合型电力电子器件;新型材料的电力电子器件;电力电子器件的应用 1引言 电力电子学是电工学的一个分支,是由电力系统、控制理论与电子学等学科共同发展起来的一个新型边缘性学科。电力电子学的主要特点是具有很强的应用性,同时与其他学科有着很好的交叉融合性,这也是电力电子学的基础理论与应用技术能够在短短几十年间飞速发展的一个相当重要的因素。目前,电力电子技术的应用已经从机械、石化、纺织、冶金、电力、铁路、航空、航海等一系列领域,进一步扩展到汽车、现代通信、家用电器、医疗设备、灯光照明等各个领域。进入 21 世纪,伴随着新理论、新器件、新技术的不断涌现,尤其是与微电子技术的日益融合,电力电子技术作为信息产业和传统产业之间的桥梁,在国民经济中必将占有越来越重要的地位,在各领域中的应用也必将不断得到拓展。 2电力电子器件的发展 2.1半控型器件 上世纪50年代,美国通用电气公司发明世界上第个晶闸管,标志电力电子技术的诞生。此后,晶闸管得到了迅速发展,器件容量越来越大,性能得到不断提高,并产生大量派生器件,如快速晶闸管逆导晶闸管等等。

但是,晶闸管作为半控型器件,只能通过门极导通,不能控制关断。要关断必须通过强迫换相电路,从而装置体积增大,复杂程度提高,效率降低。另外,晶闸管为双极型器件,有少子效应,所以工作频率低,由于这些原因,使得晶闸管的应用受到限制。 虽然晶闸管有以上缺点,但由于它的大电压大电流特性,使在高压直流输电静止无功补偿,大功率和高压变频调速等方面仍占有重要位置。2.2全控型器件 2.2.1门极可关断晶闸管(GTO) GTO有对称,非对称和逆导三种类型。对称GTO通态压降小,抗浪涌能力强,易于提高耐压能力。逆导型GTO是在同一芯片上将GTO与整流二极管反并联制成的集成器件,不能承受反向电压,主要用于中等容量的牵引驱动中。 在当前各种自关断器件中,GTO容量做大,工作最低。GTO是电流控制型器件,因而关断需要很大的反向驱动电流。目前,GTO在低于2000V某些领域被GTR和IGBTDE所替代,但在大功率电力牵引有明显优势。 2.2.2大功率晶体管(GTR) GTR是一种电流控制的双极双结电力电子器件,它既具备晶体管的固有特性,又增加功率容量,因此,由它组成的电路灵活,成熟,开关损耗小,开关时间短,在电源电机控制,通用逆变器等中等容量,中等频率的电路中广泛应用。GTR的缺点驱动电流较大,耐浪涌电流能力差,易受二次击穿损坏。在开关电源GTR渐渐被功率MOSFET和IGBT代替。 2.2.3功率MOSFET

电力电子器件发展论文

引言 电力电子技术包括功率半导体器件与IC技术、功率变换技术及控制技术等几个方面,其中电力电子器件是电力电子技术的重要基础,也是电力电子技术发展的“龙头”。从年美国通用电气公司研制出世界上第一个工业用普通晶闸管开始,电能的变换和控制从旋转的变流机组和静止的离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子技术的诞生。到了70 年代,晶闸管开始形成由低压小电流到高压大电流的系列产品。同时,非对称晶闸管、逆导晶闸管、双向晶闸管、光控晶闸管等晶闸管派生器件相继问世,广泛应用于各种变流装置。由于它们具有体积小、重量轻、功耗小、效率高、响应快等优点,其研制及应用得到了飞速发展。由于普通晶闸管不能自关断,属于半控型器件,因而被称作第一代电力电子器件。在实际需要的推动下,随着理论研究和工艺水平的不断提高,电力电子器件在容量和类型等方面得到了很大发展,先后出现了GTR 、GTO、功率MOSET 等自关断、全控型器件,被称为第二代电力电子器件。近年来,电力电子器件正朝着复合化、模块化及功率集成的方向发展,如GPT,MCT,HVIC等就是这种发展的产物。 普通晶闸管及其派生器件 晶闸管诞生后,其结构的改进和工艺的改革,为新器件的不断出现提供了条件。1964年,双向晶闸管在GE公司开发成功,应用于调光和马达控制。1965 年,小功率光触发晶闸管出现,为其后出现的光祸合器打下了基础60年代后期,大功率逆变晶闸管问世,成为当时逆变电路的基本元件。1974年,逆导晶闸管和非对称晶闸管研制完成。 普通晶闸管广泛应用于交直流调速、调光、调温等低频等领域,运用由它所构成的电路对电网进行控制和变换是一种简便而经济的办法。不过,这种装置的运行会产生波形畸变和降低功率因数、影响电网的质量。目前水平为12KV/1KA和6500V/4000A。 双向晶闸管可视为一对反并联的普通晶闸管的集成,常用于交流调压和调功电路中。正、负脉冲都可触发导通,因而其控制电路比较简单。其缺点是换向能力差、触发灵敏度低、关断时间较长,其水平己超过2000V/500A 。 光控晶闸管是通过光信号控制晶闸管触发导通的器件,它具有很强的抗干扰能力、良好的高绝缘性能和较高的瞬时过电压承受能力,因而被应用于高压直流输电、静止无功功率补偿等领域。其研制水平大约为8000V/3600A 。 逆变晶闸管因具有较短的关断时间一而主要用于中频感应加热。在逆变电路中,它己让位于GTR 、GTO 、IGBT等新器件。目前,其最大容量介于2500V/1600A 和800V/50A/20KHz 的范围之内。 非对称晶闸管是一种正、反向电压耐量不对称的晶闸管。而逆导晶闸管不过是非对称晶闸管的一种特例,是将晶闸管反并联一个二极管制作在同一管芯上的功率集成器件。与普通晶闸管相比,它具有关断时间短、正向压降小、额定结温高、高温特性好等优点,主要用于逆变器和整流器中。目前,国内有厂家生产3000V/900A的非对称晶闸管。 全控型电力电子器件 门极可关断晶闸管 1964年,美国第一次试制成功了500V/10A 的GTO。在此后的近10年内,的容量一直停留在较小水平,只在汽车点火装置和电视机行扫描电路中进行试用。自70 年代中期开始,GTO的研制取得突破,相继出世了1300V/600A 、2500V/1000A 、4500V/2000A的产品,目前已达

各种电力电子器件技术特点的比较及应用

《电力牵引交流传动及其控制系统》报告——各种电力电子器件技术特点的比较及其应用

电力电子器件及其应用装置已日益广泛,这与近30 多年来电力电子器件与电力电子技术的飞速发展和电力电子的重要作用密切相关。20 世纪80 年代以后,电力电子技术等)的飞速发展,给世界科学技术、经济、文化、军事等各方面带来了革命性的影响。电子技术包含两大部分:信息电子技术(包括:微电子、计算机、通信等)是实施信息传输、处理、存储和产生控制指令;电力电子技术是实施电能的传输、处理、存储和控制,保障电能安全、可靠、高效和经济地运行,将能源与信息高度地集成在一起。 事实表明,无论是电力、机械、矿冶、交通、石油、能源、化工、轻纺等传统产业,还是通信、激光、机器人、环保、原子能、航天等高技术产业,都迫切需要高质量、高效率的电能。而电力电子正是将各种一次能源高效率地变为人们所需的电能,实现节能环保和提高人民生活质量的重要手段,它已经成为弱电控制与强电运行之间、信息技术与先进制造技术之间、传统产业实现自动化、智能化改造和兴建高科技产业之间不可缺少的重要桥梁。而新型电力电子器件的出现,总是带来一场电力电子技术的革命。电力电子器件就好像现代电力电子装置的心脏,它对装置的总价值,尺寸、重量、动态性能,过载能力,耐用性及可靠性等,起着十分重要的作用。因此,新型电力电子器件及其相关新型半导体材料的研究,一直是电力电子领域极为活跃的主要课题之一。 一个理想的功率半导体器件,应当具有下列理想的静态和动态特性:在阻断状态,能承受高电压;在导通状态,能导通高的电流密度并具有低的导通压降;在开关状态和转换时,具有短的开、关时间,能承受高的d i/d t 和d u/d t,具有低的开关损耗;运行时具有全控功能和良好的温度特性。自20 世纪50 年代硅晶闸管问世以后,功率半导体器件的研究工作者为达到上述理想目标做出了不懈努力,并已取得了世人瞩目的成就。早期的大功率变流器,如牵引变流器,几乎都是基于晶闸管的。到了20 世纪80 年代中期,4.5kV 的可关断晶闸管得到广泛应用,并成为在接下来的10 年内大功率变流器的首选器件,一直到绝缘栅双极型晶体管的阻断电压达到 3.3kV 之后,这个局面才得到改变。与此同时,对GTO 技术的进一步改进导致了集成门极换流晶闸管的问世,它显示出比传统GTO 更加显著的优点。目前的GTO 开关频率大概为500Hz,由于开关性能的提高,IGCT 和功率IGBT 的开通和关断损耗都相对较低,因此可以工作在1~3kHz 的开关频率下。至2005 年,以晶闸管为代表的半控型器件已达到70MW/9000V 的水平,全控器件也发展到了非常高的水平。当前,硅基电力电子器件的水平基本上稳定在109~1010WHz 左右,已逼近了由于寄生二极管制约而能达到的硅材料极限,不难理解,更高电压、更好开关性能的电力电子器件的出现,使在大功率应用场合不必要采用很复杂的电路拓扑,这样就有效地降低了装置的故障率和成本。 1电力电子器件 电力电子器件又称为功率半导体器件,主要用于电力设备的电能变换和控制电路方面大功率的电子器件(通常指电流为数十至数千安,电压为数百伏以上)。 电力电子器件目前的制约因素有耐压,电流容量,开关的速度。电力电子器件的分类多种多样。按照电力电子器件的开关控制能力,电力电子器件可分为三类:不可控器件、半控型器件、全控型器件。按照驱动电路加在电力电子器件控

论电力电子器件及其应用的现状和发展

论电力电子器件及其应用的现状和发展 发表时间:2019-03-12T16:14:19.577Z 来源:《电力设备》2018年第27期作者:宗思邈 [导读] 摘要:电力电子器件我们也称之为功率半导体器件,以下简称为电子器件,主要作为电力设备中的大功率电子器件的功率转换和控制。 (东文高压电源(天津)股份有限公司 300220) 摘要:电力电子器件我们也称之为功率半导体器件,以下简称为电子器件,主要作为电力设备中的大功率电子器件的功率转换和控制。目前,电力电子器件已广泛应用于机械行业、冶金业、电力系统等一系列领域中去。并扩展到汽车、家用电器、医疗设备和照明等各个生活领域中。二十一世纪,随着技术的不断更新,它作为信息产业与传统产业之间的桥梁,一定会迎来一个新的发展趋势。并且在国民经济中占有非常重要的地位。 关键词:电力;电子器件;应用 1电力电子技术的产生和发展 1.1电力电子技术的产生 电力电子技术产生于二十世纪,美国通用电气公司研制出第一个晶闸管为电力电子技术的诞生标志,电子电力技术设备在不同领域中的广泛应用,为社会发展带来了传动技术,其中晶闸管是电力电子技术的主要运用表现,开启了电力电子技术的新纪元。因为晶闸管的出现,可控型的整流装置被研制出来,从此电力系统逐渐进入了变流器时代,加速了电力电子技术的发展。 1.2电力电子技术的发展 电力电子技术的产生促进了电力系统的发展,产生多代电力电子器件,其中第一代电力电子器件主要以晶体管和晶闸管为典型代表。晶闸管出现后,因为它比较良好的电气性能和控制性能,使之很快取代了对人体有害的且电压落差极大的水银整流器,并且其使用范围迅速扩大。二十世纪七十年代,以门极可关断晶闸管、电力双极型晶体管为主导地位的全控型器件高速发展,这些全控型器件具有既可让门极开通也可让门极关断的功能,且它的开关速度比晶闸管快很多,所以全控型器件通常用于开关频率较高的场所。它又将电力电子技术推向了一个新的发展阶段。在二十世纪八十年代,以绝缘栅极双极型晶体管为代表的复合型器件的出现,因为具有驱动功率小、开关速度快、通态压降小、载流能力大、可承受电压高等优点,使其迅速成为现代电力电子技术的主导器件,这些复合型器件常常综合了多个器件的优点,在大量电力系统场合中得到了大量运用。 2电力电子器件的应用发展 自上世纪50年代以来,世界上诞生了第一台晶闸管,它标志着电力电子器件在现代电气传动的历史舞台上的到来。基于可控硅的可控硅整流器成为电力传动行业的一个变革。 到了上世纪70年代,晶闸管已经发展成能够承受高电压和高电流的产品。这一代的半控装置被称为第一代电子电气设备。然而,晶闸管的缺点是不能关闭。随着电力电子器件的不断进步,研制了一种全控型的GTR、GTO和MOSFET。这种类型的产品被称为第二代电力电子设备。 之后便出现了第三代电子器件,主要为绝缘栅双极晶体管。第三代电子器件具有频率快、反射速度快、能耗低等特点。近年来,微电子技术与电力电子器件开始相结合,创造出一种多功能、更智能、更高效的全控性能集成器件。电流整流器可以改善电性能、降低电路能量损耗和提高电流效率方面起着重要作用。 上世纪70年代,GTR产品推出时便大获成功。它的额定值达到当时非常高的标准,同时拥有非常强大的灵活性,而且还具备开关能耗低、时间短等多个优点。它在中等容量和频率电路中起着很重要的作用。第三代绝缘栅双极晶体管可以控制电压,具有输入电阻大、驱动功率小的优点,有非常大的发展潜力。 3电力电子器件的具体应用 首先太阳能光伏发电对于电力电子器件的发展来说是比较重要的,光伏建筑一体化应用对于电力电子器件的完善也发挥了独特的作用。光伏电池发电和建筑物外电池存在很多问题,虽然这类电池原件的成本比较低,但是总的来说这类电池和电子元件适合低日照水平,电池转换效率高,原材料比较易得。但是某些电力电子器件的转换效率一般,淘汰的产品还会污染环境。电力电子器件的开发和利用促进了光伏建筑一体化的进程,土地成本过高和二氧化碳的排放量过高等问题都可以得到有效解决,而且我国最新研发出的电力电子器件可以节省光伏电池支撑结构,节省光伏电池的具体安装成本,帮助相关建筑工作人员实现土地资源的合理利用。与此同时,电力电子器件可以将太阳能和建筑物进行有效结合,帮助相关工作人员解决电能供给的难题,而且也丰富了电力电子器件的原材料。首先我们可以发现,在进行电力电子器件的研究与开发时候,运用碳化硅制造的电子器件已经成为主要的研究方向。这主要是因为碳化硅电力电子器件的高压和高温的特性与我国传统的电力电子器件相比,具有很大优越性,完全可以保障新型电力电子器件的成本和质量。尤其是碳化硅的耐高压和高温,足以帮助相关工作人员展开对于新型电力电子器件的研究。 4浅析电力电子器件发展趋势 4.1对破化硅的应用 碳化硅作为一种创新性较高的宽带半导体材料,得到人们的广泛关注。它本身带有一定的电性能,并且物理材质稳定,属于上等的电力电子器件原材料。与原始型的制作材料相比,具有耐高压和耐高温的优势。将碳化硅合理应用于电力电子器件的原材料中.能够推动电力电子器件的整体发展。但是现阶段,由于生产成本相对较高、产难以保证等原因,导致碳化硅难以被广泛生产使用。因此,应加强对电力电子器件材料的深人探究,及时改进、解决存在的问题,使碳化硅的良好性能得到充分开发与利用。 4.2对氮化稼的应用 氮化稼是电力电子器件生产过程中较为常见的原材料,它与碳化硅存在很多不同点。虽然氮化稼是一种较为优良的电力 电子器件原材料,但是在实际制作过程中,应以碳化硅的晶片或者蓝宝石作为生产底料,因此这一因素限制了氮化稼的发展速度。近几年,这一问题得到了有效缓解,随着氮化稼在LED照明装置中的广泛运用,也促使氮化稼的异质结外延技术得到了进一步的强化。除此之外,因为氮化稼的实用性较强,其应用范围不断拓展,基于氮化稼的半导体材料具备优异的物理性能和化学性能,所以其不仅在LED市场中被广泛应用,更是逐步拓展到了更多的应用领域。但是由于氮化稼电子器件的耐高温性能较差,一旦温度超过1000摄氏度,就会产生

电力电子器件分类与应用思考

电力电子器件分类与应用思考 电力电子技术是以电力电子器件为基础对电能进行控制、转换和传输的一门技术,是现代电子学的一个重要分支,包括电力电子器件、变流电路和控制电路三大部分,其中以电力电子器件的制造、应用技术为最基本的技术。 电力电子技术是以电力电子器件为基础对电能进行控制、转换和传输的一门技术,是现代电子学的一个重要分支,包括电力电子器件、变流电路和控制电路三大部分,其中以电力电子器件的制造、应用技术为最基本的技术。因此,了解电力电子器件的基本工作原理、结构和电气参数,正确安全使用电力电子器件是完成一部电力电子装置最关键的一步。电力电子器件种类繁多,各种器件具有自身的特点并对驱动、保护和缓冲电路有一定的要求。一个完善的驱动、保护和缓冲电路是器件安全、成功使用的关键,也是本讲座重点讲述的部分。电力电子变换电路常用的半导体电力器件有快速功率二极管、大功率双极型晶体管(GTR)、晶闸管(Thyristor或SCR)、可关断晶闸管(GTO)、功率场效应晶体管(MOSFET)、绝缘栅双极晶体管(IGBT)以及功率集成电路PIC等。在这些器件中,二极管属于不控型器件,晶闸管属于半控型器件,其他均属于全控型器件。SCR、GTO及GTR属电流驱动型器件,功率MOSFET、 IGBT及PIC为电压驱动型器件。在直接用于处理电能的主电路中,实现电能变换和控制的电子器件称为电力电子器件。电力电子器件之所以和“电力”二字相连,是因为它主要应用于电气工程和电力系统,其作用是根据负载的特殊要求,对市电、强电进行各种形式的变换,使电气设备得到最佳的电能供给,从而使电气设备和电力系统实现高效、安全、经济的运行。目前的电力电子器件主要指的是电力半导体器件,与普通半导体器件一样,电力半导体器件所采用的主要材料仍然是硅。 1电力电子器件的一般特征 (1)处理电功率的能力大 (2)工作在开关状态 (3)需要由信息电子电路来控制 (4)需要安装散热器 2电力电子器件的分类 2.1按器件被控程度分类 按照器件控制信号的控制程度,电力电子器件可分为以下三类: (1)不可控器件。这类器件一般为两端器件,一端是阳极,另一端是阴极。与电子电路中的二极管一样,具有单向导电性。其开关操作仅取决于其在主电路中施加在阳、阴极间的电压和流过它的电流,正向电压使其导通,负向电压使其关断,流过它的电流是单方向的。不可控器件不能用控制信号来控制电流的通断,因此不需要驱动电路。这类器件就是功率二极管(PowerDiode)。 (2)半控型器件。这类器件是三端器件,除阳极和阴极外,还增加了一个控制门极。半控型器件也具有单向导电性,但开通不仅需在其阳、阴极间施加正向电压,而且还必须在门极和阴极间施加正向控制电压。门极和阴极间的控制电压仅控制其开通而不能控制其关断,器件的关断是由其在主电路中承受的电压和电流决定的。这类半控型器件是指晶闸管(Thyris-tor)及其大部分派生器件。

相关文档
相关文档 最新文档