文档视界 最新最全的文档下载
当前位置:文档视界 › 压水堆核电厂二回路热力系统初步说明

压水堆核电厂二回路热力系统初步说明

压水堆核电厂二回路热力系统初步说明
压水堆核电厂二回路热力系统初步说明

压水堆核电厂二回路热力系统初步设计说明书

目录

目录 (1)

摘要 (1)

1、设计要求 (1)

2、设计内容 (1)

3、热力系统原则方案 (2)

3.1 汽轮机组 (2)

3.2 蒸汽再热系统 (2)

3.3 给水回热系统 (2)

4、主要热力参数选定 (3)

4.1 一回路冷却剂的参数选择 (3)

4.2 二回路工质的参数选择 (3)

4.2.1 蒸汽初参数的选择 (3)

4.2.2 蒸汽终参数的选择 (3)

4.2.3 蒸汽中间再热参数的选择 (3)

4.2.4 给水回热参数的选择 (3)

5、热力计算方法与步骤 (4)

5.1 计算步骤如下面的流程图 (4)

5.2 根据流程图而写出的计算式 (5)

6、你热力计算数据 (8)

6.1 已知条件和给定参数 (8)

6.2 主要热力参数选定 (9)

6.3 热平衡计算结果表格 (13)

6.4 程序及运行结果 (14)

6.4.1 用MATLAB程序如下。 (14)

6.4.2 运算结果如下图所示。 (17)

7、热力系统图 (21)

8、结果分析与结论 (22)

9、参考文献 (22)

摘要

二回路系统是压水堆核电厂的重要组成部分,其主要功能是将反应堆一回路系统产生并传递过来的热量转化为汽轮机转动的机械能,并带动发电机组的转动,最终产生电能。

二回路系统的组成以郎肯循环为基础,由蒸汽发生器二次侧、汽轮机、冷凝器、凝水泵、给水泵、给水加热器等主要设备以及连接这些设备的汽水管道构成的热力循环,实现能量的传递和转换。反应堆内核燃料裂变产生的热量由流经堆芯的冷却剂带出,在蒸汽发生器中传递给二回路工质,二回路工质吸热后产生一定温度和压力的蒸汽,通过蒸汽系统输送到汽轮机高压缸做功或耗热设备的使用,汽轮机高压缸做功后的乏汽经汽水分离再热器再热后送入低压缸继续做功,低压缸做功后的废气排入冷凝器中,由循环冷却水冷凝成水,经低压给水加热器预热,除氧后用高压给水加热器进一步加热,后经过给水泵增压送入蒸汽发生器,开始下一次循环。

关键字:热平衡做功循环

1、设计要求

?了解、学习核电厂热力系统规划、设计的一般途径和方案论证、优选的原则;

?掌握核电厂原则性热力系统计算和核电厂热经济性指标计算的内容和方法;

?提高计算机绘图、制表、数据处理的能力;

?培养学生查阅资料、合理选择和分析数据的能力,掌握工程设计说明书撰写的基本原则。

2、设计内容

根据设计的要求,拟定压水堆核电厂二回路热力系统原则方案,并完成该方案在满功率工况下的热平衡计算。

?本课程设计的主要内容包括:

?确定二回路热力系统的形式和配置方式;

?根据总体需求和热工约束条件确定热力系统的主要热工参数:

?依据计算原始资料,进行原则性热力系统的热平衡计算,确定计算负荷工况下各部分汽水流量及其参数、发电量、供热量及全厂性的热经济指标;

?编制课程设计说明书,绘制原则性热力系统图.

3、热力系统原则方案

电站原则性热力系统表明能量转换与利用的基本过程,反映了发电厂动力循环中工质的基本流程、能量转换与利用过程的完善程度。为了提高热经济性,压水堆核电厂二回路热力系统普遍采用包含再热循环、回热循环的饱和蒸汽朗肯循环,本设计的热力系统图已在后面附出。

3.1汽轮机组

压水堆核电厂汽轮机一般使用低参数的饱和蒸汽,本设计中汽轮机由一个高压缸、3个低压缸组成,高压缸、低压缸之间设置了外置式汽水分离器,以达到将高压缸的排气进行分离再热后成为相应压力下的过热蒸汽。

高压缸约发出整个机组功率的40%,低压缸约发出整个机组功率的60%。

最佳分缸压力大约为0.11倍的蒸汽初压。

3.2蒸汽再热系统

压水堆核电厂通常在主汽轮机的高、低压缸之间设置汽水分离-再热器,对高压缸排汽进行除湿和加热,使得进入低压缸的蒸汽达到过热状态,从而提高低压汽轮机运行的安全性和经济性。

本设计中汽水分离-再热器由一级分离器、两级再热器组成,第一级再热器使用高压缸的抽汽加热,第二级再热器使用蒸汽发生器的新蒸汽加热,最终再热蒸汽达到相应压力下的过热蒸汽,过热度为98℃。分离器的疏水排放到除氧器,第一级、第二级再热器的疏水分别排放到高压给水加热器,可参考所附的热力系统图。

3.3给水回热系统

给水回热系统由回热加热器、回热抽汽管道、凝给水管道、疏水管道等组成。回热加热器按照汽水介质传热方式不同分为混合式加热器和表面式加热器,在本设计中高压、低压给水加热器采用表面式换热器,除氧器采用混合式加热器。

高压给水加热器采用主汽轮机高压缸的抽汽进行加热,除氧器采用高压缸的排汽进行加热,低压给水加热器采用主汽轮机低压缸的抽汽进行加热。

高压给水加热器的疏水采用逐级回流的方式,最终送入除氧器;低压给水加热器的疏水全部采用逐级回流的方式,最终送入冷凝器。

在选择给水回热级数时,均衡了每增加一级加热器所增加设备投资费用和热效率的提高程度,所以最终选择回热级数为7级(其中除氧器也算一级回热级数)。为了很好地适应机组变负荷运行,给水泵采取汽动方式,可以利用蒸汽发生器的新蒸汽驱动给水泵汽轮机,因而具有较好的经济性。给水泵汽轮机排出的废汽被送到冷凝器中。

本设计中使用热力除氧器对给水进行除氧,从其运行原理来看,除氧器就是一混合式加热器。来自低压给水加热器的给水以及高压给水加热器的疏

水在除氧器中被来自汽轮机高压缸排汽加热到除氧器运行压力下的饱和温度,其中高压缸排汽的压力高于除氧器的运行压力,所以高压缸排汽在排入冷凝器之前需经过减压装置进行减压。除过氧的饱和水再由给水泵输送到高压给水加热器,被加热到规定的给水温度后再送入蒸汽发生器。

4、主要热力参数选定

本设计在选定热力参数时参考了《900MW压水堆核电厂系统和设备》中的参数。

4.1一回路冷却剂的参数选择

设计时压水堆核电厂主回路系统的工作压力为15.6MPa,对应的饱和温度为345.3℃。为了确保压水堆的安全,反应堆在运行过程中必须满足热工安全准则,其中之一是堆芯不能发生水力不稳定性,所以反应堆出口冷却剂的欠饱和度选为18℃。

4.2二回路工质的参数选择

二回路系统的参数包括蒸汽发生器出口蒸汽的温度与压力(蒸汽初参数)、冷凝器运行压力(蒸汽终参数)、蒸汽再热温度、给水温度和焓升分配等。

4.2.1蒸汽初参数的选择

压水堆核电厂的二回路系统一般采用饱和蒸汽,蒸汽初温与蒸汽初压为一一对应关系。根据朗肯循环的基本原理,在其它条件相同的情况

下,提高蒸汽初温可以提高循环热效率,为了提高核电厂经济性,二回

路蒸汽参数选为6.5MPa。

4.2.2蒸汽终参数的选择

在热力循环及蒸汽初参数确定的情况下,降低汽轮机组排汽压力有利于提高循环热效率。但是,降低蒸汽终参数受到循环冷却水温度T sw,1、循环冷却水温升ΔT sw以及冷凝器端差δt 的限制。

凝结水的温度选为35℃,忽略了凝结水的过冷度,则冷凝器的运行压力等于凝结水温度对应的饱和压力。

4.2.3蒸汽中间再热参数的选择

蒸汽再热器使用高压缸抽汽和蒸汽发生器新蒸汽加热,所以汽水分离再热器出口的热再热蒸汽(过热蒸汽)要比用于加热的新蒸汽温度要

低19℃,既261.9℃,这样保证具有适当的传热温差。

计算中取再热蒸汽在第一、二级再热器中的焓升、流动压降相等。

4.2.4给水回热参数的选择

多级回热分配采用了汽轮机设计时普遍使用的平均分配法,即每一级给水加热器内给水的焓升相等。每一级加热器的给水焓升为62.24 kj/kg。

5、热力计算方法与步骤

在进行机组原则性热力系统计算中采用常规计算法中的串联法,对凝汽式机组采用“由高至低”的计算次序,即从抽汽压力最高的加热器开始计算,依次逐个计算至抽汽压力最低的加热器。

5.1计算步骤如下面的流程图

5.2 根据流程图而写出的计算式

1) 给水泵的有效功率

fwp

fwp p 1000H N fw

y ρ=

, kw

其中: y 为给水量,kg/s

fwp H 为给水泵的扬程,Mpa

fw ρ为给水的密度,kg/m 3

2) 给水泵的实际功率

()

fwp,p

fwp,t fwp,p fwp,tm fwp,tg

N N η

ηη

=

其中:fwp,p η为汽轮给水泵的泵效率 fwp,tm η为汽轮给水泵的机械效率 fwp,tg η为减速器效率

3) 给水泵的耗气量

fwp,t fwp,s ,N G fh h z

H H =

-

其中:fh H 为新蒸汽比焓

,h z H 为高压缸排汽比焓

4) 新蒸汽产量

Ds 1d

y

ξ=

+ 其中:d ξ为蒸汽发生器排污率

5) 蒸汽发生器排污量

G d Ds y =-

6) 冷凝器凝水流量

d fwp,s X x G G =++

7) 低给水加热器抽气量

les,i G 为第i 低压给水加热器的抽汽量

fw h ?为每级加热器的平均焓升

h η 为加热器效率

()c H i 为第i 级加热器抽汽比焓 ()w H i 为第i 级加热器疏水比焓

()()()

fw les,4h c w h X

G H 4H 4η?=

-

()()()

()()()()

fw

h les,4w w les,3

h c w h X G H 4H 3 G H 3H 3ηη?--=

-

()()()()

()()()()

fw

les,3les,4w w les,

h c w h X h G G H 3H 2G 2H 2H 2ηη?-+-=-

()()()()

()()()()

fw

h les,2les,3les,4w w les,1

h c w h X G G G H 2H 1G H 1H 1ηη?-++-=

-

8) 低压缸的中的焓降

()()()()()()()()()()1les,1les,2les,3les,4l,i l,o les,1l,i c les,2l,i c les,3l,i c les,4l,i c w x G G G G H H G H H 1G H H 2G H H 3G H H 4;

=-----+-+-+-+-

其中:l,i H 为低压缸进口蒸汽焓值kJ/kg

l,o H 为低压缸排汽焓值kJ/kg

9) 低压缸发电功率

11m ge W w **ηη=

其中:m η为汽轮机组机械效率

ge η为发电机效率

10) 高压缸理论发电功率

62110W W =-

11) 汽水分离再热器加热蒸汽量

()

()

rh

zc,i h zc,i

zs,i x h G H

H η?=

- ()

()

rh

zc,2h

zc,2

zs,2x h G H

H η?=

-

其中:zc,i G 为加热蒸汽的量,kg/s

rh h ?为再热器中的平均焓升,kJ/kg zc,i H 为加热蒸汽的焓值,kJ/kg zs,i H 为加热蒸汽的疏水焓值,kJ/kg

12) 高压给水加热器的抽汽量

hes,i G 为第i 高压给水加热器的抽汽量

()()

()()()

f w h zc,2zs,2w hes,2h c w y h G H H 7 G H 7H 7ηη?--=

-()()()()()()()

()()()

fw h

hes,2

zc,2w w zc,1zs,1w hes,1h c w y h G

G H 7H 6G H H 6G H 6H 6

ηη?-+-+-=

-

13) 高压缸排到除氧器的流量

()z,1hz ps hes,1hes,2zc,1zc,2hz

x x x G y X G G G G x -=------

其中:z,1x 为第一级再热器被加热蒸汽进口蒸汽干度

hz x 为高压缸排汽干度

14) 高压缸的出口排汽量

z,1t ps hz

x G G x

x =+

15) 高压缸中的焓降

(

)()()

()()()zc,1

w G H H G *H H 62t fh ho hes,1fh c

G H H 7G H H hes,2fh c zc,1fh

=-+-+-+-

其中:H fh

为高压缸进口蒸汽焓值

16) 高压缸的发电功率

22m ge U w ηη=

17) 除氧器出口焓值

()()()z,1hz

fwo hes,1hes,2zc,1zc,2w ps ho fw

hz

x x XH 4G G G G H 6G H xH x H y

-++++++=

6、 你热力计算数据

6.1 已知条件和给定参数

压水堆核电厂二回路热力系统课程设计

1.设计目的和要求 本课程设计是学生在学习《核电站系统及运行》课程后的一次综合训练,是实践教学的一个重要环节。通过课程设计使学生进一步巩固、加深所学的理论知识并有所扩展;学习并掌握压水堆核电厂二回路热力系统拟定与热平衡计算的方法和基本步骤;锻炼提高运算、制图和计算机应用等基本技能;增强工程概念,培养学生对工程技术问题的严肃、认真和负责态度。 通过课程设计应达到以下要求: (1)了解、学习核电厂热力系统规划、设计的一般途径和方案论证、优选的原则; (2)掌握核电厂原则性热力系统计算和核电厂热经济性指标计算的内容和方法; (3)提高计算机绘图、制表、数据处理的能力; (4)培养学生查阅资料、合理选择和分析数据的能力,掌握工程设计说明书撰写的基本原则。 2.任务和内容 本课程设计的主要任务,是根据设计的要求,拟定压水堆核电厂二回路热力系统原则方案,并完成该方案在满功率工况下的热平衡计算。 本课程设计的主要内容包括: (1)确定二回路热力系统的形式和配置方式; (2)根据总体需求和热工约束条件确定热力系统的主要热工参数; (3)依据计算原始资料,进行原则性热力系统的热平衡计算,确定计算负荷工况下各部分汽水流量及其参数、发电量、供热量及全厂性的热经济指标; (4)编制课程设计说明书,绘制原则性热力系统图。

3.热力系统原则方案确定方法 3.1 热力系统原则方案 电站原则性热力系统表明能量转换与利用的基本过程,反映了发电厂动力循环中工质的基本流程、能量转换与利用过程的完善程度。为了提高热经济性,压水堆核电厂二回路热力系统普遍采用包含再热循环、回热循环的饱和蒸汽朗肯循环,其典型的热力系统组成如图1所示。 图1 典型压水堆核电厂二回路热力系统原理流程图 3.1.1 汽轮机组 压水堆核电厂汽轮机一般使用低参数的饱和蒸汽,汽轮机由一个高压缸、2~3个低压缸组成,高压缸、低压缸之间需要设置外置式汽水分离器。高压缸发出整个机组功率的40%~50%,低压缸发出整个机组功率的50%~60%。最佳分缸压力=(0.1~0.15)蒸汽初压。

第五章 压水堆核电厂二回路凝结水系统及给水系统

核电厂系统与设备 2015/11/11 11 第五章二回路凝结水系统及 给水系统 2015年秋季 核电厂系统与设备 2015/11/11 2 5.1 凝结水抽取系统 第五章压水堆核电厂二回路凝结水系统及给水系统 5.1.1 系统功能 可概括为:凝结、除气、抽真空、收集、输送等功能,即: ——作为热力循环的冷源,将汽轮机排汽冷凝成凝结水,并进行除氧,经4级低压加热器送到除氧器; ——与汽轮机抽汽系统一起为汽轮机建立和维持一定的真空; ——向蒸汽旁路系统、汽轮机排汽口喷淋系统等提供冷却水及向一些泵提供轴封水; ——接收各处来的疏水并维持系统的凝结水量。 系统主要由凝汽器、凝结水泵、给水管线(去低压加热器)、疏水接收罐等组成。 核电厂系统与设备 2015/11/11 3 1、凝汽器工作原理简图 第五章压水堆核电厂二回路凝结水系统及给水系统 5.1.2 凝结水抽取系统描述 核电厂系统与设备 2015/11/11 4 第五章压水堆核电厂二回路凝结水系统及给水系统 5.1.2 凝结水抽取系统描述 1、凝汽器工作原理 凝汽器(又称冷凝器)实际上是一种表面式热交换器,循环冷却水(海水)在管束内流过,使在管束外流动的蒸汽冷凝,在热力循环中它起着冷源的作用。 在凝汽器蒸汽凝结空间为汽水两相共存,其压力是蒸汽凝结温度下的饱和压力。一般情况下,蒸汽凝结温度接近环境温度,如40℃的蒸汽凝结温度所对应的饱和压力为0.0075MPa ,远低于大气压力。因此,形成了高度真空。同时凝汽器抽真空系统及时抽出凝汽器内不凝结气体,维持凝汽器内的压力恒定不变。 核电厂系统与设备 2015/11/11 5第五章压水堆核电厂二回路凝结水系统及给水系统 5.1.2 凝结水抽取系统描述 2、凝汽器 大亚湾核电站每台机组设置了三台单独的凝汽器,分别安装在三个低压缸的下部。每台凝汽器由壳体、膨胀连接件、管板、管束、水室、热阱等部分组成。 表面式凝汽器:由于饱和蒸汽轮机的排气量要比同容量的常规汽轮机大得多,因此,核电厂的凝汽器也比较大。它的设计容量为85%的额定新蒸汽流量,在额定负荷下工作压力是43×10-4MPa。 核电厂系统与设备 2015/11/11 6 第五章压水堆核电厂二回路凝结水系统及给水系统 5.1.2 凝汽器结构简图 1)壳体:壳体顶部汽入口通过橡胶膨胀件与低压缸排汽口相连。 2)哑铃状橡胶膨胀件; 3)管板:为双层管板结构,内层管板材料为碳钢,外层管板材料为铝青铜,以防止海水腐蚀。管板尺寸为 5526mm ×2488mm ×35mm ; 4)管束:有两组独立的换热管束,每组管束有6808根,传热管外径25.5mm ,厚0.71mm 、长16700mm 。 5)水室和热阱:每组管束都有相同且相对独立的进、出口水室,每个凝汽器有一个收集凝结水的热阱。

大亚湾核电站二回路系统图

一.蒸汽系统: 1主蒸汽系统 2汽轮机旁路排放系统 2.1向冷凝器排放系统 2.2向除氧器排放系统 2.3向大气排放系统 3汽水分离再热器系统(2个)功能:1.除去高压缸排气中约98%的水分2.提高进入低压缸的蒸汽温度,使之成为过热蒸汽 3.1再热蒸汽系统 3.2抽泣再热系统(来自高压缸) 3.3汽水分离器 3.4再热器放弃系统 3.5再热器泄压系统 5 汽轮机轴封系统功能:汽轮机启动时,向主汽轮机的高压缸,低压缸端部轴封,给水泵汽轮机端部轴封及汽轮机截止阀和调节阀密封供汽,防止空气进入气缸影响抽真空 5.1压力控制器 5.2分离器 5.3轴封蒸汽凝汽器 5.4轴封蒸汽凝汽器疏水箱 5.5排气风机 5.6调节风门 5.7管线 6汽轮机蒸汽和疏水系统功能:(1 向汽轮机高压缸公报和蒸汽2把高压缸排气送到汽水分离再热器3自汽水分离再热器想低压缸供过热蒸汽4启动时排除暖机过程中形成的水5连续运行时排除验证其流动方向分离出的水6在瞬态过程中排出饱和蒸汽形成的水) 6.1蒸汽回路系统 6.2疏水回路系统 7 蒸汽转换器系统功能() 8 辅助蒸汽分配系统 二.给水加热系统(功能:(1 与冷凝器抽中控系统CVI和循环水系统CRF一起为汽轮机建立和维持真空2 将进入冷凝器的蒸汽凝结成水3 将凝结水从冷凝器热井中抽出,生涯后经低压加热器送到除氧器4接受各疏水箱来的水5 向其他设备提供冷却水和轴封用水) 1凝结水抽取系统 1.1三台并联冷凝器 1.2三台凝结水泵 1.3两个疏水接受箱 1.4汽轮机疏水箱 1.5凝结水过滤器 1.6除氧气水位控制阀 1.7再循环控制阀 1.8冷凝器补水控制阀 2低压给水加热器系统功能:利用汽轮机低压缸抽汽加热给水,提高记住热力循环的效率2.1凝结水系统 2.2抽气系统

船用核动力二回路热力系统动态仿真_张杨伟

第42卷增刊原子能科学技术 Vo l.42,Suppl. 2008年9月Atomic Ener gy Science and T echno logy Sep.2008 船用核动力二回路热力系统动态仿真 张杨伟,蔡 琦,蔡章生 (海军工程大学核能科学与工程系,湖北武汉 430033) 摘要:基于船用核动力装置运行安全分析,建立了二回路系统两相流通用仿真软件模型,实现了人工干预条件下复杂两相流流体网络系统的动态特性实时仿真,拓展了目前核动力装置通用安全分析程序的研究范围。以二回路快速降负荷为例,对仿真模型的性能进行了验证。结果表明:该软件模型能准确反映船用二回路系统的动态特性,可用于事故处置规程和控制系统功能的验证。该模型也可用于核电站饱和蒸汽系统仿真软件的开发。 关键词:船用核动力;饱和蒸汽;仿真模型;运行安全分析收稿日期:2008-06-26;修回日期:2008-07-26 作者简介:张杨伟(1978 ),男,浙江浦江人,讲师,博士研究生,核反应堆安全分析专业 中图分类号:T K 262 文献标志码:A 文章编号:1000-6931(2008)S0-0176-06 Simulation on Secondary Loop of Marine Nuclear Power ZH A NG Yang -w ei,CAI Qi,CAI Zhang -sheng (D ep ar tment o f N uclear Ener gy S cience and Engineer ing ,N aval Univer sity of Engineer ing ,W uhan 430033,China) Abstract: Based on o perational safety analy sis of marine nuclear pow er,a g eneral tw o -phase flow simulatio n model for nuclear secondary loop system w as established,w hich can fit the needs of rea-l time dynam ic sim ulation of com plex tw o -phase fluid netw o rks under m anual intervention conditio ns,and expand the r each field o f current g eneral safety analysis prog ram o f nuclear pow er plant.As an ex ample,the capability o f the simulatio n model was validated by taking simulatio n o f r apidly pow er r educing co ndition of secondary loop.T he results indicate that the mo del reflects the dy nam ic character is -tics of seco ndary loo p system of m arine nuclear pow er properly ,and can be used to val-i date the accident treatm ent reg ulation and function o f contr ol sy stem.T he m odel can a-l so fit the needs of dev elo ping saturated steam system sim ulation softw are of nuclear pow er station. Key words:marine nuclear pow er;saturated steam;simulatio n m odel;operational safety analysis 核电厂二回路热力系统与反应堆一回路系统具有很大的耦合性,在分析系统运行安全性 时须考虑二回路系统动态过程对反应堆的影响。因此,在现有基础上开发配套的二回路热

压水堆核电厂二回路初步设计说明书

哈尔滨工程大学本科生课程设计(二) 压水堆核电厂二回路热力系统 初步设计说明书 班级: 学号: 姓名: 院系名称:核科学与技术学院 专业名称:核工程与核技术 指导教师:

目录 摘要……………………………………………………………………………… 1 设计内容与要求……………………………………………………………… 2 热力系统原则方案确定……………………………………………………… 2.1总体要求和已知条件………………………………………………… 2.2热力系统原则方案…………………………………………………… 2.3主要热力参数选择…………………………………………………… 3 热力系统热平衡计算………………………………………………………… 3.1 热平衡计算方法……………………………………………………… 3.2 热平衡计算模型……………………………………………………… 3.3 热平衡计算流程……………………………………………………… 3.4 计算结果及分析……………………………………………………… 4 结论 附录……………………………………………………………………………… 附表1 已知条件和给定参数…………………………………………… 附表2 选定的主要热力参数汇总表…………………………………… 附表3 热平衡计算结果汇总表………………………………………… 附图1 原则性热力系统图………………………………………………参考文献…………………………………………………………………………

摘要 本课程设计是学生在学习《核动力装置与设备》、《核电厂运行》课程后的一次综合训练,是实践教学的一个重要环节。通过课程设计使学生进一步巩固、加深所学的理论知识并有所扩展;学习并掌握压水堆核电厂二回路热力系统拟定与热平衡计算的方法和基本步骤;锻炼提高运算、制图和计算机应用等基本技能;增强工程概念,培养学生对工程技术问题的严肃、认真和负责态度。 按照初步设计基本流程,首先确定压水堆核电厂二回路热力系统原则方案,并根据已知条件和给定参数,选择确定一、二回路工质的主要热力参数,然后采用定功率计算法对热力系统原则方案进行100%功率下的热平衡计算,确定核电厂效率、总蒸汽产量、总给水量、汽轮机耗汽量、给水泵功率和扬程等主要参数,为二回路热力系统方案设计和优化提供基础。 1.设计内容及要求 本课程设计的主要任务,是根据设计的要求,拟定压水堆核电厂二回路热力系统原则方案,并完成该方案在满功率工况下的热平衡计算。 本课程设计的主要内容包括: (1)确定二回路热力系统的形式和配置方式; (2)根据总体需求和热工约束条件确定热力系统的主要热工参数; (3)依据计算原始资料,进行原则性热力系统的热平衡计算,确定计算负荷工况下各部分汽水流量及其参数、供热量及全厂性的热经济指标; (4)编制课程设计说明书,绘制原则性热力系统图。 通过课程设计应达到以下要求: (1)了解、学习核电厂热力系统规划、设计的一般途径和方案论证、优选的原则; (2)掌握核电厂原则性热力系统计算和核电厂热经济性指标计算的内容和方法; (3)提高计算机绘图、制表、数据处理的能力; (4)培养学生查阅资料、合理选择和分析数据的能力,掌握工程设计说明书撰写的基本原则。

压水堆核电站工作原理简介

压水堆核电站工作原理简介 核反应堆是核电动力装置的核心设备,是产生核能的源泉。在压水反应堆中,能量主要来源于热中子与铀-235核发生的链式裂变反应。 裂变反应是指一个重核分裂成两个较小质量核的反应。在这种反应中,核俘获一个中子并形成一个复合核。复合核经过很短时间(10-14s)的极不稳定激化核阶段,然后开裂成两个主要碎片,同时平均放出约2.5个中子和一定的能量。一些核素,如铀-233、铀-235、钚-239和钚-241等具有这种性质,它们是核反应堆的主要燃料成分。铀-235的裂变反应如图1.3-1所示。 对于铀-235与热中子的裂变反应来说,目前已发现的裂变碎片有80多种,这说明是以40种以上的不同途径分裂。 在裂变反应中,俘获1个中子会产生2~3个中子,只要其中有1个能碰上裂变核,并引起裂变就可以使裂变继续进行下去,称之为链式反应。 由于反应前后存在质量亏损,根据爱因斯坦相对论所确定的质量和能量之间的关系,质量的亏损相当于系统的能量变化,即ΔE=Δmc2。对铀-235来说,每次裂变释放出的能量大约为200Mev(1兆电子伏=1.6×10-13焦耳)。这些能量除了极少数(约2%)随裂变产物泄露出反应堆外,其余(约98%)全部在燃料元件内转化成热能,由此完成核能向热能的转化。 水作为冷却剂,用于在反应堆中吸收核裂变产生的热能。高温高压的一回路水由反应堆冷却剂泵送到反应堆,由下至上流动,吸收堆内裂变反应放出的热量后流出反应堆,流进蒸汽发生器,通过蒸汽发生器的传热管将热量传递给管外的二回路主给水,使二回路水变成蒸汽,而一回路水流出蒸汽发生器后再由反应堆冷却剂泵重新送到反应堆。如此循环往复,形成一个封闭的吸热和放热的循环过程,构成一个密闭的循环回路,称为一回路冷却剂系统。 蒸汽发生器产生的饱和蒸汽由主蒸汽管道首先送到汽轮机的高压阀组以调节进入高压缸的蒸汽量,从高压阀组出来的蒸汽通过四根环形蒸汽管道进入高压缸膨胀做功,将蒸汽的热能转变为汽轮机转子旋转的机械能。在膨胀过程中,从高压缸前后流道不同的级后抽取部分蒸汽分别送入高压加热系统和辅助蒸汽系统。高压缸的排气一部分送往4号低压加热器用于加热凝结水,大部分通过四根管道排往位于低压缸两侧的四台汽水分离再热器,在这里进行汽水分离,并由新蒸汽对其进行再热。从汽水分离再热器出来的过热蒸汽经四根管道送入四台低压缸内膨胀做功,从四台低压缸前后流道抽取部分蒸汽分别送往3号、2号和1号低

核电厂系统与设备电子书思考题

第二章压水堆核电厂 从电能生产的观点看,压水堆核电厂有那些部分组成?各自作用是什么?从热力循环的观点看,压水堆核电厂有几个回路组成?各自作用是什么?与沸水堆电厂相比,压水堆核电厂热力循环有何特点?这样做有何利弊?核电厂的厂址须满足什么要求? 核电厂厂区分哪几部分?平面布置应考虑哪些因素? 核电厂主要有哪些厂房? 什么叫T 形布置?什么是L 形布置?各有何利弊?核电厂系统和设备及构筑物的安全分级、抗震分类、质保分组是如何规定的?解释名词:多道屏障;纵深防御;单一故障准则;安全功能。 第三章反应堆冷却剂系统与设备 为什么一回路系统的压力选得那样高? 试述稳压器的工作原理。轴封式反应堆冷却剂泵是如何解决冷却剂沿轴的泄漏问题的? 为什么一回路运行在160C以下时应投入余热排除系统? 什么是汽蚀?它对泵的工作有何危害?如何防止发生汽蚀? 什么是比转数?一台泵有几个比转数?按比转数范围划分,反应堆冷却剂泵属于那一类?其特性曲线有何特点? 蒸汽发生器二次侧工质的流程如何?为什么给水环作成倒“J”形?沿给水环周向给水分配均匀吗? 循环倍率对传热、流动和汽水分离效果有哪些影响?为应付断电事故,一回路系统及设备设计上采取了哪些措施? 解释名词: 无延性转变温度;必须汽蚀余量;可用汽蚀余量;比转数;循环倍率。 第四章一回路主要辅助系统 为什么一回路运行在160C以下时应投入余热排除系统?

现代核电厂化容系统对于降低放射性水平效果如何?为什么? 为净化一回路水, 化学和容积控制系统采取了那些措施? 设备冷却水系统在何种工况下的负荷最大?为什么? 利用硼酸进行反应性控制有何特点和局限? 化容系统是如何实现容积控制的? 反应堆停闭 3 个小时了, 这时剩余发热由什么系统带走? 核岛的最终热阱是什么?废热如何排到热阱? 用于正常停堆后余热排出的系统有哪些? 现代压水堆核电厂停对后热量排出系统由哪些? 第五章专设安全设施系统 专设安全设施系统在设计上有何特殊要求? 对于设计基准事故,安全注入系统的设计的验收标准有哪些? 发生大破口失水事故后,安全注入系统有哪些响应?为什么要采用冷 -热端同时再循 环注入? 什么是非能动系统?采用非能动系统对安全设施系统设计有何意义?发生失水事故后安全壳内氢气的来源有哪些?如何控制安全壳内氢浓度?专设安全设施系统设计中,为保证管线打开或关闭成功,往往采用什么办法?简述辅助给水系统的功能、设置、动力源特点。 安全壳喷淋系统的作用、系统设置、启动条件和运行方式。 第六章核电厂热力学 最简单的蒸汽动力装置的热力循环是什么循环?它由哪些过程组成?在压水堆核 电厂各过程什么设备中进行? 在P-V图,t-s图及h-s图上画岀饱和蒸汽理想朗肯循环。 相同温度限下以卡诺循环的热效率最高,为什么采用饱和蒸汽的热力循环不能采用卡诺循环?

压水堆核电厂二回路热力系统初步设计说明书

工程大学本科生课程设计 压水堆核电厂二回路热力系统初步设计说明书

目录 目录 (1) 摘要 (2) 1、设计容及要求 (2) 1.1设计要求 (2) 1.2设计容 (2) 2、热力系统原则方案 (2) 2.1汽轮机组 (3) 2.2蒸汽再热系统 (3) 2.3给水回热系统 (3) 3、主要热力参数选定 (4) 3.1一回路冷却剂的参数选择 (4) 3.2二回路工质的参数选择 (4) 3.2.1蒸汽初参数的选择 4 3.2.2蒸汽终参数的选择 4 3.2.3蒸汽中间再热参数的选择 4 3.2.4给水回热参数的选择 5

3.3 主要参数汇总表................................................................... . (5) 4、热力计算方法与步骤 (9) 4.1计算步骤如下面的流程图 (9) 4.2根据流程图而写出的计算式 (10) 5、程序及运行结果 (12) 6、热力系统图 (19) 7、结果分析与结论 (20) 8、参考文献 (20) 摘要 该说明书介绍了一个1000MW核电厂二回路热力系统设计过程。该设计以大亚湾900MW核电站为母型,选择了一个高压缸,三个低压缸,设有两级再热器的汽水分离器,四个低压给水加热器,一个除氧器,两个高压给水加热器。蒸汽发生器的运行压力为 5.8MPa,高压缸排气压力为0.77MPa,一级再热器抽汽压力2.76MPa,低压缸进口过热蒸汽压力为0.74MPa,温度为259.34℃,冷凝器的运行压力为5.32kPa,给水温度为216.53℃。高压给水加热器疏水逐级回流送入除氧器,低压给水加热器疏水逐级回流送入冷凝器。各级回热器和再热器的蒸汽采用平均分配,抽汽流过高、低压热器后,蒸汽全部冷凝成疏水,疏水为对应压力下的饱和水。 进行热力计算时,采用热平衡求出各设备的耗汽量,再采用迭代法,根据电功率要求可求出蒸汽发生器蒸汽产量,进而求出堆芯热功率,即可得出电厂效率。

压水堆核电厂二回路热力系统初步设计说明书

压水堆核电厂二回路热力系统初步设计说明书

目录 目录 (1) 摘要 (1) 1、设计要求 (1) 2、设计内容 (1) 3、热力系统原则方案 (2) 3.1 汽轮机组 (2) 3.2 蒸汽再热系统 (2) 3.3 给水回热系统 (2) 4、主要热力参数选定 (3) 4.1 一回路冷却剂的参数选择 (3) 4.2 二回路工质的参数选择 (3) 4.2.1 蒸汽初参数的选择 (3) 4.2.2 蒸汽终参数的选择 (3) 4.2.3 蒸汽中间再热参数的选择 (3) 4.2.4 给水回热参数的选择 (3) 5、热力计算方法与步骤 (4) 5.1 计算步骤如下面的流程图 (4) 5.2 根据流程图而写出的计算式 (5) 6、你热力计算数据 (8) 6.1 已知条件和给定参数 (8) 6.2 主要热力参数选定 (9) 6.3 热平衡计算结果表格 (13) 6.4 程序及运行结果 (14) 6.4.1 用MA TLAB程序如下。 (14) 6.4.2 运算结果如下图所示。 (17) 7、热力系统图 (21) 8、结果分析与结论 (22) 9、参考文献 (22)

摘要 二回路系统是压水堆核电厂的重要组成部分,其主要功能是将反应堆一回路系统产生并传递过来的热量转化为汽轮机转动的机械能,并带动发电机组的转动,最终产生电能。 二回路系统的组成以郎肯循环为基础,由蒸汽发生器二次侧、汽轮机、冷凝器、凝水泵、给水泵、给水加热器等主要设备以及连接这些设备的汽水管道构成的热力循环,实现能量的传递和转换。反应堆内核燃料裂变产生的热量由流经堆芯的冷却剂带出,在蒸汽发生器中传递给二回路工质,二回路工质吸热后产生一定温度和压力的蒸汽,通过蒸汽系统输送到汽轮机高压缸做功或耗热设备的使用,汽轮机高压缸做功后的乏汽经汽水分离再热器再热后送入低压缸继续做功,低压缸做功后的废气排入冷凝器中,由循环冷却水冷凝成水,经低压给水加热器预热,除氧后用高压给水加热器进一步加热,后经过给水泵增压送入蒸汽发生器,开始下一次循环。 关键字:热平衡做功循环 1、设计要求 了解、学习核电厂热力系统规划、设计的一般途径和方案论证、优选的原则; 掌握核电厂原则性热力系统计算和核电厂热经济性指标计算的内容和方法; 提高计算机绘图、制表、数据处理的能力; 培养学生查阅资料、合理选择和分析数据的能力,掌握工程设计说明书撰写的基本原则。 2、设计内容 根据设计的要求,拟定压水堆核电厂二回路热力系统原则方案,并完成该方案在满功率工况下的热平衡计算。 本课程设计的主要内容包括: 确定二回路热力系统的形式和配置方式; 根据总体需求和热工约束条件确定热力系统的主要热工参数: 依据计算原始资料,进行原则性热力系统的热平衡计算,确定计算负荷工况下各部分汽水流量及其参数、发电量、供热量及全厂性的热经济指标; 编制课程设计说明书,绘制原则性热力系统图.

压水堆核电站的发电原理

压水堆核电站的发电原理 把热能带出,在蒸汽发生器内产生蒸汽,蒸汽推动汽轮机带动发电机发电。 一回路反应堆堆芯因核燃料裂变产生巨大的热能,由主泵泵入堆芯的水被加热成327度、155个大气压的高温高压水,高温高压水流经蒸汽发生器内的传热U型管,通过管壁将热能传递给U型管外的二回路冷却水,释放热量后又被主泵送回堆芯重新加热再进入蒸汽发生器。水这样不断地在密闭的回路内循环,被称为一回路。 二回路蒸汽发生器U型管外的二回路水受热从而变成蒸汽,推动汽轮发电机做功,把热能转化为电力:做完功后的蒸汽进入冷凝器冷却,凝结成水返回蒸汽发生器,重新加热成蒸汽。这样的汽水循环过程,被称为二回路。 三回路三回路使用海水或淡水,它的作用是在冷凝器中冷却二回路的蒸汽使之变回冷凝水。 什么是核燃料? 核燃料是可在核反应堆中通过核裂变产生核能的材料,是铀矿石经过开采、初加工、铀转化、铀浓缩,进而加工成核燃料元件。 压水堆核电站用的是浓度为3%左右的核燃料(铀一235)。大亚湾核电站的核反应堆内有157个核燃料组件,每个组件由1717根燃料棒组成。燃料棒由烧结二氧化铀芯块装入锆合金管中封焊构成。一个燃料组件中有一束控制棒,控制核裂变反应。

利用核能生产电能的电厂称为核电厂。由于核反应堆的类型不同,核电厂的系统和设备也不同。压水堆核电厂主要由压水反应堆、反应堆冷却剂系统(简称一回路)、蒸汽和动力转换系统(又称二回路)、循环水系统、发电机和输配电系统及其辅助系统组成,其流程原理如图 2.1所示。通常将一回路及核岛辅助系统、专设安全设施和厂房称为核岛。二回路及其辅助系统和厂房与常规火电厂系统和设备相似,称为常规岛。电厂的其他部分,统称配套设施。实质上,从生产的角度讲,核岛利用核能生产蒸汽,常规岛用蒸汽生产电能。 反应堆冷却剂系统将堆芯核裂变放出的热能带出反应堆并传递给二回路系统以产生蒸汽。通常把反应堆、反应堆冷却剂系统及其辅助系统合称为核供汽系统。现代商用压水堆核电厂反应堆冷却剂系统一般有二至四条并联在反应堆压力容器上的封闭环路(见图2.2)。每一条环路由一台蒸汽发生器、一台或两台反应堆冷却剂泵及相应的管通组成。一回路内的高温高压含硼水,由反应堆冷却剂泵输送,流经反应堆堆芯,吸收了堆芯核裂变放出的热能,再流进蒸汽发生器,通过蒸汽发生器传热管壁,将热能传给二回路蒸汽发生器给水,然后再被反应堆冷却剂泵送入反应堆。如此循环往复,构成封闭回路。整个一回路系统设有一台稳压器,一回路系统的压力靠稳压器调节,保持稳定。 为了保证反应堆和反应堆冷却剂系统的安全运行,核电厂还设置了专设安全设施和一系列辅助系统。 一回路辅助系统主要用来保证反应堆和一回路系统的正常运行。压水堆核电厂一回路辅助系统按其功能划分,有保证正常运行的系统和废

压水堆核电站二回路课程设计设计说明书知识讲解

压水堆核电站二回路课程设计设计说明书

专业课程设计说明书 压水堆核电厂二回路热力系统 初步设计 班级: 20131514 学号: 2013151417 姓名:汪功庆 指导教师:谷海峰 核科学与技术学院 2016 年 6 月

目录 1设计内容及要求 (1) 2热力系统原则方案确定 (1) 2.1总体要求和已知条件 (2) 2.2热力系统原则方案 (3) 2.3主要热力参数选择 (6) 3热力系统热平衡计算 (10) 3.1热平衡计算方法 (10) 3.2热平衡计算模型 (10) 4 计算结果的分析及计算中遇到的问题 (16) 5 结论 (17) 6心得体会 (18) 附录 (19) 附表1已知条件和给定参数 (19) 附表2选定的主要热力参数汇总表 (20) 附表3热平衡计算结果汇总表 (25) 附图1原则性热力系统图.............................................

1.设计内容及要求 本课程设计的主要任务,是根据设计的要求,拟定压水堆核电厂二回路热力系统原则方案,并完成该方案在满功率工况下的热平衡计算。 本课程设计的主要内容包括: (1)确定二回路热力系统的形式和配置方式; (2)根据总体需求和热工约束条件确定热力系统的主要热工参数; (3)依据计算原始资料,进行原则性热力系统的热平衡计算,确定计算负荷工况下各部分汽水流量及其参数、供热量及全厂性的热经济指标; (4)编制课程设计说明书,绘制原则性热力系统图。 本课程设计是学生在学习《核动力装置与设备》、《核电厂运行》课程后的一次综合训练,是实践教学的一个重要环节。通过课程设计使学生进一步巩固、加深所学的理论知识并有所扩展;学习并掌握压水堆核电厂二回路热力系统拟定与热平衡计算的方法和基本步骤;锻炼提高运算、制图和计算机应用等基本技能;增强工程概念,培养学生对工程技术问题的严肃、认真和负责态度。 通过课程设计应达到以下要求: (1)了解、学习核电厂热力系统规划、设计的一般途径和方案论证、优选的原则; (2)掌握核电厂原则性热力系统计算和核电厂热经济性指标计算的内容和方法; (3)提高计算机绘图、制表、数据处理的能力; (4)培养学生查阅资料、合理选择和分析数据的能力,掌握工程设计说明书撰写的基本原则。 2.热力系统原则方案确定 2.1总体要求和已知条件 压水堆核电厂采用立式自然循环蒸汽发生器,采用给水回热循环、蒸汽再热循环的热力循环方式,额定电功率为1000MW。汽轮机分为高压缸和低压缸,高压缸、低压缸之间设置外置式汽水分离再热器。 给水回热系统的回热级数为7级,包括四级低压给水加热器、一级除氧器和两级高压给水加热器。第1级至第4级低压给水加热器的加热蒸汽来自低压缸的抽汽,除氧器使用高压缸的排汽加热,第6级和第7级高压给水加热器的加热蒸汽来自高压缸的抽汽。各级加热器的疏水采用逐级回流的方式,即第7级加热器的疏水排到第6级加热器,第6级加热器的疏水排到除氧器,第4级加热器的疏水排到第3级加热器,依此类推,第1级加热器的疏水排到冷凝器热井。 汽水分离再热器包括中间分离器、第一级蒸汽再热器和第二级蒸汽再热器,中间分离器的疏水排放到除氧器;第一级再热器使用高压缸的抽汽加热,

压水堆核电厂二回路初步设计说明书

压水堆核电厂二回路初步设计说明书

哈尔滨工程大学本科生课程设计(二) 压水堆核电厂二回路热力系统 初步设计说明书 班级: 学号: 姓名: 院系名称:核科学与技术学院 专业名称:核工程与核技术

指导教师: 目录 摘要……………………………………………………………………………… 1 设计内容与要求……………………………………………………………… 2 热力系统原则方案确定……………………………………………………… 2.1总体要求和已知条件………………………………………………… 2.2热力系统原则方案…………………………………………………… 2.3主要热力参数选择…………………………………………………… 3 热力系统热平衡计算………………………………………………………… 3.1 热平衡计算方法……………………………………………………… 3.2 热平衡计算模型……………………………………………………… 3.3 热平衡计算流程……………………………………………………… 3.4 计算结果及分析……………………………………………………… 4 结论 附录……………………………………………………………………………… 附表1 已知条件和给定参数……………………………………………

附表2 选定的主要热力参数汇总表…………………………………… 附表3 热平衡计算结果汇总表………………………………………… 附图1 原则性热力系统图……………………………………………… 参考文献………………………………………………………………………… 摘要 本课程设计是学生在学习《核动力装置与设备》、《核电厂运行》课程后的一次综合训练,是实践教学的一个重要环节。通过课程设计使学生进一步巩固、加深所学的理论知识并有所扩展;学习并掌握压水堆核电厂二回路热力系统拟定与热平衡计算的方法和基本步骤;锻炼提高运算、制图和计算机应用等基本技能;增强工程概念,培养学生对工程技术问题的严肃、认真和负责态度。 按照初步设计基本流程,首先确定压水堆核电厂二回路热力系统原则方案,并根据已知条件和给定参数,选择确定一、二回路工质的主要热力参数,然后采用定功率计算法对热力系统原则方案进行100%功率下的热平衡计算,确定核电厂效率、总蒸汽产量、总给水量、汽轮机耗汽量、给水泵功率和扬程等主要参数,为二回路热力系统方案设计和优化提供基础。 1.设计内容及要求 本课程设计的主要任务,是根据设计的要求,拟定压水堆核电厂二回路热力系统原则方案,并完成该方案在满功率工况下的热平衡计算。 本课程设计的主要内容包括: (1)确定二回路热力系统的形式和配置方式; (2)根据总体需求和热工约束条件确定热力系统的主要热工参数; (3)依据计算原始资料,进行原则性热力系统的热平衡计算,确定计算负荷工况下各部分汽水流量及其参数、供热量及全厂性的热经济指标; (4)编制课程设计说明书,绘制原则性热力系统图。 通过课程设计应达到以下要求: (1)了解、学习核电厂热力系统规划、设计的一般途径和方案论证、优选

20101216二回路系统HALT_219905707

压水堆核电厂二回路系统

1 系统的功能 (1)构成封闭的热力循环,将核蒸汽供应系统产生的蒸汽送往汽轮机作功,汽轮机带动发电机,将机械能变为电能。作为动力转换系统,在核电厂正常运行期间,本系统工作的可靠性直接影响到核电厂技术经济指标。 (2)从安全角度讲,二回路的另一个主要功能是将反应堆衰变热带走,为了保证反应堆的安全,二回路设置了一系列系统和设施,保障一回路热量排出,如蒸汽发生器辅助给水系统、蒸汽排放系统。 主蒸汽管道上安全阀为二回路提供超压保护。 (3)控制来自一回路泄漏的放射性水平。二回路系统设计上,能提供有效的探测放射性漏入系统的手段和隔离泄漏的方法。

压水堆核电厂二回路系统 2、与火电厂的比较 将核蒸汽供应系统的热能转变为电能的原理与火电厂基本相同,都是建立在朗肯循环基础之上的,当然二者也有重大差别。 ①现代典型的压水堆核电厂二回路蒸汽初压约 6.5MPa,相应的饱和温度约为281℃,蒸汽干度99.75%;而火力发电厂使用的新蒸汽初压约18MPa甚至更高,温度为540℃左右。因此,压水堆核电厂的理论热效率必然低于火电厂。

②火力发电厂通常将在高压缸作功后的排汽送回锅炉进行火力再热;在核电厂,只能采用新蒸汽对高压缸排汽进行中间再热。再热的目的主要是提高低压缸排汽的干度。 ③火电厂的烟气回路总是开放的。在一个开式系统中,排入大气的工作后的载热剂温度总是高于周围环境的温度,也就是说,一些热量随载热剂排入大气而损失掉了。 核电厂的冷却剂回路总是封闭的。这不仅从防止放射性物质泄漏到环境是必须的,从热力学角度讲,它提高了循环的热效率。

压水堆核电厂二回路热力系统

核电厂二回路热力系统 压水堆核电厂二回路热力系统是将热能转变为电能的动力转换系统。将核蒸汽供应系统的热能转变为电能的原理与火电厂基本相同,两种情况都是建立在朗肯循环基础之上的,当然二者也有重大差别,现代典型的压水堆核电厂二回路蒸汽初压约6.5MPa,相应的饱和温度约为281℃,蒸汽干度99.75%; 而火力发电厂使用的新蒸汽初压约18MPa,温度为535℃甚至更高。因此,压水堆核电厂的理论热效率必然低于火电厂。火力发电厂与压水堆核电厂毛效率的参考数字分别约为39%和34%。火力发电厂通常将在高压缸作功后的排汽送回锅炉进行火力再热; 在核电厂,用压水堆进行核再热是不现实的,只能采用新蒸汽对高压缸排汽进行中间再热。此外,火电厂的烟气回路总是开放的。在一个开式系统中,排入大气的工作后的载热剂温度总是高于周围环境的温度,也就是说,一些热量随载热剂排入大气而损失掉了。而核电厂的冷却剂回路总是封闭的。这不仅从防止放射性物质泄漏到环境是必须的,从热力学角度讲,它提高了循环的热效率。 核电厂二回路系统的功能如下: 构成封闭的热力循环,将核蒸汽供应系统产生的蒸汽送往汽轮机作功,汽轮机带动发电机,将机械能变为电能。作为蒸汽和动力转换系统,在核电厂正常运行期间,本系统工作的可靠性直接影响到核电厂技术经济指标。 从安全角度讲,二回路的另一个主要功能是将反应堆衰变热带走,为了保证反应堆的安全,二回路设置了一系列系统和设施,保障一回路热量排出,如蒸汽发生器辅助给水系统、蒸汽排放系统、主蒸汽管道上卸压阀及安全阀等就是为此设置的。 控制来自一回路泄漏的放射性水平。二回路系统设计上,能提供有效的探测放射性漏入系统的手段和隔离泄漏的方法。 同常规发电厂的实际热力系统一样,核电厂二回路热力系统,可分为局部热力系统和全面热力系统(又称为全厂热力系统)。局部热力系统表示某一热力设备同其它设备之间或某几个设备之间的特定联系,而全面热力系统则表示全部主要的和辅助的热力设备之间的特定联系。 为了便于实际热力系统的构造和分析,通常的方法是绘制热力系统图。为了不同的目的,绘制热力系统的方法也有所区别。只表示热力设备之间的本质联系,相同的设备只用一个表示,不表示备用设备,设备之间的联系以单线表示,管道附件一般不表示。按照这样的原则所绘制的热力系统,称为原则性热力系统。它只说明功率运行工况系统热力设计特征,是原理性的。 与原则性热力系统相对应的,是全面性热力系统。它给出全部热力设计(主要的辅助的和备用的)以及按照选定循环将热能转化为电能过程中所必要的全部设备、连接管路、阀门等部件。

压水堆核电站的发电原理

核燃料在反应堆内发生裂变而产生大量热能,再被高压水把热能带出,在蒸汽发生器内产生蒸汽,蒸汽推动汽轮机带动发电机发电。 一回路反应堆堆芯因核燃料裂变产生巨大的热能,由主泵泵入堆芯的水被加热成327度、155个大气压的高温高压水,高温高压水流经蒸汽发生器内的传热U 型管,通过管壁将热能传递给U型管外的二回路冷却水,释放热量后又被主泵送回堆芯重新加热再进入蒸汽发生器。水这样不断地在密闭的回路内循环,被称为一回路。 二回路蒸汽发生器U型管外的二回路水受热从而变成蒸汽,推动汽轮发电机做功,把热能转化为电力:做完功后的蒸汽进入冷凝器冷却,凝结成水返回蒸汽发生器,重新加热成蒸汽。这样的汽水循环过程,被称为二回路。 三回路三回路使用海水或淡水,它的作用是在冷凝器中冷却二回路的蒸汽使之变回冷凝水。 什么是核燃料? 核燃料是可在核反应堆中通过核裂变产生核能的材料,是铀矿石经过开采、初加工、铀转化、铀浓缩,进而加工成核燃料元件。 压水堆核电站用的是浓度为3%左右的核燃料(铀一235)。大亚湾核电站的核反应堆内有157个核燃料组件,每个组件由17×17根燃料棒组成。燃料棒由烧结二氧化铀芯块装入锆合金管中封焊构成。一个燃料组件中有一束控制棒,控制核裂变反应。 利用核能生产电能的电厂称为核电厂。由于核反应堆的类型不同,核电厂的系统和设备也不同。压水堆核电厂主要由压水反应堆、反应堆冷却剂系统(简称一回路)、蒸汽和动力转换系统(又称二回路)、循环水系统、发电机和输配电系统及其辅助系统组成,其流程原理如图2.1所示。通常将一回路及核岛辅助系统、专设安全设施和厂房称为核岛。二回路及其辅助系统和厂房与常规火电厂系统和设备相似,称为常规岛。电厂的其他部分,统称配套设施。实质上,从生产的角度讲,核岛利用核能生产蒸汽,常规岛用蒸汽生产电能。 反应堆冷却剂系统将堆芯核裂变放出的热能带出反应堆并传递给二回路系统以产生蒸汽。通常把反应堆、反应堆冷却剂系统及其辅助系统合称为核供汽系统。现代商用压水堆核电厂反应堆冷却剂系统一般有二至四条并联在反应堆压力容器上的封闭环路(见图2.2)。每一条环路由一台蒸汽发生器、一台或两台反应堆冷却剂泵及相应的管通组成。一回路内的高温高压含硼水,由反应堆冷却剂泵输送,流经反应堆堆芯,吸收了堆芯核裂变放出的热能,再流进蒸汽发生器,通过蒸汽发生器传热管壁,将热能传给二回路蒸汽发生器给水,然后再被反应堆冷却剂泵送入反应堆。如此循环往复,构成封闭回路。整个一回路系统设有一台稳压器,一回路系统的压力靠稳压器调节,保持稳定。 为了保证反应堆和反应堆冷却剂系统的安全运行,核电厂还设置了专设安全设施和一系列辅助系统。 一回路辅助系统主要用来保证反应堆和一回路系统的正常运行。压水堆核电厂一回路辅助系统按其功能划分,有保证正常运行的系统和废物处理系统,部分系统同时作为专设安全设施系统的支持系统。专设安全设施为一些重大的事故提供必要的应急冷却措施,并防止放射性物质的扩散。 二回路系统由汽轮机发电机组、冷凝器、凝结水泵、给水加热器、除氧器、给水泵、蒸汽发生器、汽水分离再热器等设备组成。蒸汽发生器的给水在蒸汽发生器吸收热量变成高压蒸汽,然后驱动汽轮发电机组发电,作功后的乏汽在冷凝器内冷

第四代核能系统的特点及其热力循环

第四代核能系统的特点及其热力循环 第四代核能系统的特点 第四代核反应堆技术有别于第三代先进反应堆。它在拓宽核能和平利用空间,提高核安全性、经济性等方面提出了一系列更加新颖的规划设想,包括更合理的核燃料循环、减少核废物、防止核扩散以及消除严重事故、避免厂外应急等。 2002年第四代核能系统国际论坛选择了以下6 种技术方案作为第四代核反应堆重点开发对象。 1.超临界水冷堆(SCWR) SCWR 是在水的热力学临界点以上运行的高温、高压水冷堆。SCWR 效率比目前轻水堆高1/3,采用沸水堆的直接循环,简化了系统。在相同输出功率下,由于采用稠密栅格布置以及超临界水的热容大,因此SCWR 只有一般轻水堆的一半大小。 超临界水冷堆及其系统因为反应堆的冷却剂不发生想变,而且采用直接循环,可以大大简化系统。 SCW参考堆热功率1700MWt运行压力25MPa堆芯出口温度510C,使用氧化铀燃料。SCW 的非能动安全特性与简化沸水堆相似。SCW结合了轻水反应堆和超临界燃煤电厂两种成熟技术。由于系统简化和热效率高(近效率达44%),发电成本可望降低30% SCW在经济上有很大竞争力。 日本提出的热中子谱超临界水堆系统是较为典型的压力容器式反应堆。该方案取消

了蒸汽发生器、稳压器和二回路相关系统,整个装置是一个简单的闭式直接循环系统。超临界压力水通过反应堆堆芯加热直接引入汽轮机发电,实现了直接循环,使系统大大简化。系统压力约25.0MPa反应堆的冷却剂入口温度为 280C,出口温度为530E。装置热功率为2740MW净效率高达44.4%,可输出1217MW电功率 SCWR寺解决的技术问题:材料和结构要耐极高的温度、压力以及堆芯的辐射,这就带来了很多相关问题,涉及腐蚀问题、辐射分解作用和水化学作用以及强度和脆变等问题;SCWR勺安全性,涉及非能动安全系统的设计,要克服堆芯再淹没时出现的正反应性;理论上有可能出现密度波以及热工水力学和自然循环相耦合的不稳定性。功率、温度和压力的控制上有很大挑战,例如,给水功率控制,控制棒的温度控制,汽轮机的节流压力控制等。需要研究电站的启动过程,防止启动过程出现失控。 2.超高温气冷堆(VHTR) VHTR是高温低冷对的进一步发展,采用石墨慢化、氦气冷却、铀燃料一次通过的循环方式。其燃料可承受高达1800度高温,冷却出口温度可大1000度以上。VHTR M有良好非能动安全特性,热效率可超过50%经济上竞争力强。VHTR可以向高温、高耗能和不使用电能的工艺过程提供光谱热量,还可以与发电设备组合以满足热电联产的需要。系统还具有采用铀/钚燃料循环的灵活性,产生的核废料极少。 VHTF要从目前的堆芯出口温度850到950度提高到1000到1100度,仍有许多技术上有寺解决的问题,在这种超高温下,铯和银迁徙能力的增加可能会使得燃料的碳化硅包覆层不足以限制它们,所以需要进行新的燃料和材料研发,以满足堆芯出口温度可达1000度以上的要求;事故时燃料温度最高可达1800度;最大燃耗可达150到200 (GWD/MTHM) 3.熔盐反应堆(MSR) 熔盐反应堆是钠、锆和铀的氟化物液体混合物做燃料的反应堆。氟化物传热性能好,无辐射,与空水、水都不发生剧烈反应。在熔盐中产生的热量通过中间热交换器传给二次侧冷却剂,在通过第三热交换器传给能量转化系统。参考电厂的电功率是百万千瓦级。堆芯出口温度700度,也可达800度,以提高热效率。

相关文档
相关文档 最新文档