文档视界 最新最全的文档下载
当前位置:文档视界 › 二项分布与超几何分布问题区别举例

二项分布与超几何分布问题区别举例

二项分布与超几何分布问题区别举例
二项分布与超几何分布问题区别举例

关于“二项分布”与“超几何分布”问题举例

一.基本概念

1.超几何分布

一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,

则事件X=k 发生的概率为:P(X=k)= n

N

k n M

N k M C C C --?,k= 0,1,2,3,,m ;其中,m = minM,n,且n N , M N . n,M,N N 为超几何分布;如果一个变量X 的分布列为超几何分布列,则称随几变量X 服从超几何分布.其中,EX= n M

N

2.二项分布

在n 次独立重复试验中,设事件A 发生的次数为X,在每次试验中,事件A 发生的概率为P,那么在n 次独立重复试中,事件A 恰好发生k 次的概率为:

P(X=k)= C n k

p k

(1-p)n-k

(k=0,1,2,3,,n),此时称随机变量X 服从二项分布.

记作:X B(n,p),EX= np

3.“二项分布”与“超几何分布”的联系与区别

(1)“二项分布”所满足的条件

每次试验中,事件发生的概率是相同的;是一种放回抽样.各次试验中的事件是相互独立的;每次试验只有两种结果,事件要么发生,要么不发生;随机变量是这n 次独立重复试验中事件发生的次数.

(2)“超几何分布”的本质:在每次试验中某一事件发生的概率不相同,是不放回抽样,“当样本容量很大时,超几何分布近似于二项分布;

(3)“二项分布”和“超几何分布”是两种不同的分布,但其期望是相等的.即:把一个分布看成是“二项分布”或“超几何分布”时,它们的期望是相同的.

分布”和“二项分布”的这种“巧合”,使得“超几何分布”期望的计算大简化.

共同点:每次试验只有两种可能的结果:成功或失败。

不同点:1、超几何分布是不放回抽取,二项分布是放回抽取;

2、超几何分布需要知道总体的容量,二项分布不需要知道总体容量,但

需要知道“成功率”;

联系:当产品的总数很大时,超几何分布近似于二项分布。

因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的.

二.典型例题

例1:袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求:

(1)有放回抽样时,取到黑球的个数X的分布列;

(2)不放回抽样时,取到黑球的个数Y的分布列.

解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次

取到黑球的概率均为15,3次取球可以看成3次独立重复试验,则1

~35X B ?? ???,.

3

03

1464(0)55125

P X C ????==?= ? ?????∴;

12

13

1448(1)55125P X C ????

==?= ? ?????

2

1

23

1412(2)55125P X C ????

==?= ? ?????;

3

33

141(3)55125

P X C ????

==?= ? ?????.

因此,X 的分布列为

(2).不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有:

03

283107

(0)15

C C P Y C ===

;12283107(1)15C C P Y C ===;21

283101

(2)15

C C P

Y C ===.

因此,Y 的分布列为

例2.在10件产品中,有3件一等品,4件二等品,3件三等品,从这10件产品中任取3件,求:

(1) 取出的3件产品中一等品件数多于二等品件数的概率.

(2) 记:X 表示“取出的3件产品中一等品件数多于二等品件数的数量”,求X 的分布列并求EX;

分析:由题可知:从10件产品中分别任取两次得到“一等品”或“二等品”的概率是不相等的,因此是一种不放回抽样;随机变量 X 服从超几何分布.

解:(1) 记A 1:取出3件一等品;A 2:取出2件一等品;A 3:取出1件一等品,二件三等品.A 1、A 2、A 3互斥,P(A 1)= C 33C 103 = 1120 , P(A 2)= C 32C 71C 103 = 7

40 ,

P(A 3)= C 31C 72C 103 = 340 ; 所以,P = P(A 1)+ P(A 2)+ P(A 3)= 31

120 .

(2)X=0,1,2,3; X 服从超几何分布,

所以P(X=0)= P(一件一等品,一件二等品,一件三等品)=310

13

1413C C C C = 310 ;

P(X=1)=P (二件一等品,一件二等品) = 31014

23C C C = 110 ;

P(X=2)=P(三件一等品,一件二等品)= 310

14

33C C C = 130 ;

P(X=3)= P (三件一等品,零件二等品)= 3

10

433C C C = 1120

;

EX =

nM N = 33

10

=

说明:谨防错误地认为随机变量X 服从二项分布,即:XB(3, 31120

).

例3.从某高中学校随机抽取16名学生,经校医检查得到每位学生的视力,其中“好视力”4人,以这16人的样本数据来估计整个学校的整体数据,若从该校(人数很多)任选3人,记X 表示抽到“好视力”学生的人数,求X 的分布列及数学期望.

分析:本题就是从“该校(人数很多)任选3人”,由此得到“好视力”人数X ,若每次从该校任取一名学生为“好视力”这一事件的概率显然是相等的,因为该校“人数很多”相当于“有放回抽样”,因此,随机变量X 服从“二项分布”而不是“超几何分布”.

解:由题可知:X= 0,1,2,3;由样本估计总体,每次任取一人为“好视力”的概率为: P = 416 = 14 ,则XB(3,14 );P(X=0)= C 30

( 14 )0(1- 14 )3-0 = 2764 ;

P(X=1)= C 31( 14 )1(1- 14 )3-1 = 2764 ;P(X=2)= C 32( 14 )2(1- 14 )3-2 = 9

64 ;

P(X=3)= C 33

( 14 )3(1- 14 )3-3 = 164 ;EX = 3×14 = 3

4

.

说明:假设问题变为:“从16名学生中任取3名,记X 表示抽到“好视力”学生

的人数,求X 的分布列及数学期望”.那么X 服从“超几何分布”,即:P(X=k)=

3

16

312

4C C C k

k ,(X=0,1,2,3),其中,数学期望值不变,即为:EX= 3×416 = 34 .

数学高考复习点拨:二项分布与超几何分布辨析

二项分布与超几何分布辨析 二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析. 例 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X的分布列; (2)不放回抽样时,取到黑球的个数Y的分布列. 解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到 黑球的概率均为,3次取球可以看成3次独立重复试验,则1~35X B ?? ???,. 3 03 1464(0)55125P X C ????==?= ? ?????∴;1 2 131448(1)55125 P X C ????==?= ? ? ????; 2123 1412(2)55125P X C ????==?= ? ?????;30 33141(3)55125 P X C ????==?= ? ? ????. 因此,X 的分布列为 2.不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有: 03283107 (0)15 C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15C C P Y C ===. 因此,Y 的分布列为 辨析:通过此例可以看出:有放回抽样时,每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样. 超几何分布和二项分布都是离散型分布,超几何分布和二项分布的区别: 超几何分布需要知道总体的容量,而二项分布不需要; 超几何分布是不放回抽取,而二项分布是放回抽取(独立重复) 当总体的容量非常大时,超几何分布近似于二项分布........

超几何分布与二项分布的联系与区别

在苏教版《数学选修2-3》的课本中,第二章《概率》的2.2节和2.4节分别介绍了两种离散型随机变量的概率分布,超几何分布(hyper-geometric distribution)与二项分布(binomial distribution)。通过实例,让学生认识模型所刻画的随机变量的共同特点,从而建立新的模型,并能运用两模型解决一些实际问题。然而在教学过程中,却发现学生不能准确地辨别所要解决的问题是属于超几何分布还是二项分布,学生对这两模型的定义不能很好的理解,一遇到含“取”或“摸”的题型,就认为是超几何分布,不加分析,随便滥用公式。事实上,超几何分布和二项分布确实有着密切的联系,但也有明显的区别。 课本对于超几何分布的定义是这样的:一般的,若一个随机变量X的分布列为 ,其中,则称X服从超几何分 布,记为。其概率分布表为: 对于二项分布的定义是这样的:若随机变量X的分布列为 ,其中则称X服从参数为n,p的二项分布,记为。其概率分布表为: 超几何分布与二项分布都是取非负整数值的离散分布,表面上看,两种分布的概率求取有截然不同的表达式,但看它们的概率分布表,会发现构造上的相似点,如:随机变量 X的取值都从0连续变化到l,对应概率和N,n,l三个值密切相关……可见两种分布之间有着密切的联系。课本中对超几何分布的模型建立是这样的:若有N件产品,其中M件是废品,无返回地任意抽取n件,则其中恰有的废品件数X是服从超几何分布的。而对二项分布则使用比较容易理解的射击问题来建立模型。若将但超几何分布的概率模型改成:若有N件产品,其中M件是废品,有返回的任意抽取n件,则其中恰有的废品件数X是服从二项分布的。在这里,两种分布的差别就在于“有”与“无”的差别,只要将概率模型中的“无”改为“有”,或将“有”改为“无”,就可以实现两种分布之间的转化。“返回”和“不返回”就是两种分布转换的关键。 如在2.2节有这样一个例题:高三(1)班的联欢会上设计了一项游戏:在一个口袋中装有10个红球、20个白球,这些球除颜色外完全相同,一次从中摸出5个球,摸到4个红球

超几何分布与项分布

10 超几何分布与二项分布 ?选择题(共9小题) 则p (!< i 今)的值为( 则 P ( 1^X €013)等于( A .—〔丄)2012 6. (2010?江西)一位国王的铸币大臣在每箱 100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方 法来检测.方法一:在 10箱中各任意抽查一枚;方法二:在 5箱中各任意抽查两枚.国王用方法一、二能发现至 少一枚劣币的概率分别记为 P 1和P 2.则( ) A . P 1=P 2 B . P 1V P 2 C . P 1> P 2 D .以上三种情况都有可能 1. (2004?辽宁)已知随机变量 E 的概率分布如下,则 P ( e =io )=( E 1 2 3 4 5 6 7 8 9 P 2 2 |2 2 2 2 2 _2_ 1 ¥ 33 34 35 3 3s 2 B . 2 C . 1 310 39 m D.- 310 2. (2011?黄冈模拟)随机变量 2、3、4、 …),其中a 是常数, r=2 +1,贝y n 的期望值是( -1 L P 1 2 1 6 1 3 29 3& 4.设随机变量X 的概率分布为 (k=1 , 2, 3, 4, 5),则P 绪g) A .亠 Io 5.电子手表厂生产某批电子手表正品率为 上,次品率为「现对该批电子手表进行测试,设第 X 次首次测到正品, E 的概率分布规律为 (n=1、 A . 1 B . 3. (2008?石景山区一模)已知随机变量 E 的分布列为且设

A ■ J B ? _ C ? _ D ?; [16 24^ 243 245 8 (2012?衡阳模拟)已知随机变量严N (0, a2),且p (4 1)=p (M a-3)的值为() A . 2 B . - 2 C. 0 D . 1 9. 设随机变量匕N (0, 1),若P (E翱=p,则P (- 1 v M 0)=() A . 1- P B. P C. D ?丄—p 二?填空题(共5小题) 10. ________________________________________________________________________________________________ (2010?上海模拟)在10件产品中有2件次品,任意抽取3件,则抽到次品个数的数学期望的值是 _____________________________________ . 11?有一批产品,其中有6件正品和4件次品,从中任取3件,至少有2件次品的概率为___________________________________ . 12. ____________________________________________________________________________________ (2010?枣庄模拟)设随机变量X?B (n,0.5),且DX=2,则事件X=1 ”的概率为_______________________________________________ (作数字作答.) 13. 若随机变量X服从二项分布,且X?B (10,0.8 ),贝U EX、DX分别是___________________________,____________ . 14. (2011?浙江)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公 司面试的概率为丄,得到乙、丙公司面试的概率均为P,且三个公司是否让其面试是相互独立的.记X为该毕业生3 得到面试的公司个数.若P (X=0 )=—,则随机变量X的数学期望E (X)= . 12 -------------------------------------------------------- 三.解答题(共3小题) 15. (2009?朝阳区二模)在袋子中装有10个大小相同的小球,其中黑球有3个,白球有n ( 2《韦,且n希)个, 其余的球为红球. (I )若n=5,从袋中任取1个球,记下颜色后放回,连续取三次,求三次取出的球中恰有2个红球的概率; (H )从袋里任意取出2个球,如果这两个球的颜色相同的概率是,求红球的个数; |15| (川)在(n)的条件下,从袋里任意取出2个球.若取出1个白球记1分,取出1个黑球记2分,取出1个红球 记3分.用E表示取出的2个球所得分数的和,写出E的分布列,并求E的数学期望E E

泊松分布的概念及表和查表方法

泊松分布的概念及表和查表方法 Poisson分布,是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德 目录 1命名原因 2分布特点 3关系 4应用场景 5应用示例 6推导 7形式与性质

命名原因 泊松分布实例 泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。 分布特点 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为特征函数为 关系 泊松分布与二项分布 泊松分布 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算。 事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。应用场景

在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。 应用示例 泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。 观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示: 例如采用0.05J/㎡紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体。实际上每个基因组二体的分布是服从泊松分布的,将取如下形式: …… 是未产生二体的菌的存在概率,实际上其值的5%与采用0.05J/㎡照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因组有一个二体就是致死量,因此就意味着全部死亡的概率。 推导 泊松分布是最重要的离散分布之一,它多出现在当X表示在一定的时间或空间内出现的事件个数这种场合。在一定时间内某交通路口所发生的事故个数,是一个典型的例子。泊松分布的产生机制可以通过如下例子来解释。

【数学】高考复习点拨:二项分布与超几何分布辨析

二项分布与超几何分布辨析 山东 韩文文 二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析. 例 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X的分布列; (2)不放回抽样时,取到黑球的个数Y的分布列. 解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到 黑球的概率均为,3次取球可以看成3次独立重复试验,则1~35X B ?? ??? ,. 03 31464(0)55125P X C ????==?= ? ?????∴; 12 1 31448(1)55125P X C ????==?= ? ?????; 21 2 31412(2)55125P X C ????==?= ? ?????; 30 33141(3)55125P X C ????==?= ? ?????. 因此,X 的分布列为 X 0 1 2 3 P 64125 48125 12125 1125 2.不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有: 03283107(0)15 C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15C C P Y C ===. 因此,Y 的分布列为 Y 0 1 2 P 715 715 115 辨析:通过此例可以看出:有放回抽样时,每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的.

超几何分布和二项分布的区别

关于超几何分布和二项分布的小题 超几何分布:在产品质量的不放回抽检中,若N 件产品中有M 件次品,抽检n 件时所得次品数X=k 则P(X=k) 此时我们称随机变量X 服从超几何分布(hypergeometric distribution ) 1)超几何分布的模型是不放回抽样 2)超几何分布中的参数是M,N,n 上述超几何分布记作X~H(n ,M ,N)。 二项分布:二项分布(Binomial Distribution ),即重复n 次的伯努力试验(Bernoulli Experiment ), 用ξ表示随机试验的结果. 如果事件发生的概率是P,则不发生的概率q=1-p ,N 次独立重 复试验中发生k 次的概率是k n k k n q p k P C -= =)(ξ 上述二项分布记作),(~p n B ξ 下面我通过几个例子说明一下两者的区别 【例1】某人参加一次英语考试,已知在备选题的10道试题中能答出其中的4道题,规定每次考试从备选题中随机抽取3题进行测试,求答对题数ξ的分布列 解:由题意得0=ξ,1,2,3.ξ服从参数为10=N ,4=M ,3=n 的超几何分布. 6112020)0(3 103 6 === =C C P ξ 2112060)1(3 10 2 6 14==?==C C C P ξ 10312036)2(3 10 1 624 ==?==C C C P ξ 3011204)3(3 10 3 4=== =C C P ξ 故ξ的分布列 把事件发生的概率看做是。 【例2】甲乙两人玩秒表游戏,按开始键,然后随机按暂停键,观察秒表最后一位数,若出现0,1,2,3则甲赢,若最后一位出现6,7,8,9则乙赢,若最后一位出现4,5是平局.玩三次,记甲赢的次数为变量X ,求X 的分布列 解:由题意得:0=X ,1,2,3 216.06 .0)0(3 3 == =C X P 432.04.06.0)1(21 3=??==C X P 288.04.06.0)2(22 3=??==C X P 064.04.0)3(33 3===C X P 故X 的分布列

超几何分布与二项分布

超几何分布与二项分布 一.选择题(共9小题) 1.(2004?辽宁)已知随机变量ξ的概率分布如下,则P(ξ=10)=() ξ 1 2 3 4 5 6 7 8 9 10 P m A.B.C.D. 2.(2011?黄冈模拟)随机变量ξ的概率分布规律为(n=1、2、3、4、…),其中a是常数,则的值为() A.B.C.D. 3.(2008?石景山区一模)已知随机变量ξ的分布列为且设η=2ξ+1,则η的期望值是() A.1B.C.D. 4.设随机变量X的概率分布为P(X=k)=(k=1,2,3,4,5),则=()A.B.C.D. 5.电子手表厂生产某批电子手表正品率为,次品率为,现对该批电子手表进行测试,设第X次首次测到正品, 则P(1≤X≤2013)等于() A.B.C.D. 6.(2010?江西)一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概率分别记为P1和P2.则() A.P1=P2B.P1<P2 C.P1>P2D.以上三种情况都有可能 7.(2011?潍坊二模)设X为随机变量,X~B,若随机变量X的数学期望EX=2,则P(X=2)等于()

A.B.C.D. 8.(2012?衡阳模拟)已知随机变量ξ~N(0,a2),且p(ξ>1)=p(ξ<a﹣3)的值为()A.2B.﹣2 C.0D.1 9.设随机变量ξ~N(0,1),若P(ξ≥1)=p,则P(﹣1<ξ<0)=() A.1﹣p B.p C. +p D. ﹣P 二.填空题(共5小题) 10.(2010?上海模拟)在10件产品中有2件次品,任意抽取3件,则抽到次品个数的数学期望的值是_________.11.有一批产品,其中有6件正品和4件次品,从中任取3件,至少有2件次品的概率为_________.12.(2010?枣庄模拟)设随机变量X~B(n,0.5),且DX=2,则事件“X=1”的概率为_________(作数字作答.)13.若随机变量X服从二项分布,且X~B(10,0.8),则EX、DX分别是_________,_________.14.(2011?浙江)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为,得到乙、丙公司面试的概率均为P,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若P(X=0)=,则随机变量X的数学期望E(X)=_________. 三.解答题(共3小题) 15.(2009?朝阳区二模)在袋子中装有10个大小相同的小球,其中黑球有3个,白球有n(2≤n≤5,且n≠3)个,其余的球为红球. (Ⅰ)若n=5,从袋中任取1个球,记下颜色后放回,连续取三次,求三次取出的球中恰有2个红球的概率;(Ⅱ)从袋里任意取出2个球,如果这两个球的颜色相同的概率是,求红球的个数; (Ⅲ)在(Ⅱ)的条件下,从袋里任意取出2个球.若取出1个白球记1分,取出1个黑球记2分,取出1个红球记3分.用ξ表示取出的2个球所得分数的和,写出ξ的分布列,并求ξ的数学期望Eξ.

高考复习点拨:二项分布与超几何分布辨析

二项分布与超几何分布辨析 二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析. 例 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X的分布列; (2)不放回抽样时,取到黑球的个数Y的分布列. 解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到 黑球的概率均为,3次取球可以看成3次独立重复试验,则1~35X B ?? ??? ,. 03 31464(0)55125P X C ????==?= ? ?????∴; 12 131448(1)55125 P X C ????==?= ? ?????; 212 31412(2)55125P X C ????==?= ? ?????; 30 3 3141(3)55125P X C ????==?= ? ?????. 因此,X 的分布列为 2.不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有: 03283107(0)15C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15 C C P Y C ===. 因此,Y 的分布列为 到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的.

超几何分布和二项分布的联系和区别精编版

超几何分布和二项分布的联系和区别 开滦一中 张智民 在最近的几次考试中,总有半数的的学生搞不清二项分布和超几何分布,二者到底该如何区分呢?什么时候利用二项分布的公式解决这道概率问题?什么时候用超几何分布的公式去解决呢? 好多学生查阅各种资料甚至于上网寻找答案,其实这个问题的回答就出现在教材上,人教版新课标选修2-3从两个方面给出了很好的解释. 诚可谓:众里寻他千百度,蓦然回首,那人却在灯火阑珊处! 一、两者的定义是不同的 教材中的定义: (一)超几何分布的定义 在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P(X=k) =n N k -n M -N k M C C C , ,2,1,0k =, m,其中m=min{M,n},且n ≤N,M ≤N,n,M,N ∈N,称随机变量X 服从超几何分布 (二)独立重复试验和二项分布的定义 1)独立重复试验:在相同条件下重复做的n 次试验,且各次试验试验的结果相互独立,称为n 次独立重复试验,其中A(i=1,2,…,n)是第ⅰ次试验结果,则 P(A1A2A3…An)=P(A 1)P(A2)P(A3)…P(An) 2)二项分布 在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率 为P,则P(X=k)=k n k p p --)1(C k n (k=0,1,2,…,n),此时称随机变量X 服从二项分布,记作X~B(n,p),并称P 为成功概率。 1.本质区别 (1)超几何分布描述的是不放回抽样问题,二项分布描述的是放回抽样问题; (2)超几何分布中的概率计算实质上是古典概型问题;二项分布中的概率计算实质上是相互独立事件的概率问题 2.计算公式 超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P(X=k)

数学分布(泊松分布、二项分布、正态分布、均匀分布、指数分布) 生存分析 贝叶斯概率公式 全概率公式讲解

数学期望:随机变量最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。它是简单算术平均的一种推广。例如某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个,则此城市中任一个家庭中孩子的数目是一个随机变量,记为X,它可取值0,1,2,3,其中取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03,它的数学期望为0×0.01+1×0.9+2×0.06+3×0.03等于1.11,即此城市一个家庭平均有小孩1.11个,用数学式子表示为:E(X)=1.11。 也就是说,我们用数学的方法分析了这个概率性的问题,对于每一个家庭,最有可能它家的孩子为1.11个。 可以简单的理解为求一个概率性事件的平均状况。 各种数学分布的方差是: 1、一个完全符合分布的样本 2、这个样本的方差 概率密度的概念是:某种事物发生的概率占总概率(1)的比例,越大就说明密度越大。比如某地某次考试的成绩近似服从均值为80的正态分布,即平均分是80分,由正态分布的图形知x=80时的函数值最大,即随机变量在80附近取值最密集,也即考试成绩在80分左右的人最多。 下图为概率密度函数图(F(x)应为f(x),表示概率密度):

离散型分布:二项分布、泊松分布 连续型分布:指数分布、正态分布、X 2分布、t 分布、F 分布 抽样分布只与自由度,即样本含量(抽样样本含量)有关 二项分布(binomial distribution ):例子抛硬币 1、 重复试验(n 个相同试验,每次试验两种结果,每种结果概率恒定————伯努利试验) 2、 抽样分布

二项分布和超几何分布(含答案)

超几何分布和二项分布 一、两者的定义是不同的 1超几何分布的定义 2独立重复试验与二项分布的定义 (1)独立重复试验. (2)二项分布. 本质区别 (1)超几何分布描述的是不放回抽样问题,而二项分布描述的是放回抽样问题. (2)超几何分布中的概率计算实质上是古典概型问题;二项分布中的概率计算实质上是相互独立事件的概率问题. 二、两者之间是有联系的 人教版新课标选修2-3第59页习题2.2B组第3题:

例1某批n件产品的次品率为2%,现从中任意地依次抽出3件进行检验,问: (1)当n=500,5000,500000时,分别以放回和不放回的方式抽取,恰好抽到1件产品的概率各是多少?(2)根据(1)你对超几何分布与二项分布的关系有何认识?

【说明】由于数字比较大,可以利用计算机或计算器进行数值计算.另外,本题目也可以帮助学生了解超几何分布和二项分布之间的关系: 第一,n次试验中,某一事件A出现的次数X可能服从超几何分布或二项分布.当这n次试验是独立重复试验时,X服从二项分布;当这n次试验是不放回摸球问题,事件A为摸到某种特性(如某种颜色)的球时,X服从超几何分布 第二,在不放回n次摸球试验中,摸到某种颜色的次数X服从超几何分布,但是当袋子中的球的数目N 很大时,X的分布列近似于二项分布,并且随着N的增加,这种近似的精度也增加. 从以上分析可以看出两者之间的联系: 当调查研究的样本容量非常大时,在有放回地抽取与无放回地抽取条件下,计算得到的概率非常接近,可以近似把超几何分布认为是二项分布. 例2袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取一个球,求(1)又放回抽样时,取到黑球的个数X的分布列;(2)无放回地抽样时,取到黑球的个数Y的分布列.

超几何分布与二项分布的区别与联系

二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决。在实际应用中,如何理解它们的关联性同时又能区分两个概率模型呢?本文笔者就此问题予以阐述。 一、超几何分布与二项分布的定义 1.一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品数,则事件{X=k}发生的概率为 P (X=k)= C M k C n-m n-k C N ,k=0,1,2,…,m 其中m=min {M,n},且n ≤N ,M ≤N ,n ,M ,N ∈N*。其分布列为超几何分布列。如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布。 2.一般地,在相同条件下重复做的n 次试验称为n 次 独立重复试验。在n 次独立重复试验中,设事件A 发生的次数X ,在每次试验事件A 发生的概率为p,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为 P (X=k)=C n k P k (1-p ) n-k ,k=0,1,2,…,n 。此时 称随机变量X 服从二项分布,记作X ~B (n ,p),并称p 为成功概率。 二、超几何分布与二项分布的区别 从它们的定义不难看出超几何分布研究的是试验后的结果(不研究试验中先后取的顺序),并且是无放回的抽取;二项分布研究的是既有研究先后发生的顺序又有试验结果,并且是有放回的抽取。超几何分布是无放回的抽取,即每做一次试验,下一次再发生同一事件A 的概率已经发生了变化,即每次发生的概率都不相等。实质上,超几何分布是古典概型的一种特例。二项分布是有放回的抽取,每做一次试验,发生同一事件A 的概率都相同。这就是二者之间的区别。本文笔者举例说明: 例1:在装有4个黑球6个白球的袋子中,任取2个,试求:(1)不放回地抽取,取到黑球数X 的分布列;(2)有放回地抽取,取到黑球数的分布列。 解:(1)是不放回地抽取,X 服从超几何分布。从10个球中任取2球的结果数为C 102 ,从10个球中任取2 个,其中恰有k 个黑球的结果数为C 4k C 62-k ,那么从10个球中任取2个,其中恰有k 个黑球的概率为 P (X=k )= C 4k C 62-k C 10 2 ,k=0,1,2。 所以随机变量X 的分布列是 (2)是有放回地抽取,每次抽到黑球的概率相同,X ~B (2,0.4)。那么从10个球中任取2个,其中恰有k 个黑球的概率为 P (X=k )=C 2K ·0.4K ·0.62-K ,k=0,1,2。所以随机变量X 的分布列是 三、超几何分布与二项分布的联系 例2某批n 件产品的次品率为2%,现从中任意地抽出3件进行检验。问:当n=500,5000,50000时,分别以放回和不放回的方式抽取,恰好抽到1件次品的概率各是多少? 解:(1)当有放回地抽取时,次品数X ~B (3,0.02) P (X=1)=C 3 1 ·0.02·(1-0.02)2≈0.057624(2)无放回地抽取时,X 服从超几何分布 n=500时,P (X=1)= C 101C 4902 C 500 3 ≈0.057853n=5000时,P (X=1)= C 1001 C 49002C 5000 3≈0.057647n=50000时,P (X=1)= C 10001 C 49000 2 C 50000 3 ≈0.057626 说明:当产品总数很大而抽出的产品较少时,每次抽出产品后,次品率近似不变,这样就可以近似看成每次抽样的结果是相互独立的,抽出产品中的次品件数近似服从二项分布。 总之,在教学过程中,教师要让学生深刻体会超几何分布与二项分布的区别与联系,引导学生发掘题中所给的隐含条件,抓住实质,从而能够正确解题,并能利用所学知识解决一些实际问题。 超几何分布与二项分布的区别与联系 X 012P 0.36 0.48 0.16

《二项分布与超几何分布》复习课程

二项分布与超几何分布 ★ 知 识 梳理 ★ 1.条件概率:称)()()|(A P AB P A B P = 为在事件A 发生的条件下,事件B 发生的概率。 特别提醒: ①0≤P (B|A )≤1; ②P(B ∪C|A)=P(B|A)+P(C|A)。 2. 相互独立事件:如果事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件。 特别提醒: ①如果事件A 、B 是相互独立事件,那么,A 与_B 、_A 与B 、_A 与_ B 都是相互独立事件 ②两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。我们把两个事件A 、B 同时发生记作A ·B ,则有P (A ·B )= P (A )·P (B ) 推广:如果事件A 1,A 2,…A n 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积。即:P (A 1·A 2·…·A n )= P (A 1)·P (A 2)·…·P(A n ) 3.独立重复试验: 在同样的条件下,重复地、各次之间相互独立地进行的一种试验.在这种试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中发生的概率都是一样的. 4.如果在1次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率计算公式: P n (k )=C k n P k (1-P ) n -k ,其中,k =0,1,2,…,n 5.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是 k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ 0 1 … k … n P n n q p C 00 111-n n q p C … k n k k n q p C - … 0q p C n n n 由于k n k k n q p C -恰好是二项展开式 011100)(q p C q p C q p C q p C p q n n n k n k k n n n n n n +++++=+--ΛΛ 中的各项的值,所以称这样的随机变量ξ服从二项分布, 记作ξ~B (n ,p ),其中n ,p 为参数,并记k n k k n q p C -=b (k ;n ,p ). 6. 两点分布: X 0 1 P 1-p p 特别提醒: 若随机变量X 的分布列为两点分布, 则称X 服从两点分布,而称P(X=1)为成功率. 7. 超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则

二项分布、超几何分布、正态分布总结归纳及练习

二项分布与超几何分布辨析 二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析. 例 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X的分布列; (2)不放回抽样时,取到黑球的个数Y的分布列. 解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到黑球的概率均 为,3次取球可以看成3次独立重复试验,则1~35X B ?? ???,. 3 03 1464(0)55125P X C ???? ==?= ? ????? ∴; 12 13 1448(1)55125 P X C ???? ==?= ? ?????; 21 231412(2)55125P X C ???? ==?= ? ?????; 3 33 141(3)55125 P X C ???? ==?= ? ?????. 因此,X 的分布列为 X 0 1 2 3 P 64125 48125 12125 1125 2.不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有: 03283107(0)15C C P Y C ===;12283107(1)15C C P Y C ===;21283101 (2)15 C C P Y C ===. 因此,Y 的分布列为 Y 0 1 2 P 715 715 115 辨析:通过此例可以看出:有放回抽样时,每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的. 超几何分布和二项分布都是离散型分布

二项分布、超几何分布、正态分布总结归纳与练习

二项分布?还是超几何分布 二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用 这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析.例 1 袋中有 8 个白球、 2 个黑球,从中随机地连续抽取 3 次,每次取 1 个球.求:( 1)有放回抽样时,取到黑球的个数X的分布列; ( 2)不放回抽样时,取到黑球的个数Y的分布列. 解:( 1)有放回抽样时,取到的黑球数X可能的取值为0,1, 2, 3.又由于每次取到黑球的概率 均为1 , 3 次取球可以看成 3 次独立重复试验,则 1 ,.5X~B 35 0312 ∴ P(X 0) C301 464 ;P(X 1)C31 1 448 ; 5512555125 21 P(X 3) C33 130 P(X 2) C321 412 ;4 1 .5512555125 因此, X 的分布列为 X0123 P 6448121 125125125125 (2)不放回抽样时,取到的黑球数Y可能的取值为0, 1,2,且有: P(Y 0)C20C837 ;P(Y1)C21C82 7 ;P(Y2)C22C81 1 . C10315C10315C10315 因此, Y 的分布列为 Y012 771 P 1515 15 例 2 某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40 件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495] , (495,500] ,,, ,(510,515] ,由此得到样本的频率分布直方图,如图4 ( 1)根据频率分布直方图,求重量超过505 克的产品数量 , ( 2)在上述抽取的40 件产品中任取 2 件,设 Y 为重量超过505 克 的产品数量,求Y 的分布列; ( 3)从该流水线上任取 5 件产品,求恰有 2 件产品的重量超过505 克的概率。

浅析二项分布与泊松分布之间的关系

学年论文 题目:浅析二项分布与泊松分布之间的关系 学生: 学号: 院(系):理学院 专业:信息与计算科学 指导教师:安晓钢 2013 年11月25日

浅析二项分布与泊松分布之间的关系 信息121班; 指导教师:安晓钢 (陕西科技大学理学院 陕西 西安 710021) 摘 要:泊松分布刻画了稀有事件在一段时间内发生次数这一随机变量的分布,如电话交换台单位时间内接到的呼唤次数等。二项分布是n 个独立的是/非试验中成功的次数的离散概率分布。它们有着密切的关系。泊松分布是二项分布的特例。某现象的发生率很小,而样本例数n 很大时,则二项分布接近于泊松分布,即:如果试验次数n 很大,二项分布的概率p 很小,且乘积np =λ比较适中,则事件出现的次数的概率可以用泊松分布来逼近。事实上,二项分布可以看作泊松分布在离散时间上的对应物,是二项分布的特例。通过分析二项分布和泊松分布之间的关系,使学生对概率分布理论的理解更为深刻,能够将学到的理论知识应用在实际生活中,从而提高自己的综合素质。 关 键 词:二项分布, 泊松分布, 近似 The Application of Asignment Poblem ABSTRACT: Poisson distribution is used to depict the distribution of rare events that a random variable frequency over a period of time, such as a telephone exchange in unit time received the call number. The two distribution is n independent / discrete probability distributions of number of successful non trials. They have a close relationship. Poisson distribution is two distribution case. The incidence of the phenomenon is very small, and the number of sample n is large, then the two distribution is close to the Poisson distribution, i.e.: if the test number n is large, the two probability distribution P is small, and the product of lambda = N P is moderate, the probability of the event can be used to force the Poisson distribution near. In fact, the two distribution can be seen as the counterpart of Poisson distribution in discrete time, are the two distribution case. Through the analysis of the relationship between two binomial distribution and Poisson distribution, enables the student to the theory of probability distribution for more profound understanding will be able to learn the application of theoretical knowledge in real life, so as to improve their comprehensive quality. KEY WORDS : Two distribution, Poisson distribution, Approximate

超几何分布与二项分布

超几何分布 一.超几何分布的两个特点 (1)超几何分布是不放回抽样问题. (2)随机变量为抽到的某类个体的个数. 二.超几何分布的应用条件 (1)考察对象分两类. (2)已知各类对象的个数. (3)从中抽取若干个个体,考察某类个体个数ξ的概率分布. 1.已知10件产品中有3件次品,从中任取2件,取到次品的件数为随机变量ξ,那么ξ服从_______分布.ξ的可能取值为________.次品数少于2件的概率是________. 2.从4名男生和2名女生中任选3人参加演讲比赛,则所选3人中女生人数的人数X服从_______分布.X的可能取值为________ .不超过1人的概率是________.

3.10个排球中有6个正品。从10个排球中抽取4个,求正品数比次品数少的概率. 4.从含有2个红球和4个黑球的盒子中任意摸出4个球,假设每个球被摸到的可能性相同,记摸出的4个球中黑球数与红球数的差的绝对值为ξ,求ξ的分布列.

二项分布 判断某概率模型是否服从二项分布P n(X=k)=C k n p k(1-p)n-k的三个条件 (1)在一次试验中某事件A发生的概率是一个常数p. (2)n次试验不仅是在完全相同的情况下进行的重复试验,而且每次试验的结果是相互独立的. (3)该公式表示n次试验中事件A恰好发生了k次的概率. 1.小王通过英语听力测试的概率是1 3 ,他连续测试3次,那么其中恰有1次 获得通过的概率是________. 2.若同时抛掷两枚骰子,当至少有5点或6点出现时,就说这次试验成功,则在3次试验中至少有1次成功的概率是()

3.抛掷一枚质地均匀的硬币3次. (1)写出正面向上次数X的分布列; (2)求至少出现两次正面向上的概率.解(1)X的可能取值为0,1,2,3. P(X=0)=C03 23 =1 8 ;P(X=1)=C13 23 =3 8 ;P(X=2)=C23 23 =3 8 ;P(X=3)=C33 23 =1 8. 所以X的分布列如下. (2)至少出现两次正面向上的概率为P(X≥2)=P(X=2)+P(X=3)=3 8 +1 8 =1 2. 阅读理解 为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1 -分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1 -分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.求X的分布列;

相关文档
相关文档 最新文档