文档视界 最新最全的文档下载
当前位置:文档视界 › 泊松过程及其在排队论中的应用

泊松过程及其在排队论中的应用

泊松过程及其在排队论中的应用
泊松过程及其在排队论中的应用

泊松过程及其在排队论中的应用

摘要:叙述了泊松过程的基本定义和概念,并列举了泊松过程的其他等价定义和证明并分析了泊松过程在排队论中的应用,讨论了完成服务和正在接受服务的顾客的联合分布。

关键词:泊松过程;齐次泊松过程;排队论

1. 前言

泊松分布是概率论中最重要的分布之一,在历史上泊松分布是由法国数学家泊松引人的。近数十年来,泊松分布日益显现了其重要性而将泊松随机变量的概念加以推广就得到了泊松过程的概念。泊松过程是被研究得最早和最简单的一类点过程,他在点过程的理论和应用中占有重要的地位。泊松过程在现实生活的许多应用中是一个相当适合的模型,它在物理学、天文学、生物学、医学、通讯技术、交通运输和管理科学等领域都有成功运用的例子。

2. 泊松过程的概念

定义3.2 :设计数过程{ X(t),t ≥ 0}满足下列条件:

(1) X(0) = 0;

(2) X(t)是独立增量过程;

(3) 在任一长度为t 的区间中,事件A 发生的次数服从参数0t >λ的泊松分布,即对任意是s, t ≥ 0,有

!

)(})()({n t e n s X s t X P n

t λλ-==-+, ,1,0=n 则称计数过程{ X(t),t ≥ 0}为具有参数0>λ的泊松过程。

注意,从条件(3)知泊松过程是平稳增量过程且t t X E λ=)]([,由于,

t

t X E )]([=

λ表示单位时间内事件A 发生的平均个数,故称λ为此过程的速率或强度。

从定义3.2中,我们看到,为了判断一个计数过程是泊松过程,必须证明它满足条件(1)、(2)及(3)。条件(1)只是说明事件A 的计数是从t = 0时开始的。条件(2)通常可从我们对过程了解的情况去验证。然而条件(3)的检验是非常困难的。为此,我们给出泊松过程的另一个定义。

定义3.3 :设计数过程{ X(t),t ≥ 0}满足下列条件:

(1) X(0) = 0;

(2) X(t)是独立平稳增量过程;

(3) X(t)满足下列两式: o(h).

2} X(t)-h)P{X(t o(h),

h 1} X(t)-h)P{X(t =≥++==+λ

则称计数过程{ X(t),t ≥ 0}为具有参数0>λ的泊松过程。

定义中的条件(3)说明,在充分小的时间间隔内,最多有一个事件发生,而不能有两个或两个以上事件同时发生。这种假设对于许多物理现象较容易得到满足。

3. 齐次泊松过程

定理1 假设事件E 的发生形成强度为λ的齐次泊松过程0}t ;{N N t ≥≡,如果每一发生的事件仅以概率p 被记录到,以M 表示被记录到的事件序列,那么过程M 是强度为p λ的齐次泊松过程。

证明:根据前面的等价定义,只需证明对于任意长度b 的可表为有限多个互不相交区间之并的集合B 。在B 中被记录到的事件数M(B)有参数为pb λ的泊松分布。事实上,记q=1 - p ,则对于任意 ,2,1,0=n

))((n B M p =

!

/)(!

/)(!/)(]!/)([!!/)()()!/()()

)(())(|))((000

n pq e n pq e e r pb n pb e r n pb pb e

r n b e

q p C r n B N P r n B N n B M p n pq n pq b r r n

b r r n b r n b r n r n r n r λλλλλλλλλλλλλ--∞=-∞=-+-∞=+∞=====+=+=?+===∑∑∑∑

基于这个定理,我们还可以证明如下的齐次泊松过程分解定理。

定理2 设N 是强度为λ的齐次泊松过程,p 是任意介于0和1之间的常数,则N 可以分解为两个互相独立的齐泊松过程M 和M ',它们的强度分别为p λ和q λ,这里q = 1- p 。

证明:我们可以这样想象,过程N 的点事件以概率p 被记录,而且各点事件是否被记录是互相独立的,于是,由上面的定理知道,N 中被记录的事件序列M 是强度为p λ的齐次泊松过程。而没有被记录的事件序列M' 则形成一强度为q λ的齐次泊松过程。显然有N=M+M '。下面证明M 和M ' 的独立性。为此只需证明对任愈非负整数m 和n ,以及任意可表为有限多个互不相交区间之并的集合有:

)

)(',)((n B M m B M p ==

]!/)(][!/)([n qb e m pb e n qb m pb λλλλ--=

这里b 是集合B 的总长度。因为事件n}(B)M'm,{M(B)==等价于事件

}m N(B)m,{M(B)n +==故 ))(',)((n B M m B M P ==

))(,)((n m B N m B M P +===

))(()(|)((n m B N P n m B N m B M P +=+===)

)!/()(n m b e

q p C n m b n m n n m +=+-+λλ ]!/)(][!/)([n qb e m pb e n qb m pb λλλλ--=

容易看出,上面的论断可以推广到r 个独立过程的情形,这里r 是任意大于2的整数。于是我们有如下的推论。

推论1 [2] 设N 是强度为λ的齐次泊松过程。对于任意整数2≥r 和任意r

个满足条件11=∑=r i i p 的整数,,2,1r p p p 可以把N 分解为r 个强度分别为

,,2,1r p p p λλλ 的互相独立的齐次泊松过程。

下面进一步研究选取概率不是一常数而是随时间变化的情形。

假设}0;{≥≡t N N t 强度为λ的泊松过程的事件可以分为两类:第一类和第二类,并且假设以事件发生的时间把事件的概率分为第一类。假设如果一个事件发生的时间为t,而且与其他事件独立,于是他可以看成是概率为P(s)的第一类事件,也可以看成是概率为1-P(s)的第二类事件。利用定理1我们能够证明下面的命题。

定理 3 如果)(t N i 表示的是到时间t 为止发生的第i 类事件的数量(i = 1,2),)(1t N 和)(2t N 分别表示的是参数为tp λ和)1(p t -λ的独立泊松随机变量, 其中: ?=t ds s p t

p 0)(1 证明:在N(t)已知的条件下,计算)(1t N 和)(2t N 的联合分布。

})(,)({21m t N n t N P ==

}

)({})(|)(,)({1

021k t N P k t N m t N n t N P k =====∑=

})({})(|)(,)({21m n t N P m n t N m t N n t N P +=+====

现在考虑在区间内的任一事件,如果事件发生的时间为s ,那么它是概率为P(s)的一类事件,因而利用定理1知道这个事件发生在均匀分布(0,t)上的某个时间,那么它必然是概率为?=t ds s p t p 0

)(1的第一类事件,并且与其他事件来说是独立的。因而})(|)(,)({21m n t N m t N n t N P +===刚好表示的是在n+m 次独立的实验中有n 次成功,m 次失败,用p 表示每次成功的概率,那么:

})(|)(,)({21m n t N m t N n t N P +===

m n p p n

m n )1(-+=)( 也就是:

})(,)({21m t N n t N P == )!

()()1(!!)!(m n t e p p m n m n m n t m n +-+=+-λλ !

))1((!)()1(m p t e n tp e m

p t n

tp -=---λλλλ 这就证明了定理的论断。

4. 排队论中应用举例

例1 设在上午8时到下午8时运送乘客到达飞机场的小汽车形成强度为

30=λ(辆/时)的齐次泊松过程。如果每辆车载有1,2,3,4个乘客的概率分别为0.1,0.2,0.4,0.3。求在一小时内有小汽车送到机场的乘客的平均数。

解:用)4,3,2,1(=i M i 表示在一小时内运送i 个乘客到达机场的小汽车数目,则由推论1知道4321,,,M M M M 是参数分别为3,6,12,9的泊松分布。因此,4321,,,EM EM EM EM 分别等于对应的分布参数值,所以欲求的乘客的平均数为

)432(4321M M M M E +++

= 3 +12 + 36 + 36

= 87

例2 假设顾客到达服务站的人数服从强度为λ的泊松过程,到达的顾客很快就可以接受服务,并且假设服务时间是独立的并且服从一个普通的分布,记为G 。

解:为了计算在时刻t 已完成服务和正在接受服务的顾客的联合分布,把在时刻t 完成服务的顾客称为第一类,在时刻t 未完成服务的顾客称为第二类顾客,现在,如果第一个顾客到来的时间为

t S S ≤,,如果他的服务时间少于t - s ,那么他就是第一类顾客,并且因为服务时间服从G 分布,所以服务时间少于t - s 的概率为G(t - s)因而,P(s) = G(t -s); S ≤ t 。利用定理2我们得到的)(1t N 的分布。到时间t 为止,已完成服务的顾客的数目服从泊松分布,其参数为:

dy y G ds s t G t N E t

t ??=-=001)()()]([λλ 同理)(2t N ,到时刻t 仍然在接受服务的顾客的数目也是服从泊松分布,其参数为:?=t

dy y G t N E 02)()]([λ,由此可见)(1t N 和)(2t N 是独立的。 5. 总结

泊松过程是被研究得最早和最简单的一类点过程。它在现实生活的许多应用中是一个相当适合的模型。除了本文中所讲到的在排队论的应用之外, 它在其他的领域中也有广泛的应用。例如物理学、天文学、生物学、医学、通讯技术、交通运输、保险和管理科学领域中都有成功应用的例子。另外在本文排队论中的应用也可以做一些拓展。

参考文献:

[1] 刘次华. 随机过程[M]. 武汉:华中科技大学出版社,2008

(注:可编辑下载,若有不当之处,请指正,谢谢!)

排队论的应用

排队论的应用 ——食堂排队问题 刘文骁 摘要 本文通过运筹学中排队论的方法,为食堂排队问题建立模型,研究学生排队就餐时间节约的影响因素,通过简单计算,得出影响最大因素。排队论是通过研究各种服务系统的排队现象,解决服务系统最优设计和最优化控制的一门科学。本文将根据食堂排队状况建立数学模型,运用排队论的观点进行分析,找出可以减少排队时间的最大影响因素。 关键词 排队论;M/M/s模型;食堂排队 引言 在学校里,常常可以看到这样的情况:下课后,许多同学正想跑到食堂买饭,小小的买饭窗口前没过几分钟便排成了长长的队伍,本来空荡荡的食堂立即变得拥挤不堪。饥肠辘辘的学生门见到这种长蛇阵,怎能不怨声载道。减少排队等待时间,是学生们十分关心的问题。 1.多服务台排队系统的数学模型 1.1排队论及M/M/s模型 排队论是研究排队系统(又称为随即服务系统)的数学理论和方法,是运筹学的一个重要分支。在日常生活中,人们会遇到各种各样的排队问题。排队问题的表现形式往往是拥挤现象。 排队系统的一般形式符号为:X/Y/Z/A/B/C。 其中:X表示顾客相继到达时间间隔的分布;Y表示服务时间的分布;Z表

示服务台的个数;A 表示系统的容量,即可容纳的最多顾客数;B 表示顾客源的数目;C 表示服务规则。 排队论的基本问题是研究一些数量指标在瞬时或平稳状态下的概率分布及其数字特征,了解系统运行的基本特征;系统数量指标的统计推断和系统的优化问题等。 当系统运行一定时间达到平稳后,对任一状态n 来说,单位时间内进入该状态的平均次数和单位时间内离开该状态的平均次数应相等,即系统在统计平衡下“流入=流出”。 据此,可得任一状态下的平衡方程如下: 由上述平衡方程,可求的: 平衡状态的分布为:)1(,2,1,0 ==n p C p n n 其中:)2(,2,1,1 10 21 == ---n C n n n n n μμμλλλ 有概率分布的要求:10=∑∞ =n n p ,有:1100=?? ? ???+∑∞ =p C n n ,则有: )3(1100 ∑∞ =+= n n C p 注意:(3)式只有当级数∑∞=o n n C 收敛时才有意义,即当∑∞ =?∞o n n C 时才能由上 述公式得到平稳状态的概率分布。

排队论之简单排队系统设计

5.2.4 无限源的简单排队系统 所谓无限源的简单排队系统是指顾客的来源是无限的,输入过程是简单流,服务时间是负指数分布的排队系统。本节我们讨论一些典型的简单排队系统。 1.//1/M M ∞排队系统 //1/M M ∞排队系统是单服务台等待制排队模型,可描述为:假设顾客以Poisson 过程(具有速率λ)到达单服务员服务台,即相继到达时间间隔为独立的指数型随机变量,具有均值1λ,若服务员空闲,则直接接受服务,否则,顾客排队等待,服务完毕则该顾客离开系统,下一个排队中的顾客(若有)接受服务。相继服务时间假定是独立的指数型随机变量,具有均值μ。两个M 指的是相继到达的间隔时间和服务时间服从负指数分布,1指的是系统中只有一个服务台,∞指的是容量为无穷大,而且到达过程与服务过程是彼此独立的。 为分析之,我们首先确定极限概率0,1,2,n p n ???=,,为此,假定有无穷多房间,标号为 0,1,2,???,并假设我们指导某人进入房间n (当有n 个顾客在系统中),则其状态转移框图如图5.8所示。 图5.8 //1/M M ∞排队系统状态转移速率框图 由此,我们有 状态 离开速率=进入速率 0 01p p λμ= ,1n n ≥ ()11n n n p p p λμλμ-++=+ 解方程组,容易得到 00,1,2,i i p p i λμ????? == ??? , 再根据 001 1()1n n n n p p p λμ λμ ∞ ∞ === == -∑∑ 得到: 01p λμ =- ,

()(1),1n n p n λλ μ μ =- ≥ 令/ρλμ=,则ρ称为系统的交通强度(traffic intensity )。值得注意的是这里要求 1ρ<,因为若1ρ>,则0n p =,且系统中的人数随着时间的推移逐渐增多直至无穷,因 此对大多数单服务排队系统,我们都假定1ρ<。 于是,在统计平衡的条件下(1ρ<),平均队长为 ,1,1j j L jp λρ ρμλ ρ ∞ == = = <--∑ (5-52) 由于a λλ=,根据式(5-2)、(5-3)以及上式,可得: 平均逗留时间为: 1 ,1L W ρλ μλ = = <- (5-53) 平均等待时间为: 1 [],1()(1) Q W W E S W λρ ρμ μμλμρ=-=- = =<-- (5-54) 平均等待队长为: 22 ,1()1Q Q L W λρλρμμλρ ===<-- (5-55) 另外,根据队长分布易知,01ρρ=-也是系统空闲的概率,而ρ正是系统繁忙的概率。显然,ρ越大,系统越繁忙。 队长()N t 由0变成1的时刻忙期即开始,此后()N t 第一次又变回0时忙期就结束。由简单流与负指数分布的性质,显见忙期的长度与忙期的起点无关。可以证明,闲期的期 望值为1λ,令忙期平均长度为b , 则在统计平衡下,有:平均忙期:平均闲期=(1)ρρ-: ,因此平均忙期长度为: 1 11b ρμλρ?

泊松过程及其在排队论中的应用

泊松过程及其在排队论中的应用 摘要:叙述了泊松过程的基本定义和概念,并列举了泊松过程的其他等价定义和证明并分析了泊松过程在排队论中的应用,讨论了完成服务和正在接受服务的顾客的联合分布。 关键词:泊松过程;齐次泊松过程;排队论 1. 前言 泊松分布是概率论中最重要的分布之一,在历史上泊松分布是由法国数学家泊松引人的。近数十年来,泊松分布日益显现了其重要性而将泊松随机变量的概念加以推广就得到了泊松过程的概念。泊松过程是被研究得最早和最简单的一类点过程,他在点过程的理论和应用中占有重要的地位。泊松过程在现实生活的许多应用中是一个相当适合的模型,它在物理学、天文学、生物学、医学、通讯技术、交通运输和管理科学等领域都有成功运用的例子。 2. 泊松过程的概念 定义3.2 :设计数过程{ X(t),t ≥ 0}满足下列条件: (1) X(0) = 0; (2) X(t)是独立增量过程; (3) 在任一长度为t 的区间中,事件A 发生的次数服从参数0t >λ的泊松分布,即对任意是s, t ≥ 0,有 ! )(})()({n t e n s X s t X P n t λλ-==-+, ,1,0=n 则称计数过程{ X(t),t ≥ 0}为具有参数0>λ的泊松过程。 注意,从条件(3)知泊松过程是平稳增量过程且t t X E λ=)]([,由于, t t X E )]([= λ表示单位时间内事件A 发生的平均个数,故称λ为此过程的速率或强度。 从定义3.2中,我们看到,为了判断一个计数过程是泊松过程,必须证明它满足条件(1)、(2)及(3)。条件(1)只是说明事件A 的计数是从t = 0时开始的。条件(2)通常可从我们对过程了解的情况去验证。然而条件(3)的检验是非常困难的。为此,我们给出泊松过程的另一个定义。 定义3.3 :设计数过程{ X(t),t ≥ 0}满足下列条件: (1) X(0) = 0; (2) X(t)是独立平稳增量过程; (3) X(t)满足下列两式: o(h). 2} X(t)-h)P{X(t o(h),h 1} X(t)-h)P{X(t =≥++==+λ

排队论及其在通信领域中的应用

排队论及其在通信领域中的应用 信息与通信工程学院 2班 姓名:李红豆 学号:10210367 班内序号:26 指导老师:史悦 一、摘要 排队论是为了系统的性态、系统的优化和统计推断,根据资料的合理建立模型,其目的是正确设计和有效运行各个服务系统,使之发挥最佳效益。排队是一种司空见惯的现象,因此排队论可以用来解决许多现实问题。利用排队论的知识可以来解决通信服务中的排队论问题。应用排队论一方面可以有效地解决通信服务系统中信道资源的分配问题;另一方面通过系统优化,找出用户和服务系统两者之间的平衡点,既减少排队等待时间,又不浪费信号资源,从而达到最优设计的完成。 二、关键字 排队论、最简单流、排队系统、通信 三、引言 排队论又称随机服务系统, 主要解决与随机到来、排队服务现象有关的应用问题。是研究系统由于随机因素的干扰而出现排队(或拥塞) 现象的规律的一门学科, 排队论的创始人Erlang 是为了解决电话交换机容量的设计问题而提出排队论。它适用于一切服务系统,包括通信系统、计算机系统等。可以说, 凡是出现拥塞现象的系统, 都属于随机服务系统。随着电子计算机的不断发展和更新, 通信网的建立和完善, 信息科学及控制理论的蓬勃发展均涉及到最优设计与最佳服务问题, 从而使排队论理论与应用得到发展。 四、正文 1、排队论概述: 1.1基本概念及有关概率模型简述: 排队论是一个独立的数学分支有时也把它归到运筹学中。排队论是专门研究由于随机因素的影响而产生的拥挤现象(排队、等待)的科学也称为随机服务系统理论或拥塞理论。它专于研究各种排队系统概率规律性的基础上解决有关排队系统的最优设计和最优控制问题。 排队论起源于20世纪初。当时美国贝尔Bell电话公司发明了自动电话以后如何合理配臵电话线路的数量以尽可能地减少用户重复呼叫次数问题出现了。 1909年丹麦工程师爱尔兰发表了具有重要历史地位的论文“概率论和电话交换”从而求解了上述问题。 1917年又提出了有关通信业务的拥塞理论用统计平衡概念分析了通信业务量问题形成了概率论的一个新分支。后经C.Palm等人的发展由近代概率论观点出发进行研究奠定了话务量理论的数学基础。

排队论医院应用

医院排队论模型 医院排队论模型 医院就医排队是一种经常遇见的非常熟悉的现象.它每天以这样或那样的形 式出现在我们面前. 例如,患者到医院就医,患者到药房配药、患者到输液室输液等,往往需要排队等待接受某种服务. 这里,护士台、收费窗口、输液护士台及其服务人员都是服务机构或服务设备.而患者与商店的患者一样, 统称为患者. 以上排队都是有形的,还有些排队是无形的.由于患者到达的随机性,所以排队现象是不可避免的. 排队系统模拟 所谓排队系统模拟,就是利用计算机对一个客观复杂的排队系统的结构和行 为进行动态模拟,以获得反映其系统本质特征的数量指标结果,进而预测、分析或评价该系统的行为效果,为决策者提供决策依据. 如果医院增添服务人员和设备,就要增加投资或发生空闲浪费;如果减少服务 设备,排队等待时间太长,对患者和社会都会带来不良影响. 因此,医院管理人员要考虑如何在这两者之间取得平衡,以便提高服务质量,降低服务费用. 医院排队论,就是为了解决上述问题而发展起来的一门科学.它是运筹学的重 要分支之一. 在排队论中,患者和提供各种形式服务的服务机构组成一个排队系统,称为随 机服务系统. 这些系统可以是具体的,也可以是抽象的. 排队系统模型已广泛应用于各种管理系统.如手术管理、输液管理、医疗服务、医技业务、分诊服务,等等. 医院排队系统的组成 排队系统的基本结构由四个部分构成:来到过 程(输入)、服务时间、服务窗口和排队规则.

1、来到过程(输入)是指不同类型的患者按照各种 规律来到医院. 2、服务时间是指患者接收服务的时间规律. 3、服务窗口则表明可开放多少服务窗口来接纳患者. 4、排队规则确定到达的患者按照某种一定的次序接 受服务. ⑴来到过程 常见的来到过程有定长输入、泊松(Poisson)输入、埃尔朗(A. K. Erlang)输入等,其中泊松输入在排队系统中的应用最为广泛. 所谓泊松输入即满足以下4个条件的输入: ①平稳性:在某一时间区间内到达的患者数的概率只与这段 时间的长度和患者数有关; ②无后效性:不相交的时间区间内到达的患者数是相互独立 的; ③普通性:在同时间点上就诊或手术最多到达1个患者, 不 存在同时到达2个以上患者的情况; ④有限性:在有限的时间区间内只能到达有限个患者, 不可 能有无限个患者到达. 患者的总体可以是无限的也可以是有限的; 患者到来方式可以是单个的,也可以是成批的; 相继到达的间隔时间可以是确定的,也可是随机的; 患者的到达可以是相互独立的,也可以是关联; 到来的过程可以是平稳的,也可是非平稳的; ⑵服务时间

排队论及其在通信中的应用

排队论及其在通信中的应用 姓名:徐可学号:2012202120131 专业:通信与信息系统 摘要:排队论又称随机服务系统理论,它广泛应用于通信领域,是通信网络流量设计的基础理论。本文通过对排队论基本概念的介绍,进而阐述了排队论在通信网中的应用,以实例分析的方法揭示了排队论在通信网络流量设计中的重要作用。 关键词:排队论通信网络 Abstract:Queuing theory which is also called the theory of random service system is widely used in the communication field,and it is the basic theory of traffic flow in the communication network design.This paper introduce the basic concept of queuing theory, and expounds the queuing theory in communication network applications. with a case analysis,this paper reveals the important role of the queuing theory in communication network design . Key words: Queuing theory communication network 1 排队论基本概念 1.1 排队系统的概念 把要求服务的一方称为顾客,把提供服务的一方称为服务机构,而把服务机构内的具体设施称为服务员(或服务窗口)。 顾客要求的随机性和服务设施的有限性是产生排队现象的根本原因。排队论就是利用概率论和随机过程理论,研究随机服务系统内服务机构与顾客需求之间的关系,以便合理地设计和控制排队系统[1]。 由于顾客到达的数目和要求提供服务的时间长短都是不确定的,这种由要求随机性服务的顾客和服务机构两方面构成的系统称为随机服务系统或排队系统。 1.2 排队系统的基本参数 排队系统的基本参数包括:顾客到达率λ,服务员数目m,和服务员服务速率μ。

随机过程分析

随机过程分析 摘要随着科学的发展,数学在我们日常的通信体系中有着越来越重的地位,因为在科学研究中,只有借助于数学才能精确地描述一个现象的不同量之间的关系,从最简单的加减乘除,到复杂的建模思想等等。其中,随机过程作为数学的一个重要分支,更是在整个通信过程中发挥着不可小觑的作用。如何全面的对随机信号进行系统和理论的分析是现在通信的关键,也是今后通信业能否取得巨大进步的关键。 关键字通信系统随机过程噪声 通信中很多需要进行分析的信号都是随机信号。随机变量、随机过程是随机分析的两个基本概念。实际上很多通信中需要处理或者需要分析的信号都可以看成是一个随机变量,利用在系统中每次需要传送的信源数据流,就可以看成是一个随机变量。例如,在一定时间内电话交换台收到的呼叫次数是一个随机变量。也就是说把随某个参量而变化的随机变量统称为随机函数;把以时间t为参变量的随机函数称为随机过程。随机过程包括随机信号和随进噪声。如果信号的某个或某几个参数不能预知或不能完全预知,这种信号就称为随机信号;在通信系统中不能预测的噪声就称为随机噪声。下面对随机过程进行分析。 一、随机过程的统计特性 1、数学期望:表示随机过程的n个样本函数曲线的摆动中心, 即均值

?∞ ∞-==11);()]([)(dx t x xp t X E t a 2、方差:表示随机过程在时刻t 对于均值a(t)的偏离程度。 即均方值与均值平方之差。 {}?∞ ∞ --=-=-==112222);()]([)]()([))](()([)]([)(dx t x p t a x t a t X E t X E t X E t X D t δ 3、自协方差函数和相关函数: 衡量随机过程任意两个时刻上获得的随机变量的统计相关特性时,常用协方差函数和相关函数来表示。 (1)自协方差函数定义 {} )]()()][()([);(221121t a t X t a t X E t t C x --=??∞∞-∞ ∞---=2121212211),;,()]()][([dx dx t t x x p t a x t a x 式中t1与t2是任意的两个时刻;a (t1)与a(t2)为在t1及t2得到的数学期望; 用途:用协方差来判断同一随机过程的两个变量是否相关。 (2)自相关函数 ??∞∞-∞ ∞-==2121212212121),;,()]()([),(dx dx t t x x p x x t X t X E t t R X 用途:a 用来判断广义平稳; b 用来求解随机过程的功率谱密度及平均功率。 二、平稳随机过程 1、定义(广义与狭义): 则称X(t)是平稳随机过程。该平稳称为严格平稳,狭义平稳或严平稳。

排队论的简单应用

基于排队论的简单实际应用 摘要:排队论(Queuing Theory) ,是研究系统随机聚散现象和随机服务系统工 作过程的数学理论和方法,又称随机服务系统理论,为运筹学的一个分支。本文根据排队论进行了一个简单的实际应用讨论。根据该办公室的电话系统状况得知其服从排队论模型规律,用)(t Pn 表示在时刻t ,服务系统的状态为n (系统中顾客数为n )的概率。通过输入过程,排队规则,和服务机构的具体情况建立关于 )(t Pn 的微分差分方程求解。令0)('=t P n 把微分方程变成差分方程,而不再含微 分了,因此这样意味着把)(t Pn 当作与t 无关的稳态解。关于标准的M/M/s 模型各种特征的规定于标准的M/M/1模型的规定相同。另外规定各服务器工作是相互独立(不搞协作)且平均服务率相同.==...==s 21μμμμ于是整个服务机构的平均服务率为μs ;令,s = μ λ ρ只有当1

一、基于排队论的简单介绍 M M:较为经典的一种排队论模式,按照前面的Kendall记号定义,//1 前面的M代表顾客(工具)到达时间服从泊松分布,后面的M则表示服务时间服从负指数分布,1为仅有一个打磨机。 蒙特卡洛方法:蒙特卡洛法蒙特卡洛(Monte Carlo)方法,或称计算机随机模拟方法,是一种基于“随机数”的计算方法。这一方法源于美国在第一次世界大战进研制原子弹的“曼哈顿计划”。该计划的主持人之一、数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。 排队论研究的基本问题 (1)排队系统的统计推断:即判断一个给定的排队系统符合于哪种模型,以便根据排队理论进行研究。 (2)系统性态问题:即研究各种排队系统的概率规律性,主要研究队长分布、等待时间分布和忙期分布等统计指标,包括了瞬态和稳态两种情形。 (3)最优化问题:即包括最优设计(静态优化),最优运营(动态优化)。 二、排队论在实际问题中的应用 问题的陈述:办公室有三条电话线可以打进,也就是说在任意时刻最多能打进接待三通话者来访,打进的电话是随机的,其时间服从上午九点至下午五点的均匀分布,每次电话的持续时间是均值为6分钟的随机变量,经理关心由于占线而可能打不进来的人数。他们当中有人稍后可能重拨电话,而其他人则可能放弃通话,一天中接通的电话平均数是70。 1、问题的提出:请仿真这个办公室的电话系统并给出如下估计: (1)无电话占线,有一条、两条占线和三条占线的时间百分比; (2)没有打进电话的人所占的百分比。 (3)若办公室再新装一部电话,你怎样修改模型?改进这一模型还需要其他什么信息? 2、问题的分析:这是一个多服务台混合制模型M/M/s/K,顾客的相继到达时间服从参数为λ的负指数分布(即顾客的到达过程为Poisson流),服务台的个数为s,每个服务台的服务时间相互独立,且服从参数为μ的负指数分布,系统的空

通信网基础-排队论及其应用

时间t 内有k 个顾客到达的概率: p (t)k k! k 0, 1, 2, 产生排队的原因: 顾客需求的 随机性和服务设施的 有限性。 排队系统一般分为: 窗口数W 认长,容许一定数量顾 客排队,趙过容量则拒絶 丰拒絶糸统:糸统弁许排队无隗扣售爲.炎■共电话 排队系统的三个基本参数: m :窗口数 :顾客到达率或系统到达率 ,即单位时间内到达系统的平均顾客数。 其单位为个/时间或份 /时间。 有效到达率: e (1 R ) 或 e (N L s ) 0 :一个服务员(或窗口)的服务速率,即单位时间内由一个服务员(或窗口)进行服务所 离开系统的平均顾客数。 一 1/ 是单个窗口对顾客的平均 服务时间,也是一个呼叫的平均持续时间。 系统模型: X/Y/m/n/N X :顾客到达时间间隔分布 Y :服务时间分布 m :窗口或服务员数目(此处特指并列排队系统) n :截止队长(省略这一项表示 n ,即为非拒绝系统) N :潜在的顾客总数(潜在的无限顾客源,即 N 时,可省去这一项) 指数分布 . k P k P{ X k} 一e k i ; k! F(t) 1 e t t 0 0 t 0 E( X ) D( X 1 1 E(t)丄 D(t) J 最简单流:平稳性 无后效性 疏稀性 1?务机构杲否允许顾 客井队等待服务 即时拒绝系统 窗口数X 队长,不披服务就被拒 绝,如电话网

Q3: M/M/1 系统 平均队长:L 1 t f(t)dt 一个随机过程为泊松到达过程 =到达时间间隔为指数分布 若顾客的离去过程也满足最简单流条件,则离去过程(即服务过程)也为泊松过程, 完成服务的平均时间: 1 E( ) t f (t)dt - Q1:泊松过程,求:时间间隔 t 内,有k 次呼叫的概率: (t)k e t e k! P k (t) 0, 1, 2, Q2 :泊松过程 的顾客到达时间间隔分布 求 顾客到达时间 间隔小于t 的概率,即t Step1: t 内没顾客的概率 P0(t) t | k! I k 0 内有顾客的概率分布 P o (t) Step2: t 内有顾客概率: F T (t) P(T 1-step1 t) 1 P(T t) 1 P o (t) 1 e t E(T) o

《运筹学》 第六章排队论习题及 答案

《运筹学》第六章排队论习题 1. 思考题 (1)排队论主要研究的问题是什么; (2)试述排队模型的种类及各部分的特征; (3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义; (4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分 布的主要性质; (6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系 与区别。 2.判断下列说法是否正确 (1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间 服从负指数分布; (2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分 顾客合起来的顾客流仍为普阿松分布; (3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序, 则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大 量实际系统的统计研究,这样的假定比较合理; (6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后, 系统将进入稳定状态; (7)排队系统中,顾客等待时间的分布不受排队服务规则的影响; (8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的 平均等待时间少于允许队长无限的系统; (9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有 关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人 看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。 3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负 指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间; (7)一个顾客在店内逗留时间超过15分钟的概率。 4.设有一个医院门诊,只有一个值班医生。病人的到达过程为Poisson 流,平均到达时间间隔为20分钟,诊断时间服从负指数分布,平均需12分钟,求: (1)病人到来不用等待的概率; (2)门诊部内顾客的平均数; (3)病人在门诊部的平均逗留时间; (4)若病人在门诊部内的平均逗留时间超过1小时,则医院方将考虑增加值班医生。问 病人平均到达率为多少时,医院才会增加医生? 5.某排队系统只有1名服务员,平均每小时有4名顾客到达,到达过程为Poisson 流,,服务时间服从负指数分布,平均需6分钟,由于场地限制,系统内最多不超过3名顾客,求: (1)系统内没有顾客的概率; (2)系统内顾客的平均数;

实验排队论问题的编程实现

实验排队论问题的编程 实现 Document number:BGCG-0857-BTDO-0089-2022

实验7 排队论问题的编程实现 专业班级信息112 学号18 姓名高廷旺报告日期 . 实验类型:●验证性实验○综合性实验○设计性实验 实验目的:熟练排队论问题的求解算法。 实验内容:排队论基本问题的求解算法。 实验原理对于几种基本排队模型:M/M/1、M/M/1/N、M/M/1/m/m、M/M/c等能够根据稳态情形的指标公式,求出相应的数量指标。 实验步骤 1 要求上机实验前先编写出程序代码 2 编辑录入程序 3 调试程序并记录调试过程中出现的问题及修改程序的过程 4 经反复调试后,运行程序并验证程序运行是否正确。 5 记录运行时的输入和输出。 预习编写程序代码: 实验报告:根据实验情况和结果撰写并递交实验报告。 实验总结:排队问题用lingo求解简单明了,容易编程。加深了对linggo中for语句,还有关系式表达的认识。挺有成就感。很棒。 参考程序 例题 1 M/M/1 模型 某维修中心在周末现只安排一名员工为顾客提供服务,新来维修的顾客到达后,若已有顾客正在接受服务,则需要排队等待,假设来维修的顾

客到达过程为Poisson流,平均每小时5人,维修时间服从负指数分布, 平均需要6min,试求该系统的主要数量指标。 例题 2 M/M/c 模型 设打印室有 3 名打字员,平均每个文件的打印时间为 10 min,而文件的到达率为每小时 16 件,试求该打印室的主要数量指标。 例题 3 混合制排队 M/M/1/N 模型 某理发店只有 1 名理发员,因场所有限,店里最多可容纳 5 名顾客,假设来理发的顾客按Poisson过程到达,平均到达率为 6 人/h,理发时间服从负指数分布,平均12 min可为1名顾客理发,求该系统的各项参数指标。 例题 4 闭合式排队 M/M/1/K/1 模型 设有 1 名工人负责照管 8 台自动机床,当机床需要加料、发生故障或刀具磨损时就自动停车,等待工人照管。设平均每台机床两次停车的时间间隔为1h,停车时需要工人照管的平均时间是6min,并均服从负指数分布,求该系统的各项指标。 参考程序

排队论及其应用

排队系统的符号表述 描述符号:①/②/③/④/⑤/⑥ 各符号的意义: ①——表示顾客相继到达间隔时间分布,常用下列符号: M——表示到达的过程为泊松过程或负指数分布; D——表示定长输入; EK——表示K阶爱尔朗分布; G——表示一般相互独立的随机分布。 ②——表示服务时间分布,所用符号与表示顾客到达间隔时间分布相同。 ③——表示服务台(员)个数:“1”表示单个服务台,“s”(s>1)表示多个服务台。 ④——表示系统中顾客容量限额,或称等待空间容量。如系统有K个等待位子,则,0

排队论在实际当中的应用_毕业设计

第一章排队论问题的基本理论知识 排队是日常生活中经常遇到的现象,本章将介绍排队论的一些基本知识和常见的排队论的模型,使我们对排队论有一个基本的认识。 1.1 预备知识 下图是排队过程的一般模型:各个顾客由顾客源(总体)出发,到达服务机构(服务台、服务员)前排队等候接受服务,服务完成后离开。我们说的排队系统就是图中虚线所包括的部分。 一般的排队系统都有三个基本组成部分:输入过程;排队规则;服务机构。 1.输入过程 输入过程考察的是顾客到达服务系统的规律。可以用一定时间内顾客到达数或前后两个顾客相继到达的间隔时间来描述,一般分为确定型和随机型两种。对于随机型的情形,要知道单位时间内的顾客到达数或到达的间隔时间的概率分布。 2.排队规则 排队规则分为等待制、损失制和混合制三种。当顾客到达时,所有服务机构都被占用,则顾客排队等候,即为等待制。在等待制中,为顾客进行服务的次序可以是先到先服务,或后到先服务,或是随机服务和有优先权服务。如果顾客来到后看到服务机构没有空闲立即离去,则为损失制。有些系统因留给顾客排队等待的空间有限,因此超过所能容纳人数的顾客必须离开系统,这种排队规则就是混合制。 3.服务机构

可以是一个或多个服务台。服务时间一般也分成确定型和随机型两种。但大多数情形服务时间是随机型的。对于随机型的服务时间,需要知道它的概率分布。 1.2 模型理论分析 1.2.1 模型分类 排队模型的表示: X/Y/Z/A/B/C X—顾客相继到达的间隔时间的分布; Y—服务时间的分布; M—负指数分布、D—确定型、Ek —k阶爱尔朗分布。 Z—服务台个数; A—系统容量限制(默认为∞); B—顾客源数目(默认为∞); C—服务规则(默认为先到先服务FCFS)。 1.2.2 模型求解 一个实际问题作为排队问题求解时,只有顾客到达的间隔时间分布和服务时间的分布须要实测的数据来确定,其他的因素都是在问题提出时给定的。并且必须确定用以判断系统运行优劣的基本数量指标,解排队问题就是首先求出这些数量指标的概率分布或特征值。这些指标通常是: (1)队长:系统中排队等待服务和正在服务的顾客总数,其期望值记为 L; S 排队长(队列长):系统中排队等待服务的顾客数,其期望值记为 L; g [系统中顾客数]=[在队列中等待服务的顾客数]+[正被服务的顾客数] (2)逗留时间:一个顾客在系统中停留时间,包括等待时间和服务时间,其其期望值记为W s; 等待时间:一个顾客在系统中排队等待时间,其期望值记为W g; [逗留时间]=[等待时间]+[服务时间] (3)忙期:从顾客到达空闲服务机构起到服务机构再次为空闲这段时间长度; 系统状态:即指系统中的顾客数; 状态概率:用() P t表示,即在t时刻系统中有n个顾客的概率; n

随机过程与排队论大作业

随机过程与排队论 大作业 姓名:李嘉文 学号:1150349310087 日期:2016-01-12 指导教师:石剑虹老师

The Application of Stochastic Process in Transportation System 1.Intruduction Economic and social factors haveprofound influences on the level and pattern of travel demand and the choices of travelerswithin a given transport infrastructure. They also impact on the ability of responsibleauthorities to fund the maintenance and improvement of infrastructure, and to conducteffective travel demand management and control policies. It is just at such stages of majorchange and uncertainty that those planning future transport policies most need support inmaking their decisions, but in general this is exactly when most of the modelling tools weadopt fail to offer support, with their assumptions based on either an unchanging world, orone in which the future follows deterministically from the present. Even in periods ofrelative economic/social stability, such assumptions are increasingly difficult to support;this is most notable in cities where continued demand growth has outpaced the expansionin capacity of the transport infrastructure, with the transport system highly sensitive todaily and seasonal fluctuations in demand and capacities. The question then arises as to how we might develop modelling approaches to better deal with such situations. One approach to such problems is that of ‘worst-case planning’whereby the models suggest actions for a planner to take so as to minimize the impacts under a worst-case scenario. At its simplestmost stripped down level the Stochastic Process SP) approach could besaid to comprise three main elements for representing the epoch-to-epoch changes in atransport system: 1. A learning model, to describe how travellers learn from their travel experiences in pasttime epochs. 2. A decision model, to describe how travellers make decisions, given their learntexperiences. 3. A supply model, to describe the experiences of travellers in a particular time epoch. 2.Model Establishment The elements that described in the previous section are described by probability statements or probabilitydistributions, and when brought together they provide a single, self-consistent frameworkfor representing the mutual interactions between the uncertain components of thetransport system. Just as we demand of equilibrium transportation analysis, we can ask towhat extent this combination of elements may produce a well-defined and unique ‘output’(if the long-run is indeed what interests us), but whereas in equilibrium systems we referto a unique flow state, in the SP approach we refer to a unique probability distribution offlows. That is to say, the result of the modelling approach is to

排队论及其在通信领域中的应用

排队论及其在通信领域中的应用

排队论及其在通信领域中的应用 信息与通信工程学院 2010211112班 姓名:李红豆 学号:10210367 班内序号:26 指导老师:史悦

一、摘要 排队论是为了系统的性态、系统的优化和统计推断,根据资料的合理建立模型,其目的是正确设计和有效运行各个服务系统,使之发挥最佳效益。排队是一种司空见惯的现象,因此排队论可以用来解决许多现实问题。利用排队论的知识可以来解决通信服务中的排队论问题。应用排队论一方面可以有效地解决通信服务系统中信道资源的分配问题;另一方面通过系统优化,找出用户和服务系统两者之间的平衡点,既减少排队等待时间,又不浪费信号资源,从而达到最优设计的完成。 二、关键字 排队论、最简单流、排队系统、通信 三、引言 排队论又称随机服务系统, 主要解决与随机到来、排队服务现象有关的应用问题。是研究系统由于随机因素的干扰而出现排队(或拥塞) 现象的规律的一门学科, 排队论的创始人Erlang 是为了解决电话交换机容量的设计问题而提出排队论。它适用于一切服务系统,包括通信系统、计算机系统等。可以说, 凡是出现拥塞现象的系统, 都属于随机服务系统。随着电子计算机的不断发展和更新, 通信网的建立和完善, 信息科学及控制理论的蓬勃发展均涉及到最优设计与最佳服务问题, 从而使排队论理论与应用得到发展。 四、正文 1、排队论概述: 1.1基本概念及有关概率模型简述: 1.1.1排队论基本概念及起源: 排队论是一个独立的数学分支有时也把它归到运筹学中。排队论是专门研究由于随机因素的影响而产生的拥挤现象(排队、等待)的科学也称为随机服务系统理论或拥塞理论。它专于研究各种排队系统概率规律性的基础上解决有关排队系统的最优设计和最优控制问题。 排队论起源于20世纪初。当时美国贝尔Bell电话公司发明了自动电话以后如何合理配臵电话线路的数量以尽可能地减少用户重复呼叫次数问题出现了。 1909年丹麦工程师爱尔兰A.K.Erlang发表了具有重要历史地位的论文“概率论和电话交换”从而求解了上述问题。 1917年A.K.Erlang又提出了有关通信业务的拥塞理论用统计平衡概念分析了通信业务量问题形成了概率论的一个新分支。后经C.Palm等人的发展由近代概率论观点出发进行研究奠定了话务量理论的数学基础。 排队论广泛应用在网络的设计和优化方法移动通信系统中的切换呼叫的处理方法随机接入系统的流量分析方法ATM业务流的数学模型及其排队分析方法等。 1.1.2排队论系统的组成 一个排队系统由三个基本部分组成,输入过程、排队规则和服务机构。

排队论在超市的运用与分析

摘要 近年来,大型超市不断的兴起给人们带来了许多便利。但是由于种种原因大型超市的排队服务系统并不完善,常常出现了队列过长或者服务台空闲等问题,因此,优化大型超市排队服务系统,减短队列便有具有了重大意义。 本文针对沈阳乐购超市服务排队系统进行优化。首先对排队论的相关知识进行介绍,对多服务窗等待制M/M/n/∞/∞排队模型进行了重点阐述。其次对沈阳乐购超市浑南店顾客服务时间,到达时间等数据进行调查,取得原始数据代入排队模型进行实证分析,计算出了相应的目标参量,确定了该超市各个时段应该开放的最佳收银台的数量。然后运用FLEXSIM对服务系统进行仿真以确定该优化方案是可行的。在此基础上本文对乐购超市的收银通道,扫描,员工专业度等方面提出问题并对其优化,最后对超市的发展提出意见。 本文的研究成果对大型商场、医院、银行等具有收费服务系统的服务企业具有普遍的借鉴意义。 关键词:大型超市;排队服务系统;建模;仿真;优化

Abstract In recent years, the continuous rise of large supermarkets have brought a lot of convenience to peaple. However, due to various reasons, the large supermarket's queuing system is not perfect, many problems often arised, such as the queue is too long or deskes are idling. Therefore, to optimize the queuing service system of large supermarket to shorten the queue will have a great significance. This thesis aimed at to optimize the service queuing system of Shenyang Tesco Supermarket. At first, the knowledge about queuing theory has beed introduced, and the multi-window wait ing for M/M/n/∞/∞queuing model has beed focused on. Secondly, a survey of customer service time, arrival time and other data has beed conducted at Shenyang Tesco supermarket Hunnan store. Then, the original data abtained from the survey has been put into the queuing model to conduct a empirical analysis. And as a result, the corresponding target parameters are calculated, and so to determine the number of cash register at various hours of the supermarket should beed opened. Next, by using the FLEXSIM service system to conduct a simulation, finding out the optimization is feasible. On this basis, this thesis discussed the problem of cashier channel, scanning equipment and staff professionalism of the Tesco supermarket,and optimizing these problem at the same time.Finally, this thesis has give some advices about how to development the supermarket. The results of this paper have universal referenceto for large shopping malls, hospitals, banks and other service enterprises who have the fee-based services systems. Keywords: supermarkets; queuing service system; modeling; simulation; optimization

相关文档
相关文档 最新文档