文档视界 最新最全的文档下载
当前位置:文档视界 › 三维纳米材料制备技术综述

三维纳米材料制备技术综述

三维纳米材料制备技术综述
三维纳米材料制备技术综述

三维纳米材料制备技术综述

摘要:纳米材料的制备方法甚多。目前,制备纳米材料中最基本的原则有二:一是将大块固体分裂成纳米微粒;二是由单个基本微粒聚集,并控制聚集微粒的生长,使其维持在纳米尺寸。本文主要介绍纳米材料分类和性能,同时介绍了一些三维纳米材料的制备方法,如水热法、溶剂热法和微乳液法。

关键词:纳米材料;纳米器件;纳米阵列;水热法;溶剂热法;微乳液法

1.引言

随着信息科学技术的飞速发展,人们对物质世界认识随之也从宏观转移到了微观,也就是说从宏观的块体材料转移到了微观的纳米材料。所谓纳米材料,是材料尺寸在三维空间中,至少有一个维度处于纳米尺度范围的材料。如果按照维度的数量来划分,纳米材料的的种类基本可以分为四类:(1)零维,指在空间中三维都处在纳米尺度,如量子点,尺度在纳米级的颗粒等;(2)—维,指在空间中两个维度处于纳米尺度,还有一个处于宏观尺度的结构,例如纳米棒、纳米线、纳米管等;(3)二维,是指在空间中只有一个维度处于纳米尺度,其它两个维度具有宏观尺度的材料,典型的二维纳米材料具有层状结构,如多层膜结构、一维超晶格结构等;(4)三维,即在空间中三维都属于宏观尺度的纳米材料,如纳米花、纳米球等各种形貌[1]。

当物质进入纳米级别,其在催化、光、电和热力学等方面都出现特异性,这种现象被称为“纳米效应”。纳米材料具有普通材料所不具备的3大效应:(1)小尺寸效应——其光吸收、电磁、化学活性、催化等性质发生很大变化;(2)表面效应——在催化、吸附等方面具有常规材料无法比拟的优越性;(3)宏观量子隧道效应,例如纳米微粒表现出令人难以置信的奇特的宏观物理特性,如高强度和高韧性,高热膨胀系数、高比热容和低熔点,异常的导电率和磁化率,极强的吸波性,高扩散性,以及高的物理、化学和生物活性等[2]。

纳米科学发展前期,人们更多关注于一维纳米材料,并研究其基本性能。随着纳米科学快速发展,当今研究热点开始转向以微纳结构和纳米结构器件为方向的对纳米阵列组装体系的研究。以特定尺寸和形貌的一维纳米材料为基本单元,采用物理和化学的方法在两维或三维空间内构筑纳米体系,可得到包括纳米阵

列,多级结构等在内的多种新颖纳米结构。这些新颖结构将作为桥梁,通过进一步构建具有功能性的纳米器件,为纳米材料的大规模广泛应用提供支撑。相比较于一般的纳米材料,高度取向的纳米阵列结构的量子效应突出,具备比无序的纳米材料更加优异的性能。具有有序结构的纳米阵列的特点,展现出新颖的整体协同效应,这将进一步优化和提高构建的纳米器件性能[3]。

2.三维纳米材料的制备技术

纳米材料的制备方法甚多。目前,制备纳米材料中最基本的原则有二:一是将大块固体分裂成纳米微粒;二是由单个基本微粒聚集,并控制聚集微粒的生长,使其维持在纳米尺寸。按照纳米微粒的制备原理,纳米材料的制备方法总体上可以分为物理方法和化学方法[2]。本文主要讲述一些三维纳米材料的制备方法。2.1.水热法

水热法(Hydrothermal)是指在特制的密闭反应器(高压釜)中(高压釜,如图2-1所示)[4],采用水溶液作为反应体系,通过对反应体系加热,在反应体系中产生一个高温高压的环境而进行无机合成与材料制备的一种有效方法[5]。

图2-1 具有特氟隆(Teflon)内衬的不锈钢高压釜示意图[6]在水热法中,水由于处于高温高压状态,可在反应中起到两个作用:压力的传媒剂;在高压下,绝大多数反应物均能完全(或部分)溶解于水,可使反应在

接近均相中进行,从而加快反应的进行。按研究对象和目的的不同,水热法可分为水热晶体生长、水热合成、水热处理和水热烧结等。水热法引起人们广泛关注的主要原因是:(l)水热法采用中温液相控制,能耗相对较低,适用性广,既可用于超微粒子的制备,也可得到尺寸较大的单晶,还可以制备无机陶瓷薄膜。(2)原料相对廉价易得,反应在液相快速对流中进行,产率高!纯度高、结晶良好,并且形状、大小可控。(3)在水热法过程中,可通过调节反应温度、压力、处理时间、溶液成分、pH值、前驱物和矿化剂的种类等因素,来达到有效地控制反应和晶体生长特性的目的。(4)反应在密闭的容器中进行,可控制反应气氛而形成合适的氧化还原反应条件,获得某些特殊的物相,尤其有利于有毒体系中的合成反应,这样可以尽可能地减少环境污染。水热法作为无机材料合成和晶体生长的重要方法之一,在科学研究和工晶体生长中己被广泛应用。而应用这种方法己合成了许多现代无机材料,包括微孔材料、快离子导体、化学传感材料、复合氧化物陶瓷材料、磁性材料、非线性光学材料、复合氟化物材料和金刚石等[7]。

由于水热过程中制备出纳米微粒通常具有物相均匀、纯度高、晶形好、单分散、形状以及尺寸大小可控等特点,水热技术已广泛应用于纳米材料的制备。如华东师范大学的钒类氧化物纳米材料的制备及电化学和场发射性能研究中[1],首先采用简单的一步水热法成功地制备出了一维的五氧化二筑纳米线,在使用了表面活化剂PVP的辅助下,通过调节PVP在前驱体溶液中浓度,得到了两种不同形貌的三维五氧化二轨纳米结构,即纳米杨梅和纳米花,如图2-2和图2-3。

图2-2 (a)V2O5纳米杨梅结构的低倍SEM图,(b)V2O5纳米杨梅结构的中倍SEM图

图2-3 (a)V2O5纳米花结构的低倍SEM图,(b)V2O5纳米花结构的中倍SEM图2.2 溶剂热法

虽然水热法有上述的很多优点,但也有其局限性,最明显的一个缺点就是,该法往往只适用于对氧化物材料或少数对水不很敏感的硫化物的制备和处理,而对其它一些易水解的化合物就不适用。这些问题的出现促成了溶剂热技术的产生和发展。在溶剂热合成过程中,溶剂除了作为压力传递介质外,还具有其它方法无法替代的特点:首先,溶剂热合成可以有效地杜绝前驱物、产物的水解和氧化,有利于合成反应的顺利进行;其次,溶剂热体系是实现材料形状控制的重要手段,溶剂热体系的低温、高压、溶液条件,有利于生成具有晶型完美、规则取向的晶体材料,且合成的产物纯度高,通过选择和控制反应温度和溶剂可制得不同粒径的纳米材料,尤其是当在溶剂热体系中辅佐以高分子、表面活性剂等手段,对材料的形状具有有效的控制作用。如以正丁胺为代表的单基配体溶剂体系、多组分的复合溶剂体系,合成出纳米带ZnS[8]。

图2-4 ZnS纳米带,左侧是低倍数TEM象;右侧是高倍数TEM象

2.3 微乳液法

微乳液最初是1943年由Hoar和Schulman[9]提出的,目前公认的最好的定义是由Danielsson和Lindman[10]提出的,即“微乳液是一个由水、油和两亲性物质(分子)组成的、光学上各向同性、热力学上稳定的溶液体系”。表面活性剂分子在溶液中除可以形成表面活性剂的溶液、乳液外,还可以聚集形成胶团(反胶团)、微乳液(反相微乳液)、液晶及囊泡等多种有序微结构,这些有序的微结构大都在纳米尺度范围内,可以为化学反应提供特殊的微环境,既可以做为微反应器,也可以起模板作用(图2-5)[11]。

图2-5 表面活性剂在溶液中的几种有序聚集状态:(a)具有锥形结构的表面活性剂分子;(b)球形胶束;(c)具有香槟塞形状的表面活性剂分子;(d)反胶束;(e)形成相互连接的水通

道;(f)形成层状膜;(g)形成囊泡。

利用这些微反应器进行化学反应,用于纳米材料的制备,使成核生长过程局限在一个微小的范围内,粒子的大小、形态、结构等都受到微反应器的组成与结构的影响,为实现纳米粒子的人为调控提供了有利的手段。近年来,人们把表面活性剂的有序体系发展成为一类新颖的纳米材料制备方法。如Mann从从阴离子表面活性AOT(Sodium bis(2-ethylhexl)sulfosuccinate)的油包水型(W/O)微乳液中合成出了由棱柱形BaSO4纳米颗粒基元组成的高度有序的链状结构[12]。棱柱形的纳米晶具有曲率比较低的平的表面,这使得自组织所需要的憎水驱动力通过分子间的相互作用加强了,通过吸附在颗粒表面的相互交又的表面活性剂链之间的作用,在相邻的颗粒间形成了双分子层。当[Ba2+]:[SO42-]摩尔比为1时,形成了由单个BaSO4纳米颗粒组成的线形的链(图2-6)。

图2-6 由棱柱形BasO4纳米颗粒基元组成的高度有序的链状结构的TEM图。产物是在AOT 微乳液中[Ba2+]:[SO42-]=1,w=10。标尺为50nm。

3. 结束语

实际上在制备三维纳米材料时可以两种以上的方法一起使用,如在制备Au/Co(OH)2纳米阵列结构化催化剂时,可以先通过热水法合成出Co(OH)2纳米片阵列,再通过沉积沉淀法,以NaBH4为还原剂原位还原氯金酸制得。同时,制备的方法也不仅仅只有上三种,如电化学沉积法、化学水浴沉积法等[13]。因此制备三维纳米材料的方法是多种多样的,但不管是哪种制备的方法,其最终目的就是人们能够有效地控制纳米材料的形成。

神奇的纳米材料

神奇的纳米材料 1 纳米材料的发展历史 纳米材料的发展将1990年7月作为一个分界线,1990年7月以前为第一阶段,在这之前,从20世纪60年代末开始,人们主要在实验室探索用各种手段制备不同种材料的纳米粉末、合成块体(包括膜)研究评估表征的方法、探索纳米材料不同于常规材料的特殊性;但研究大部分局限性在单一材料。 1990年以后,纳米材料得到了迅速发展。在理论研究方面,纳米科技的诞生,给人们的思维带来了一次革命。它告诉我们,任何一种物质的性质都是由其本身的特性、聚集状态形式以及存在的环境条件范围决定,而且在不同的聚集状态及存在环境条件下,其自身的物性规律和运动规律都将发生根本性变化。 2 纳米材料的性能 (一)力学性质 纳米材料的位错密度很低,所以纳迷材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 (二)磁学性质 纳米多层膜系统的巨磁电阻效应高达50%,可以用于信息存储的磁电阻读出磁头,具有相当高的灵敏度和低噪音。巨磁电阻效应的读出磁头可将磁盘的记录密度提高到1.71Gb/cm2。 (三)电学性质 2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室温下的单电子晶体管。 (四)热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。(五)光学性质 纳米粒子的粒径远小于光波波长。与入射光有交互作用,光透性可以通过控制粒径和气孔率而加以精确控制,在光感应和光过滤中广泛。 (六)在生物医药方面,纳米技术更是有着独到的地方。 3 纳米材料的制备 纳米材料分一维、二维、三维纳米材料。 一维纳米材料:纳米晶、纳米片、纳米颗粒等等 二维纳米材料:纳米线、纳米管 三维纳米材料:纳米薄膜 不同维数的纳米材料制造方法也不一样。一维纳米材料一般都是用化学方法得到的,化学气象沉积法CVD,也有用机械研磨得到的纳米颗粒 二维纳米材料纳米线一般用外延生长,像氧化锌纳米线、纳米阵列研究的比较多 三维纳米薄膜制作方法最多,基本上所有的可以材料都可以制备出薄膜,物理气象沉积(脉冲激光沉

热门-《纳米技术就在我们身边》教学设计

《纳米技术就在我们身边》教学设计 教学目标 1.自主学习字词,会认“兵、乓”等12个生字,会写“纳、拥”等15个生字,理解字义,识记字形。正确读写“纳米拥有冰箱除臭隐形健康预防病灶疾病细胞”等词语。 2.抓住关键语句,有目的地筛选信息,了解纳米有关知识。 3.自主、合作探究“新奇”的具体体现。 4.领会纳米的神奇所在,培养爱科学、学科学的精神。 教学重点 1.抓住关键语句,有目的地筛选信息,了解纳米有关知识。 2.自主、合作探究“神奇”的具体体现。 教学难点 1.培养学生通过各种渠道收集信息的能力。 2.有科学依据的大胆想象,培养学生的科学精神和创造能力。 第一课时 教学目标

1.自主学习字词,会认“兵、乓”等12个生字,会写“纳、拥”等15个生字,理解字义,识记字形。正确读写 “纳米拥有冰箱除臭隐形健康预防病灶疾病细胞”等词语。 2.正确朗读课文,理清文章结构。 教学过程 一、图片导入,激发兴趣。 1.导语:大家还记得在科幻世界里那些随意消失变化的 人吗?还记得在神话世界里,孙悟空的七十二变吗?现在所有这一切都不是在疯狂的科幻世界里,不是在神奇的神话里,而是在离我们也许只有几年之遥的纳米时代!那么什么是纳米?什么是纳米技术?大家想不想了解有关这方面的知识? 2.展示图片:【课件出示2】 图1.纳米机器人(描述的是一个纳米机器人在清理血管 中的有害堆积物。由于纳米机器人可以小到在人的血管中自由地游动,对于像脑血栓、动脉硬化等病灶,纳米和纳米技术,对学生来说很陌生、很抽象。教师出示关于纳米和纳米技术的图片,可以增加直观感,能较好地激发学生的学习兴趣。 图2.纳米技术制作的中国地图(这是中国科学院化学 所的科技人员,利用纳米加工技术在石墨表面,通过搬迁碳原子而绘制出的世界上最小的中国地图。这幅地图到底有多小呢?打个比方吧,如果把这幅图放大到一张一米见方的中国地图大小的尺寸,就相当于把该幅地图放大到中国辽阔的领土的面积。)

碳纳米材料综述

碳纳米材料综述 课程: 纳米材料 日期:2015 年12月

碳纳米材料综述 摘要:纳米材料是一种处于纳米量级的新一代材料,具有多种奇异的特性,展现特异的光、电、磁、热、力学、机械等物理化学性能,这使得纳米技术迅速地渗透到各个研究领域,引起了国内外众多的物理学家、化学家和材料学家的广泛关注,也成为当前世界最热门的科学研究热点。物理学家对纳米材料感兴趣是因为它具有独特的电磁性质,化学家是因为它的化学活性以及潜在的应用价值,材料学家所感兴趣的是它的硬度、强度和弹性。毫无疑问,基于纳米材料的纳米科技必将对当今世界的经济发展和社会进步产生重要的影响。因此,对纳米材料的科学研究具有非常重要的意义。其中,碳纳米材料是最热的科学研究材料之一。 我们知道,碳元素是自然界中存在的最重要的元素之一,具有sp、sp2、sp3等多种轨道杂化特性。因此,以碳为基础的纳米材料是多种多样的,包括常见的石墨和金刚石,还包括近几年比较热门的碳纳米管、碳纳米线、富勒烯和石墨烯等新型碳纳米材料。 关键词:纳米材料碳纳米材料碳纳米管富勒烯石墨烯 1.前言 从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)。自20世纪80年代初,德国科学家Gleiter提出“纳米晶体材料’,的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料己引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1—100 nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域[1]。 碳纳米材料主要包括富勒烯、碳纳米管和石墨烯等,是纳米科学技术中不可或缺的材料,从1985年富勒烯(Fullerene)的出现到1991年碳纳米管(carbon nanotube,CNTs)的发现,碳纳米材料所具有的独特物理和化学性质引起了国内外研究人员广泛而深入的研究,二十年来取得了很多的成果。2004 年Geim研究组的报道使得石墨烯(Graphene)成为碳纳米材料新一轮的研究热点,其出现充实了碳纳米材料家族,石墨烯具有由碳原子组成的单层蜂巢状二维结构,由于它只有一个原子的厚度,可以将其视为形成其它各种维度的石墨相关结构碳材料的基本建筑块,石墨烯既可翘曲形成零维的富勒烯及卷曲形成一维的碳纳米管,亦可面对面堆积形成石墨,由于石墨烯具有优异的电学、导热和机械性能及较大的比表面积,因而在储氢材料、超级电容器、高效催化剂及纳米生物传感等方面有着广泛的应用[2]。 2.常见的碳纳米材料

纳米材料的制备方法

1化学气相沉积法 1.1化学气相沉积法的原理 化学气相沉积法(Chemical Vapour Deposition (CVD) )是通过气相或者在基板表面上的化学反应,在基板上形成薄膜。化学气相沉积方法实际上是化学反应方法,因此。用CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,而且即使是高熔点物质也可以在很低的温度下制备。 用化学气相沉积法可以制备各种薄膜材料、包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件——基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜构料。化学气相沉积的化学反应形式.主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。 化学气相沉积法制备纳米碳材料的原理是碳氢化合物在较低温度下与金属纳米颗粒接触时通过其催化作用而直接生成。化学气相沉积法制备碳纳米管的工艺是基于气相生长碳纤维的制备工艺。在研究气相生长碳纤维早期工作中就己经发现有直径很细的空心管状碳纤维,但遗憾的是没有对其进行更详细的研究[4]。直到Iijima在高分辨透射电子显微镜发现产物中有纳米级碳管存在,才开始真正的以碳纳米管的名义进行广泛而深入的研究。 化学气相沉积法制备碳纳米管的原料气,国际上主要采用乙炔,但也采用许多别的碳源气体,如甲烷、一氧化碳、乙烯、丙烯、丁烯、甲醇、乙醇、二甲苯等。在过渡金属催化剂铁钴镍催化生成的碳纳米管时,使用含铁催化剂,多数得到多壁碳纳米管;使用含钴催化剂,大多数的实验得到多壁碳纳米管;过渡金属的混合物比单一金属合成碳纳米管更有效。铁镍合金多合成多壁碳纳米管,铁钴合金相比较更容易制得单壁碳纳米管。此外,两种金属的混合物作为催化剂可以大大促进碳纳米管的生长。许多文献证实铁、钴、镍任意两种的混合物或者其他金属与铁、钴、镍任何一种的混合物均对碳纳米管的生长具有显著的提高作用,不仅可以提高催化剂的性能,而且可以提高产物的质量或者降低反应温度。催化裂解二甲苯时,将适量金属铽与铁混合,可以提高多壁碳纳米管的纯度和规则度。因而,包括像烃及一氧化碳等可在催化剂上裂解或歧化生成碳的物料均有形成碳纳米管的可能。Lee Y T 等[5]讨论了以铁分散的二氧化硅为基体,乙炔为碳源所制备的垂直生长的碳纳米管阵列的生长机理,并提出了碳纳米管的生长模型。Mukhopdayya K等[6]提出了一种简单而新颖的低温制备碳纳米管阵列的方法。该法以沸石为基体,以钴和钒为催化剂,仍是以乙炔气体为碳源。Pna Z W等[7]以乙炔为碳源,铁畦纳米复合物为基体高效生长出开口的多壁碳纳米管阵列。 1.2评价 化学气相沉积法该法制备的纳米微粒颗粒均匀,纯度高,粒度小,分散性好,化学反应活性高,工艺可控和连续,可对整个基体进行沉积等优点。此外,化学气相沉积法因其制备工艺简单,设备投入少,操作方便,适于大规模生产而显示出它的工业应用前景。因此,化学气相沉积法成为实现可控合成技术的一种有效途径。化学气相沉积法缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。化学气相沉积法是纳米薄膜材料制备中使用最多的一种工艺,广泛应用于各种结构材料和功能材料的制备。用化学气相沉积法可以制备几乎所有的金属,氧化物、氮化物、碳化合物、复合氧化物等膜材料。总之,随着纳米材料制备技术的不断完善,化学气相沉积法将会得到更广泛的应用。

纳米教学设计2

11、《新奇的纳米技术》导学案 教学目标: 1.能正确、流利地朗读课文。了解什么是“纳米技术”,以及纳米科技的广泛应用。 2.理解文章结构,能利用规律概括段落大意。 3.能收集相关资料,并根据文章内容提出自己的疑问。 4.会用关联词来介绍一样物品。 5.激发学生爱科学、学科学的热情。 教学时间 2课时 导学单: 1、这篇课文我已经读了()遍,自己认为读得(A.正确流利B.基本流利C.不太流利) 组内伙伴评价:(A.正确流利B.基本流利C.不太流利) 2、我已经会认读这些新词: 除臭技术微观对象纳米缓释技术长度度量单位这种大小的物质纳米自清洁技术碳纳米管纳米管储氢气纳米吸波材料探测雷达波 3、我要提醒大家容易读错的词语有 4、读了课题《新奇的纳米技术》,你知道了什么?有哪些问题要与大家交流?导学学过程 基础部分 (学习程序:课前通过自己独立学习,完成基础部分及要点部分会做的内容,课内小组交流基础部分,后展示、点评。时间约10分钟) 一、谈话引入,激发兴趣 1.今天我们来学习一篇新课文《新奇的纳米技术》(板书课题)。 2.以前听说过“纳米技术”吗?“新奇”的意思?说说生活中你有没有遇到过新奇的事物。 二、通读课文,了解大意 1.检查课文朗读。 出示课文中的科技术语和句子。先组内相互听读纠正,然后全班交流。 词语:除臭技术微观对象纳米缓释技术长度度量单位这种大小的物质

纳米自清洁技术碳纳米管纳米管储氢气纳米吸波材料探测雷达波 句子:纳米技术就是与纳米尺度的微观对象打交道的先进技术。 纳米技术就是研究并利用这些特性造福于人类的一门新学问。 2.自由交流:读了课文,你知道了什么? 3.自学了课文后你有什么问题想问? 重点部分 (学习程序:先独立学习要点部分,再组内群学要点部分,时间约8分钟。然后根据各组疑问情况,安排小组大展示,点评,教师及时追问、点拨,时间约17分钟。) 三、细读课文,深入理解 (一)学习第一自然段。 1.齐读第一段,读了这一段你有什么问题吗?(微米、纳米是什么?)(二)学习第二自然段。 1.自读第二自然段,想想:课文这一段主要讲了什么呢?(纳米是一种很小的长度计量单位和什么是纳米技术。) 2.品读句子,感受说明方法。 纳米是非常非常小的长度度量单位,非常非常小。 纳米是非常非常小的长度度量单位,1纳米等于十亿分之一米。 你觉得哪句话写得更明白形象些?为什么?(用了列数字的方法) 文章中还有哪些句子也是生动地向我们介绍了纳米是很小的长度度量单位? 3、理解“顾名思义”的意思。(智能手机、平板电脑、混合动力汽车) 4、理解:纳米技术就是与纳米尺度的微观对象打交道的先进技术。 你理解这句话吗?来说说哪些词语不懂?(纳米尺度、微观对象) 缩句练习。 5.你觉得这句话是围绕着哪句话来写的?从文中用——划出。分析总分段式的特点。根据规律,找到3、4、5的总起句,说出主要内容。 (三)学习第三自然段。 1、自读这本段,从文中找一找,作者举了哪些例子来说明纳米技术就在我们身边。(冰箱的涂层、纳米领带、纳米彩旗) 2、细读这些例子,说说运用了纳米技术后,有哪些神奇的效果。

纳米磁性材料的制备和研究进展综述教案资料

纳米磁性材料的制备和研究进展综述 一.前言 纳米材料又称纳米结构材料 ,是指在三维空间中至少有一维处于纳米尺度范围内的材料 (1-100 nm) ,或由它们作为基本单元构成的材料 ,是尺寸介于原子、分子与宏观物体之间的介观体系。磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。因此 ,纳米磁性材料的特殊磁性可以说是属于纳米磁性。 司马迁《史记》记载黄帝作战所用的指南针是人类首次对磁性材料的应用。而今纳米磁性材料广泛应用于生物学,磁流体力学,原子核磁学,机体物理学,磁化学,

天文学,磁波电子学等方面。随着雷达、微波通信、电子对抗和环保等军用、民用科学技术的,微波吸收材料的应用日趋广泛 ,磁性纳米吸波材料的研究受到人们的关注。纳米磁性材料也对人们的生产与生活带来诸多的利益。 本次综述,主要针对磁性纳米材料的制备方法和研究进展两个问题进行阐述。首先,介绍磁性纳米材料的发展历史,可以追溯到黄帝时期。其次,介绍磁性纳米材料的分类。------再次,重点介绍磁性纳米材料是怎么制备的。其制备方法一般分为三大类:1.由上到下,即由大到小,将块材破碎成纳米粒子,或将大面积刻蚀成纳米图形等。2.由下到上,即由小到大,将原子,分子按需要生长成纳米颗粒,纳米丝,纳米膜或纳米粒子复合物 3. 气相法、液相法、固相法等。第四、介绍磁性纳米材来噢的现状和发展前景。最后,将全文主题扼要总结,并且找出研究的优缺点和差距,提出自己的见解。 二、主题 1、纳米磁性材料的发展史 磁性材料是应用广泛、品类繁多、与时俱进的一类功能材料,磁性是物质的基本属性之一。人们对物质磁性的认识源远流长,早在公元前四世纪,人们就发现了天然的磁石(磁铁矿Fe3O4),,据传说,那是黄帝大战蚩尤于涿鹿,迷雾漫天,伸手不见五指,黄帝利用磁石指南的特性,制备了能指示方向的原始型的指南器,遂大获全胜.古代取其名为慈石,所谓“慈石吸铁,母子相恋”十分形象地表征磁性物体间的互作用。人们对物质磁性的研究具有悠久的历史,是在十七世纪末期和十八世纪前半叶开始发展起来的。1788年,库仑(Coulomb)把他的二点电荷之间的相互作用力规律推广到二磁极之间的相互作用上。1820年,丹麦物理学家奥斯特(Oersted)发现了电流的磁效应;同年法国物理学家安培(Ampere)提出了分子电流假说,认为物质磁性起源于分子电流。

纳米材料的制备方法及其研究进展

纳米材料的制备方法及其研究进展纳米材料的制备及其研究进展 摘要:综述了纳米材料的结构、性能及发展历史;介绍了纳米材料的制备方法及最新进展;概述了纳米材料在各方面的应用状况和前景;讨论了目前纳米材料制备中存在的问题。 关键词:纳米材料;结构与性能;制备技术;应用前景;研究进展 1 引言 纳米微粒是由数目极少的原子或分子组成的原子群或分子群,微粒具有壳层结构。由于微粒的表面层占很大比重,所以纳米材料实际是晶粒中原子的长程有序排列和无序界面成分的组合,纳米材料具有大量的界面,晶界原子达15%-50%。 这些特殊的结构使得纳米材料具有独特的体积效应、表面效应,量子尺寸效应、宏观量子隧道效应,从而使其具有奇异的力学、电学、磁学、热学、光学、化学活性、催化和超导性能等特性,使纳米材料在国防、电子、化工、冶金、轻工、航空、陶瓷、核技术、催化剂、医药等领域具有重要的应用价值,美国的“星球大战计划”、“信息高速公路”,欧共体的“尤里卡计划”等都将纳米材料的研究列入重点发展计划;日本在10年纳米微粒的制备方法 1 纳米微粒的制备方法一般可分为物理方法和化学方法。制备的关键是如何控制颗粒的大小和获得较窄且均匀的粒度分布。 1.1 物理方法 1.1.1 蒸发冷凝法

又称为物理气相沉积法,是用真空蒸发、激光、电弧高频感应、电子束照射等方法使原料气化或形成等离子体,然后在介质中骤冷使之凝结。特点:纯度高、结晶组织好、粒度可控;但技术设备要求高。根据加热源的不同有: (1)真空蒸发-冷凝法其原理是在高纯度惰性气氛(Ar,He)下,对蒸发物质进行真空加热蒸发,蒸气在气体介质中冷凝形成超细微粒。1984年Leiter[2]等首次用惰性气体沉积和原位成型方法,研制成功了Pd、Cu、Fe 等纳米级金属材料。1987 年Siegles[3]采用该法又成功地制备了纳米级TiO2 陶瓷材料。这种方法是目前制备纳米微粒的主要方法。特点:粒径可控,纯度较高,可制得粒径为5~10nm的微粒。但仅适用于制备低熔点、成分单一的物质,在合成金属氧化物、氮化物等高熔点物质的纳米微粒时还存在局限性。 (2)激光加热蒸发法是以激光为快速加热源,使气相反应物分子是利用高压气体雾化器将-20~-40OC的氦气和氩气以3倍于音速的速度射入熔融材料的液流是以高频线圈为热源,使坩埚是用等离子体将金属等的粉末熔融、蒸发和冷凝以获得纳米微粒。特点:微粒纯度较高,粒度均匀,是制备氧化物、氮化物、碳化物系列、金属系列和金属合金系列纳米微粒的最有效的方法,同时为高沸点金属纳米微粒的制备开辟了前景。但离子枪寿命短、功率小、热效率低。目前新开发出的电弧气化法和混合等离子体法有望克服以上缺点。 (6)电子束照射法1995年许并社等人[4]利用高能电子束照射母材,成功地获 得了表面非常洁净的纳米微粒,母材一般选用该金属的氧化物,如用电子束照射 Al2O3 后,表层的Al-O 键被高能电子“切断”,蒸发的Al原子通过瞬间冷凝,形核、长大,形成Al的纳米微粒,但目前该方法获得的纳米微粒限于金属纳 米微粒。 1.1.2 物理粉碎法

最新纳米结构与纳米材料25个题目+完整答案资料

1.什么是纳米材料?其内涵是什么?(从零、一、二、三维考虑) 2.纳米材料的四大效应是什么?对每一效应举例说明。 3.纳米材料的常用的表征方法有哪些? 4.用来直接观察材料形态的SEM、TEM、AFM对所测定的样品有哪些特定要求?从它们的图像中能够得到哪些基本信息? 5.纳米颗粒的高表面活性有何优缺点?如何利用? 6.在纳米颗粒的气相合成中涉及到哪些基本环节?气相合成大致可分为哪四种?气相成核理论的机制有哪两种? 7.溶胶-凝胶法制备纳米颗粒的基本过程是怎样的? 8.用溶胶-凝胶技术结合碳纳米管的生长机理,可获得密度不同的碳纳米管阵列(也叫纳米森林),简要阐述其主要步骤及如何控制碳纳米管的分布密度? 9.改变条件可制备不同晶粒大小的二氧化钛,下图分别为两种晶粒尺寸不同的二氧化钛的XRD图与比表面积数据。请用Scherrer 方程、BET比表面积分别估算这两种二氧化钛的晶粒尺寸(XRD测试时所用的 = 1.5406?,锐钛矿相二氧化钛的密度是3.84 g/cm3)(默写出公式并根据图中的数据来计算)。 10.氧化物或者氮化物纳米材料具有许多特殊的功能,请以一种氧化物或者氮化物为例,举出其三种主要的制备方法(用到的原料、反应介质、主要的表征手段)、主要用途(与纳米效应有关的用途)、并介绍这种物质的至少两种晶相。 11.举出五种碳的纳米材料,阐述其一维材料与二维材料的结构特点、用途。 12.简述纳米材料的力学性能、热学性能与光学性能有怎样的变化? 13.什么叫化学气相沉积法,它与外场结合又可衍生出哪些方法?简述VLS机制。 14.纳米半导体颗粒具有光催化性能的主要原因是什么?光催化有哪些具体应用 15.利用机械球磨法制备纳米颗粒的主要机制是什么?有何优、缺点? 16 何为“自催化VLS生长”?怎样利用自催化VLS生长实现纳米线的掺杂? 17.液相合成金属纳米线,加入包络剂(capping reagent)的作用是什么? 18.何为纳米材料的模板法合成?它由哪些优点?合成一维纳米材料的模板有哪些? 19.试结合工艺流程图分别说明氧化铝模板的制备过程以及氧化铝模板合成纳米线阵列的过程 20.从力学特性、电学特性和化学特性来阐述碳纳米管的性质,它有哪些主要的应用前景? 21.如何提高传统光刻技术中曝光系统的分辩率? 22.试比较电子束刻蚀和离子束刻蚀技术的异同点和优缺点。 23.比较极紫外光刻技术和X射线光刻技术的异同。 24.何为纳米材料的自组装?用于制备纳米结构的微乳液体系一般有几个组成部分? 25 何谓“取向搭接Oriented attachment”“奥斯德瓦尔德熟化Ostwald ripening”?

人教版部编本四年级下册《纳米技术就在我们身边》第一课时教学设计

人教版部编本四年级下册《纳米技术就在我们身边》第一课时教 学设计 教学目标 1.自主学习字词,会认“兵、乓”等12个生字,会写“纳、拥”等15个生字,理解字义,识记字形。正确读写“纳米拥有冰箱除臭隐形健康预防病灶疾病细胞”等词语。 2.正确朗读课文,理清文章结构。 教具准备 课件: 教学设计 一、图片导入,激发兴趣。 1.导语:大家还记得在科幻世界里那些随意消失变化的人吗?还记得在神话世界里,孙悟空的七十二变吗?现在所有这一切都不是在疯狂的科幻世界里,不是在神奇的神话里,而是在离我们也许只有几年之遥的纳米时代!那么什么是纳米?什么是纳米技术?大家想不想了解有关这方面的知识? 2.展示图片:【课件出示2】 图1.纳米机器人(描述的是一个纳米机器人在清理血管中的有害堆积物。由于纳米机器人可以小到在人的血管中自由地游动,对于像脑血栓、动脉硬化等病灶,它们可以非常容易地予以清理,而不再用进行危险的开颅、开胸手术。)图2.纳米技术制作的中国地图(这是中国科学院化学所的科技人员,利用纳米加工技术在石墨表面,通过搬迁碳原子而绘制出的世界上最小的中国地图。这幅地图到底有多小呢?打个比方吧,如果把这幅图放大到一张一米见方的中国地图大小的尺寸,就相当于把该幅地图放大到中国辽阔的领土的面积。)

3.板书课题: 简述:这篇科学小品文向我们简单而准确地介绍了纳米、纳米技术等科学知识,展示了纳米技术美妙的前景。(板书:纳米技术就在我们身边) 4.出示目标。 二、初读课文,解决字词。 1.学生自读课文,要求:【出示课件3】 (1)正确、流利地读课文,读准字音,读通句子。 (2)遇到自己喜欢的语句,多读几遍。 2.自学课文生字词,可以用笔在文中圈出来,然后用合适的方法来解决生字词。 3.检查学习效果,相机指导。 (1)检查并指正读音 【出示课件4:本课生字新词】 乒乓球拥有杀菌防臭蔬菜癌症死亡率疾病病灶 纳米冰箱钢铁隐形健康细胞预防需要 自由读,指名读,齐读。 注意读准平舌音“灶”,翘舌音“杀臭疏”等。 (2)指导书写【出示课件5、6】 重点指导“臭蔬健康”。 “臭”上下结构,上面是个“自”下面是个“犬”,不要少写“自”里的一横和“犬”上的一点。 “蔬”上窄下宽,下面是“疏”,不要多写横撇下的一撇,也不要少写了撇折右边的一点。 “健”左窄右宽,注意中间是“廴”不是“辶”。 “康”半包围结构,注意里面的部分,最后四笔分别是:点、提、撇、捺。 (3)检查词语理解。 【出示课件7、8、9】 (1)微米:微米是长度单位。1微米相当于1米的一百万分之一。

纳米材料综述要点

纳米材料综述 一、基本定义 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着 纳米科学技术的正式诞生。 1、纳米 纳米是一种长度单位,1纳米=1×10-9米,即1米的十亿分之一,单位符 号为 nm。 2、纳米技术 纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行 精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和 相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技 术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出 具有特定功能的产品。 纳米技术的发展大致可以划分为3个阶段: 第一阶段(1990年即在召开“Nano 1”以前主要是在实验室探索各种纳米粉体的制备手段,合成纳米块体(包括薄膜,研究评估表征的方法,探索纳米材料的特殊性能。研究对象一般局限于纳米晶或纳米相材料。 第二阶段 (1990年~1994年人们关注的热点是设计纳米复合材料: ?纳米微粒与纳米微粒复合(0-0复合, ?纳米微粒与常规块体复合(0-3复合, ?纳米复合薄膜(0-2复合。 第三阶段(从1994年至今纳米组装体系研究。它的基本内涵是以纳米颗粒 以及纳米丝、管等为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系的研究。 3、纳米材料 材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料就称为纳米 材料。纳米材料和宏观材料迥然不同,它具有奇特的光学、电学、磁学、热学和力学等方面的性质。

图1 纳米颗粒材料SEM图 二、纳米材料的基本性质 由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管放大特性。并根据低温下碳纳米管的三极管放大特性,成

人造纳米材料的环境风险分析

人造纳米材料的环境风险分析 自工业革命后,纳米技术将引领现代化进展步伐,成为社会发生革命 性变革的关键产业,人工纳米材料(英文全称:Manufac-turednanomaterials;简称“MNMS”)则是产业进展的基础。进入21 世纪以来,关于纳米技术安全性的研究成果层出不穷,其中最具代表 性的为Science和Nature杂志所发表的关于纳米技术安全性的文章, 多数的文章多突出了纳米技术所产生的生物效应对于生态环境的影响。但是,关于采纳纳米技术所研制并生产的人工纳米材料的研究,一般 也会从纳米技术的技术角度实行研究,而对于其作用机制对人类健康 和所发生地生态环境风险则有限,却成为可持续进展中需要着重解决 的问题。 1人工纳米材料对环境的潜在风险 1.1人工纳米材料为生物大分子结合人工纳米材料是基于纳米技术来 说之上成功的,其在组成上以高分子和胶体构成,在尺度上界定在lnm~100nm范围内。人工纳米材料是人工制造的化学用品,种类很多,在环境中所表现的特征是建立在其组合形式基础上的。人工纳米材料 生物成分居多,具有很多生态特征。因为其具有生物大分子的强烈结 合性,会与生命物质强烈结合,并以其显著的亲脂特性、配位特性和 体现出来的极性效应而渗入到体内。从人工纳米材料的化学组成来看,其比表面积大,众多的原子吸附在粒子表面的周围,使得相邻原子缺 少而导致很多空键存有。这就意味着人工纳米材料化学活性极强,特 别是吸附水平非常强。人造纳米材料的这些物化性质对于人体和环境 都会产生不良影响。这部分对人体和生态环境产生负面影响的人工纳 米材料被称为“纳米污染物”。随着纳米时代的到来,这些人工制造 的纳米污染物必定会对生态环境产生严峻的危害,所以要做好防护工作。 1.2人工纳米材料能够产生高级生物的毒性效应人工纳米材料的污染 物以纳米级存有,主要在于其强大的吸附性而导致其吸附被大量的污

三维纳米材料制备技术综述

三维纳米材料制备技术综述 摘要:纳米材料的制备方法甚多。目前,制备纳米材料中最基本的原则有二:一是将大块固体分裂成纳米微粒;二是由单个基本微粒聚集,并控制聚集微粒的生长,使其维持在纳米尺寸。本文主要介绍纳米材料分类和性能,同时介绍了一些三维纳米材料的制备方法,如水热法、溶剂热法和微乳液法。 关键词:纳米材料;纳米器件;纳米阵列;水热法;溶剂热法;微乳液法 1.引言 随着信息科学技术的飞速发展,人们对物质世界认识随之也从宏观转移到了微观,也就是说从宏观的块体材料转移到了微观的纳米材料。所谓纳米材料,是材料尺寸在三维空间中,至少有一个维度处于纳米尺度范围的材料。如果按照维度的数量来划分,纳米材料的的种类基本可以分为四类:(1)零维,指在空间中三维都处在纳米尺度,如量子点,尺度在纳米级的颗粒等;(2)—维,指在空间中两个维度处于纳米尺度,还有一个处于宏观尺度的结构,例如纳米棒、纳米线、纳米管等;(3)二维,是指在空间中只有一个维度处于纳米尺度,其它两个维度具有宏观尺度的材料,典型的二维纳米材料具有层状结构,如多层膜结构、一维超晶格结构等;(4)三维,即在空间中三维都属于宏观尺度的纳米材料,如纳米花、纳米球等各种形貌[1]。 当物质进入纳米级别,其在催化、光、电和热力学等方面都出现特异性,这种现象被称为“纳米效应”。纳米材料具有普通材料所不具备的3大效应:(1)小尺寸效应——其光吸收、电磁、化学活性、催化等性质发生很大变化;(2)表面效应——在催化、吸附等方面具有常规材料无法比拟的优越性;(3)宏观量子隧道效应,例如纳米微粒表现出令人难以置信的奇特的宏观物理特性,如高强度和高韧性,高热膨胀系数、高比热容和低熔点,异常的导电率和磁化率,极强的吸波性,高扩散性,以及高的物理、化学和生物活性等[2]。 纳米科学发展前期,人们更多关注于一维纳米材料,并研究其基本性能。随着纳米科学快速发展,当今研究热点开始转向以微纳结构和纳米结构器件为方向的对纳米阵列组装体系的研究。以特定尺寸和形貌的一维纳米材料为基本单元,采用物理和化学的方法在两维或三维空间内构筑纳米体系,可得到包括纳米阵

常州纳米材料项目规划方案

常州纳米材料项目规划方案 xxx有限公司

摘要说明— 上世纪80年代末,我国政府开始重视纳米材料和技术的研究,90年代中期之后,从事纳米材料生产开发的公司不断增多,社会资金投入也不断增加,纳米材料应用产业兴起。进入二十一世纪,我国纳米材料产业进入稳定、健康的发展阶段,各种包括纳米材料在内的新材料产业法规、标准也陆续出台,纳米行业从业者的外部环境逐渐变好,竞争更加有序。 该纳米材料项目计划总投资16668.32万元,其中:固定资产投资12328.67万元,占项目总投资的73.96%;流动资金4339.65万元,占项目总投资的26.04%。 达产年营业收入34676.00万元,总成本费用27159.02万元,税金及附加309.23万元,利润总额7516.98万元,利税总额8863.03万元,税后净利润5637.73万元,达产年纳税总额3225.29万元;达产年投资利润率45.10%,投资利税率53.17%,投资回报率33.82%,全部投资回收期4.46年,提供就业职位770个。 纳米材料及其相应的制取、组合技术已成为21世纪世界科技发展中的主流方向,也是世界各国最主要的研究热点之一。当前,我国在纳米领域发表的SCI论文累计已经跃居全球第一,同时相关专利的申请量累计达20.9万件,占全球总量的45%。然而,在美国专利及商标局的专利统计数

据中,即使不计美国自身,我国大陆地区的专利数量也居于韩国、日本、 中国台湾地区之后,说明我国相关产业参与国际化竞争的程度仍然不够深。 报告内容:概述、背景、必要性分析、市场调研预测、建设规划方案、项目选址、土建工程、工艺可行性分析、环境影响分析、项目职业保护、 项目风险评估、节能概况、实施安排方案、项目投资方案、项目盈利能力 分析、项目结论等。 规划设计/投资分析/产业运营

纳米材料文献综述

北京化工大学北方学院NORTH COLLEGE OF BEIJING UNIVERSITY OF CHEMICAL TECHNOLOGY 碳纳米管的性质与应用 姓名:赵开 专业:应用化学 班级: 0804 学号: 080105097 2011年05月

文献综述 前言 本人论题为《碳纳米管的性质与应用》。碳纳米管是一维碳基纳米材料,其径向尺寸为纳米级,轴向尺寸为微米量级,管子两端基本上都封口。碳纳米管具有尺寸小、机械强度高、比表面大、电导率高、界面效应强等力学,电磁学特点。近年来,碳纳米管在力学、电磁学、医学等方面得到了广泛应用。 本文根据众多学者对碳纳米管的研究成果,借鉴他们的成功经验,就碳纳米管的性质及其功能等方面结合最新碳纳米管的应用做一些简要介绍。本文主要查阅近几年关于碳纳米管相关研究的文献期刊。

碳纳米管(CNT)是碳的同素异形体之一,是由六元碳环构成的类石墨平面卷曲而成的纳米级中空管,其中每个碳原子通过SP2杂化与周围3个碳原子发生完全键合。碳纳米管是由一层或多层石墨按照一定方式卷曲而成的具有管状结构的纳米材料。由单层石墨平面卷曲形成单壁碳纳米管(SWNT),多层石墨平面卷曲形成多壁碳纳米管(MWNT)。自从1991年日本科学家lijima发现碳纳米管以来,其以优异的力学、热学以及光电特性受到了化学、物理、生物、医学、材料等多个领域研究者的广关注。 一、碳纳米管的性质 碳纳米管的分类 研究碳纳米管的性质首先要对其进行分类。(1)按照石墨层数分类,碳纳米管可分为单壁碳纳米管和多壁碳纳米管。(2)按照手性分类,碳纳米管可分为手性管和非手性管。其中非手性管又可分为扶手椅型管和锯齿型管。(3)按照导电性能分类,碳纳米管可分为导体管和半导体管。 碳纳米管的力学性能 碳纳米管无缝管状结构和管身良好的石墨化程度赋予了碳纳米管优异的力学性能。其拉伸强度是钢的100倍,而质量只有钢的1/ 6,并且延伸率可达到20 %,其长度和直径之比可达100~1000,远远超出一般材料的长径比,因而被称为“超强纤维”。碳纳米管具有如此优良的力学性能是一种绝好的纤维材料。它具有碳纤维的固有性质,强度及韧性均远优于其他纤维材料[1]。单壁碳纳米管的杨氏模量在1012Pa范围内,在轴向施加压力或弯曲碳纳米管时,当外力大于欧拉强度极限或弯曲强度,它不会断裂而是先发生大角度弯曲然后打卷形成麻花状物体,但是当外力释放后碳纳米管仍可以恢复原状。 碳纳米管的电磁性能

推荐一个靠谱的纳米材料公司

纳米材料的应用领域很广,涵盖了生物医学,电子行业,化学物理各个领域,纳米材料是一种具备特殊性能的纳米级材料,其性能表现形式有化学性能,以及物理性能。下面为大家推荐一个靠谱的纳米材料公司。 纳米材料的定义:根据2011年10月18日欧盟委员会通过的定义,纳米材料是一种由基本颗粒组成的粉状、团块状的天然或人工材料,这一基本粒的一个或多个维度尺寸在1纳米至100纳米之间,并且这一基本颗粒的总数量在整个材料的所有颗粒总数中占50%以上。 下面列举了纳米材料在生物医药方面的应用: 一、在诊断方面的应用 1.遗传病诊断 纳米技术有助于诊断胎儿是否有遗传缺陷。妇女怀孕8个星期时,血液中开始出现少量胎儿细胞。利用具有纳米级大小孔洞的半透膜或特殊的合成纳米管等,可把胎儿细胞分离出来进行诊断。不需要进行羊水穿刺。 目前美国已将此项技术应用于临床诊断中。 2.病理学诊断 肿瘤诊断较为可靠的手段是建立在组织细胞水平上的病理学方法,但存在着

良恶性及细胞来源判断不准确的问题。利用原子力显微镜可以在纳米水平上揭示肿瘤细胞的形态特点。通过寻找特异性的异常纳米级结构改变,以解决肿瘤诊断的难题。 二、在治疗方面的应用 1、纳米化增加药物吸收度 1)增大药物的表面积促进溶解。 2)药物大分子就能穿透组织间隙,也可以通过人体细小的毛细血管。而且分布面极广。 3)应用于中药制剂。药物的物理活性、靶向性比普通中药大大提高。 2、纳米医用材料 纳米银粉:银在纳米状态下的杀菌能力产生了质的飞跃。只需要用极少量的纳米银即可产生强大的杀菌作用。 智能药物:美国正在设计一种纳米“智能炸弹”,它可以识别出癌细胞的化学特征。这种“智能炸弹”很小,仅有20纳米左右,能够进入并摧毁单个的癌细胞。 纳米技术与生物医学的结合,为医学界提供了全新的思路,纳米材料在医学领域的应用取得了显著效果。 南京东纳生物科技有限公司成立于2011年,是一家集产学研于一体的高新技术型企业,主要从事纳米材料及生物医学纳米技术,功能微球、体外诊断试剂与仪器等研发与生产。有任何需要,欢迎致电联系我们!

纳米材料习题答案

纳米材料习题答案 1、简单论述纳米材料的定义与分类。 答:最初纳米材料是指纳米颗粒和由它们构成的纳米薄膜和固体。 现在广义: 纳米材料是指在三维空间中至少有一维处在纳米尺度范围,或由他们作为基本单元构成的材料。 如果按维数,纳米材料可分为三大类: 零维:指在空间三维尺度均在纳米尺度,如:纳米颗粒,原子团簇等。 一维:指在空间有两处处于纳米尺度,如:纳米丝,纳米棒,纳米管等。 二维:指在三维空间中有一维处在纳米尺度,如:超薄膜,多层膜等。 因为这些单元最具有量子的性质,所以对零维,一维,二维的基本单元,分别又具有量子点,量子线和量子阱之称。 2、什么是原子团簇谈谈它的分类。 3、通过Raman 光谱中任何鉴别单壁和多臂碳纳米管如何计算单壁碳纳米管直径 答:利用微束拉曼光谱仪能有效地观察到单臂纳米管特有的谱线,这是鉴定单臂纳米管非常灵敏的方法。 100-400cm-1范围内出现单臂纳米管的特征峰,单臂纳米管特有的环呼吸振动模式;1609cm-1,这是定向多壁纳米管的拉曼特征峰。 单臂管的直径d与特征拉曼峰的波数成反比,即d = 224/w d:单壁管的直径,nm;w:为特征拉曼峰的波数cm-1

4、论述碳纳米管的生长机理(图)。 答:碳纳米管的生长机理包括V-L-S机理、表面(六元环)生长机理。 (1)V-L-S机理:金属和碳原子形成液滴合金,当碳原子在液滴中达到饱和后开始析出来形成纳米碳管。根据催化剂在反应过程中的位置将其分为顶端生长机理、根部生长机理。 ①顶端生长机理:在碳纳米管顶部,催化剂微粒没有被碳覆盖的的部分,吸附并催化裂解碳氢分子而产生碳原子,碳原子在催化剂表面扩散或穿过催化剂进入碳纳米管与催化剂接触的开口处,实现碳纳米管的生长,在碳纳米管的生长过程中,催化剂始终在碳纳米管的顶端,随着碳纳米管的生长而迁移; ②根部生长机理:碳原子从碳管的底部扩散进入石墨层网络,挤压而形成碳纳米管,底部生长机理最主要的特征是:碳管一末端与催化剂微粒相连,另一端是不含有金属微粒的封闭端; (2)表面(六元环)生长机理:碳原子直接在催化剂的表面生长形成碳管,不形成合金。 ①表面扩散机理:用苯环坐原料来生长碳纳米管,如果苯环进入催化剂内部,会被分解而产生碳氢化合物和氢气同时副产物的检测结果为只有氢气而没有碳氢化化物。说明苯环没有进入催化剂液滴内部,而只是在催化剂表面脱氢生长,也符合“帽式”生长机理。 5、论述气相和溶液法生长纳米线的生长机理。 (1)气相法反应机理包括:V-L-S机理、V-S机理、碳纳米管模板法、金属原位生长。 ①V-L-S机理:反应物在高温下蒸发,在温度降低时与催化剂形成低共熔液滴,小液滴相互聚合形成大液滴,并且共熔体液滴在端部不断吸收粒子和小的液滴,最后由于微粒的过饱和而凝固形成纳米线。 ②V-S机理:首先沉底经过处理,在其表面形成许多纳米尺度的凹坑蚀丘,这些凹坑蚀丘为纳米丝提供了成核位置,并且它的尺寸限定了纳米丝的临界成核直径,从而使生长的丝为纳米级。 ③碳纳米管模板法:采用碳纳米管作为模板,在一定温度和气氛下,与氧化物反应,碳纳米管一方面提供碳源,同时消耗自身;另一方面提供了纳米线生长的场所,同时也限制了生成物的生长方向。 ④金属原位生长: (2)溶液法反应机理包括溶液液相固相、选择性吸附。 ①S-L-S机理:SLS 法和 VLS 法很相似,二者的主要差别在于 SLS 法纳米线成长的 液态团簇来源于溶液相,而 VLS 法则来自蒸气相。

纳米材料综述 论文

纳米材料综述 1 引言 纳米材料是指晶粒尺寸为纳米级(10-9米)的超细材料,它的微粒尺寸大于原子簇,小于通常的微粒,一般为100一102nm。它包括体积分数近似相等的两个部分:一是直径为几个或几十个纳米的粒子;二是粒子间的界面。前者具有长程序的晶状结构,后者是既没有长程序也没有短程序的无序结构。 1984年德国萨尔兰大学的Gleiter以及美国阿贡试验室的Siegel相继成功地制得了纯物质的纳米细粉。Gleiter在高真空的条件下将粒径为6nm的Fe粒子原位加压成形,烧结得到纳米微晶块体,从而使纳米材料进入了一个新的阶段。1990年7月在美国召开的第一届国际纳米科学技术会议,正式宣布纳米材料科学为材料科学的一个新分支。从材料的结构单元层次来说,它介于宏观物质和微观原子、分子的中间领域。在纳米材料中,界面原子占极大比例,而且原子排列互不相同,界面周围的晶格结构互不相关,从而构原子排列互不相同,界面周围的晶格结构互不相关,从而构. 在纳米材料中,纳米晶粒和由此而产生的高浓度晶界是它的两个重要特征。纳米晶粒中的原子排列已不能处理成无限长程有序,通常大晶体的连续能带分裂成接近分子轨道的能级,高浓度晶界及晶界原子的特殊结构导致材料的力学性能、磁性、介电性、超导性、光学乃至热力学性能的改变。纳米相材料和其他固体材料都是由同样的原子组成,只不过这些原子排列成了纳米级的原子团,成为组成这些新材料的结构粒子或结构单元。其常规纳米材料中的基本颗粒直径不到l00nm,包含的原子不到几万个。一个直径为3nm的原子团包含大约900个原子,几乎是英文里一个句点的百万分之一,这个比例相当于一条300多米长的帆船跟整个地球的比例。 2 纳米材料特性 一般在宏观领域中,某种物质固体的理化特性与该固体的尺度大小无关。当物质颗粒小于100 nm时,物质本身的许多固有特性均发生质的变化。这种现象称为“纳米效应”。纳米材料具有三大效应:表面效应、小尺寸效应和宏观量子隧道效应。 2.1表面效应 纳米材料的表面效应是指纳米粒子的表面原子数与总原子数之比随粒径的变小而急剧增大后所引起的性质上的变化。随着粒径变小,表面原子所占百分数将会显著增加。当粒径降到1 nm时,表面原子数比例达到约90%以上,原子几乎全部集中到纳米粒子表面。由于纳米粒子表面原子数增多,表面原子配位数不足和高的表面能,使这些原子易与其它原子相结合而稳定下来,故具有很高的化学活性。 2.2小尺寸效应 由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,比表面积增加,从而产生一系列新奇的性质: 1)特殊的光学性质:纳米金属的光吸收性显著增强。粒度越小,光反射率越低。所有的金属在超微颗粒状态都呈现为黑色。尺寸越小,颜色愈黑。金属超微颗粒对光的反射率通常可低于l%,约几微米的厚度就能完全消光。相反,一些

相关文档