文档视界 最新最全的文档下载
当前位置:文档视界 › 第十三章 单脉冲天线

第十三章 单脉冲天线

第十三章 单脉冲天线
第十三章 单脉冲天线

SPWM脉冲发生器-方波变正弦波

摘要 本系统是一个SPWM脉冲发生器。整个系统是以单片机AT89c51为核心,通过编程产生低频波信号,再通过LM358放大电路和滤波电路将波形信号进行处理,最后由示波器显示波形,而波形频率可以通过按键来改变,并且将波形的模式和修改的频率通过LCD12864显示,以便了解当前波形模式和所修改后的频率。经试验测试,系统满足设计的基本要求,而且系统的电路结构简单,优越性强。 关键字:SPWM脉冲发生器单片机AT89c51波形信号LM358放大电路滤波电路 Abstract This system is a SPWM pulse generator. The whole system is chip-computer AT89c51, through the programming produce low-frequency waveform signal, again through the amplifier circuit LM358 and filter circuit will waveform signal processing, the last oscilloscope display, but by the frequency changes through the button to revise the present wave frequency, and between the mode and modification of the wave frequency through the LCD12864 shows, in order to understand the revised model and frequency waveforms. After the test, this system meet the design requirement, system structure is simple, the circuit strong superiority. Key word: SPWM pulse generator single-chip microcomputer AT89c51 waveform signal LM358 amplifier circuit filter circuit

m序列发生器设计实现

河南师范大学设计性实验报告 学期:2014-2015学年第 1 学期 m序列发生器设计实现_实验 实验小组成员: 班级:2013级网络工程班 学院:计算机与信息工程学院 填表日期: 2014年 11月 29 日

实验项目简介: 1 问题描述 通常产生伪随机序列的数字电路为一反馈移位寄存器。根据其构成结构,它又分为线性反馈移位寄存器和非线性反馈移位寄存器两类,由线性反馈移位寄存器产生的周期最长的二进制数字序列称为最大长度线性反馈移位寄存器序列,简称m序列。 2.实验原理: 此实验是用4位移位寄存器实现可控乘/除法2到8步长为2n电路通过分析不难看出本次实验的乘除法运算中一个只出现三个数字2、4、8写成二进制为0010、0100、1000可以发现每一次乘法都只是将1向左移一个位每一次除法则是向右移一位,那么就可以使用74194双向移位寄存器。首先要了解4位移位寄存器。工作原理:74194是一个4位双向移位寄存器。它具有左移、右移、并行输入数据、保持以及清除等五种功能: 当~R=1MA MB=00 MA MB=01 MA MB=10 MA MB=11 3.一个完整的系统应具有以下功能: 1)控制信号的移动方向,通过改变S1S0的编码状态,使移位器左移、右移、保持等。 2)可以得到m序列的周期,通过观察示波器中CLK与Sl或者Sr的波形,可以得出m序列的周期。 4.实验目的: 1、掌握M序列信号产生的基本方法 2、利用EWB产生M序列信号,设计电路做成M序列信号发 5.实验条件:学院提供公共机房,1台/学生微型计算机。

实验总结: 1.在实验的过程中,小组成员积极准备。通过实验加深了对74194芯片性能的 了解,提高了各个成员的动手能力。 2.但是由于知识掌握不够全面准确的原因,实验过程中多次出现问题,小组成 员积极思考,最终解决了问题。 3.在观察m序列周期的过程中,出现了周期同预期不符合的情况,最终发现 是输入脉冲时出现了问题。

单脉冲雷达

雷达大作业 单脉冲雷达在测角方面的应用 班级: 1302019 姓名: 指导教师:魏青

一、引言 1、背景 对目标的定向,是雷达的主要任务之一,单脉冲定向是雷达定向的一个重要方法。之所以叫“单脉冲”,是因为这种方法只需要一个目标回波脉冲,就可以给出目标角位置的全部信息。单脉冲技术由于其良好的测角、角跟踪性能和抗干扰能力,因此除了在跟踪雷达中应用之外,还广泛应用到各种武器平台的控制雷达当中。本文分析了标定方法确定天线方向图信息的理论有效性,给出利用标定结果进行宽带单脉冲测角的方法。 2、简介 宽带单脉冲雷达是将传统的单脉冲雷达加载宽带信号。在宽带信号观测下,目标可认为由一系列孤立的散射点组成。从而宽带单脉冲雷达测角实际上是测定一系列散射点的角度。宽带单脉冲雷达测角具有广泛的应用价值,除了标跟踪,还可以应用于三维成像。根据对宽带单脉冲测角的基本原理分析可知,天线方向图在测角中发挥了重要的作用,目前的文献在讨论宽带单脉冲测角时,通常都是采取与文献类似的方法: 根据理论模型,设定方向图函数。对于实际的宽带单脉冲雷达系统,方向图函数通常并不是严格的满足理论模型。此外,精确测量实际雷达系统的方向图际雷达系统进行标定来为测角提供必要的方向图信息。 二、单脉冲雷达的自动测角系统中的优势 1、角度跟踪精度 与圆锥扫描雷达相比,单脉冲雷达的角度跟踪精度要高得多。其主要原因有以下两点: 第一,圆锥扫描雷达至少要经过一个圆锥扫描周期后才能获得角误差信息,在此期间,目标振幅起伏噪声也叠加在圆锥扫描调制信号(角误差信号)上形成干扰,而自动增益控制电路的带宽又不能太宽,以免将频率为圆锥扫描频率的角误差信号也平滑掉,因而不能消除目标振幅起伏噪声的影响,在锥扫频率附近一定带宽内的振幅起伏噪声可以进入角跟踪系统,引起测角误差。而单脉冲雷达是在同一个脉冲内获得角误差信息,且自动增益控制电路的带宽可以较宽,故目标振幅起伏噪声的影响基本可以消除。 第二、圆锥扫描雷达的角误差信号以调制包络的形式出现,它的能量存在于上、下边频的两个频带内,而单脉冲雷达的角误差信息只存在于一个频带内。故圆锥扫描雷达接收机热噪声的影响比单脉冲雷达大一倍。单脉冲雷达的角跟踪精度比圆锥扫描雷达的要高一个量级,约为0.1-0.2密位。

单脉冲雷达理以及应用

单脉冲定向原理 对目标的定向,即测定目标的方向,是雷达的主要任务之一。单脉冲定向是雷达定向的一个重要方法。所谓“单脉冲”,是指使用这种方法时,只需要一个目标回波脉冲,就可以给出目标角位置的全部信息。根据从回波信号中提取目标角信息的特点,可以将单脉冲定向分为两种基本的方法:振幅定向法和相位定向法,分别见于下图。除了上述两种方法外,由它们合成的振幅—相位定向法(或称为综合法)也得到了广泛的应用。 图2-1 单脉冲振幅定向法 图2-2单脉冲相位定向法 2.1 振幅定向法 振幅定向法是用天线接收到的回波信号幅度值来进行角度测量的,该幅度值的变化规律取决于天线方向图以及天线的扫描方式。振幅定向法可以分为最大信号法和等信号法两大类,其中等信号法又可以分为比幅法和和差法。 如图所示,平面两波束相互部分交叠,其等强信号轴的方向已知,两波束中心轴与等强信号轴的偏角0θ也已知。假设目标回波信号来向与等强信号轴向的夹角为θ,天线波束方向图函数为F(θ),则两个子波束的方向图函数可分别写成 ()()()???-=+=θθθθθθ02 01)(F F F F (2-1) 两波束接收到的目标回波信号可以表示成:

()()()()()()???-==+==θθθθθθθθ022 011F K F K u F K F K u a a a a (2-2) 其中a K 为回波信号的幅度系数。 对于比幅法,直接计算两回波信号的幅度比值有: ()()()() θθθθθθ-+=0021F F u u (2-3) 根据上式比值的大小可以判断目标回波信号偏角θ的方向,再通过查表就可以估计出θ的大小。 对于和差法,由()θ1u 和()θ2u 可计算得到其和值()θ∑u 及差值()θ?u 分别如下: ()()()()()()()()()()()()???--+=-=-++=+=? ∑θθθθθθθθθθθθθθ00210021F F K u u u F F K u u u a a (2-4) 其中()()()θθθθθ-++=∑00)(F F F 称为和波束方向图; ()()()θθθθθ--+=?00)(F F F 称为差波束方向图。 若θ很小(在等强信号轴附近),根据泰勒公式可以将 ()θθ+0F 和()θθ-0F 展 开近似为: ()()()()()()()()()()()()???'-=+'-=-'+≈+'+=+θ θθθθθθθθθθθθθθθθθ002000002000F F o F F F F F o F F F 进一步可以得到: ()()()()???'≈≈? ∑θθθθθ0022F K u F K u a a (2-5) 归一化和差信号值可得: ()()()() υθθθθθθ='=∑?00F F u u (2-6) 其中()()00θθυF F '= 是天线方向图在波束偏转角0θ处的归一化斜率系数。

脉冲序列发生器设计

脉冲序列发生器设计 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

摘要脉冲序列检测器广泛应用于现代数字通信系统中,随着通信技术的发展,对多路脉冲序列信号检测要求越来越高。现代通信系统的发展方向是功能更强、体积更小、速度更快、功耗更低,大规模可编程逻辑器件FPGA器件的集成度高、工作速度快、编程方便、价格较低,易于实现设备的可编程设计,这些优势正好满足通信系统的这些要求。随着器件复杂程度的提高,电路逻辑图变得过于复杂,不便于设计。VHDL(VHSIC Hardware Description Language)是随着可编程逻辑器件的发展而发展起来的一种硬件描述语言。VHDL具有极强的描述能力,能支持系统行为级、寄存器输级和门级三个不同层次的设计,实现了逻辑设计师多年来梦寐以求的“硬件设计软件化”的愿望,给当今电子通信系统设计带来了革命性的变化。 本文针对传统的脉冲序列检测器方案,提出了一种基于对脉冲序列检测器设计的新方案,该方案相对于传统的设计方法更适合于现代数字通信系统,不但大大减少了周边的设备,也使系统设计更加灵活,稳定性更好,性价比更高,可以满足多种环境下的检测系统的要求。 关键词:多路数据选择器、Multisim、计数器、序列检测器 目录 摘要 (1) 1目录 (1) 2. 设计内容及设计要求 (2) 实验目的 (3)

参考电路 (4) 实验内容及主电路图 (5) 多谐振荡器的介绍 (6) 计数器的介绍 (9) 数据分析 (12) 数据选择器的介绍 (14) 4实验结果 (16) 实验结果的分析 (17) 设计总结 (18) 致谢 (19) 参考文献 (20) 2设计内容及技术要求 1、设计并制作一个脉冲序列发生器,周期性的产生8位长度的任意脉冲序列, 脉冲序列可以通过设置电路自由设置。 2、能够检测出设置的脉冲序列,在每出现一次设置的脉冲序列时,点亮一次 LED; 3、时钟脉冲周期为1HZ; 4、对设置的脉冲序列值通过适当的方式进行指示; 5、电源:220V/50HZ的工频交流电供电; 6、(直流电源部分仅完成设计仅可,不需制作,用实验室提供的稳压电源调 试,但要求设计的直流电源能够满足电路要求)

单脉冲天线

第十三章单脉冲天线 一、引言 单脉冲雷达体制系统,主要用于高速目标的跟踪定位。如飞机、导弹、火箭、人造卫星的跟踪。单脉冲雷达系统中的天线称为单脉冲天线。单脉冲雷达天线要求产生一个主瓣的和波束,以及具有两个(或四个)主瓣的差波束,如下图13-1所示。差波束的两个峰值之间的最小值称为“零值”。和波束的作用是探测目标的距离(r)并行距离跟踪;差波束的作用是探测目标的方位角和俯仰角信息(,?θ)并行角跟踪。一个目标的距离信息r和角信息,?θ已知,则目标的空间位置就确定了。如果目标正好在和波束最大值方向,则差波束接收到的信号很弱(为零值);当目标移动时,则差波束接收到的信号由弱变强,则可利用差信号来驱动伺服机构,使天线在俯仰或方位上转动,始终使差波束的零值方向对准目标,从而实现跟踪。 图13-1单脉冲天线方向图 二、单脉冲天线组成。 在雷达应用中,单脉冲天线可采用阵列天线,也可采用反射面和单脉冲馈源组成。如果是后者,则馈源一般采用多个(4个)叭或者单口多模喇叭。形成差波束的关键是使用了比较器(和差器)。 三、分类。 根据比较回波信号的幅度和相位,单脉冲分为幅度单脉冲、相位单脉冲和幅相单脉冲,它们的主要区别在于天线。无论是幅度还是相位单脉冲,为了确定目标在某一平面的角度(方位、俯仰),都要求同时产生两个形状相同的波束。这里只讨论幅度单脉冲(比幅)。 四、工作原理。 为了说明问题,先考虑一个平面(俯仰面)内单脉冲技术的工作原理。

当一个横向偏焦的喇叭,置于抛面焦点附近时天线将产生一个偏离天线轴的 θ正比于偏焦距离x。为了获得两个对称于天线轴,并有波瓣,其波束偏移角 s θ的波瓣,可用两个对称于天线轴的横向偏焦喇叭来完成,如图13-2相同偏移角 s 所示。 图13-2 幅度比较单脉冲 若探测到一个目标,来自A方向,这时两波束收到的回波信号,相位相同,但幅度不等。两信号相减形成的差信号是目标方向的函数。这个差信号的大小,表示了目标偏离天线轴向角度的大小,差信号的正负,则表示目标偏向哪一边。由差信号驱动电机使天线转动而对准目标,则差信号为0。从而实现了跟踪。 一般的比幅单脉冲天线的馈源是由四个喇叭和比较电路构成的。假如上图为俯仰面的话,另两个喇叭则构成方位面。四喇叭馈源及比较器电路如图13-3所示。 图13-3 幅度比较单脉冲天线的馈源和比较器

脉冲陡化技术研究

研究生(脉冲功率)报告题目:脉冲陡化技术 学号T201289940 姓名肖旋 院(系、所)研究生院

脉冲陡化技术研究 摘要 在脉冲功率技术的应用中常常需要使用到快前沿的陡脉冲,如多路MARX发生器的同步触发,开关电路同步,触发电路的极速响应等。在脉冲功率技术领域,这种快前沿的脉冲具有功率高,输入快速的优良特性,也是脉冲功率的一个发展方向。理论上来讲,脉冲电压越高,前沿陡化就越难以实现。实际应用中,往往需要将10微秒量级的脉冲陡化到10纳秒量级甚至于数纳秒量级,而放电电流往往是很大的,这种高电流陡度往往使一般的元器件难于承受。基于这些问题,本文对几种形式的脉冲陡化电路的原理和应用进行了对比,也总结了一般的脉冲陡化电路的应用场合。 关键词:前沿;脉冲陡化;同步;仿真分析 Abstract In the application of pulsed-power technology,fast risetime tigger signal is always a regular.For example, Multiple MARX generator trigger synchronous, synchronous switch circuit,fast response of trigger circuit.In the domain of pulsed-power technology, fast risetime tigger signal have the characteristics of high power ,excellent input,and it has become an important direction of pulsed-power’s development. Theore- tically, the higher the pulse voltage is, the more difficult to achieve fast risetime. In practical application, it is often nesessary to sharp 10 micro seconds magnitude of pulse to 10 nanosecond level even a number nano second level,but the current of discharging is very big, This kind of high current gradient often make general components are difficult to bear. Based on these problems,in this paper, the simulation and comparison of several forms of pulse sharping circuit principle and application are made,and the general pulse sharping circuit applications is summarized. Keywords:Risetime;Pulse SharPening; Synchronous;Simulation

Ka波段单脉冲平面和差网络和天线的研究

Ka波段单脉冲平面和差网络和天线的研究 1 引言从20 世纪40 年代后期开始,毫米波单脉冲雷达技术逐步得到发展和应用,尤其是在航空和导弹防御系统中,毫米波单脉冲雷达发挥着重要的作用。毫米波单脉冲天线馈电网络是毫米波雷达的关键技术之一。传统的和差网络由魔T 构成,但结构过于庞大,不易实现平面化、集成化,并且成本较高。随着微带印刷技术的不断发展,微带结构的和差网络被广泛应用,但是毫米波波段的微带电路的损耗很大,并且功率承受能力较低。本文设计的Ka 波段平面和差网络采用波导缝隙耦合结构,具有结构简单、成本低、损耗小、各端口幅度和相位一致性好等优点。 2 和差网络模型及工作原理最早的缝隙耦合式波导和差器是由H.A.Bethe 提出的,它的原理是:在两根平行的矩形波导公共窄壁上开一个耦合裂缝构成 90°混合电桥,如图1 所示。根据3dB 电桥原理,通过改变耦合裂缝的长度可以调整两波导间的耦合度,使直通端口和耦合端口的输出功率相等。由于耦合端口的电场相位滞后直通端口的电场相位90°,所以直通端口和耦合端口存在90°的相位差,可以在输入端口增加四分之一波长的波导段消除相差。图1 中port1 和port4 为输入端口,port2 为和信号输出端口,port3 为差信号输出端口。 图1 缝隙电桥(左)及和差器构成原理图(右) 在图1 所示的结构中,设从输入端口输入电场幅度为E 的TE10 波,其余端口均接匹配负载。选取合适的波导尺寸,使主副波导耦合段内只能传输TE10 和TE20 两种模式的电磁波。根据叠加原理,输入端的电磁波等效于在port1 和port4 同时输入电场幅度为E/2 的偶模波和奇模波的叠加。设波导宽壁的内

序列信号发生器和序列信号检测器

南昌大学实验报告 学生姓名:学号:专业班级: 实验类型:□验证□综合□设计□创新实验日期:实验成绩: 实验三序列信号检测器设计 (一)实验目的 1.进一步熟悉PH-1V型实验装置和QuartusⅡ软件的使用方法; 2.学习有限状态机法进行数字系统设计; 3.学习使用原理图输入法进行设计。 (二)设计要求 完成设计、仿真、调试、下载、硬件测试等环节,在PH-1V型EDA实验装置上实现一个串行序列信号发生器和一个序列信号检测器的功能,具体要求如下: 1.先用原理图输入法设计0111010011011010序列信号发生器; 2.其最后8BIT数据用LED显示出来; 3.再设计一个序列信号检测器,检测上述序列信号,若检测到串行序列 “11010”则输出为“1”,否则输出为“0”; (三)主要仪器设备 1.微机 1台 2.QuartusII集成开发软件1套 3.PH-1V型EDA实验装置1套 (四)实验总体设计 本实验要求先设计一个信号发生器,采用原理图设计方法,要求产生 0111010011011010序列,16位,便可采用74161计数器和74151选择器,161计数输出QD,QC,QB,QA从0000计至1111,然后将161计数输出低三位QC,QB,QA分别接到151的C,B,A端,高位QD用来控制151两片的片选,即两片151分别实现序列的高八位和低八位的输出。最后将二片151的输出相或便可得到最后要产生的序列。 序列检测器即为一个状态机,首先画出状态转移图,根据状态转移图设计 出序列检测器,当检测到预置的序列,则RESULT输出1,否则输出0 (五)实验重难点设计 1. 用原理输入法设计序列信号发生器 (1)打开Quartus II软件,进入编辑环境。 (2)创建新的原理图BDF文件,命名为FASHENGQI,根据其总体设计思路设计 出如下原理图:

脉冲序列发生器设计

XX学院课程设计报告 课程名称:电子技术课程设计 教学院部:电气与信息工程学院 专业班级: XX班 学生姓名:XX(XX) 指导教师:XX 完成时间:XX 年X月X日 报告成绩:

脉冲序列发生

器 设 计 目录 1.实验任务 2.实验目的

3.参考电路 (1)设计方案 (2)参考设计 4.实验内容 (1)多谢振荡器介绍 (2)计数器的介绍 5.实验结果 6.心得体会 7.参考文献 (1)《电子技术课程设计指导书》 (2)《电子技术基础》

1.实验任务 设计并制作一个脉冲序列发生器,周期性的产生脉冲序列101011010101。 2.实验目的 通过本次设计,进一步熟悉多谐振荡器、计数器、数据选择器的用法,掌握脉冲序列发生器的设计方法。 3.参考电路 (1)设计方案 周期性脉冲序列发生器的实现方法很多,可以由触发器构成,可以由计数器外加组合逻辑电路构成,可以有GAL构成,也可以由CPLD\FPGA构成等等。本设计采用由计数器加多路数据选择器的设计法案,脉冲序列发生器原理框图如(1)图所示。 图(1)脉冲序列发生器原理框图 (2)参考设计

脉冲序列发生器需要一个时钟信号,可采用由TTL非门和石英晶体振荡器构成的串联式多谐振荡器产生时钟信号,如图(2)所示。 主电路部分如图(3)所示,图中74LS161和与非门构成十二进制计数器,为脉冲序列的宽度为12位。 4.实验内容 按照实验要求设计电路,确定元器件型号和参数;用Multisim进行仿真,列出实验数据,画出输出信号及其他关键信号的波形;对实验数据和电路的工作情况进行分析,得出实验结论;写出收获和体会。

单脉冲自动测角系统在导引头中的应用

雷达原理大作业——单脉冲自动测角系统在导引头中的应用 学院:电子工程学院 完成人及学号:

杨超() 王东旭() 韩孟洲() 程荣() 谭宗欣() 于振浩()任课教师:饶鲜

目录: 一、单脉冲自动测角系统简介- 4 - 1.单脉冲雷达- 4 - 2.自动测角系统- 4 - 3.单脉冲自动测角系统- 4 - 二、单脉冲自动测角原理- 5 - 1.振幅定向法- 5 - 2.相位定向法- 7 - 三、单脉冲自动测角系统的特点- 7 - 1.角度跟踪精度- 7 - 2.天线增益和作用距离- 8 - 3.角度信息的数据率- 8 - 4.抗干扰能力- 8 - 5.复杂程度- 8 - 四、单脉冲自动测角系统的仿真- 9 - 五、单脉冲雷达的应用- 12 - 六、总结- 13 -

一、单脉冲自动测角系统简介 1.单脉冲雷达 单脉冲雷达是一种精密跟踪雷达。它每发射一个脉冲,天线能同时形成若干个波束,将各波束回波信号的振幅和相位进行比较,当目标位于天线轴线上时,各波束回波信号的振幅和相位相等,信号差为零;当目标不在天线轴线上时,各波束回波信号的振幅和相位不等,产生信号差,驱动天线转向目标直至天线轴线对准目标,这样便可测出目标的高低角和方位角,从各波束接收的信号之和,可测出目标的距离,从而实现对目标的测量和跟踪。 2.自动测角系统 在火控系统中使用的雷达,必须快速连续地提供单个目标(飞机、导弹等)坐标的精确数值,此外在靶场测量、卫星跟踪、宇宙航行等方面应用时,雷达也是观测一个目标,而且必须精确地提供目标坐标的测量数据。 为了快速地提供目标的精确坐标值,要采用自动测角的方法。自动测角时,天线能自动跟踪目标,同时将目标的坐标数据经数据传递系统送到计算机数据处理系统。 和自动测距需要有一个时间鉴别器一样,自动测角也必须要有一个角误差鉴别器。当目标方向偏离天线轴线(即出现了误差角ε)时,就能产生一误差电压。误差电压的大小正比于误差角,其极性随偏离方向不同而改变。此误差电压经跟踪系统变换、放大、处理后,控制天线向减小误差角的方向运动,使天线轴线对准目标。 用等信号法测角时,在一个角平面内需要两个波束。这两个波束可以交替出现(顺序波瓣法),也可以同时存在(同时波瓣法)。前一种方式以圆锥扫描雷达为典型,后一种是单脉冲雷达。 3.单脉冲自动测角系统 单脉冲自动测角属于同时波瓣测角法。在一个角平面内,两个相同的波束部分重叠,其交叠方向即为等信号轴。将这两个波束同时接收到的回波信号进行比较,就可取得目标在这个平面上的角误差信号,然后将此误差电压放大变换后加到驱动电动机,控制天线向减小误差的方向运动。因为两个波束同时接收回波,故单脉冲测角获得目标角误差信息的时间可以

脉冲磁共振

FD-PNMR-Ⅱ型 脉冲核磁共振实验仪 实 验 指 导 书 华北煤炭医学院物理教研室 用脉冲核磁共振实验仪测弛豫时间 一、实验目的。

1.通过观察脉冲宽度与FID信号幅度及相位的关系。掌握90度脉冲180度脉冲的含义。 2.通过对自旋回波序列的调试,了解相位散失的机理,180度脉冲的作用,相位重聚和自旋回波的原理,T2的含义,掌握用基本脉冲序列测量样品的弛豫时间T2的方法。 3.测量二甲苯的化学位移间隔,了解谱仪的工作原理。 二.试验仪器: FD-PNMR-II 脉冲核磁共振谱仪、YB4323长余辉示波器以及PII 300MHz 联想计算机。脉冲核磁共振实验系统,包括磁铁、探头、开关放大器、相位检波器、脉冲序列发生器、磁场电源、示波器、计算机等。如图 1 1.探头:放置样品并产生脉冲核磁共振信号 2.脉冲序列发生器:产生各种脉冲序列 3.开关放大器:开关放大器是射频切换开关。在旋转射频场加载时将射频线圈与射频脉冲连接,此时射频脉冲与相位检波器内的放大器断开。在观察自由旋进信号时将射频线圈与相位检波器的放大器相连。这样可以避免大功率脉冲烧毁放大器和自由旋进信号观察困难。 4.相位检波器:相位检波器在电子学中是将采集困难的高频信号转变成容易采集的低频信号。在核磁共振中它的作用就是将实验室坐标系转变为旋转坐标系,这样保证每次激发信号的相位是一致的,从而能够得到成像所必需的相位精度。它的基本原理是将原有的信号

t t A 1cos )(ω乘上参考信号t 0cos ω得到和频和差频, t t A t t A t t t A )cos()()cos()(cos cos )(010101ωωωωωω++-= 和频项在调制时采用在这里无用,通过积分器或低通滤波器即可将其滤除,得到差频项以便于信号处理。如图2 图2 相位检波器的工作原理 5.磁体 磁极直径100mm 、磁极间隙15-20mm 。 6.示波器:因为信号重复周期长所以存在严重的闪烁现象,一般采用长余辉的慢扫描双踪示波器以减轻闪烁现象,或采用计算机软件记录所以直接在计算机上观测。 实验一脉冲核磁共振法测量弛豫时间 一、试验原理 1.自旋回波90度射频脉冲的作用:使宏观净磁矩倾倒90度。 2.相位散失:在磁场不均匀情况下每个点的共振频率各不相同,所以在90o 脉冲激发后各点共振信号的初相位相同信号最大,但随时间增加相位因为共振频率不同差距逐渐加大,当 达到信号互相抵消的时候,FID 信号消失,一般称相位散失的时间称为T 2*,信号近似) exp(*2 T t 衰减。 3.相位重聚和自旋回波: 90o 脉冲经τ时间后加180o 脉冲,可以使散失的相位重聚。 过程是:90o 脉冲后由于共振频率不同经过一段时间频率高的原子核相位超前,共振频率低的原子核相位落后,加载180o 脉冲后使得原子核磁矩旋进相位产生180o 跳变,它使得原先落后的相位超前,原先超前的相位落后,经过同等时间后共振频率高的原子核又追上落后的相位从

脉冲雷达发射机举例分析

脉冲雷达发射机举例 一、单级振荡式发射机 单级振荡式发射机是应用最广泛的一种雷达发射机。诸如导航雷达、气象雷达、搜索引导雷达和炮瞄雷达几乎都采用这一种程式。下面介绍一部航海导航雷达中的发射机。 某工作在X波段的航海导航雷达,其发射机的主要技术指标是: 工作频率f0=9370±30MHz 发射脉冲的脉冲宽度τ和重复频率F 150~80 τ=ns相应的Fr1=200Hz 20.16~0.2 τ=us相应的Fr2=2000Hz 30.45~0.6 τ=us相应的Fr3=1000Hz 脉冲功率Pτ≥14kW 该发射机由预调器、调制器和磁控管振荡器三大部分组成,图画出了其方框图。 1.预调器 预调器除产生激励调制器的调制开关脉冲外,同时输出一个幅度为8~15V的正极性触发脉冲去触发显示器作为定时信号。此外还提前输出一个极性为正、幅度大于8V的脉冲去触发海浪抑制(时间增益控制)电路。预调器由控制脉冲形成电路、触发脉冲产生器和预调脉冲形成电路三部分组成。 控制脉冲形成电路的原理线路如图所示。由电源变压器来的21V、1000Hz的交流电压对称地加至二极管D1和D2的负端,在其正端得到一个负的脉动电压,此电压经过稳压管D3和D4限幅后形成方波,它再经电容C1和电阻R3组成的微分电路变成正负相间的尖脉冲送至由BG1组成的限幅放大器,由于BG1处于零偏置的截止状态,故正极性尖脉冲不起作用,而当负尖顶脉冲输入时,它便由截止状态进入导通状态,在其集电极获得一正极性脉冲波,该脉冲一路经过电阻R2进入海浪抑制电路,作为该电路的触发信号;另一路则经耦合电容C2和由R5、C5组成的积分电路变成有较长上升边的脉冲波,然后经由BG2组成的射极跟随器输出至触发脉冲产生器去启动可控硅SCR工作。积分电路R5C5的作用是使海浪抑制触发脉冲能提前于发射脉冲,以防止由于海浪抑制电路的接入而干扰接收机工作。继电器J3用来转换触发脉冲的重复频率,当雷达工作在量程为0.5~4浬范围内时,继电器J3动作,二极管D1和D2同时工作,相当于全波整流,此时重复频率为2000Hz(相应的脉冲宽度为80mus或0.25us),在其它量程则继电器J3不动作,只有二极管D1工作,相当于半波整流,脉冲重复频率转换为1000Hz。 触发脉冲发生器的电路如图所示,实质上是一个最简单的线型调制器,SCR作为调制开关,电容C7用作储能和脉冲形成,当控制极触发脉冲还没有到来时,SCR的控制极电流Ig=0,管子处于正向阻断状态,这时电源电压Ec就通过电感L1、二极管D5向电容C7谐振充电。当控制极触发脉冲到来且达到规定的触发电平后,SCR就进入正向导通状态,于是电容C7就经SCR、脉冲变压器MB初级绕组放电。与此同时,在脉冲变压器MB的次级绕组感应出一个幅度近于300V的正极性脉冲,它被送至下一级去触发它激式间歇振荡器工作。当放电电流减少到SCR的维持电流时,SCR恢复到正向阻断状态,重复前述过程,如此周而复始就得到一系列的脉冲串。 预调脉冲形成电路采用它激式间歇振荡器,图画出了它的电原理图。在脉冲间歇期内,电子管G1因栅极接有负偏压而处于截止状态,一旦正极性的触发脉冲到来,电子管G1导通,

单脉冲雷达角度跟踪技术研究

单脉冲雷达角度跟踪技术研究 【摘要】简单介绍了单脉冲雷达的特点及工作原理,重点分析了多部干扰机对单脉冲雷达的角度干扰问题,并对相干干扰和非相干干扰的干扰效果进行了讨论,指出两点源非相干干扰是实际工程中一种比较理想的干扰方式。 【关键词】单脉冲雷达、角度跟踪、相干干扰、非相干干扰 一、引言 对雷达进行干扰要对准雷达的四个系统:显示系统、距离跟踪系统、速度跟踪系统和角度跟踪系统。在雷达发展的早期,只要对前三个系统中的一个(或两个)系统进行有效地干扰,就可达到破坏雷达角跟踪系统正常工作的目的。现在随着新体制雷达的出现和抗干扰技术的不断提高,尤其是单脉冲雷达体制的出现,使很多干扰技术难以奏效。本文以振幅和差式单脉冲雷达为例,讨论了用多部干扰机对单脉冲雷达实施干扰的情况。 二、分析 1.单脉冲雷达 ◆定义 单脉冲雷达是指由单个回波脉冲即可获得目标空间角信息的雷达。 ◆特点 单脉冲雷达是一种精密跟踪雷达。它有较高的测角精度、分辨率和数据率,但设备比较复杂。单脉冲雷达早在60年代就已广泛应用。美国、英国、法国和日本等国军队大量装备单脉冲雷达,主要用于目标识别、靶场精密跟踪测量、弹道导弹预警和跟踪、导弹再入弹道测量、火箭和卫星跟踪、武器火力控制、炮位侦察、地形跟随、导航、地图测绘等;在民用上主要用于中交通管制。目前使用的单脉冲雷达基本上都实现了模块化、系列化和通用化,具有多目标跟踪、动目标显示、故障自检、维修方便等特点。 ◆分类 根据从回波中获取角信息的方式(测角法)不同,单脉冲雷达可分为振幅法(比幅)、相位法(比相)和综合法(振幅相位)3种。这3种测角法又可用3种角度鉴

别器(振幅式、相位式、和差式)中的任何一种来获得目标的角度信息,因此综合起来有9种形式的单脉冲雷达系统,其中以振幅和差式单脉冲雷达系统用的最多。通常分为有振幅比较单脉冲雷达和相位比较单脉冲雷达两大类。 工作原理 单脉冲雷达每发射一个脉冲,天线能同时形成若干个波束,将各波束回波信号的振幅和相位进行比较,当目标位于天线轴线上时,各波束回波信号的振幅和相位相等,信号差为零;当目标不在天线轴线上时,各波束回波信号的振幅和相位不等,产生信号差,驱动天线转向目标直至天线轴线对准目标,这样便可测出目标的高低角和方位角,从各波束接收的信号之和,可测出目标的距离,从而实现对目标的测量和跟踪。它具有圆锥扫描雷达所没有的优点:获得角误差信息的时间短(以微秒计算);不受回波振幅起伏变化的影响;测角精度高(0.1~0.5mil);测角支路抗幅度调制干扰(如回答式倒相干扰)的能力强。振幅和差式单脉冲雷达系统的基本工作原理:将两个比幅天线方向图所得的幅度不同的信号经过和差变换器之后,再把和信号(U∑ )、差信号(U△ )加到鉴相器得出差信号。 2 雷达角跟踪技术 2.1 信号处理和测量技术 PD采用一种合适的且可以适当改变的配置方式及数据处理算法,可成功的实现跟踪低仰角目标。假定一种处理算法,地面的反射系数应有一个确定的模型(如镜面反射和几何光学原理),重要的是要估计这样的算法偏离假定的反射模型的灵敏度如何。在一个真实系统中,这样的偏差肯定会发生。即使是光滑的镜面表面(理想的镜面反射),当雷达位于几倍天线直径大的该表面时,由物理光学原理即菲涅尔区,也需要校正。关键的问题是,在反射的雷达信号中有多少是未知量,要确定这些未知量,雷达需要测量的量是多少,很明显,在多路径效应下,未知数的数量会增加。雷达必须做更多的测量才能获得反射平面的信息以鉴别目标的真实仰角。但是更多的工作是需要找到最优的算法,需要确定它们对不同反射系数模型的灵敏度。

极化对单脉冲天线差波束指向的影响分析

第32卷第11期2010年11月 现代雷达 ModernRadar V01.32No.1l Nov.2010 ?天馈伺系统-中图分类号:TN820文献标志码:A文章编号:1004—7859{2010)11—0070—03极化对单脉冲天线差波束指向的影响分析 刘志惠,孙磊 (南京电子技术研究所,南京210039) 摘要:单脉冲雷达天线的差波束指向和灵敏度通常受2个通道的幅相不平衡性影响,通过仿真计算和测试,在某些情况下。天线极化形式也会对差波束指向带来影响,例如斜45。极化。文中对几种典型模型进行了仿真、对比,并结合测试情况,分析了这种现象的成因、产生条件、对雷达性能的影响,最后给出了几种解决方案。 关键词:单脉冲雷达;差波束指向;极化 Polarization7SImpactonOffsetBeamDirectionalityof theMonopulseAntenna LIUZhi—hui,SUNLei (NanjingResearchInstituteofElectronicsTechnology,Nanjing210039,China) Abstract:Theoffsetbeamdirectionalityandsensitivityofthemonopulseradarfiremainlyinfluencedbythegain—phaseimbalanceofthetwochannels.Basedonsimulationandtest,theoffsetbeamdirectionalityCallbealsoinfluencedbythepolarizationofthe antennainsomesituations,suchillsthe45。inclinedpolarization.Inthispapersometypicalmodelsaresimulatedand compared. The genesis,conditionsandthe influenceonradarareanalyzed.Somesolvingmethodsareintroducedintheend.Keywords:monopulseradar;offset beamdirectionality;polarization 0引‘言 单脉冲雷达天线常用的极化形式有水平线极化、 垂直线极化、圆极化¨。4J,某些情况下还会用到斜45。 极化,比如在无源探测领域,经常会用到450斜极化。 对于水平极化和垂直极化,差波束指向主要受幅度和 相位的不平衡性影响。对45。斜极化,差波束指向除 了受幅度和相位的不平衡性影响外,在偏离法平面的 切面上,天线的极化形式还会带来固有的指向偏差,即 空间的三维差零深面不再是呈水平或垂直方向,而是 存在一个小角度的倾斜,倾斜方向和倾斜程度直接受 天线单元在阵中所表现的辐射特性决定。在天线的俯 仰法平面上,差波束指向没有偏差,但偏离俯仰法平面 时,指向将出现偏差,且偏差程度随俯仰方向偏离法平 面角度的增大而增大。 l极化形式对差波束指向影响的仿真分析 对一个2×2排列的振子阵列的方位差特性进行 了仿真计算。 如图1所示,垂直极化单元的方位差零深面呈垂 直方向。如图2所示,斜450极化单元阵列差零深面 则有一个小角度的倾斜,且零深变浅。经过分析,我们 通信作者:刘志惠 收稿日期:2010-06-20??-——70?————Emall:lzh_rat@163.com 修订日期:2010-09-28’ 发现有2个因素导致差零深面的倾斜:(1)阵列单元 的波瓣图不等化,如图3所示:振子单元H面波瓣比E 面波瓣宽,因此在偏离俯仰面法平面的A点,单元l 的场弱于单元2的场,导致在该处的场虽然在相位上 反相,但幅度不同,不能完全抵消,而在离单元2稍远 的B点出现了合成的最小值,但由于相位也出现了偏 差,因此差零深也相应变浅。(2)在阵中环境中,天线 单元的等效相位中心发生了偏移,从而导致差零深面 出现倾斜,如图4所示。 图1垂直极化单元及其波瓣图 差波束指向角的偏差程度随俯仰方向偏离法平面 角度的增大而增大,并受上述2个因素综合影响,当某 个因素占优势时,差零深面呈现相应的倾斜方向。在 该计算频点上,波瓣的不等化的因素占优势,差零深面 呈现如图3所示的倾斜方向。而且当俯仰面波束边窄 (此处我们以俯仰面单元数量的增大来实现)时,差零 深面的倾斜角也增大,如图5所示。 万方数据

利用Quartus设计顺序脉冲发生器

Quartus II实验 (顺序脉冲发生器,序列信号的产生和检测) 实验目的 (1)熟悉Quartus II 软件的使用方法,了解硬件描述语言VHDL (2)练习使用软件仿真的方法,设计数字逻辑电路 (3)掌握基于FPGA实现数字系统过程 (4)学习用功能仿真和时序仿真波形测试所设计的系统 实验原理 一、现代数字系统的设计方法 随着可编程器件的出现和计算机技术的发展,使EDA 技术得到了广泛应用,设计 方法也因此发生了根本性的变化。由传统的“自底向上”的设计方法转变为一种新 的“自顶向下”设计方法,其设计流程如下:第一步,进行行为设计,确定电子系 统或ASIC 芯片的功能、性能及允许的芯片面积和成本等。第二步,进行结构设计, 根据电子系统或芯片的特点,将分解为接口清晰、相互关系明确、尽可能简单的子 系统,得到一个总体结构。第三步,把结构转化为逻辑图,即进行逻辑设计。在这 一步中,希望尽可能采用规则的逻辑结构或采用已经经过验证的逻辑单元或模块。 第四步,进行电路设计,将逻辑图转化为电路图。最后一步是进行ASIC 的版图设 计,即将电路转换成版图,或者用可编程ASIC 实现。 二、FPGA的特点及设计软件 FPGA通称为可编程逻辑器件,它们都是在PLA ,PAL 和GAL等逻辑器件的基础上发展 起来的,主要有Altera公司和Xilinx公司生产的系列产品,比起早期的可编程逻辑器 件来,它们容量更大,速度更快。许多生产可编程器件的公司为了推广它们产品都有 自已的开发软件,其中应用较广的有Altera 公司的MAX+pluaII软件,它有以下主要优 点: (1) 开放的接口; (2) 与结构无关的设计开发环境,具有强大的逻辑综合与优化功能; (3) 支持各种HDL输入选项, 支持VHDL 硬件描述语言; (4) 全集成化的输入开发环境; (5) 丰富的设计库资源; (6)支持原理图,文本和波形等多种输入方法; (7)有丰富的在 线帮助功能。因此特别适合初学者使用,可作为数字电路系统的设计和开发软件。 在指导学生进行课程设计时,应先学习MAX+pluaII软件和VHDL 语言的编程方 法,掌握CPLD/FPGA 实验开发系统的使用。

脉冲电路的用途和特点

脉冲电路的用途和特点 在电子电路中,电源、放大、振荡和调制电路被称为模拟电子电路,因为它们加工和处理的是连续变化的模拟信号。电子电路中另一大类电路的数字电子电路。它加工和处理的对象是不连续变化的数字信号。数字电子电路又可分成脉冲电路和数字逻辑电路,它们处理的都是不连续的脉冲信号。脉冲电路是专门用来产生电脉冲和对电脉冲进行放大、变换和整形的电路。家用电器中的定时器、报警器、电子开关、电子钟表、电子玩具以及电子医疗器具等,都要用到脉冲电路。 电脉冲有各式各样的形状,有矩形、三角形、锯齿形、钟形、阶梯形和尖顶形的,最具有代表性的是矩形脉冲。要说明一个矩形脉冲的特性可以用脉冲幅度Um 、脉冲周期T 或频率f 、脉冲前沿t r 、脉冲后沿t f 和脉冲宽度t k 来表示。如果一个脉冲的宽度t k =1 /2T ,它就是一个方波。 脉冲电路和放大振荡电路最大的不同点,或者说脉冲电路的特点是:脉冲电路中的晶体管是工作在开关状态的。大多数情况下,晶体管是工作在特性曲线的饱和区或截止区的,所以脉冲电路有时也叫开关电路。从所用的晶体管也可以看出来,在工作频率较高时都采用专用的开关管,如2AK 、2CK 、 DK 、3AK 型管,只有在工作频率较低时才使用一般的晶体管。 就拿脉冲电路中最常用的反相器电路(图1 )来说,从电路形式上看,它和放大电路中的共发射 电路很相似。在放大电路中,基极电阻R b2 是接到正电源上以取得基极偏压;而这个电路中,为了保证电路可靠地截止,R b2 是接到一个负电源上的,而且R b1 和R b2 的数值是按晶体管能可靠地进入饱和区或 止区的要求计算出来的。不仅如此,为了使晶体管开关速度更快,在基极上还加有加速电容C ,在脉 前沿产生正向尖脉冲可使晶体管快速进入导通并饱和;在脉冲后沿产生负向尖脉冲使晶体管快速进入截止状态。除了射极输出器是个特例,脉冲电路中的晶体管都是工作在开关状态的,这是一个特点。

相关文档