文档视界 最新最全的文档下载
当前位置:文档视界 › 金属表面纳米化

金属表面纳米化

金属表面纳米化
金属表面纳米化

表面自身纳米化及其研究进展

摘要:金属材料表面自身纳米化,即在材料自身表面形成具有纳米结构的表面层。纳米结构表层与基体之问没有明砬的界面,处理前后材料的外形尺寸基本没变,一方面克服了目前三维大尺寸纳米晶体材料制备的技术困难,另一方面又将纳米晶体材料的优异性能与传统金属材料相结合。

关键词:表面自身纳米化;性能;应用

前言

很多丁程上的应用只需要改善材料的表面性能.就可以提高整个材料的综合服役性能和使用寿命,因为材料的失效一般源于材料的表面,如材料的疲劳、磨蚀疲劳、腐蚀、摩擦磨损等。另外,为了改进一些常见的材料加丁工艺,如材料的表面渗氮、渗铬,异种金属材料的固态扩散焊接等,迫切需要改善材料的表面性能。显然,把纳米技术与表面改性技术相结合。实现材料的表面纳米化。将是一个非常有潜力的领域。近年来,徐滨士等【1-2】提出纳米表面工程的概念。为材料表面改性开创了新的途径。

表面纳米化处理是近几年表面强化方法研究的热点之一。这种技术将纳米晶体材料的优异性能与传统工程金属材料相结合,在工业应用上具有广阔的应用前景。众所周知,工程结构材料的失效多始于表面,而且材料的疲劳、腐蚀、磨损对材料的表面结构和性能很敏感。因此,表面组织和性能的优化就成为提高材料整体性能和服役行为的有效途径。1999年,h等?提出了金属材料表面自身纳米化(Suface

Self-Nanocrystallization,SNC)的概念,即在材料自身表面形成具有纳米结构的表面层。纳米结构表层与基体之间没有明显的界面,处理前后材料的外形尺寸基本不变。这种表面自身纳米化技术,一方面克服了目前三维大尺寸纳米晶体材料制备的技术困难,另一方面又将纳米材料的优异性能应用到了传统工程材料的表面改性技术中。因此,这种新材料新技术具有很大的工业应用价值。目前,表面纳米化的研究主要集中于机械加工的方法。本文将简要介绍表面自身纳米化处理的技术特点以及对疲劳、腐蚀、磨损等性能的影响。

2 表面纳米化的基本原理与制备方法

在块状粗晶材料上获得纳米结构表层有3种基本方式[8] 表面涂层或沉积,表面自身纳米化和混合方式。

表面涂层或沉积,首先制备出具有纳米尺度的颗粒再将这些颗粒固结在材料的表面在材料上形成一个与基体化学成分相同(或不同)的纳米结构表层。这种材料的主要特征是纳米结构表层内的晶粒大小比较均匀表层与基体之间存在着明显的界面材料的外形尺寸与处理前相比有所增加。

表面自身纳米化,对于多晶材料采用非平衡处理方法增加材料表面的自由能使粗晶组织逐渐细化至纳米量级这种材料的主要特征是晶粒尺寸沿厚度方向逐渐增大纳米结构表层与基体之间不存在界面与处理前相比材料的外形尺寸基本不变。表面自身纳米化技术与表面自身纳米化材料有很多独特之处:首先,表面自身纳米化采用常规的表面处理方法(或者对常规的处理方法进行略微的改造)即可实现,在

工业应用中不存在明显的技术障碍;其次,表面自身纳米化材料表面的晶粒尺寸在厚度方向沿梯度变化,表面自身纳米晶组织与基体组织之问不存在明显的界面,不会发生剥层和分离;第三,表面自身纳米化既适用于材料的整体,又可用于材料的局部改性。对比表面涂层或沉积,表面自身纳米化技术与利用表面涂层或沉积实现表面纳米化有着明显的区别,表面涂层或沉积纳米化是利用常规的表面涂层和沉积技术,如PVD、CVD、溅射、电镀和电解沉积等,将制备好的纳米颗粒固结在材料的表面,在材料表面形成一个与基体化学成分相同或不同的纳米结构表层。纳米结构表层与基体之间存在着明显的界面,材料的外形尺寸与处理前相比有所增加。

表面自身纳米化的制备原理简介

由非平衡过程实现表面自身纳米化主要有两种方法心】,即表面机械加工处理法和非平衡热力学法,不同方法所采用的工艺和由其导致的纳米化的微观机理均存在着较大的差异。现在,绝大多数实现表面自身纳米化的方法主要是表面机械加工法。主要是表面机械加工处理方法原理简单,用常规的表面处理技术就可以实现,在具体的实验操作中易获得纳米层。表面机械加工法实现表面自身纳米化是一种非平衡处理方法,即外加载荷重复作用于材料表面,增加多晶体金属材料表面的自由能,使表面组织产生不同方向的强烈塑性变形而逐渐将材料表层的粗晶组织细化至纳米量级?。该方法的晶粒细化机理类似于早前提出的用强烈塑性变形法(Severe Plastic Deformation,SPD)制

金属材料表面纳米化的研究现状

金属材料表面纳米化的研究现状*中科院金属研究所沈阳材料科学国家(联合)实验室刘刚雍兴平卢柯 摘 要:概述金属材料表面纳米化研究的现状,包括表面纳米化的基本原理、制备方法、结构特征和功能特性,并对表面纳米化研究的发展进行展望。  关键词:金属材料 表面纳米化 结构 性能  中图分类号:TG17; TB33 文献标识码:A 文章编号:1007–9289(2001)03–0001–05 1 引 言  材料的组织结构直接影响着材料的使用性能,为了满足工作环境对材料的特殊需求,人们提出了多种表面改性技术,如喷丸、电镀、喷涂、气相沉积(PVD、CVD)、激光处理和表面化学处理等,这些技术通过材料表面组织结构的改善极大地提高了材料的服役行为,因此已在工业上取得了广泛的应用。随着纳米材料与纳米技术研究的不断深入,如何将表面改性技术与纳米技术相结合、以开发利用纳米材料的优异性能有待于进一步探索。 在过去的20年,纳米材料和纳米技术的研究异常活跃,这主要是由于纳米材料具有独特的结构和优异的性能[1,2],对纳米材料的研究不但进一步深化了人们对固体材料本质结构特征的认识,也为新一代高性能材料的设计、开发提供了材料和技术基础。迄今为止,人们提出了多种纳米材料制备方法,如金属蒸发冷凝-原位冷压成型法、非晶晶化法、机械研磨法和强烈塑性变形法等[3~7]。但是,由于制备工艺复杂、生产成本高和材料外形、尺寸有限,内部存在界面污染、孔隙类缺陷多等因素的制约,现有的制备技术至今尚未能在三维块状金属材料上取得实际应用。 众所周知,大多数材料的失稳始于其表面,因此只要在材料的表面制备出一定厚度的纳米结构表层,即实现表面纳米化[8],就能够通过表面组织和性能的优化提高材料的整体力学性能和环境服役行为。与其它纳米材料制备方法不同的是,表面纳米化采用常规表面处理技术或对表面处理技术进行改进即可实现。此外,表面纳米化材料的组织沿厚度方向呈梯度变化,这些技术在工业上应用 基金项目:国家自然科学基金项目(50071061);中国科学院创新基金重大项目 作者简介:刘钢男 (1963-) 副研究员博士 收稿日期:2001–08–16 并不存在明显的障碍;在使用过程中不会发生剥层和分离。因此,这种新材料有着开发应用的潜力。 最近,表面纳米化已引起国际同行的广泛关注,被认为是今后几年内纳米材料研究领域最有可能取得实际应用的技术之一。本文将表面纳米化研究的现状进行综述,包括表面纳米化的基本原理、制备方法、结构特征和功能特性,并对表面纳米化研究的发展进行展望。 2 表面纳米化的基本原理与制备方法  在块状粗晶材料上获得纳米结构表层有3种基本方式[8]:表面涂层或沉积、表面自身纳米化和混合方式,如图1所示,以下分别作以介绍。 图1 表面纳米化的3种基本方式 Fig.1 Schematic illustration of three types of surface nanocrystallization (a) surface coating or deposion(b) surface self-nanocrystallization (c) hybrid surface nanocrystallization 2.1 表面涂层或沉积 首先制备出具有纳米尺度的颗粒,再将这些颗粒固结在材料的表面,在材料上形成一个与基体化学成分相同(或不同)的纳米结构表层。这种材料的主要特征是:纳米结构表层内的晶粒大小比较均匀,表层与基体之间存在着明显的界面,材料的外形尺寸与处理前相比有所增加,图1(a)。 许多常规表面涂层和沉积技术都具有开发、应用的潜力,如PVD、CVD、溅射、电镀和电解沉积表面涂层或沉积 (b) 表面自身纳米化 (c)

表面纳米化对金属材料耐磨性的影响

东华大学研究生课程论文封面 教师填写: 得分任课教师签名 学生填写: 姓名学号 专业导师 课程名称 任课教师课程学分 上课时间20 至20 学年第学期星期 递交时间年月日 本人郑重声明:我恪守学术道德,崇尚严谨学风。所呈交的课程论文,是本人独立进行研究工作所取得的成果。除文中已明确注明和引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的作品及成果的内容。论文为本人亲自撰写,我对所写的内容负责,并完全意识到本声明的法律结果由本人承担。 论文作者签名:

表面纳米化对金属材料耐磨性的影响 摘要:材料的磨损起源于表面,金属材料的摩擦磨损性能与表面结构密切相关。利 用表面纳米化技术可以在金属材料的表面制备出一定厚度的纳米结构表层,从而大 大提高金属的耐磨性。结合国内外学者的研究报道,综述了表面纳米化在金属耐磨 性方面的影响,讨论了表面纳米化方法与机理以及表面纳米化影响耐磨性的因素, 简述了应用表面纳米化技术改善各种金属材料耐磨性的研究和实用成果,最后进行 了总结和展望。 关键词:表面纳米化;金属材料;耐磨性 Influence of Surface Nanocrystallization on Wear Resistance of Metallic Materials Abstract:Wearing stems from surface of material, the friction and wear properties of metallic materials are closely related to their surface structure. Nanostructured layer with a certain thickness can be produced by means of surface nanocrystallization technology on surface of metallic materials to enhance their wear resistance distinctly. With the research work of scholars, an overview of the influence of surface nanocrystallization on wear resistance of metallic materials is given. The methods, principle and factors influencing wear property of surface nanocrystallization are dis2 cussed, the research achievements and applying results are illustrated, and the summary and prospect are presented at last. Key words: surface nanocrystallization; metallic materials; wear resistance 1、引言 结构材料中许多失效(如磨损、疲劳等)均与材料表面结构和性能密切相关。在大多数服役环境下,材料的失稳多始于表面,如果能在材料上制备出一定厚度的纳米结构表层,就可以通过表面组织和性能的优化来提高材料的整体性能和服役行为[1]。基于此,20世纪末中科院金属所卢柯研究组提出了“表面纳米化”(Surface nanocrystallization)的概念,该项技术既

金属表面纳米化

表面自身纳米化及其研究进展 摘要:金属材料表面自身纳米化,即在材料自身表面形成具有纳米结构的表面层。纳米结构表层与基体之问没有明砬的界面,处理前后材料的外形尺寸基本没变,一方面克服了目前三维大尺寸纳米晶体材料制备的技术困难,另一方面又将纳米晶体材料的优异性能与传统金属材料相结合。 关键词:表面自身纳米化;性能;应用 前言 很多丁程上的应用只需要改善材料的表面性能.就可以提高整个材料的综合服役性能和使用寿命,因为材料的失效一般源于材料的表面,如材料的疲劳、磨蚀疲劳、腐蚀、摩擦磨损等。另外,为了改进一些常见的材料加丁工艺,如材料的表面渗氮、渗铬,异种金属材料的固态扩散焊接等,迫切需要改善材料的表面性能。显然,把纳米技术与表面改性技术相结合。实现材料的表面纳米化。将是一个非常有潜力的领域。近年来,徐滨士等【1-2】提出纳米表面工程的概念。为材料表面改性开创了新的途径。 表面纳米化处理是近几年表面强化方法研究的热点之一。这种技术将纳米晶体材料的优异性能与传统工程金属材料相结合,在工业应用上具有广阔的应用前景。众所周知,工程结构材料的失效多始于表面,而且材料的疲劳、腐蚀、磨损对材料的表面结构和性能很敏感。因此,表面组织和性能的优化就成为提高材料整体性能和服役行为的有效途径。1999年,h等?提出了金属材料表面自身纳米化(Suface

Self-Nanocrystallization,SNC)的概念,即在材料自身表面形成具有纳米结构的表面层。纳米结构表层与基体之间没有明显的界面,处理前后材料的外形尺寸基本不变。这种表面自身纳米化技术,一方面克服了目前三维大尺寸纳米晶体材料制备的技术困难,另一方面又将纳米材料的优异性能应用到了传统工程材料的表面改性技术中。因此,这种新材料新技术具有很大的工业应用价值。目前,表面纳米化的研究主要集中于机械加工的方法。本文将简要介绍表面自身纳米化处理的技术特点以及对疲劳、腐蚀、磨损等性能的影响。 2 表面纳米化的基本原理与制备方法 在块状粗晶材料上获得纳米结构表层有3种基本方式[8] 表面涂层或沉积,表面自身纳米化和混合方式。 表面涂层或沉积,首先制备出具有纳米尺度的颗粒再将这些颗粒固结在材料的表面在材料上形成一个与基体化学成分相同(或不同)的纳米结构表层。这种材料的主要特征是纳米结构表层内的晶粒大小比较均匀表层与基体之间存在着明显的界面材料的外形尺寸与处理前相比有所增加。 表面自身纳米化,对于多晶材料采用非平衡处理方法增加材料表面的自由能使粗晶组织逐渐细化至纳米量级这种材料的主要特征是晶粒尺寸沿厚度方向逐渐增大纳米结构表层与基体之间不存在界面与处理前相比材料的外形尺寸基本不变。表面自身纳米化技术与表面自身纳米化材料有很多独特之处:首先,表面自身纳米化采用常规的表面处理方法(或者对常规的处理方法进行略微的改造)即可实现,在

纳米材料特性

《纳米材料导论》作业 1、什么是纳米材料?怎样对纳米材料进行分类? 答:任何至少有一个维度的尺寸小于100nm或由小于100nm的基本单元组成的材料称作纳米材料。它包括体积分数近似相等的两部分:一是直径为几或几十纳米的粒子,二是粒子间的界面。纳米材料通常按照维度进行分类。原子团簇、纳米微粒等为0维纳米材料。纳米线为1维纳米材料,纳米薄膜为2维纳米材料,纳米块体为3维纳米材料,及由他们组成的纳米复合材料。 按照形态还可以分为粉体材料、晶体材料、薄膜材料。 2、纳米材料有哪些基本的效应?试举例说明。 答:纳米材料的基本效应有:一、尺寸效应,纳米微粒的尺寸相当或小于光波波长、传导电子的德布罗意波长、超导态的相干长度或投射深度等特征尺寸时,周期性的边界条件将被破坏,声、光、电、磁、热力学等特征性即呈现新的小尺寸效应。出现光吸收显著增加并产生吸收峰的等离子共振频移; 磁有序态转为无序态;超导相转变为正常相;声子谱发生改变等。例如,纳米微粒的熔点远低于块状金属;纳米强磁性颗粒尺寸为单畴临界尺寸时,具有很高的矫顽力;库仑阻塞效应等。二、量子效应,当能级间距δ大于热能、磁能、静磁能、静电能、光子能量或超导态的凝聚能时,必须考虑量子效应,随着金属微粒尺寸的减小,金属费米能级附近的电子能级由准连续变为离散能级的现象和半导体微粒存在不连续的最高被占据分子轨道和最低未被占据分子轨道,能隙变宽的现象均称为量子效应。例如,颗粒的磁化率、比热容与所含电子的奇、偶有关,相应会产生光谱线的频移,介电常数变化等。 三、界面效应,纳米材料由于表面原子数增多,晶界上的原子占有相当高的 比例,而表面原子配位数不足和高的表面自由能,使这些原子易与其它原子相结合而稳定下来,从而具有很高的化学活性。引起表面电子自旋构象和电子能谱的变化;纳米微粒表面原子运输和构型的变化。四、体积效应,由于纳米粒子体积很小,包含原子数很少,许多现象不能用有无限个原子的块状物质的性质加以说明,即称体积效应。久保理论对此做了些解释。 3、纳米材料的晶界有哪些不同于粗晶晶界的特点? 答:纳米晶的晶界具有以下不同于粗晶晶界结构的特点:1)晶界具有大量未被原子占据的空间或过剩体积,2)低的配位数和密度,3)大的原子均方间距,4)存在三叉晶界。此外,纳米晶材料晶间原子的热振动要大于粗晶的晶间原子的热振动,晶界还存在有空位团、微孔等缺陷,它们与旋错、晶粒内的位错、孪晶、层错以及晶面等共同形成纳米材料的缺陷。 4、纳米材料有哪些缺陷?总结纳米材料中位错的特点。 答:纳米材料的缺陷有:一、点缺陷,如空位,溶质原子和杂质原子等,这是一种零维缺陷。二、线缺陷,如位错,一种一维缺陷,位错的线长度及位错运动的平均自由程均小于晶粒的尺寸。三、面缺陷,如孪晶、层错等,这是一种二维缺陷。纳米晶粒内的位错具有尺寸效应,当晶粒小于某一临界尺寸时,位错不稳定,趋向于离开晶粒,而当粒径大于该临界尺寸时,位错便稳定地存在于晶粒 T 内。位错与晶粒大小之间的关系为:1)当晶粒尺寸在50~100nm之间,温度<0.5 m

发光功能化的纳米材料的应用探讨.docx

发光功能化的纳米材料的应用探讨纳米材料在实际应用中,其主要特点是比表面积大、化学反应活性强以及具有良好的尺寸效应,能够和生物体产生特殊的相互作用。在生物标记以及分析检测中则主要是作为生物探针应用,同时纳米技术、生物技术以及分析技术的良好结合,也进一步促进了功能性纳米材料的发展及应用。本文则从发光功能化角度,对纳米材料的发展及应用探讨。 1纳米材料在电化学和电化学发光生物传感中的应用 其中将CdTe量子点作为标志物的免疫传感器,能够同时测定人IgG抗原作为模型蛋白的荧光及电化学。首先借助于聚阳离子电解质PDDA能够在导电玻璃上将金胶纳米粒子在ITO芯片上被成功吸附,之后在金胶纳米离子上固定羊抗人IgG抗体,再实施封闭处理之后芯片则能够和检测出现抗原反应,并和量子点标记的鼠抗人IgG抗体反应。在以上反应结束后可以进行荧光及电化学方式检测。其中电致化学发光则是有效结合电化学和化学发光的检测方法,应用也比较广泛。量子点特点则为荧光特性独特以及生物相容性好,在其应用过程中将硫基乙酸作为稳定剂,则能够成功合成水溶性Cds纳米晶体。在对进行分析过程中,发现水溶液中会出现电致化学发光行为。采用自组装方式和纳米金放大技术相结合,在金电极上修饰Cds纳米晶,则能够构建新型ECL免疫传感器,主要是在低浓度脂蛋白检测中应用。这一材料在实际应用中具有良好的电化学发光以及生物相容性,能够进一步构建量子点电化学发光免疫传感器,主要应用在人免疫球蛋白灵敏

性检测工作中。 2纳米材料在聚合物电致发光中的应用 聚合物电致发光在应用中主要优势为:主动发光,并且效率高、宽视角、能耗低、厚度小、操作简单等等,在照明及平板显示领域中具有良好的应用发展前景,目前已经在全世界科学界及工业界得到普遍关注。聚合物电致发光二极管的首次研究则是在19XX年,英国机剑桥大学首次报道关于聚对苯乙烯的聚合物电致发光二极管,在采用溶液法将聚合物前驱体进行成膜之后,放置在2500C真空高温环境中进行处理,最终为均匀、致密的PPV薄膜,器件的阴阳极分别是Al 和ITO,在<14V电压环境下则能够实现外量子效率0.05%黄绿光发光。PPV则属于是难溶性共轭聚合物,在其处理过程中一定要选用前驱体方式进行旋涂成膜,在操作过程中工艺复杂,同时薄膜质量也比较差。在19XX年美国加州大学则提出可通行的甲氧基异辛氧基对聚对苯乙烯进行取代,能够在ITO上旋涂MEH-PPV溶液成膜,从而实现发光层,即将金属Ca作为阴极则能够得到1%橘红色发光二极管,这一工艺在操作中简单,同时具有高发光率聚合物电致发光二极管。19XX年则进一步采用柔性塑料基底则可弯曲聚合物电致发光二极管,从而呈现出聚合物电致发光二极管最为迷人一面。在近些年来,世界对聚合物电致发光材料及期间的研究一直都比较重视,并取得显著进步,但是就目前而言不管是聚合物电致发光器件稳定性还是效率上均还有进步空间,因此还需要进一步加大研究。 3纳米材料在化学发光免疫分析中的应用

材料表面纳米化研究现状

金属材料表面纳米化研究现状 摘要:金属材料的表面纳米化处理是近几年表面强化方法研究的热点之一。这种技术将纳米晶体材料的优异性能与传统工程金属材料相结合,在工业应用上具有广阔的应用前景。通过对表面纳米化的基本原理、制备方法、结构特征和功能特性的综述,提出要实现这种新技术的工业应用需要解决的问题,如影响因素,表面纳米化形成动力学等。 关键词:表面纳米化;金属材料;研究现状 1、介绍 表面工程是21世纪工业发展的关键技术之一,它是先进制造技术的重要组成部分,同时又可为先进制造技术的发展提供技术支撑。表面工程,是经表面预处理后,通过表面涂覆、表面改性或多种表面工程技术复合处理,改变固体金属表面或非金属表面的形态、化学成分、组织结构和应力状态等,以获得所需要表面性能的系统工程。表面工程的最大优势是能够以多种方法制备出优于本体材料性能的表面功能薄层,赋予零件耐高温、耐腐蚀、耐磨损、抗疲劳、防辐射等性能。这层表面材料与部件的整体材料相比,厚度薄、面积小,但却承担着工作部件的主要功能[1-3]。 从19世纪80年代表面工程的诞生到现在,经历了三个发展阶段,第一代表面工程是指传统的单一表面工程技术,包括热喷涂、电刷镀、、激光熔覆、PVD(物理气相沉积)技术、CVD(化学气相沉积)技术以及激光束、离子束、电子束三束表面改性等[4-5]。第二代表面工程又称复合表面工程,是指将两种或多种传统的表面技术复合应用,起到“1+l>2”的协同效果[6]。例如,热喷涂与激光(或电子束)重熔的复合,热喷涂与电刷镀的复合,化学热处理与电镀的复合,多层薄膜技术的复合等。第三代表面工程即纳米表面工程,是指纳米材料和纳米技术有机地与传统表面工程的结合与应用。 纳米表面工程是以纳米材料和其他低维非平衡材料为基础,通过特定的加工技术或手段,对固体表面进行强化、改性、超精细加工或赋予表面新功能的系统工程。简言之,纳米表面工程就是将纳米材料和纳米技术与表面工程交叉、复合、综合并开发应用[7-9]。 在服役环境下,金属材料的失效多始于表面,因此只要在材料上制备出一定厚度的纳米结构表层,即实现表面纳米化,就可以通过表面组织和性能的优化提高材料的整体性能和服役行为。与其它纳米材料制备方法相比,表面纳米化技术

功能化纳米材料研究与蛋白质选择性富集分离技术

功能化纳米材料研究与蛋白质选择性富集分离技术 蛋白质组学以大规模分析细胞或生物体内的蛋白质为目的,主要开展表达蛋白质组学和功能蛋白质组学两类研究工作。生物体内蛋白质种类繁多,性质复杂,数量庞大,尤其是蛋白质翻译后修饰,对现行的蛋白质组学研究方法和技术提出了许多挑战。因此,发展蛋白质研究新技术与新方法,对于解决生物学、疾病诊断和治疗等方面的科学问题有着重大的意义。 功能化纳米材料在科学发展的各个领域都有着广泛应用,相对于普通材料而言,它们具有极大的比表面积和极高的表面活性,特别适于生物医学领域的应用。针对蛋白质组学研究中面临的磷酸化和糖基化蛋白质高效选择性富集方面的热点难点问题,将功能化材料与蛋白质分析结合起来,开展了一系列研究工作,发展了一些基于功能化材料的磷酸化和糖基化蛋白质组学研究新技术新方法。与IMAC相比,磁性纳米新材料具有更高的选择性,并且对低pH溶液、盐类、其它低分子污染物有更高的耐受性。我们先后研究合成了TiO2、ZrO2、Ga2O3等金属氧化物包覆的磁球,并成功用于磷酸化肽段的富集。同时还合成了Fe3O4@C@Ta2O5和Fe3O4@C@SnO2磁球用于磷酸化肽段的富集,展现了优越的富集选择性。同时,我们还研究了糖肽和糖蛋白的富集鉴定新方法。首先合成了纳米级金粒子,然后通过高温煅烧将这些纳米金颗粒烧结到MALDI-QIT-TOF-MS靶板上,再利用金和巯基之间的相互作用在这些纳米金颗粒表面修饰上巯基苯硼酸,用来选择性富集糖基化的肽或者蛋白质。进而发展了利用“三明治”固定方法在硼酸纳米磁性微球表面固定了凝集素蛋白(Con A),并将其用于糖基化蛋白的分离富集。球表面直接固定Con A相比,利用上述“三明治”方法固定的Con A量提高了三倍。Con A纳米磁球、硼酸磁球和商品化的Con A磁球用来进行人肝癌细胞株7703细胞裂解液中糖蛋白的分离富集。利用Con A纳米磁球共鉴定了包含184个糖基化位点在内的172条糖肽,这些糖肽共对应 1

表面纳米化的研究进展_张鹏

第30卷第3期吉林工程技术师范学院学报 Vol.30No.32014年3月 Journal of Jilin Teachers Institute of Engineering and Technology Mar.2014 收稿日期:2014-02-11 基金项目:吉林省科技发展计划项目(20120342)。作者简介:张鹏(1971-),男,吉林乾安人,吉林工程技术师范学院食品工程学院教授,主要从事化工分离与过程模拟研究。 表面纳米化的研究进展 张 鹏,尚晓敏,刘晓秋,彭欣丽 (吉林工程技术师范学院食品工程学院,吉林长春130052) [摘 要]本文主要从物理法和化学法对表面纳米化方法进行了归纳。同时对各种纳米化方法的优缺 点及其适用范围进行了对比分析,并对表面纳米化方法的发展前景进行了展望。[关键词]填料;纳米化;进展;方法[中图分类号]TG668 [文献标识码]A [文章编号]1009-9042(2014)03-0073-02 The Research Progress of Surface Nanocrystallization ZHANG Peng ,SHANG Xiao-min ,LIU Xiao-qiu ,PENG Xin-li (College of Food Engineering ,Jilin Teachers Institute of Engineering and Technology ,Changchun Jilin 130052,China ) Abstract :This paper mainly summarizes the surface nanocrystallization method from the physi-cal and chemical methods ;at the same time ,it makes the contrastive analysis toward the ad-vantages and disadvantages of various nanocrystallization methods and its applicable range as well ,and discusses the development prospect of surface nanocrystallization method.Key words :packing ;nanocrystallization ;progress ;method 1前言 纳米材料具有独特的优异性能如高强度、良好的塑性变形能力(包括超塑性)、高比热、高热膨胀系数以及独特的理化性能等引起了人们的高度重视。一直以来,人们对纳米材料进行了广泛而深入的研究。在纳米材料的制备技术、制备方法、性能及其应用领域的探索和拓展等方面都取得了长足的进步。 在此背景下,中国的卢柯与华裔学者吕坚联合提出了结构材料表面纳米化的概念,并被列入国家纳米科技发展规划,2000年国际纳米材料大会的总结报告上被认为是最有可能在结构材料上获得突破的纳米技术之一。 2表面纳米化概念的提出 1998年卢柯和吕坚提出了金属材料表面纳米化的概念。表面纳米化有三种基本方式:第一种是图层表面 纳米化,即在材料表面沉积一层纳米结构的涂层;第二种是自身表面纳米化,即将材料表面层的粗晶组织细化到纳米级形成表面纳米化层;第三种方式是混合型表面纳米化,即以上两种方式的混合。这三种表面纳米化本身都有自身的弱点和优点,因此当这三种表面纳米化的方式一提出就得到了很大的关注。 3表面纳米化方法研究进展 纳米薄膜、粉末有多种制备方法,主要可分为物理方法和化学方法两大类。3.1物理方法 物理气相沉积(PVD )法,真空蒸镀是在真空条 件下,将镀料加热并蒸发,使大量的原子、 分子气化并离开液体镀料表面。 真空蒸镀基本原理是在真空条件下,使金属、金属合金或化合物蒸发,然后沉积在基本表面上,蒸发的方法常用电阻加热,高频感应加热,电子束、激光束、离子束高能轰击镀料,使蒸发成气相,然后沉积

功能化介孔二氧化硅纳米材料的应用

Hans Journal of Nanotechnology纳米技术, 2019, 9(3), 93-100 Published Online August 2019 in Hans. https://www.docsj.com/doc/a412784636.html,/journal/nat https://https://www.docsj.com/doc/a412784636.html,/10.12677/nat.2019.93011 Application of Functionalized Mesoporous Silica Nanomaterials Zhengdong Yan*, Xiaolei Liang, Huiling Tang, Qiang Xiao Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institution of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua Zhejiang Received: Jul. 28th, 2019; accepted: Aug. 9th, 2019; published: Aug. 16th, 2019 Abstract Mesoporous silica nanomaterials have a unique structure and are easy to be modified by surface functionalities. They can be combined with materials of different functions to form a new type of material with specific purposes and have a wide range of uses. In this review, we discuss several methods for synthesizing functionalized mesoporous silica and its special nanostructures. Com-bined with the latest literature, we introduced some applications of functionalized mesoporous si-lica nanoparticles in environmental protection, industrial catalysis, and as drug carriers. Keywords Mesoporous Silica, Nanomaterials, Functionalization, Application 功能化介孔二氧化硅纳米材料的应用 闫正东*,梁晓蕾,汤会玲,肖强 浙江师范大学,含氟新材料研究所,先进催化材料教育部重点实验室,浙江金华 收稿日期:2019年7月28日;录用日期:2019年8月9日;发布日期:2019年8月16日 摘要 介孔二氧化硅纳米材料结构独特,易于表面功能化修饰,能够结合不同功能的材料形成具有特定用途的新型材料,用途极为广泛。这篇综述讨论了几种合成功能化介孔二氧化硅的方法,以及其特殊的纳米结构。还结合最新文献,介绍了一些功能化介孔二氧化硅纳米粒子在环境保护、工业催化以及作为药物载体等领域的应用。 *通讯作者。

金属材料表面纳米化研究现状

龙源期刊网 https://www.docsj.com/doc/a412784636.html, 金属材料表面纳米化研究现状 作者:张瀚文 来源:《西部论丛》2018年第12期 摘要:材料的组织结构决定着材料的性能。自 20 世纪80 年代初 HGleiter 等人首次用惰性气体冷凝法制备出纳米金属粒子并经原位加压成型获得纳米材料以来,人们对纳米材料和其制备技术的研究进行了不断的探索。纳米材料具有特殊的组织和一系列优良的力学性能及物理化学性能,已经成为材料研究的热门。就目前而言,大块体金属材料的整体纳米化制备技术尚不成熟,难以进行工业化的大批量生产。 关键词:表面纳米化制备方法显微组织特征使役性能 1表面纳米化的制备方法 目前金属材料表面纳米化主要有三种基本方法:表面涂层或沉积、表面自纳米化及混合方式。表面涂层或沉积是将已制备好具有纳米尺度的颗粒固结在材料的表面,形成一个与基体结构成分相同(或不同)的表层。处理后纳米表层晶粒大小比较均匀且整体外形尺寸有所增加;常用的方法有 CVD、PVD、溅射、电镀及电解沉积等;实现表层纳米晶粒与基体的牢固结合并抑制纳米晶粒长大是整个工艺的关键。表面自纳米化是采用非平衡处理的方法增加材 料表面的自由能,使表面粗晶组织逐渐细化至纳米量级。处理后晶粒组织及尺寸沿深度方向呈梯度变化,外形尺寸基本不变。常用的几种方法有表面机械研磨处理法(SMAT)、超声喷丸法、凸轮滚压法、超音速微粒轰击法(SFPB)等。混合方式是将表面纳米化技术与化学处理相结合,形成与基体成分不同的固溶体或化合物,如 20CrMo 合金钢、低碳钢等在表面研磨处理后进行低温渗氮等。 三种处理方式中,表面自纳米化技术具有操作简单且实用,设备投资少的独特优点。 2表面自纳米化机理 目前,对表面自纳米化的研究主要集中在往复塑性变形法,其基本原理如下:利用载荷的重复作用,使金属材料表面粗晶组织产生不同方向的强塑性变形,以产生高密度的晶体缺 陷(例如位错、孪晶、大角度晶界等),这些缺陷相互作用,不断地湮没和重组,使晶粒逐渐细化至纳米量级。表面自纳米化机理跟金属晶体结构和层错能的大小有着密切的关系。一般 体心立方和中高层错能的面心立方金属晶体主要通过位错的不断增值和相互作用,经历了由 大晶粒晶界-亚晶界-小晶粒晶界的演变,最终达到增值速率与湮没速率的平衡而细化至纳米量级。如工业纯铁在高能喷丸表面自纳米化过程中,晶粒的纳米化过程就是通过位错分割的方 式演变而成的。对于低层错能和含有亚稳相的金属而言,孪晶的生长驱动力较大。首先在表 面位错的作用下形成了单系孪晶,随着作用时间的延长和作用次数的增多,单系孪晶逐渐演变成多系孪晶,多系孪晶和相变马氏体的相互交割而使晶粒尺寸不断减小,最终细化至纳米量

举例说明纳米材料的结构与其性质的关系

代鹏程无机化学2009级硕博连读学号:200911461 题目:举例说明纳米材料的结构与其性质的关系 答: 目录 1、纳米材料定义 2、纳米材料的结构 3、纳米材料的性能 4、以量子点为例说明纳米材料结构与其性质的关系 5、以纳米线为例说明纳米材料结构与其性质的关系 1、纳米材料定义 纳米材料是纳米级结构材料的简称。狭指由纳米颗粒构成的固体材料,其中纳米颗粒的尺寸最多不超过100纳米,在通常情况下不超过10纳米;从广义上说,纳米材料,是指微观结构至少在一维方向上受纳米尺度(1~100nm)限制的各种固体超细材料,它包括零维的原子团簇(几十个原子的聚集体)和纳米微粒;一维纳米纤维;二维纳米微粒膜(涂层)及三维纳米材料。 2、纳米材料的结构 材料学研究认为:材料的结构决定材料的性能,同时材料的性能反映材料的结构。纳米材料也同样如此。对于纳米材料,其特性既不同于原子,又不同于结晶体,可以说它是一种不同于本体材料的新材料,其物理化学性质与块体材料有明显的差异。 纳米材料的结构特点是:纳米尺度结构单元,大量的界面或自由表面,以及结构单元与大量界面单元之间存在的交互作用。在结构上,大多数纳米粒子呈现为理想单晶,也有呈现非晶态或亚稳态的纳米粒子。纳米材料的结构上存在两种结构单元;即晶体单元和界面单元。晶体单元由所有晶粒中的原子组成,这些原子严格地位于晶格位置;界面单元由处于各晶粒之间的界面原子组成,这些原子由超微晶粒的表面原子转化而来。 纳米材料由于非常小,使纳米材料的几何特点之一是比表面积(单位质量材料的表面积)很大,一般在102~104m2/g。它的另一个特点是组成纳米材料的单元表面上的原子个数与单元中所有原子个数相差不大。例如:一个由5个原子组成的正方体纳米颗粒,总共有原子个数53=125个,而表面上就有约89个原子,占了纳米颗粒材料整体原子个数的71%以上。这些特点完全不同于普通的材料。例如,普通材料的比表面积在10m2/g以下,其表面原子的个数与组成单元的整体原子个数相比较完全可以忽略不计。 由于以上纳米材料的两上显著不同于普通材料的几何特点,从物理学的观点来看,就使得纳米材料有两个不同于普通材料的物理效应表现出来,这是一个由量变到质变的过程。一个效应我们称之为量子尺寸效应,另一个被称之为表面效应。量子尺寸效应是由于材料的维度不断缩小时,描述它的物理规律完全不同

纳米粒子表面功能化研究进展

纳米粒子表面功能化研究进展* 齐天骄1,2,邓建国1,2 ,黄奕刚1 (1.中国工程物理研究院化工材料研究所,四川绵阳621900)(2.中国工程物理研究院化工材料研究所新材料研究中心,四川绵阳 621900) 摘 要:纳米粒子表面改性包括物理改性和化学改性。物理改性一般采用高能表面改性法对纳米 粒子进行修饰;化学改性分为硅烷偶联剂、酯化反应、表面接枝和表面活性剂等方法。关键词:纳米粒子;表面;修饰 Research Progress in Surface-modifications of Nanoparticle QI Tian-jiao 1,2,DENG Jian-guo 1,2,HUANG Yi-gang 1 (1.Institute of Chemical Materials,China Academy of Engineering Physics , Mianyang 621900,China) (2.New Material Research Center,Institute of Chemical Materials ,China Academy of Engineering Physics ,Mianyang 621900,China) Abstract:Surface-modification includes Physical modification and chemical modification.Physical modification is that kinds of rays irradiate nanoparticles to modify and nanoparticles is encrusted with some other https://www.docsj.com/doc/a412784636.html,ing coupling agent,esterification,some groups be grafted onto the surface of nanoparticles and surface active agent modified are parts of chemical modification. Keywords:nanoparticles;surface;modification 中图分类号:TB34文献标识码:A 文章编号:1812-1918(2009)02-0070-05 收稿日期:2008-12-04 *基金项目:中国工程物理研究院军转民重点基金项目(JM200703)0引言 纳米材料是纳米科技领域最富有活力、研究 内涵最丰富的分支学科之一。纳米粉体指粒子尺寸为1~100nm 的超微颗粒,是纳米材料的重要组成部分及原材料,其本身的结构和特性决定了纳米固体材料的许多新特性[1],在电子学、光学、化工、 陶瓷、生物和医药等诸多领域具有广泛的应用前景:纳米陶瓷的韧性有很大提高,而且,控制恰当的烧结温度,其韧性可与硬度同步提高,特别是 纳米陶瓷有望出现低温延性;为了提高磁记录的密度,磁记录介质中的磁性颗粒尺寸已由微米\亚微米向纳米尺度过渡;将纳米微粒与塑料复合,可起到对塑料增强增韧作用,改善塑料的耐老化性,赋予材料的功能化。我国自行研制的纳米塑料耐磨性是黄铜的27倍,钢铁的7倍,在2008年北京奥运会上得到较好的应用[2];美国将纳米Fe 3O 4与药物结合,利用其超磁性,通过外加磁场导航将药物定向释放至病变组织或器官中,以减少药物副作用[3]。 但是,纳米粒子极易团聚,与大部分聚合物相容性差,其分散问题是目前超细粉体研究的热点和难点。而纳米粒子表面原子数增多及表面原子配位不饱和性导致大量的悬键和不饱和键等,使 70

纳米材料的物理性能.

《材料科学前沿》 学号:S1******* 流水号:S2******* 姓名:张东杰 指导老师:郝耀武

纳米晶材料的物理性能 摘要:纳米材料由于其独特的微观结构和奇异的物理化学性质,目前已成为材料领域研究的热点之一。纳米晶材料具有优异的物理特性,这是由所组成的微粒的尺寸、相组成和界面这三个方面的相互作用来决定的。本文简要介绍了纳米晶材料的定义,综述了纳米晶材料的各种物理特性。 关键词:纳米材料,纳米晶材料,物理性能 1、引言 纳米材料是指三维空间尺度至少有一维处于纳米量级(1~100nm)的材料,它是由尺寸介于原子、分子和宏观体系之间的纳米粒子所组成的新一代材料。由于其组成单元的尺度小,界面占用相当大的成分。因此,纳米材料具有多种特点,这就导致由纳米微粒构成的体系出现了不同于通常的大块宏观材料体系的许多特殊性质。纳米体系使人们认识自然又进入一个新的层次,它是联系原子、分子和宏观体系的中间环节,是人们过去从未探索过的新领域。实际上由纳米粒子组成的材料向宏观体系演变过程中存在结构上有序度的变化和在状态上的非平衡性质,使体系的性质产生很大的差别。对纳米材料的研究将使人们从微观到宏观的过渡有更深入的认识。 纳米材料按其结构可分为四类:晶粒尺寸至少在一个方向上在几个纳米范围内的称为三维纳米材料;具有层状结构的称为二维纳米材料;具有纤维结构的称为一维纳米材料;具有原子簇和原子束结构的称为零维纳米材料。 纳米晶材料(纳米结构材料)的概念最早是由H.Gleiter出的,这类固体是由(至少在一个方向上)尺寸为几个纳米的结构单元(主要是晶体)所构成。纳米晶材料是一种非平衡态的结构,其中存在大量的晶体缺陷。当然,纳米材料也可由非晶物质组成,例如:半晶态高分子聚合物是由厚度为纳米级的晶态层和非晶态层相间地构成的故是二维层状纳米结构材料。又如纳米玻璃的组成相均为非晶态,它是由纳米尺度的玻璃珠和界面层所组成。我们这里主要讨论纳米晶材料的物理性能。

纳米材料特性

纳米材料特性

《纳米材料导论》作业 1、什么是纳米材料?怎样对纳米材料进行分类? 答:任何至少有一个维度的尺寸小于100nm或由小于100nm的基本单元组成的材料称作纳米材料。它包括体积分数近似相等的两部分:一是直径为几或几十纳米的粒子,二是粒子间的界面。纳米材料通常按照维度进行分类。 原子团簇、纳米微粒等为0维纳米材料。纳米线为1维纳米材料,纳米薄膜为2维纳米材料,纳米块体为3维纳米材料,及由他们组成的纳米复合材料。 按照形态还可以分为粉体材料、晶体材料、薄膜材料。 2、纳米材料有哪些基本的效应?试举例说明。 答:纳米材料的基本效应有:一、尺寸效应,纳米微粒的尺寸相当或小于光波波长、传导电子的德布罗意波长、超导态的相干长度或投射深度等特征尺寸时,周期性的边界条件将被破坏,声、光、电、磁、热力学等特征性即呈现新的小尺寸效应。出现光吸收显著增加并产生吸收峰的等离子共振频移; 磁有序态转为无序态;超导相转变为正常相;声子谱发生改变等。例如,纳米微粒的熔点远低于块状金属;纳米强磁性颗粒尺寸为单畴临界尺寸时,具有很高的矫顽力;库仑阻塞效应等。二、量子效应,当能级间距δ大于热能、磁能、静磁能、静电能、光子能量或超导态的凝聚能时,必须考虑量子效应,随着金属微粒尺寸的减小,金属费米能级附近的电子能级由准连续变为离散能级的现象和半导体微粒存在不连续的最高被占据分子轨道和最低未被占据分子轨道,能隙变宽的现象均称为量子效应。例如,颗粒的磁化率、比热容与所含电子的奇、偶有关,相应会产生光谱线的频移,介电常数变化等。 三、界面效应,纳米材料由于表面原子数增多,晶界上的原子占有相当高的 比例,而表面原子配位数不足和高的表面自由能,使这些原子易与其它原子相结合而稳定下来,从而具有很高的化学活性。引起表面电子自旋构象和电子能谱的变化;纳米微粒表面原子运输和构型的变化。四、体积效应,由于纳米粒子体积很小,包含原子数很少,许多现象不能用有无限个原子的块状物质的性质加以说明,即称体积效应。久保理论对此做了些解释。 3、纳米材料的晶界有哪些不同于粗晶晶界的特点? 答:纳米晶的晶界具有以下不同于粗晶晶界结构的特点:1)晶界具有大量未被原子占据的空间或过剩体积,2)低的配位数和密度,3)大的原子均方间距,4)存在三叉晶界。此外,纳米晶材料晶间原子的热振动要大于粗晶的晶间原子的热振动,晶界还存在有空位团、微孔等缺陷,它们与旋错、晶粒内的位错、孪晶、层错以及晶面等共同形成纳米材料的缺陷。 4、纳米材料有哪些缺陷?总结纳米材料中位错的特点。

常用钛种植体表面纳米化方法

常用钛种植体表面纳米化方法 钛种植体表面纳米化是指采用特殊技术在材料表面形成纳米尺寸的结构,如纳米颗粒、纳米纤维、纳米孔或者由纳米晶体构成的膜等。表面纳米化需要在原子水平上处理物质,其制备方式也较多,下面主要介绍一下目前常用的钛种植体表面纳米化技术(见表1)。 (1)纳米颗粒紧压法:纳米颗粒紧压法属于物理改性技术,是指在室温高压下使用压力容器将预成的纳米颗粒结合到基底材料上。纳米颗粒紧压法可以保留基底材料表面的化学成分和特性,而只改变其表面形貌、粗糙度等物理性质。Webster 等[2]在室温下使用10GPa 的压力处理5 分钟分别将的Ti 微米级(>10.5μm)、纳米级(0.5-2.4μm)颗粒结合到基材上,最后在扫描电镜下观察基底材料表面密布着颗粒,AFM 结果显示纳米颗粒表面粗糙度远大于微米颗粒。 (2)离子束沉积技术:离子束沉积技术(IonBeam Assisted Deposition,IBAD)是利用等离子枪产生直流电弧将涂层材料加热熔融后用高速气流喷射到金属表面形成涂层,通常使用钛浆或羟基磷灰石进行喷涂沉积。Coelho PG 等[3] 应用离子束沉积技术在种植体表面形成了纳米晶体组成的薄膜,提升了表面的微观粗糙度。离子束沉积技术制备纳米形貌的工艺较为成熟,已经被用于商业种植体材料表面形貌的制备,例如Bicon 种植体的表面纳米处理就采用此技术(Nanotite, Bicon Inc., Boston, MA),利用IBAD 在表面形成一层羟基磷灰石纳米沉积层。 (3)表面化学处理:表面化学处理是目前的口腔种植体表面改性研究的热点,是指利用酸或碱处理基材表面得到纳米形貌。张波等[4] 把纯钛在60℃恒温NaOH 溶液中浸泡24 小时,在表面形成多孔网状钛酸钠凝胶,然后在600℃热处理后,凝胶层晶体化,得到100nm 厚的金红石型的TiO2 膜。但该方法获得的TiO2 涂层较薄,存在结合强度低的缺点。Wang 等[5] 使用H2O2/HCl 酸蚀纯钛在表面形成了无定形态的纳米膜结构,并且发现膜的厚度与时间基本呈线性关系。 (4)阳极氧化及微弧氧化:阳极氧化法是将钛金属试件作为阳极,铜、石墨等作为阴极,置于相应电解液(如硫酸、磷酸、草酸等) 中,在特定条件和外加电流作用下,进行电解,使其表面形成氧化物薄膜,其成本低廉,效果明确。李荐等[6] 在20V 电压下使用0.24wt%HF 溶液作为电解液阳极氧化1 小时,在材料表面制成孔径100~110nm 的管状结构,稳定性良好。微弧氧化法是由阳极氧化改良而来,它采用较高的工作电压,将工作区域由普通的阳极氧化法区域引入到高压放电区域,可以得到厚度均匀的氧化膜,并且微弧氧化的操作时间约3~5min,较阳极氧化节省工作时间。马楚凡等[7] 采用微弧氧化技术处理纯钛试件,得到了

相关文档