文档视界 最新最全的文档下载
当前位置:文档视界 › 电力电子器件产业发展方向

电力电子器件产业发展方向

电力电子器件产业发展方向
电力电子器件产业发展方向

电力电子器件产业发展方向

1 电力电子技术的重要作用

电力电子是国民经济和国家安全领域的重要支撑技术。它是工业化和信息化融合的重要手段,它将各种能源高效率地变换成为高质量的电能,将电子信息技术和传统产业相融合的有效技术途径。同时,还是实现节能环保和提高人民生活质量的重要技术手段,在执行当前国家节能减排、发展新能源、实现低碳经济的基本国策中起着重要的作用。

电力电子器件在电力电子技术领域的应用和市场中起着决定性的作用,是节能减排、可再生能源产业的“绿色的芯”。电力电子半导体器件是伴随着以硅为基础的微电子技术一起发展的。在上世纪五十到六十年代,微电子的基本技术得到了完善,而功率晶体管和晶闸管则主导了电能变换的应用。从七十年代到八十年代,功率MOS技术得到了迅速发展并在很大程度上取代了功率晶体管。基于MOS技术的IGBT器件开始出现,并研发出CoolMOS。九十年代初以后,主要的研发力量集中在对IGBT器件性能的提高和完善。到了本世纪初,经过了若干代的连续发展,以德国英飞凌、瑞士ABB、美国国际整流器公司(IR)、日本东芝和富士等大公司为代表的电力电子器件产业已经拥有了趋于完美的IGBT技术,产品的电压覆盖300V到6.5kV 范围。

电力电子器件与相关技术包括:

(1)功率二极管;

功率二极管是电力电子线路最基本的组成单元,他的单向导电性可用于电路的整流、箝位、续流。合理应用功率二极管的性能是电力电子电路的重要内容。这方面的二极管主要包括:1,普通功率二极管,2,快速功率二极管,3,其他功率二极管。功率整流二极管比普通二极管结面积较大,能通过较大电流(可达上千安),但工作频率不高,一般在几十千赫以下。功率整流二极管主要用于各种低频整流电路。

(2)晶闸管;

晶闸管(Thyristor)是晶体闸流管的简称,又被称做可控硅整流器,以前被简称为可控硅;1957年美国通用电气公司开发出世界上第一款晶闸管产品,并于1958年将其商业化;晶闸管是PNPN四层半导体结构,它有三个极:阳极,阴极和控制极; 晶闸管具有硅整流器件的特性,能在高电压、大电流条件下工作,且其工作过程可以控制、被广泛应用于可控整流、交流调压、无触点电子开关、逆变及变频等电子电路中

(3)电力晶体管;

GTR是一种电流控制的双极双结大功率、高反压电力电子器件,具有自关断能力,产生于本世纪70年代,其额定值已达1800V/800A/2kHz、1400v/600A/5kHz、600V/3A/100kHz。它既具备晶体管饱和压降低、开关时间短和安全工作区宽等固有特性,又增大了功率容量,因此,由它所组成的电路灵活、成熟、开关损耗小、开关时间短,在电源、电机控制、通用逆变器等中等容量、中等频率的电路中应用广泛。GTR的缺点是驱动电流较大、耐浪涌电流能力差、易受二次击穿而损坏。在开关电源和UPS内,GTR正逐步被功率MOSFET和IGBT所代替。它的符号如图1,和普通的NPN晶体管一样。

电力晶体管的结构

编辑

电力晶体管(Giant Transistor)简称GTR又称BJT(Bipolar Junction Transistor),GTR和BJT这两个名称是等效的,结构和工作原理都和小功率晶体管非常相似。GTR由三层半导体、两个PN结组成。和小功率三极管一样,有PNP和NPN两种类型,GTR通常多用NPN结构。[1]

电力晶体管工作原理

编辑

在电力电子技术中,GTR主要工作在开关状态。GTR通常工作在正偏(Ib>0)时大电流导通;反偏(Ib<0=时处于截止状态。因此,给GTR的基极施加幅度足够大的脉冲驱动信号,它将工作于导通和截止的开关状态。

电力晶体管特点

编辑

l 输出电压

可以采用脉宽调制方式,故输出电压为幅值等于直流电压的强脉冲序列。

2 载波频率

由于电力晶体管的开通和关断时间较长,故允许的载波频率较低,大部分变频器的上限载波频率约为1.2~1.5kHz左右。

3 电流波形

因为载波频率较低,故电流的高次谐波成分较大。这些高次谐波电流将在硅钢片中形成涡流,并使硅钢片相互间因产生电磁力而振动,并产生噪音。又因为载波频率处于人耳对声音较为敏感的区域,故电动机的电磁噪音较强。

4 输出转矩

因为电流中高次谐波的成分较大,故在50Hz时,电动机轴上的输出转矩与工频运行时相比,略有减小。

电力晶体管的基本特性

编辑

(1)静态特性

共发射极接法时可分为三个工作区:

① 截止区。在截止区内,iB≤0,uBE≤0,uBC<0,集电极只有漏电流流过。

② 放大区。iB >0,uBE>0,uBC<0,iC =βiB。

③ 饱和区。iB >Ics/β,uBE>0,uBC>0,iCS是集电极饱和电流,其值由外电路决定。

结论:两个PN结都为正向偏置是饱和的特征。饱和时,集电极、发射极间的管压降uCE很小,相当于开关接通,这时尽管电流很大,但损耗并不大。GTR刚进入饱和时为临界饱和,如iB继续增加,则为过饱和,用作开关时,应工作在深度饱和状态,这有利于降低uCE和减小导通时的损耗。

(2)动态特性

图4-8 GTR共发射极接法的输出特性

GTR在关断时漏电流很小,导通时饱和压降很小。因此,GTR在导通和关断状态下损耗都很小,但在关断和导通的转换过程中,电流和电压都较大,所以开关过程中损耗也较大。当开关频率较高时,开关损耗是总损耗的主要部分。因此,缩短开通和关断时间对降低损耗、提高效率和提高运行可靠性很有意义。

(4)功率场效应晶体管(MOSFET);

即是在大功率范围应用的场效应晶体管,它也称作功率MOSFET,其优点表现在以下几个方面:

1. 具有较高的开关速度。

2. 具有较宽的安全工作区而不会产生热点,并且具有正的电阻温度系数,因此适合进行并联使用。

3. 具有较高的可靠性。

4. 具有较强的过载能力。短时过载能力通常额定值的4倍。

5. 具有较高的开启电压,即是阈值电压,可达2~6V(一般在1.5V~5V之间)。当环境噪声较高时,可以选用阈值电压较高的管子,以提高抗干扰能力;反之,当噪声较低时,选用阈值电压较低的管子,以降低所需的输入驱动信号电压。给电路设计带来了极大地方便。

6. 由于它是电压控制器件,具有很高的输入阻抗,因此其驱动功率很小,对驱动电路要求较低。

由于这些明显的优点,功率场效应晶体管在电机调速,开关电源等各种领域应用的非常广泛。

(5)绝缘栅双极型晶体管(IGBT);

绝缘栅双极型晶体管insulated-gate-bipolar transistor,IGBT,集MOSFET和GTR的优点于一身,具有输入阻抗高、开关速度快、驱动电路简单、通态电压低、能承受高电压大电流等优点,已广泛应用于变频器和其他调速电路中。

(6)复合型电力电子器件;

(7)电力电子智能模块(IPM)和功率集成芯片(Power IC);

(8)碳化硅和氮化镓功率器件;

(9)功率无源元件;

无源器件主要包括电阻,电容,电感,转换器,渐变器,匹配网络,谐振器,滤波器,混频器和开关等。在不需要外加电源的条件下,就可以显示其特性的电子元件。无源元件主要是电阻类、电感类和电容类器件,它的共同特点是在电路中无需加电源即可在有信号时工作。

(10)功率模块的封装技术、热管技术;

(11)串并联、驱动、保护技术。

2 电力电子技术发展现状和趋势

2.1电力电子器件发展现状和趋势

电力电子器件产业发展的主要方向:

(1)高频化、集成化、标准模块化、智能化、大功率化;

(2)新型电力电子器件结构:CoolMOS,新型IGBT ;

(3)新型半导体材料的电力电子器件:碳化硅、氮化镓电力电子器件。

2.2 电力电子装置、应用的现状和趋势

(1)在新能源和电力系统中的应用

电力系统是电力电子技术应用中最重要和最有潜力的市场领域,电力电子技术在电能的发生、输送、分配和使用的全过程都得到了广泛而重要的应用。从用电角度来说,要利用电力电子技术进行节能技术改造,提高用电效率;从发、输配电角度来说,必须利用电力电子技术提高发电效率和提高输配电质量。

(2)在轨道交通和电动汽车中的应用

电力电子技术在轨道交通牵引系统中的应用主要分为三个方面:主传动系统、辅助传动系统、控制与辅助系统中的稳压电源。在电力电子技术的带动下,电传动系统由直流传动走向现代交流传动。电力电子器件容量和性能的提高、封装形式的改进,以及功能单元的模块化设计技术促进了传动系统装置的简约化,促进牵引电传动系统、辅助系统和控制与辅助电流稳压电源的发展。

(3)工业电机节能应用

电动机作为电能最大的消费载体,具有很大的节电潜力。我国“十五”和“十一五”计划都将电机系统节能列为节能的重点项目。而随着电力电子技术、计算机技术、自动控制技术的迅速发展,电气传动技术面临着一场历史革命,即交流调速取代直流调速、计算机数字控制技术取代模拟控制。

(4)在消费类电子中的应用

电力电子技术在消费类电子中的应用主要集中于各类家电中电机的驱动、感应加热、照明驱动和各类个人电子用品电源管理,家用电器依托变频技术,主要瞄准高功能和省电。

(5)在国防军工中的应用

电力电子技术及电力电子装置已日益广泛地应用和渗透到能源、环境、制造业、交通运输业中,特别是与国家安全和国防有关的先进能源技术、激光技术、空天技术、高档数控机床与基础制造技术等许多重要领域,电力电子技术是关系到上述领域中的核心技术所在。电力电子在现代化国防中得到越来越广泛的应用,所有现代国防装备的特种供电电源、电力驱动、推进、控制等均涉及到电力电子核心技术。

2.3电力电子技术发展趋势

(1)下一代电力电子装置的变换效率将有极大的提高,采用碳化硅器件的装置的效率将从现有硅器件的85~90%提升到99%,体积减小到1/5~1/20。

(2)下一代电力电子器件的装置将开拓全新的应用领域,极大地拓展电力电子技术的影响,诸如进入输电系统、实现智能电网等。

3 我国电力电子行业发展现状与机遇

3.1我国电力电子器件的市场现状和趋势

(1)从2005~2008年我国电力电子市场的增长率平均为23%,到2008年电力电子器件的市场销售额达1016.2亿人民币。

(2)随着我国特高压直流输电、高压变频、交流传动机车/动车组、城市轨道交通、电动汽车等技术的发展和市场需求的增加,对超大功率晶闸管、IGCT、IGBT的需求非常紧迫,而且需求量非常大。

(3)从2010年到2020年全球IGBT市场将继续保持年均20%左右的增长速度。我国IGBT的市场规模,2010年是的55亿元人民币,预计2015年将增加到137亿元人民币,2020年将达到341亿元人民币。

3.2我国电力电子器件行业与国外的差距

(1)高频场控电力电子器件的市场基本上被国外垄断。

(2)电力电子器件的生产受到国外竞争。

(3)电力电子器件的中、高端芯片的研发和生产的关键技术还有待突破。

(4)电力电子器件芯片的生产线有待完善和提高。

(5)新型电力电子器件生产的产业链还未形成。

3.3我国电力电子装置的发展现状与分析

(1)变频器技术

国内市场上的变频器厂家有300多家。活跃在我国市场上的国产品牌占70%左右,但市场份额仅占25%。目前,高压变频器的主要市场为内资企业占有,中低压变频器市场主要被外资占有。

(2)轨道交通中的应用

目前我国高铁运营里程和运行速度均为世界第一,但核心的电力电子器件如IGBT均为进口产品。

(3)直流输电技术

国内直流输电技术有了跨越式的进步,输送电能容量有了很大的提升。高压直流输电是现今世界上先进的输变电技术,目前国内直流输电市场主要以±500kV超高压直流输电工程和±800kV特高压直流输电工程为主,直流输电的核心设备—国产晶闸管换流阀已获得成功的应用。

(4)无功补偿技术

无功补偿技术是电力电子大家族的重要成员,其中SVC(静止无功补偿器)是无功补偿装备的代表产品。目前,我国已经完全掌握了SVC设计制造的核心技术,彻底实现了SVC的全面国产化,并已成为国际上最大的SVC设计制造国。

(5)新能源中的应用

在当前国家启动的发展新能源的战略规划中,将太阳能、热泵、水电、风电、生物质能、交通可替代能源、绿色建筑、新能源装备制造业、对外投资新能源发电等列为我国新能源发展的重点领域。我国将重点打造十大新能源工程。

(6)国家产业政策的扶持

“十一五”期间,国家发改委启动了支持新型电力电子器件产业化项目,第一批完成了对国内众多电力电子(包括IGBT)芯片和模块企业的支持,培育了一大批功率电子的研发骨干企业。在“十二五”即将到来之际,国家发改委和工信部又发布了支持电力电子器件研发和产业化的众多专项支持计划,对IGBT的支持也首次写进了国务院牵头、科技部组织的国家科技重大专项“极大规模集成电路制造装备及成套工艺”,明确了国家对IGBT芯片研发、制造工艺、模块封装、制造装备和材料全面支持。

(7)全球功率半导体产业转移趋势

全球功率半导体产业转移趋势促进了我国电力电子器件需求的增长和技术的进步。目前,全球领先的制造商全力发展微电子半导体,而将大功率半导体器件产业向新兴市场国家特别是中国转移,主要表现为:制造转移、采购转移、技术转移。

(8)下一代宽禁带电力电子器件发展的机遇

我国正面对着一个发展高功率碳化硅电力电子器件、实现跨越式发展并迅速赶上以致超越西方国家的绝好机遇。在这样一个迅速发展的领域,我国的电力电子产学研机构急需进行大量的基础性研究工作,巩固和发展科研队伍,加强在国际上的影响,为发展高功率碳化硅电力电子器件奠定良好的基础。高功率碳化硅电力电子器件的发展目标,旨在满足国家当前在节能减排、开发新能源、传统产业转型以及军事安全

等领域的迫切需求,同时瞄准国际发展前沿,实现高功率碳化硅电力电子器件的基础理论创新、设计方法创新和系统分析创新。

4 我国电力电子行业发展战略规划

4.1编制原则

我国电力电子产业化,要以科学发展观为指导,围绕我国低碳经济发展的重大战略需求,瞄准节能减排、发展新能源和培育新兴战略产业的应用,充分发挥巨大的国内市场需求,坚持“政府推动、市场主导,自主创新、广泛合作,整合资源、重点突破,立足国情、跨越发展”的原则,抓住机遇推动电力电子器件产业化,优化我国电力电子产业结构,为国家低碳经济发展做出贡献。

4.2 发展目标

(1)高频场控电力电子器件和装置产业

(a)大力推进IGBT、MOSFET、FRD等高频场控电力电子芯片和模块的产业化,成具有自主知识产权的芯片设计、制造和封装技术,掌握沟糟型、电场中止型的NPT型IGBT的设计及制造技术,包括结构设计、可靠性设计,以及光刻、刻蚀、表面钝化、背面研磨、背面离子注入、背面金属化、测试等工艺技术,提高产品档次。尽快形成芯片和器件的规模化生产。

(b)在芯片工作的基础上,加速并扩大采用上述国产芯片各类模块的产业化:为满足电机节能、冶金、新能源、输变电、汽车电子、轨道交通等领域对功率模块的实际需求,实现采用自主知识产权的芯片和功率模块产业化,确保国产芯片达30%。除了大功率模块之外,还应该开发智能功率模块(IPM)和用户专用功率模块(ASPM)等,重点解决模块制造中的散热关键技术、电磁兼容(EMC)技术和智能功率模块的驱动及保护技术等。

(c)形成高端功率集成电路(PIC)产业,包括功率MOS智能开关,电源管理电路(20V到700V,功率达到1000W)、半桥或全桥逆变器、电机驱动器(三相全桥电路的集成,功率达到1000W,用于空调等应用中)、PWM专用SPIC、集成稳压器等产品和产业,力争在国内市场中占据20%以上的市场份额。

(d)形成高频场控电力电子器件生产的原材料及配套件的产业化:重点解决高阻区熔硅单晶(电阻率达到200cm以上、单晶直径达8英寸)、陶瓷复铜板、铝碳化硅基板、结构件等的制造技术和提高产品质量,满足规模生产的需求。

(e) 建立国家级的高频场控电力电子器件的测试平台,制定和完善电力电子器件标准。

(f)鼓励和促进国产高频场控电力电子器件的应用,使器件的制造和应用相互促进推进我国的电力电子技术和产业的发展,确保国产高频场控器件的市场占有率20~30%。

(g)鼓励推广采用自主技术芯片、器件和功率模块的应用装置产业化,包括变频装置逆变装置、感应加热装置、无功补偿、有源滤波、通信(网络)电源等,使国产化的电力电子器件在国产装置中所占比重提高到20~30%。

(h)在各应用领域培育使用国产高频场控器件的重点企业,给予政策性支持,开展国产化的示范应用。在轨道交通、新能源汽车、电机节能、绿色电源、消费电子等领域培育重点,树立典型,发挥示范作用,带动和推广国产器件的应用。

“十二五”期间,国产IGBT在国内总销售额争取达到20~30%,培育5~10家在国内IGBT产业销售额过亿元的企业;形成商业化的产业规模。预计2015年IGBT的销售收入25亿元,带动电力电子装置规模达到500亿元~1370亿元左右。

(2)宽禁带半导体材料和电力电子器件的研发

我国在该领域还未开展研发,为此要积极开展碳化硅材料和器件的科研,掌握碳化硅材料和电力电子器件关键的设计优化、制造工艺和封装基本技术,建立自主的下一代电力电子器件的研发能力和产业化的基础。争取在“十二五”期间,达到以下目标:

(a)研发出4英寸的具有器件制造质量的碳化硅单晶衬底;

(b)建立60微米以上的高电阻率碳化硅外延能力;

(c)研制出5000V以上的碳化硅二极管和碳化硅晶体管芯片;

(d)研制出40A以上的碳化硅二极管、20A以上的碳化硅晶体管芯片,

(e)研制出400A以上的碳化硅二极管模块,200A以上的碳化硅晶体管模块。

(3)电力电子装置

“十二五”期间,电力电子装置及应用方面的目标则是重点解决目前新能源开发、轨道交通、电动汽车、电力系统、消费电子、国防应用中急需的各种不同容量、高功率密度、高性能的电力电子装置,研究和开发各应用领域中电力电子装置与节能关键技术,并实现完整的相应产业链。建议在发展布局、支持原则、优先发展重点以及实施措施上考虑以下几点:

(a)形成电力电子装置生产产业链;

(b)建立公共的电力电子装置检测试验平台;

(c)产业化中的关键技术问题研究;

(d)电力电子装置的专用应用标准研究;

(e)建议重点开发的产品和相关技术研究:

* 高压大功率电动机变频调速系统;

* 大功率风力发电并网变频器;

* 大功率光伏发电并网变流器;

* 新能源混合动力及电动汽车用变流器;

* 轧钢系统专用变频器;

* 特高压直流换流阀暂态仿真模型的建立;

* 换流阀高电位整体屏蔽和屏蔽性能的研究;

* 特高压直流换流阀的绝缘配合、局部放电水平的控制与抑制技术;

* 特高压直流换流阀关键器件的开发研制;

* 特高压直流换流阀冷却水路、高压光缆、光缆槽布局及材料防老化措施的研究;

* 特高压直流输电换流阀型式试验规范的研究;

* 实现±800kV特高压直流输电换流阀产业化,研制±1000kV特高压直流输电换流阀;

* 时速300~350公里高速铁路和大功率电力机车用变流器核心控制技术的研究和开发、消化吸收、再创新,实现国产化生产;

* 兆瓦级(1.5兆瓦~5兆瓦)风力发电机用变频器实现低电压穿越技术的研发及突破高压(1700V~6500V)大功率IGBT芯片工艺开发技术,实现国产化生产;

* MW级双馈式风电机组变流器;

* MW级直驱式风电机组变流器;

* 风力发电机组变浆控制系统;

* 采用电力电子变换器装置实现变速恒频双馈风力发电系统;

* 采用电力电子变换装置为风力发电机提供无功控制;

* 静止无功补偿装置(SVC)支持交流风电输电的无功补偿;

* 基于电压源换流器(VSC)技术的风电直流输电(HVDC light);

* 风电交流并网控制;

* 风电电能存储和送变;

* 二极管箝位多电平逆变器;

* 空间矢量调制(SVM)技术;

* 电流源型变频器技术;

* 高性能传动控制技术;

* 模块化多电平变流器研究;

* MMC模块的底层开关控制策略与上层无功功率、有功功率及电流跟踪控制策略的研究;

* 新材料的研究、开发。

(4)研究团队和人才培养

“十二五”期间,培养具有良好的研究基础和较高水平的电力电子技术研究团队,在IGBT器件产业化、下一代宽禁带碳化硅电力电子器件及其相应的电力电子装置的研发设计,使其具有一定国际竞争力。培养造就规模宏大、结构优化、布局合理、素质优良的人才队伍,努力实现人才资源稳步增长、队伍规模不断壮大。人才素质大幅度提高。人才结构进一步优化,人才竞争优势明显增强,竞争力不断提升。

4.3 我国电力电子行业发展的措施和建议

(1)建议采用重点支持的原则,把电力电子技术的发展列入国家中长期发展规划,进行持续的、分阶段的支持;并且,在国家政策方面进行的扶持,基于以下两个原则:

(a)重视电力电子技术在我国国民经济发展和国防科技中的重要作用,把电力电子技术的发展列入国家中长期发展计划,进入“十二五”发展规划的重点,在发改委、科技部、工信部等国家部委的规划中进行重点支持。

(b)对电力电子技术进行持续支持;我国的电力电子器件和装置产业良好的发展需要政府长期持续的关心、支持和引导,建议由政府牵头,组织业内外专家制定2011~2020年的中长期发展计划,进行连续的、分阶段的支持发展。

(2)支持以电力电子器件为核心的电力电子产业,突破瓶颈,推动电力电子装置和系统发展;

(3)加大对下一代宽禁带电力电子器件的战略科研投入;

(4)建立电力电子完整的的产业链,积极扶持器件、模块、装置和系统应用整个产业链的相互促进,鼓励建立产业联盟;

(5)重视自主知识产权体系的建设,促进产学研用紧密结合,重视人才队伍和梯队结构的建设。

5 结语

“十二五”期间是实现我国小康社会的关键时刻,是我国实现强国强军梦想的重要阶段。为了实现这个宏伟的目标,必须认真贯彻我国政府制定的节能减排、绿色环保、低碳经济的基本国策。电力电子是实现上述基本国策的关键技术,和实现小康社会、强国强军紧密相连,发展电力电子技术和产业已成为我国科技、经济和国防的当务之急。发展我国的电力电子技术及产业,必须走有中国特色的创新之路,即坚持产学研用相结合,从跟踪国外先进技术开始,逐步走上自主创新之路。同时,要把技术创新和产品应用、市场推广相结合,以加快科技创新的良性循环,使我国电力电子产业和器件制造技术、产品设计技术得到长

足的发展,通过“十二五”期间的努力,使我国电力电子技术和产业有一个跨越式的提高和发展,满足国民经济飞速发展的要求。

常用电力电子器件特性测试

实验二:常用电力电子器件特性测试 (一)实验目的 (1)掌握几种常用电力电子器件(SCR、GTO、MOSFET、IGBT)的工作特性;(2)掌握各器件的参数设置方法,以及对触发信号的要求。 (二)实验原理 图1.MATLAB电力电子器件模型 MATLAB电力电子器件模型使用的是简化的宏模型,只要求器件的外特性与实际器件特性基本相符。MATLAB电力电子器件模型主要仿真了电力电子器件的开关特性,并且不同电力电子器件模型都具有类似的模型结构。 模型中的电阻Ron和直流电压源Vf分别用来反映电力电子器件的导通电阻和导通时的门槛电压。串联电感限制了器件开关过程中的电流升降速度,模拟器件导通或关断时的动态过程。MATLAB电力电子器件模型一般都没有考虑器件关断时的漏电流。 在MATLAB电力电子器件模型中已经并联了简单的RC串联缓冲电路,在参数表中设置,名称分别为Rs和Cs。更复杂的缓冲电路则需要另外建立。对于MOSFET模型还反并联了二极管,在使用中要注意,需要设置体内二极管的正向压降Vf和等效电阻Rd。对于GTO和IGBT需要设置电流下降时间Tf和电流拖尾时间Tt。 MATLAB的电力电子器件必须连接在电路中使用,也就是要有电流的回路,

但是器件的驱动仅仅是取决于门极信号的有无,没有电压型和电流型驱动的区别,也不需要形成驱动的回路。尽管模型与实际器件工作有差异,但使MATLAB电力电子器件模型与控制连接的时候很方便。MATLAB的电力电子器件模型中含有电感,因此具有电流源的性质,所以在模块参数中还包含了IC即初始电流项。此外也不能开路工作。 含电力电子模型的电路或系统仿真时,仿真算法一般采用刚性积分算法,如ode23tb、ode15s。电力电子器件的模块上,一般都带有一个测量输出端口,通过输出端m可以观测器件的电压和电流。本实验将电力电子器件和负载电阻串联后接至直流电源的两端,给器件提供触发信号,使器件触发导通。 (三)实验内容 (1)在MATLAB/Simulink中构建仿真电路,设置相关参数。 (2)改变器件和触发脉冲的参数设置,观察器件的导通情况及负载端电压、器件电流的变化情况。 (四)实验过程与结果分析 1.仿真系统 Matlab平台 2.仿真参数 (1)Thyristor参数设置: 直流源和电阻参数:

电力电子器件产业发展蓝皮书

电力电子器件产业发展蓝皮书(2016-2020年) 中国宽禁带功率半导体及应用产业联盟 中国IGBT技术创新与产业联盟 中国电器工业协会电力电子分会 北京电力电子学会 二零一七年

目录 一、发展电力电子器件产业的重要意义 (1) (一)电力电子技术的基本涵义 (1) (二)电力电子技术的重大作用 (1) (三)电力电子器件是电力电子技术的基础和核心 (3) (四)电力电子器件简介 (4) 二、电力电子器件产业发展状况及趋势 (9) (一)国际发展状况 (9) (二)国内发展状况 (12) 三、电力电子器件的市场分析及预测 (15) (一)国际市场分析 (15) (二)国内市场分析 (16) (三)市场预测 (17) 四、2016-2020年电力电子发展重点 (20) (一)关键材料 (22) (二)关键电力电子器件 (23) (三)关键设备 (25) (四)技术标准 (27) 五、展望 (29)

一、发展电力电子器件产业的重要意义 (一)电力电子技术的基本涵义 电力电子技术(Power Electronics,又称功率电子技术)是能源高效转换领域的核心技术,它以电力电子器件为基础,实现对电能高效地产生、传输、转换、存储和控制,提高能源利用效率、开发可再生能源,推动国民经济的可持续发展。电力电子技术包括电力电子器件、电力电子设备和系统控制三个方面,其转换功率范围小到数瓦(W),大到数百兆瓦(MW)甚至吉瓦(GW),其产业不仅涉及到电力电子器件、电力电子装置、系统控制及其在各个行业的应用等领域,还涉及到相关的半导体材料、电工材料、关键结构件、散热装置、生产设备、检测设备等产业。 (二)电力电子技术的重大作用 近年来,“节能减排”、“开发绿色新能源”已成为我国长期发展的基本国策。在我国绿色能源产业发展的推动下,电

我国电力系统现状和发展趋势

. .. . 我国电力系统现状及发展趋势 班级: 姓名: 学号:

我国电力系统现状及发展趋势 摘要: 关键词:电力系统概况,电力行业发展 1.前言 中国电力工业自1882年在诞生以来,经历了艰难曲折、发展缓慢的67年,到1949年发电装机容量和发电量仅为185万千瓦和43亿千瓦时,分别居世界第21位和第25位。1949年以后我国的电力工业得到了快速发展。1978年发电装机容量达到5712万千瓦,发电量达到2566亿千瓦时,分别跃居世界第8位和第7位。改革开放之后,电力工业体制不断改革,在实行多家办电、积极合理利用外资和多渠道资金,运用多种电价和鼓励竞争等有效政策的激励下,电力工业发展迅速,在发展规模、建设速度和技术水平上不断刷新纪录、跨上新的台阶。装机先后超过法国、英国、加拿大、德国、俄罗斯和日本,从1996年底开始一直稳居世界第2位。进入新世纪,我国的电力工业发展遇到了前所未有的机遇,呈现出快速发展的态势。 一、发电装机容量、发电量持续增长:“十一五”期间,我国发电装机和发电量年均增长率分别为10.5%、10.34%。发电装机容量继2000年达到了3亿千瓦后,到2009年已将达到8.6亿千瓦。发电量在2000年达到了1.37万亿千瓦时,到2009年达到34334亿千瓦时,其中火电占到总发电量的82.6%。水电装机占总装机容量的24.5%,核电发电量占全部发电量的2.3%,可再生能源主要是风电和太阳能发电,

总量微乎其微; 二、电源结构不断调整和技术升级受到重视。水电开发力度加大,2008年9月,三峡电站机组增加到三十四台,总装机容量达到为二千二百五十万千瓦。核电建设取得进展,经过20年的努力,建成以山、大亚湾/岭澳、田湾为代表的三个核电基地,截至2008年底,国已投入运营的机组共11台,占世界在役核电机组数的2.4%,装机容量约910万千瓦,为全国电力装机总量的1.14%、世界在役核电装机总量的2.3%。高参数、大容量机组比重有所增加,截止2009年底,全国已投运百万千瓦超超临界机组21台,是世界上拥有百万千瓦超超临界机组最多的国家;30万千瓦及以上火电机组占全部火电机组的比重提高到69.43%,火电机组平均单机容量已经提高到2009年的10.31万千瓦。在6000千瓦及以上电厂火电装机容量中,供热机组容量比重为 22.42%,比上年提高了3个百分点; 三、电网建设不断加强。随着电源容量的日益增长,我国电网规模不断扩大,电网建设得到了不断加强,电网建设得到了迅速发展,输变电容量逐年增加。2009年,电网建设步伐加快,全年全国基建新增220千伏及以上输电线路回路长度41457千米,变电设备容量27756万千伏安。2009年底,全国220千伏及以上输电线路回路长度39.94万千米,比上年增长11.29%;220千伏及以上变电设备容量17.62亿千伏安,比上年增长19.40%。其中500千伏及以上交、直流电压等级的跨区、跨省、省骨干电网规模增长较快,其回路长度和变电容量分别比上年增长了16.64%和25.97%。目前,我国电网规模已超过美国,跃居世界首位; 四、西电东送和全国联网发展迅速。我国能源资源和电力负荷分布的不均衡性,决定了“西电东送”是我国的必然选择。西电东送重点在于输送水电电能。按照经济性原则,适度建设燃煤电站,实施西电东送;

大功率电力电子器件的新进展

大功率电力电子器件前沿技术分析 贾海叶山西吕梁供电 摘要:本文对大功率电力电子器件技术进行了简述,阐述了大功率电力电子器件发展热点,并对其前沿技术和未来的发展方向进行了分析。 关键词:大功率、电子电力器件,前沿技术 1 引言 随着半导体制造工艺的进步和对电力电子设备容量增大的需求,对电力电子器件的性能和功率要求也越来越高,由此产生了耐高压、大功率的电力电子器件。近来,伴随着器件的大功率化,新的HVIGBT(HighVoltage Insulated Gate BipolarTran-sistor Module)高压绝缘栅双极型半导体模块、HVIPM(High Voltage Intelligent Power Module)高压智能电力模块的MOS型电力电子器件的开发、GCT(Gate Commutated Turn-off Thyristor)闸门换相关断可控硅器件的开发,都有了较大的进展。以新一代器件问世为标志,必然在电力电子设备的开发方面,向着小型化、高效率化、高速控制化的目标飞跃前进。 1.1 大功率电力电子器件的分类 大功率电力电子器件主要分为:二极管、可控硅、光触发可控硅、GTO(Gate Turn-off Thyristor)闸门关断可控硅、GCT、HVIGBT及HVIPM器件。 从1960年开发初期的1英寸硅片开始至今,发展到直径为6英

寸硅片的耐高压、大功率电力电子器件系列化产品,其容量和当初相比,提高了100多倍。而且在使用上减少了串联或并联元件的数量,提高了可靠性,减小了设备的体积。 按照电力电子器件能够被控制电路信号所控制的程度分类,大功率电力电子器件分为: 1.半控型器件,例如晶闸管; 2.全控型器件,例如GTO(门极可关断晶闸管)、GTR(电力晶体管),MOSFET(电力场效应晶体管)、IGBT(绝缘栅双极晶体管); 3.不可控器件,例如电力二极管; 按照驱动电路加在电力电子器件控制端和公共端之间信号的性质分类: 1.电压驱动型器件,例如IGBT、MOSFET、SITH(静电感应晶闸管); 2.电流驱动型器件,例如晶闸管、GTO、GTR; 根据驱动电路加在电力电子器件控制端和公共端之间的有效信号波形分类: 1.脉冲触发型,例如晶闸管、GTO; 2.电子控制型,例如GTR、MOSFET、IGBT; 按照电力电子器件内部电子和空穴两种载流子参与导电的情况分类: 1.单极型器件,例如电力二极管、晶闸管、GTO、GTR; 2.双极型器件,例如MOSFET、IGBT;

电力电子器件的最新发展趋势

电力电子器件的最新发展趋势 现代的电力电子技术无论对改造传统工业(电力、机械、矿冶、交通、化工、轻纺等),还是对新建高技术产业(航天、激光、通信、机器人等)至关重要,从而已迅速发展成为一门独立学科领域。它的应用领域几乎涉及到国民经济的各个工业部门,毫无疑问,它将成为本世纪乃至下世纪重要关键技术之一。近几年西方发达的国家,尽管总体经济的增长速度较慢,电力电子技术仍一直保持着每年百分之十几的高速增长。 从历史上看,每一代新型电力电子器件的出现,总是带来一场电力电子技术的革命。以功率器件为核心的现代电力电子装置,在整台装置中通常不超过总价值的20%~30%,但是,它对提高装置的各项技术指标和技术性能,却起着十分重要的作用。 众所周知,一个理想的功率器件,应当具有下列理想的静态和动态特性:在截止状态时能承受高电压;在导通状态时,具有大电流和很低的压降;在开关转换时,具有短的开、关时间,能承受高的di/dt和dv/dt,以及具有全控功能。 自从50年代,硅晶闸管问世以后,20多年来,功率半导体器件的研究工作者为达到上述理想目标做出了不懈的努力,并已取得了使世人瞩目的成就。60年代后期,可关断晶闸管GTO实现了门极可关断功能,并使斩波工作频率扩展到1kHz以上。70年代中期,高功率晶体管和功率MOSFET问世,功率器件实现了场控功能,打开了高频应用的大门。80年代,绝缘栅门控双极型晶体管(IGBT) 问世,它综合了功率MOSFET和双极型功率晶体管两者的功能。它的迅速发展,又激励了人们对综合功率MOSFET和晶闸管两者功能的新型功率器件- MOSFET门控晶闸管的研究。因此,当前功率器件研究工作的重点主要集中在研究现有功率器件的性能改进、MOS门控晶闸管以及采用新型半导体材料制造新型的功率器件等。下面就近几年来上述功率器件的最新发展加以综述。 一、功率晶闸管的最新发展 1.超大功率晶闸管 晶闸管(SCR)自问世以来,其功率容量提高了近3000倍。现在许多国家已能稳定生产8kV / 4kA的晶闸管。日本现在已投产8kV / 4kA和6kV / 6kA的光触发晶闸管(LTT)。美国和欧洲主要生产电触发晶闸管。近十几年来,由于自关断器件的飞速发展,晶闸管的应用领域有所缩小,但是,由于它的高电压、大电流特性,它在HVDC、静止无功补偿(SVC)、大功率直流电源及超大功率和高压变频调速应用方面仍占有十分重要的地位。预计在今后若干年内,晶闸管仍将在高电压、大电流应用场合得到继续发展。 现在,许多生产商可提供额定开关功率36MVA ( 6kV/ 6kA )用的高压大电流GTO。传统GTO的典型的关断增量仅为3~5。GTO关断期间的不均匀性引起的“挤流效应”使其在关断期间dv/dt必须限制在500~1kV/μs。为此,人们不得不使用体积大、昂贵的吸收电路。另外它的门极驱动电路较复杂和要求较大的驱动功率。但是,高的导通电流密度、高的阻断电压、阻断状态下高的dv/dt耐量和有可能在内部集成一个反并二极管,这些突出的优点仍使人们对GTO感到兴趣。到目前为止,在高压(VBR > 3.3kV )、大功率(0.5~20 MVA)牵引、工业和电力逆变器中应用得最为普遍的是门控功率半导体器件。目前,GTO的最高研究水平为6in、6kV / 6kA以及9kV/10kA。为了满足电力系统对1GVA以上的三相逆变功

我国电力系统现状及发展趋势

WoRD文档下载可编辑 我国电力系统现状及发展趋势 班级: 姓名: 学号:

我国电力系统现状及发展趋势 摘要: 关键词:电力系统概况,电力行业发展 ‘、八— 1. 刖言 中国电力工业自1882年在上海诞生以来,经历了艰难曲折、发展缓慢的67年, 到1949年发电装机容量和发电量仅为185万千瓦和43亿千瓦时,分别居世界第21位和第25位。1949年以后我国的电力工业得到了快速发展。1978年发电装机容量达 到5712万千瓦,发电量达到2566亿千瓦时,分别跃居世界第8位和第7位。改革开 放之后,电力工业体制不断改革,在实行多家办电、积极合理利用外资和多渠道资金,运用多种电价和鼓励竞争等有效政策的激励下,电力工业发展迅速,在发展规模、建设速度和技术水平上不断刷新纪录、跨上新的台阶。装机先后超过法国、英国、加拿大、德国、俄罗斯和日本,从1996年底开始一直稳居世界第2位。进入新世纪,我国 的电力工业发展遇到了前所未有的机遇,呈现出快速发展的态势。 一、发电装机容量、发电量持续增长:“十一五”期间,我国发电装机和发电量年 均增长率分别为10.5%、10.34%。发电装机容量继2000年达到了3亿千瓦后,到2009 年已将达到8.6亿千瓦。发电量在2000年达到了1.37万亿千瓦时,到2009年达到34334亿千瓦时,其中火电占到总发电量的82. 6%。水电装机占总装机容量的24.5%, 核电发电量占全部发电量的2. 3%,可再生能源主要是风电和太阳能发电,总量微乎 其微; 二、电源结构不断调整和技术升级受到重视。水电开发力度加大,2008年9月,三峡电站机组增加到三十四台,总装机容量达到为二千二百五十万千瓦。核电建设取得进展,经过20年的努力,建成以秦山、大亚湾/岭澳、田湾为代表的三个核电基地, 截至2008年底,国内已投入运营的机组共11台,占世界在役核电机组数的 2.4%,装机容量约910万千瓦,为全国电力装机总量的 1.14%、世界在役核电装机总量的 2.3%。

碳化硅电子器件发展分析报告

碳化硅电力电子器件的发展现状分析 目录 1.SiC器件的材料与制造工艺 (2) 1.1 SiC单晶 (2) 1.2 SiC外延 (3) 1.3 SiC器件工艺 (4) 2. SiC二极管实现产业化 (5) 3. SiC JFET器件的产业化发展 (7) 4. SiC MOSFET器件实用化取得突破 (7) 5. SiC IGBT器件 (8) 6. SiC功率双极器件 (9) 7. SiC 功率模块 (10) 8. 国内的发展现状 (11) 9. SiC电力电子器件面对的挑战 (11) 9.1 芯片制造成本过高 (11) 9.2 材料缺陷多,单个芯片电流小 (12) 9.3 器件封装材料与技术有待提高 (12) 10. 小结 (12)

在过去的十五到二十年中,碳化硅电力电子器件领域取得了令人瞩目的成就,所研发的碳化硅器件的性能指标远超当前硅基器件,并且成功实现了部分碳化硅器件的产业化,在一些重要的能源领域开始逐步取代硅基电力电子器件,并初步展现出其巨大的潜力。碳化硅电力电子器件的持续进步将对电力电子技术领域的发展起到革命性的推动作用。随着SiC单晶和外延材料技术的进步,各种类型的SiC器件被开发出来。SiC器件主要包括二极管和开关管。SiC二极管主要包括肖特基势垒二极管及其新型结构和PiN 型二极管。SiC开关管的种类较多,具有代表性的开关管有金属氧化物半导体场效应开关管(MOSFET)、结型场效应开关管(JFET)、绝缘栅双极开关管(IGBT)三种。 1.SiC器件的材料与制造工艺 1.1 SiC单晶 碳化硅早在1842年就被发现了,但直到1955年,飞利浦(荷兰)实验室的Lely 才开发出生长高品质碳化硅晶体材料的方法。到了1987年,商业化生产的SiC衬底进入市场,进入21世纪后,SiC衬底的商业应用才算全面铺开。碳化硅分为立方相(闪锌矿结构)、六方相(纤锌矿结构)和菱方相3大类共260多种结构,目前只有六方相中的4H-SiC、6H-SiC才有商业价值,美国科锐(Cree)等公司已经批量生产这类衬底。立方相(3C-SiC)还不能获得有商业价值的成品。 SiC单晶生长经历了3个阶段, 即Acheson法、Lely法、改良Lely法。利用SiC 高温升华分解这一特性,可采用升华法即Lely法来生长SiC晶体。升华法是目前商业生产SiC单晶最常用的方法,它是把SiC粉料放在石墨坩埚和多孔石墨管之间,在惰性气体(氩气)环境温度为2 500℃的条件下进行升华生长,可以生成片状SiC晶体。由于Lely法为自发成核生长方法,不容易控制所生长SiC晶体的晶型,且得到的晶体尺寸很小,后来又出现了改良的Lely法。改良的Lely法也被称为采用籽晶的升华法或物理气相输运法 (简称PVT法)。PVT法的优点在于:采用 SiC籽晶控制所生长晶体的晶型,克服了Lely法自发成核生长的缺点,可得到单一晶型的SiC单晶,且可生长较大尺寸的SiC单晶。国际上基本上采用PVT法制备碳化硅单晶。目前能提供4H-SiC晶片的企业主要集中在欧美和日本。其中Cree产量占全球市场的85%以上,占领着SiC晶体生长及相关器件制作研究的前沿。目前,Cree的6英寸SiC晶片已经商品化,可以小批量供货。此外,国内外还有一些初具规模的SiC晶片供应商,年销售量在1万片上下。Cree生产的SiC晶片有80%以上是自己消化的,用于LED衬底材料,所以Cree是全球

电力电子器件的发展及应用

电力电子器件的发展及应用 研1506 苏智清 摘要:本文简单介绍了电力技术的分类, 回顾了电力电子技术及其器件的发展过程, 说明了现在主流的电力电子器件的工作原理、应用范围及其优缺点, 探讨了在本世纪中新型电力电子器件的应用。 关键词:复合型电力电子器件;新型材料的电力电子器件;电力电子器件的应用 1引言 电力电子学是电工学的一个分支,是由电力系统、控制理论与电子学等学科共同发展起来的一个新型边缘性学科。电力电子学的主要特点是具有很强的应用性,同时与其他学科有着很好的交叉融合性,这也是电力电子学的基础理论与应用技术能够在短短几十年间飞速发展的一个相当重要的因素。目前,电力电子技术的应用已经从机械、石化、纺织、冶金、电力、铁路、航空、航海等一系列领域,进一步扩展到汽车、现代通信、家用电器、医疗设备、灯光照明等各个领域。进入 21 世纪,伴随着新理论、新器件、新技术的不断涌现,尤其是与微电子技术的日益融合,电力电子技术作为信息产业和传统产业之间的桥梁,在国民经济中必将占有越来越重要的地位,在各领域中的应用也必将不断得到拓展。 2电力电子器件的发展 2.1半控型器件 上世纪50年代,美国通用电气公司发明世界上第个晶闸管,标志电力电子技术的诞生。此后,晶闸管得到了迅速发展,器件容量越来越大,性能得到不断提高,并产生大量派生器件,如快速晶闸管逆导晶闸管等等。

但是,晶闸管作为半控型器件,只能通过门极导通,不能控制关断。要关断必须通过强迫换相电路,从而装置体积增大,复杂程度提高,效率降低。另外,晶闸管为双极型器件,有少子效应,所以工作频率低,由于这些原因,使得晶闸管的应用受到限制。 虽然晶闸管有以上缺点,但由于它的大电压大电流特性,使在高压直流输电静止无功补偿,大功率和高压变频调速等方面仍占有重要位置。2.2全控型器件 2.2.1门极可关断晶闸管(GTO) GTO有对称,非对称和逆导三种类型。对称GTO通态压降小,抗浪涌能力强,易于提高耐压能力。逆导型GTO是在同一芯片上将GTO与整流二极管反并联制成的集成器件,不能承受反向电压,主要用于中等容量的牵引驱动中。 在当前各种自关断器件中,GTO容量做大,工作最低。GTO是电流控制型器件,因而关断需要很大的反向驱动电流。目前,GTO在低于2000V某些领域被GTR和IGBTDE所替代,但在大功率电力牵引有明显优势。 2.2.2大功率晶体管(GTR) GTR是一种电流控制的双极双结电力电子器件,它既具备晶体管的固有特性,又增加功率容量,因此,由它组成的电路灵活,成熟,开关损耗小,开关时间短,在电源电机控制,通用逆变器等中等容量,中等频率的电路中广泛应用。GTR的缺点驱动电流较大,耐浪涌电流能力差,易受二次击穿损坏。在开关电源GTR渐渐被功率MOSFET和IGBT代替。 2.2.3功率MOSFET

我国电力行业的发展现状与趋势

我国电力行业的发展现状与趋势 1我国电力行业的发展 新中国成立前我国电力工业发展状况 1882年,英籍商人等人招股筹银5万两,创办上海电气公司,安装1台16马力蒸汽发电机组,装设了15盏弧光灯。1882年7月26日下午7时,电厂开始发电,电能开始在中国应用,几乎与欧美同步,并略早于日本。 从1882年到1949年新中国成立,经历了艰难曲折、发展缓慢的67年,其间67年电力发展基本状况是一个十分落后的百孔千疮的破烂摊子,电厂凋零,设备残缺,电网瘫痪,运行维艰,技术水平相当落后,。 到1949年发电装机容量和发电量仅为185万千瓦和43亿千瓦时,分别居世界第21位和第25位,与发达国家差距较大。 新中国成立后的我国电力工业发展状况 1949年以后我国的电力工业得到了快速发展。1978年发电装机容量达到5712万千瓦,发电量达到2566亿千瓦时,分别跃居世界第8位和第7位。 改革开放之后,电力工业体制不断改革,在实行多家办电、积极合理利用外资和多渠道资金,运用多种电价和鼓励竞争等有效政策的激励下,电力工业实行"政企分开,省为实体,联合电网,统一调度,集资办电"的方针,大大地调动了地方办电的积极性和责任,迅速地筹集资金,使电力建设飞速发展,在发展规模、建设速度和技术水平上不断刷新纪录、跨上新的台阶。 从1988年起连续11年每年新增投产大中型发电机组按全国统计口径达1,500万千瓦。各大区电网和省网随着电源的增长加强了网架建设,从1982到1999年底,中国新增330千伏以上输电线路372,837公里,新增变电容量732,690MVA,而1950至1981年30年期间新增输电线路为277,257公里,变电容量70360MVA。 改革开放以来到上世纪末,我国发电装机和发电量年均增长率分别为%、%。发电装机容量继1987年突破1亿千瓦后,到1995年超过了2亿千瓦,2000年达到了3亿千瓦。发电量在1995年超过了1万亿千瓦时,到2000年达到了万亿千瓦时。 进入新世纪,我国电力工业进入历史上的高速发展时期,投产大中型机组逐年上升,2004年5月随着三峡电站7#机组的投产,我国电源装机达到4亿千瓦,到2004年底发电装机总量达到亿千瓦,其中:水、火、核电分别达10830、32490、万千瓦。2004年发电量达到21870亿千瓦时。2000~2004年,5年净增发电装机容量14150万千瓦,2004年我国新增电力装机容量5100万千瓦,超过美国在1979年创造的年新增装机4100万千瓦的世界历史最高记录。预计今年新增装机容量约为6000万千瓦,年末装机容量将超过5亿千瓦。

电力电子器件的应用及发展现状

电力电子器件的应用及发展现状 发表时间:2019-01-04T10:37:38.900Z 来源:《基层建设》2018年第34期作者:万洪宇[导读] 摘要:随着国内外电力电子技术的快速发展,如今已步入电子科技时代,电力电子器件在社会中的各个行业都得到广泛的应用,并且渗透到各个领域,在各个领域中都发挥着重要的作用。 中车青岛四方机车车辆股份有限公司山东青岛 266000摘要:随着国内外电力电子技术的快速发展,如今已步入电子科技时代,电力电子器件在社会中的各个行业都得到广泛的应用,并且渗透到各个领域,在各个领域中都发挥着重要的作用。电力电子器件是电力电子技术的基础部分,同时也是电力电子技术发展的重要条件,电力电子器件的发展是推动和促进电力电子技术发展的重要动力,因此研究电力电子器件的应用和发展状况具有十分重要的意义,本 文简要论述电力电子器件的发展过程,探讨普及使用电力电子器件具备的工作原理、应用领域、优势缺点,探究电力电子器件的应用前景并针对其发展方向探讨有效的建议。 关键词:电力电子器件,工作原理,应用 0简介 国内外科学技术发展的加快,间接促进了电力电子器件的发展,如今国内外各行各业中都已经普及应用电力电子器件,特别是在上世纪80年代以后,电力电子技术发展速度加快更是对全球经济、文化、军事发展形成了极大的影响。一般而言,电力电子技术和信息电子技术构成了电子技术,其中计算机技术和通信技术等构成信息电子技术,信息电子技术主要进行信息存储、处理、传输、控制等等;电力电子技术主要是进行电能方面的处理,在实施的过程中要确保电能安全、稳定、可靠地运行,还要保证信息和能源能够集中运用。此外,随着国内电能需求的增加,应用电力电子技术可以将一次能源转变为电能,是现下解决电力方面问题的有效途径和手段,在应用电力电子技术中需要利用较多的电力电子器件,因此实际应用中要对电力电子器件的应用和发展进行相应的探究。 1 电力电子器件的应用现状 1.1电力整流管的应用 整流管起步于上世纪40年代,是一种结构最简单和使用最普及的电力电子器件,随着相关技术的发展,整流管已经发展为肖特基整流管、普通整流管、快恢复整流管等类别。其中普通整流管具备的特点为:漏电流小、较高的通态压降、反向恢复时间较长、具备很高的电流和电压定额,主要在需要不高转速的装置中应用。快恢复整流管主要具备较快的方向恢复时间和较高的通态压降,主要在逆变、斩波等电力中应用。肖特基整流管具备的特性融合了上述提及两种整流管的特点,但是存在漏电电流较大、缺乏一定的耐压能力等缺点,主要在开关电源和高频低压仪表中应用。电力整流管可以有效地改善电力电子电路的性能,提高电源使用效率,以及降低电路损耗,随着具备高性能电力电子器件的研发成功,现下人们通过运用新颖结构的设计和大规模集成电路制作工艺,研发出综合了肖特基整流管、PIN整流管特性为一体的新型高压快恢复整流管,这种类型的整流管具备很低的通态压降以及极短的反向恢复时间,并且具备较低的反向恢复峰值电流。 1.2晶闸管的应用 作为国内应用最为广泛的电力电子器件,晶闸管由以往的水银整流器和电动发电机构成逐渐演变为新型的晶闸管,传统的晶闸管具备很大的体积,并且具备的功率相对较小。而新型的晶闸管具有功率大,体积小,效率高的诸多优点,因此在众多变流技术中占据着重要的地位。但是由于晶闸管在运行中不能处于低频率工作状态,在实际使用过程中不能采用关断处理,造成了很大的不便和麻烦。在这种背景下,可关断式晶闸管被研发出来,主要被应用于交通电车,在促进交通发展方面发挥着重要的作用。 1.3绝缘栅双极晶体管的应用 在绝缘栅双极晶体管研发应用之前,应用的电力电子器件主要是以可关断晶闸管,但是在发展过程中,可关断晶闸管逐渐不再符合电力系统实际需求。与此同时,在实际应用中,可关断晶闸管在关断处理中需要消耗巨大的能量,这种状况与世界上的环保节能理念有着很大的偏差,同时也造成了不必要的经济损失。随着技术的发展和进步,绝缘栅双极晶体管应运而生,与可关断晶闸管相比,绝缘栅双极集体管具备更高的效益,逐渐在电车研发中代替晶闸管电子器件。 1.4智能功率模块的应用 随着国内外电力电子技术的进一步发展,,绝缘栅双极晶体管在一些场合已经渐渐不能满足电力电子的应用需求,在此基础上,研究人员研发出了具备故障检测并且能对电路进行保护的智能功率模块。和传统功率器件相比,智能功率模块具备电流传感功能、温度传感功能,其中电流传感功能可以对功率器电流情况实施不间断检测,从而确保功率器件的正常稳定运行。 2电力电子器件应用存在的问题 电力电子器件在给我们生活带来极大方便的同时,还存在以下应用问题,这些问题阻碍着电力电子器件的发展和应用。 2.1 缺乏创新力度,更新速度迟缓 随着经济的高速发展,电力电子技术发展的速度也是越来越快,但是现阶段电力电子技术面临着更新速度迟缓、创新力度不足等缺点,电力电子器件的发展已经无法达到人们对高科技的需求。针对这些问题,科研人员一定要具备高度的创新意识,全力研究探索电力电子技术。 2.2 电力电子器件原材料寻找困难 阻碍电力电子技术和电力电子器件发展的主要原因是缺乏高性能的电力电子器件原材料,如今原材料具备的性能不再适合电力电子器件的深度发展,若要促进电力电子器件快速发展,需要进行电力电子器件原材料的研究和制造,在原有的基础上提升电力电子器件的性能。在研究和制造过程中,需要进行缜密的分析和精密的规划,另外,还要判断原材料是否和电力电子器件相吻合,判断原材料是否存在缺陷,然后在不断的探究和完善中逐渐对原材料进行优化。 3电力电子器件发展展望 硅晶闸管类型的半控型器件在诸多传统晶闸管应用、无功补偿、高压直流输电等领域中已经普及应用,尽管全控器件的研发和应用对其造成了一定程度的冲击,但是硅晶闸管在技术成熟性和价格方面具备良好的优势,在未来的市场中必定还会占据很大的份额,尤其会在大电流和高电压应用场合中广泛普及应用。

我国电力系统现状及发展趋势

我国电力系统现状及发展趋势 班级: 姓名: 学号:

我国电力系统现状及发展趋势 摘要: 关键词:电力系统概况,电力行业发展 1.前言 中国电力工业自1882年在上海诞生以来,经历了艰难曲折、发展缓慢的67年,到1949年发电装机容量和发电量仅为185万千瓦和43亿千瓦时,分别居世界第21位和第25位。1949年以后我国的电力工业得到了快速发展。1978年发电装机容量达到5712万千瓦,发电量达到2566亿千瓦时,分别跃居世界第8位和第7位。改革开放之后,电力工业体制不断改革,在实行多家办电、积极合理利用外资和多渠道资金,运用多种电价和鼓励竞争等有效政策的激励下,电力工业发展迅速,在发展规模、建设速度和技术水平上不断刷新纪录、跨上新的台阶。装机先后超过法国、英国、加拿大、德国、俄罗斯和日本,从1996年底开始一直稳居世界第2位。进入新世纪,我国的电力工业发展遇到了前所未有的机遇,呈现出快速发展的态势。 一、发电装机容量、发电量持续增长:“十一五”期间,我国发电装机和发电量年均增长率分别为10.5%、10.34%。发电装机容量继2000年达到了3亿千瓦后,到2009年已将达到8.6亿千瓦。发电量在2000年达到了1.37万亿千瓦时,到2009年达到34334亿千瓦时,其中火电占到总发电量的82.6%。水电装机占总装机容量的24.5%,核电发电量占全部发电量的2.3%,可再生能源主要是风电和太阳能发电,总量微乎其微; 二、电源结构不断调整和技术升级受到重视。水电开发力度加大,2008年9月,三峡电站机组增加到三十四台,总装机容量达到为二千二百五十万千瓦。核电建设取得进展,经过20年的努力,建成以秦山、大亚湾/岭澳、田湾为代表的三个核电基地,截至2008年底,国内已投入运营的机组共11台,占世界在役核电机组数的2.4%,装机容量约910万千瓦,为全国电力装机总量的1.14%、世界在役核电装机总量的2.3%。高参数、大容量机组比重有所增加,截止2009年底,全国已投运百万千瓦超超临界机

电力电子器件的发展分析

电力电子技术课程论文 电力电子器件的发展分析 摘要:电力电子器件发展至今已有近60年的历史,本文简单介绍了电力电子器件的发展历程,然后对IGCT、IGBT、MCT等新型电力电子器件的发展状况及其优缺点进行了分析,最后, 展望了电力电子器件的未来发展。 关键字:电力电子器件;IGCT;ICBT;MCT; 1、引言 电力电子技术包括功率半导体器件与IC技术、功率变换技术及控制技术等几个方面,其中,电力电子器件是电力电子技术的重要基础,也是电力电子技术发展的“机车”。 电力电子器件的发展时间并不长,但是至今已经发展出多个种类的产品,其中最早为人们所应用的是普通晶闸管,普通晶闸管是由美国通用电气公司在1958年时研制并投产的,它为之后的电力电子器件发展奠定了基础,在1964年时,美国公司又成功研制了可关断的GT0;到了二十世纪七十年代,电力电子器件的研究有了又一成果——GTR系列产品,二十世纪八九十年代,以功率M0SFET和IGBT为代表的,集高频、高压和大电流于一身的功率半导体复合器件,标志着传统电力电子技术已经进入现代电力电子时代。 2、电力电子器件发展史

电力电子器件又称作开关器件,相当于信号电路中的A-D采样,称之为功率采样,器件的工作过程就是能量过渡过程,其可靠性决定了装置和系统的可靠性。根据可控程度以及构造特点等因素可以把电力电子器件分成四类: (1)半控型器件——第一代电力电子器件 2O世纪5O年代,由美国通用电气公司发明的硅晶闸管的问世,标志着电力电子技术的开端。到了2O世纪7O年代,已经派生出了许多半控型器件,这些电力电子器件的功率也越来越大,性能日渐完善,但是由于晶闸管的固有特性,大大限制了它的应用范围。 (2)全控型器件一一第二代电力电子器件 从2O世纪7O年代后期开始,可关断晶闸管(GTO)、电力晶体管(GTR或BJT)及其模块相继实用化。此后,各种高频率的全控型器件不断问世,并得到迅速发展。这些器件主要有:电力场控晶体管(即功率MOSFET)、静电感应晶体管(SIT)、静电感应晶闸管(SITH)等,这些器件的产生和发展,已经形成了一个新型的全控电力电子器件的大家族。 (3)复合型器件——第三代电力电子器件 前两代电力电子器件中各种器件都有其本身的特点。近年来,又出现了兼有几种器件优点的复合器件。如:绝缘门极双极晶体管IGBT(Insulated Gate Bipolar Transistor)。它实际上是MOSFET驱动双极型晶体管,兼有M0sFET的高输入阻抗和GTR的低导通压降两者的优点。它容量较大、开关速度快、易驱动,成为一种理想的电力电子器件。 (4)模块化器件——第四代电力电子器件 随着工艺水平的不断提高,可以将许多零散拼装的器件组合在一起并且大规模生产,进而导致第四代电力电子器件的诞生。以功率集成电路PIC(Power Intergrated Circuit)为代表,其不仅把主电路的器件,而且把驱动电路以及具有过压过流保护,甚至温度自动控制等作用的电路都集成在一起,形成一个整体。 3、电力电子器件的最新发展 现代电力电子器件仍然在向大功率、易驱动和高频化方向发展。其中,电力电子模块化是电力电子器件向高功率密度发展的重要一步。下面介绍几种新型电力电子器件: 3.1 IGCT IGCT(Intergrated Gate Commutated Thyristors)是一种用于巨型电力电子成套装置中的新型电力半导体器件[1]。它是将GTO芯片与反并联二极管和门极驱动电路集成在一起,再与其门极驱动器在外围以低电感方式连接,它是结合了晶体管和晶闸管两种器件的优点,即晶体管的稳定的关断能力和晶闸管的低通态损耗的一种新型器件。IGCT在导通阶段发挥晶闸管的性能,关断阶段呈类似晶体管的特性。IGCT具有电流大、电压高、开关频率高、可靠性高、结构紧凑、损耗低的特点。此外,IGCT还像GT0一样,具有制造成本低和成品率高的

电力行业发展现状及前景分析

电力行业发展现状及前 景分析 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

?电力行业现状及发展前景分析 1.电力经济发展趋势综述 电力行业关系国计民生,社会对电力产业也是加倍关注。从以下几个方面我们可对近年电力产业经济发展状况做出宏观的基本了解和判断。 1)电价:电价上涨。面对煤价上调和排污费增加所导致的成本增加,国 家 发改委已意识到电力行业没有利润是不利于其稳定和发展的。但中央要求的电价上调在地方却可能未必完全执行。而上游的煤炭在电价上调的激励下可能会再抬高煤价,下游的耗电工业成本也会受很大影响。 2)电荒:毫无疑问,电荒在短期内仍将继续存在。但随着国家对协调发 展 的重视和对“惟GDP论”的抛弃,在宏观上电力需求的增速将有所下降。从供应端看,如果近年大江大河的来水正常,则水电出力一定比上年大增,同时大批新建电源开始并网发电,电力供应将比上年增加。从需求端看,由于侧管理逐渐推广,电价上涨使高耗能产业发展受限以及居民用电对价格的敏感,需求的增长也会理性些。因此,缺电未必会持续比上一年严重。电价上涨并不会激发电力投资过热,相反,电力“跑马圈地”会回归理性。 3)煤电联营:不论是煤强电弱,还是电强煤弱,也不论是以煤炭垄断对 付 电力垄断,还是利益格局重新调整,煤电之间的顶牛只能是两败俱伤。在多次呼吁政府部门协调而不可得的时候,各种形式的煤电联营将有利于减少中间环

节,稳定煤价,打造完整的电煤供应链。煤电联营将是最好的稳定电源安全的方式之一。 4)产权多元化:现在,电力企业无论是电厂还是电网基本上是国家资 本, 但是党的十六届三中全会后,电力企业吸引战略投资者,吸引外资、民营等各类资本,发展混合所有制经济,实现产权多元化已是箭在弦上。同时,加快重组步伐,积极谋划集团一级上市也是各大集团心照不宣的计划。产权多元化必然带来投资、融资的多元化,更多的资金将源源不断流入电力领域,规范投资、加强立法已是刻不容缓,电力投资体制改革也是大势所趋。 5)年薪制:2004年起,国资委对中央企业负责人实行年薪制,同年也是 国 资委对中央企业实施业绩考核的第一年。电力企业有成为国资委重点培养的30~50家具有国际竞争力的大企业、大集团的雄心,年薪制将会激发电力企业间的竞争。 6)多种产业剥离:据悉,主辅分离、辅业改制工作已成为国资委推进国 有 企业改革和发展的两件大事之一。既然剥离不可避免,那么电力身上多出的这一根“筋”怎么剥离,就是考验各电力企业智慧的大问题了。既要减员增效做强主业,又不能甩包袱,漠视多种产业职工的电力情结,还要让企业好好地活下去,剥离后的多种产业和主业关系成为较大关注点。。 7)区域电力市场:2003年,东北、华东、华北、华中和西北5家区域电 网

现代电力电子技术的发展、现状与未来展望综述上课讲义

现代电力电子技术的发展、现状与未来展 望综述

课程报告 现代电力电子技术的发展、现状与 未来展望综述 学院:电气工程学院 姓名: ********* 学号: 14********* 专业: ***************** 指导教师: *******老师 0 引言

电力电子技术就是使用电力半导体器件对电能进行变换和控制的技术,它是综合了电子技术、控制技术和电力技术而发展起来的应用性很强的新兴学科。随着经济技术水平的不断提高,电能的应用已经普及到社会生产和生活的方方面面,现代电力电子技术无论对传统工业的改造还是对高新技术产业的发展都有着至关重要的作用,它涉及的应用领域包括国民经济的各个工业部门。毫无疑问,电力电子技术将成为21世纪的重要关键技术之一。 1 电力电子技术的发展[1] 电力电子技术包含电力电子器件制造技术和变流技术两个分支,电力电子器件的制造技术是电力电子技术的基础。电力电子器件的发展对电力电子技术的发展起着决定性的作用,电力电子技术的发展史是以电力电子器件的发展史为纲的。 1.1半控型器件(第一代电力电子器件) 上世纪50年代,美国通用电气公司发明了世界上第一只硅晶闸管(SCR),标志着电力电子技术的诞生。此后,晶闸管得到了迅速发展,器件容量越来越大,性能得到不断提高,并产生了各种晶闸管派生器件,如快速晶闸管、逆导晶闸管、双向晶闸管、光控晶闸管等。但是,晶闸管作为半控型器件,只能通过门极控制器开通,不能控制其关断,要关断器件必须通过强迫换相电路,从而使整个装置体积增加,复杂程度提高,效率降低。另外,晶闸管为双极型器件,有少子存储效应,所以工作频率低,一般低于400 Hz。由于以上这些原因,使得晶闸管的应用受到很大限制。 1.2全控型器件(第二代电力电气器件) 随着半导体技术的不断突破及实际需求的发展,从上世纪70年代后期开始,以门极可关断晶闸管(GTO)、电力双极晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展。全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。此外,这些器件的开关速度普遍高于晶闸管,可用于开关频率较高的电路。这些优点使电力电子技术的面貌焕然一新,把电力电子技术推进到一个新的发展阶段。 1.3电力电子器件的新发展 为了解决MSOFET在高压下存在的导通电阻大的问题,RCA公司和GE公司于1982年开发出了绝缘栅双极晶体管(IGBT),并于1986年开始正式生产并逐渐系列化。IGBT是MOS?FET和BJT得复合,它把MOSFET驱动功率小、开关速度快的优点和BJT通态压降小、载流能力大的优点集于一身,性能十分优越,使之很快成为现代电力电子技术的主导器件。与IGBT 相对应,MOS 控制晶闸管(MCT)和集成门极换流晶闸管(IGCT)都是MOSFET和GTO的复合,它们都综合

电力电子相关产业

附件2 电力电子相关产品目录 一、元器件类: 元器件类主要包括半导体器件、无源元件以及机械部件,是组成电力电子设备的主要部件。其中有些为电力电子专用元器件,另外一些是普适型元器件,并不专用于电力电子产品中。 1.1 电力电子器件 主要包括各种半导体器件,如:二极管、桥堆、晶闸管、GTO、MOSFET、IGBT等器件,按封装形式可以分为单管和模块两类。此类器件专用于电力电子领域,功率等级可以从几瓦延伸到上兆瓦,是中大功率电力电子装置的核心技术产品。 1.2 电源管理芯片(power management IC) 电源管理类产品主要是单片集成的电源以及控制器等,一般功率等级较低(几瓦到几百瓦之间),与半导体产业有较大的交叉,更多地具有集成电路产品特征。 1.3 无源元件(被动元件) 无源元件主要是电容以及电感(变压器)。可以分为以下几类: 1.3.1磁芯:包括铁氧体;粉芯; 1.3.2电容:包括电解电容、瓷片电容、薄膜电容、安规电容、电力电容等; 1.3.3电子变压器/电感 1.4 散热器 散热器(尤其是水冷散热器),一般专用于电力电子产品。 1.5 直流母排(Bus Bar) 二、装置和系统类: 电力电子装置和系统产品主要就是电源,功能是是实现电能的变化,按照应用场合以及功能大致可以分为: 2.1电力电源 包括电源模块本身以及电力行业广泛应用的直流电源。输出为直流,通常为220V/110V。 2.2 通信电源 包括通信电源模块本身以及通信行业广泛应用的直流电源系统。输出为直流,通常为48V/24V。

2.3不间断电源(UPS) 包括家用、银行等重要设施配备的不间断电源系统。功率范围很大,从数百V A到数兆V A 等级。 2.4新能源并网逆变器 风能、光伏等新能源发电的并网逆变器及其系统。 2.5变频器/马达驱动器 变频器主要用于马达驱动,实现节能以及系统控制。控制算法软件和硬件结合十分紧密。 2.6LED驱动器 针对LED灯特性设计的直流恒流电源,在较大功率下,需要多路恒流输出。 2.7直流模块电源(Brick DC/DC) 此类电源由于其高功率密度,高效率、高性能,在通信、军工等场合被广泛应用。通常也成为二次电源,实现直流/直流转换。 2.8消费类电子电源 消费类电子电源涵盖范围较广,以交流转直流为主,如移动设备、计算机、家电、娱乐设备等。 2.9电动汽车充电站 电动汽车充电站是未来电动汽车广泛应用的一个配套基础设施。 2.10工业电源 广泛应用于工业现场,作为控制器的供电电源,一般要求可靠性高。如纺织机械的电磁阀驱动电源、工业控制电源。 2.11特种电源 特殊场合应用的电源系统,如军工场合(军舰去磁化电源、鱼雷推进)。

相关文档