文档视界 最新最全的文档下载
当前位置:文档视界 › 分布模拟montercarlo蒙特卡洛标准正态分布泊松分布

分布模拟montercarlo蒙特卡洛标准正态分布泊松分布

分布模拟montercarlo蒙特卡洛标准正态分布泊松分布
分布模拟montercarlo蒙特卡洛标准正态分布泊松分布

老师,我模拟用的是matlab,使用了两种不同的蒙特卡洛方法模拟了标准正太分布,用了不同的第三种蒙特卡洛方法模拟了泊松分布(期望为10),以下是模拟的图。同时认为暗电流服从泊松分布(取期望为4),模拟了一下。

以下是模拟图:

第一种方法的标准正态分布:

第二种方法:

泊松分布(期望10)

暗电流取期望为4

正太分布的两种数据产生方法:

方法一:

j=1; k=1;

for i=1:200

a=rand;

b=rand;

w=(2*a-1)^2+(2*b-1)^2;

if(w<1)

z=(-2*log(w)/w)^(1/2);

x(j)=a*z;

y(k)=b*z;

j=j+1;

k=k+1;

end

End

其中产生的x,y向量存的就是符合正太分布。

方法二:

j=1;

for i=1:2000

a=rand;

L=(2*exp(1))/pi;

b=-log(a);

c=rand;

if((b-1)^2<=-2*log(c))

norm1(j)=b;

j=j+1;

end

End

Norm1中存的就是符合正态分布的。

泊松分布:

j=1; a=0;b=25; max=0.3;mean=10;

r2=randint(1,20000,[a b]);

for i=1:20000

r1=rand;

r3=rand;

if (r3<=max* mean^r2(i)*exp(-mean)/factorial(r2(i)));

po_data(j)=r2(i);

j=j+1;

end

蒙特卡洛(Monte Carlo)模拟法

当科学家们使用计算机来试图预测复杂的趋势和事件时, 他们通常应用一类需要长串的随机数的复杂计算。设计这种用来预测复杂趋势和事件的数字模型越来越依赖于一种称为蒙特卡罗模似的统计手段, 而这种模拟进一步又要取决于可靠的无穷尽的随机数目来源。 蒙特卡罗模拟因摩纳哥著名的赌场而得名。它能够帮助人们从数学上表述物理、化学、工程、经济学以及环境动力学中一些非常复杂的相互作用。数学家们称这种表述为“模式”, 而当一种模式足够精确时, 他能产生与实际操作中对同一条件相同的反应。但蒙特卡罗模拟有一个危险的缺陷: 如果必须输入一个模式中的随机数并不像设想的那样是随机数, 而却构成一些微妙的非随机模式, 那么整个的模拟(及其预测结果)都可能是错的。 最近, 由美国佐治亚大学的费伦博格博士作出的一分报告证明了最普遍用以产生随机数串 的计算机程序中有5个在用于一个简单的模拟磁性晶体中原子行为的数学模型时出现错误。科学家们发现, 出现这些错误的根源在于这5个程序产生的数串其实并不随机, 它们实际上隐藏了一些相互关系和样式, 这一点只是在这种微小的非随机性歪曲了晶体模型的已知特 性时才表露出来。贝尔实验室的里德博士告诫人们记住伟大的诺伊曼的忠告:“任何人如果相信计算机能够产生出真正的随机的数序组都是疯子。” 蒙特卡罗方法(MC) 蒙特卡罗(Monte Carlo)方法: 蒙特卡罗(Monte Carlo)方法,又称随机抽样或统计试验方法,属于计算数学的一个分支,它是在本世纪四十年代中期为了适应当时原子能事业的发展而发展起来的。传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。这也是我们采用该方法的原因。 蒙特卡罗方法的基本原理及思想如下: 当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。这就是蒙特卡罗方法的基本思想。蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。可以把蒙特卡罗解题归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 蒙特卡罗解题三个主要步骤: 构造或描述概率过程: 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 实现从已知概率分布抽样: 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样

泊松分布的概念及表和查表方法

泊松分布的概念及表和查表方法 Poisson分布,是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德 目录 1命名原因 2分布特点 3关系 4应用场景 5应用示例 6推导 7形式与性质

命名原因 泊松分布实例 泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。 分布特点 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为特征函数为 关系 泊松分布与二项分布 泊松分布 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算。 事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。应用场景

在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。 应用示例 泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。 观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示: 例如采用0.05J/㎡紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体。实际上每个基因组二体的分布是服从泊松分布的,将取如下形式: …… 是未产生二体的菌的存在概率,实际上其值的5%与采用0.05J/㎡照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因组有一个二体就是致死量,因此就意味着全部死亡的概率。 推导 泊松分布是最重要的离散分布之一,它多出现在当X表示在一定的时间或空间内出现的事件个数这种场合。在一定时间内某交通路口所发生的事故个数,是一个典型的例子。泊松分布的产生机制可以通过如下例子来解释。

蒙特卡洛模拟方法作业及答案(附程序)

蒙特卡洛习题 1.利用蒙特卡洛计算数值积分 () ()() 1280ln 1tan x x x xe dx +++? clear all ;clc;close all ; n=1000; count=0; x=0:0.01:1; y=log((1+x).^2+(tan(x).^8)+x.*exp(x)); plot(x,y,'linewidth',2) hold on for i=1:n x1=rand; y1=rand*y(end); plot(x1,y1,'g*') pause(0.01) if y1

2.分别用理论计算和计算机模拟计算,求连续掷两颗骰子,点数之和大于6且第一次掷出的点数大于第二次掷出点数的概率。 clear all;clc;close all; count=0; n=100000; for i=1:n x=floor(rand*6+1); y=ceil(rand*6); if x+y>6&&x>y count=count+1; end end P=count/n 3.

clear all;clc;close all; count=0; n=2000; ezplot('x^2/9+y^2/36=1'); hold on ezplot('x^2/36+y^2=1'); hold on ezplot('(x-2)^2+(y+1)^2=9') for i=1:n x=rand*12-6; y=rand*12-6; plot(x,y,'gh','linewidth',2) pause(0.01) if x^2/9+y^2/36<1&&x^2/36+y^2<1&&(x-2)^2+(y+1)^2<9

认知无线电频谱切换源码matlab仿真

clear clc %rand('twister',1); blockpu=[]; blocksu=[]; for N=3:2:7 block=[]; for lambdap =0.01:0.05:0.5 %***************************************** %假设 1. CR网络和主网络(授权网络)共同存在于同一区域,并且使用同一频段。假设该频段共有N个信道,每个主用户或CR用户每次接入只占用一个信道。 % 若所有信道均被主用户占用,此时CR用户到达就被阻塞。若CR用户正在使用的信道有主用户出现,此时CR用户被迫中断,并进入缓存区排队等待 % 空闲可用信道以继续刚被中断的通信,若等待超过一定时限,则判定CR用户强制中断退离缓存区。 % 故共有三个队列,分别表示如下: % X队列——主用户队列,抢占优先,优先级最高 % Y队列——次用户队列,优先级最低 % Z队列——次用户切换队列,优先级次高,若在时延Tao内,则较次用户队列优先接入可用信道 % 2. 主用户和次用户的到达服从泊松分布,参数分别为lambdap和lambdas,平均服务时间服从参数为mup和mus的负指数分布 % 3. 对次用户而言,主用户抢占优先。总共有N个信道,也就是最多可以有N个主用户抢占所有信道, % 故Z队列的长度不会超过N,这里给定Z队列长度为N。 % 4. 假设初始状态所有N个信道均空闲,次用户理想感知,感知延时为0.005 %***************************************** % 2009年10月12日10月25日 %***************************************** %初始化 %***************************************** a = 100; %主用户数量 b = 100; %次用户数量 %N =3 %Z队列最大长度/总的信道数 %Tao=5 %切换时延门限Tao A = [ ]; %某主用户到达时刻占用信道序号的集合 B = [ ]; %某次用户到达时刻占用信道序号的集合 C = [ ]; %切换用户占用的当前所有信道序号集合 D = [ ]; %某次用户到达时刻主用户占用信道集合 member = [ ]; member_CR = [ ]; j1=1; %主用户参数*****************************************

数学分布(泊松分布、二项分布、正态分布、均匀分布、指数分布) 生存分析 贝叶斯概率公式 全概率公式讲解

数学期望:随机变量最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。它是简单算术平均的一种推广。例如某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个,则此城市中任一个家庭中孩子的数目是一个随机变量,记为X,它可取值0,1,2,3,其中取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03,它的数学期望为0×0.01+1×0.9+2×0.06+3×0.03等于1.11,即此城市一个家庭平均有小孩1.11个,用数学式子表示为:E(X)=1.11。 也就是说,我们用数学的方法分析了这个概率性的问题,对于每一个家庭,最有可能它家的孩子为1.11个。 可以简单的理解为求一个概率性事件的平均状况。 各种数学分布的方差是: 1、一个完全符合分布的样本 2、这个样本的方差 概率密度的概念是:某种事物发生的概率占总概率(1)的比例,越大就说明密度越大。比如某地某次考试的成绩近似服从均值为80的正态分布,即平均分是80分,由正态分布的图形知x=80时的函数值最大,即随机变量在80附近取值最密集,也即考试成绩在80分左右的人最多。 下图为概率密度函数图(F(x)应为f(x),表示概率密度):

离散型分布:二项分布、泊松分布 连续型分布:指数分布、正态分布、X 2分布、t 分布、F 分布 抽样分布只与自由度,即样本含量(抽样样本含量)有关 二项分布(binomial distribution ):例子抛硬币 1、 重复试验(n 个相同试验,每次试验两种结果,每种结果概率恒定————伯努利试验) 2、 抽样分布

蒙特卡洛模拟原理及步骤

二、蒙特卡洛模拟原理及步骤 (一)蒙特卡洛模拟原理:经济生活中存在大量的不确定与风险问题,很多确定性问题实际上是不确定与风险型问题的特例与简化,财务管理、管理会计中同样也存在大量的不确定与风险型问题,由于该问题比较复杂,一般教材对此问题涉及较少,但利用蒙特卡洛模拟可以揭示不确定与风险型问题的统计规律,还原一个真实的经济与管理客观面貌。 与常用确定性的数值计算方法不同,蒙特卡洛模拟是用来解决工程和经济中的非确定性问题,通过成千上万次的模拟,涵盖相应的可能概率分布空间,从而获得一定概率下的不同数据和频度分布,通过对大量样本值的统计分析,得到满足一定精度的结果,因此蒙特卡洛模拟是进行不确定与风险型问题的有力武器。 1、由于蒙特卡洛模拟是以实验为基础的,因此可以成为财务人员进行风险分析的“实验库”,获得大量有关财务风险等方面的信息,弥补确定型分析手段的不足,避免对不确定与风险决策问题的误导; 2、财务管理、管理会计中存在大量的不确定与风险型问题,目前大多数教材很少涉及这类问题,通过蒙特卡洛模拟,可以对其进行有效分析,解决常用决策方法所无法解决的难题,更加全面深入地分析不确定与风险型问题。 (二)蒙特卡洛模拟步骤以概率型量本利分析为例,蒙特卡洛模拟的分析步骤如下: 1、分析评价参数的特征,如企业经营中的销售数量、销售价格、产品生产的变动成本以及固定成本等,并根据历史资料或专家意见,确定随机变量的某些统计参数; 2、按照一定的参数分布规律,在计算机上产生随机数,如利用EXCEL提供的RAND函数,模拟量本利分析的概率分布,并利用VLOOKUP寻找对应概率分布下的销售数量、销售价格、产品生产的变动成本以及固定成本等参数; 3、建立管理会计的数学模型,对于概率型量本利分析有如下关系式,产品利润=产品销售数量×(产品单位销售价格-单位变动成本)-固定成本,这里需要说明的是以上分析参数不是确定型的,是依据某些概率分布存在的; 4、通过足够数量的计算机仿真,如文章利用RAND、VLOOKUP等函数进行30000次的模拟,得到30000组不同概率分布的各参数的排列与组合,由于模拟的数量比较大,所取得的实验数据具有一定的规律性; 5、根据计算机仿真的参数样本值,利用函数MAX、MIN、A VERAGE等,求出概率型量本利分析评价需要的指标值,通过对大量的评价指标值的样本分析,得到量本利分析中的利润点可能的概率分布,从而掌握企业经营与财务中的风险,为财务决策提供重要的参考。三、概率型量本利分析与比较 (一)期望值分析方法假设某企业为生产与销售单一产品的企业,经过全面分析与研究,预计未来年度的单位销售价格、销售数量、单位变动成本和固定成本的估计值及相应的概率如表1,其中销售数量单位为件,其余反映价值的指标单位为元,试计算该企业的生产利润。表1概率型量本利分析参数 项目概率数值 单位销售价格0.3 40 0.4 43 0.3 45 单位变动成本0.4 16 0.2 18 0.4 20 固定成本0.6 28000 0.4 30000

蒙特卡罗方法的解题过程可以归结为三个主要步骤

蒙特卡罗方法的解题过程可以归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 蒙特卡罗方法解题过程的三个主要步骤: (1)构造或描述概率过程 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 (2)实现从已知概率分布抽样 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样产生的序列,与真正的随机数序列不同,所以称为伪随机数,或伪随机数序列。不过,经过多种统计检验表明,它与真正的随机数,或随机数序列具有相近的性质,因此可把它作为真正的随机数来使用。由已知分布随机抽样有各种方法,与从(0,1)上均匀分布抽样不同,这些方法都是借助于随机序列来实现的,也就是说,都是以产生随机数为前提的。由此可见,随机数是我们实现蒙特卡罗模拟的基本工具。 (3)建立各种估计量 一般说来,构造了概率模型并能从中抽样后,即实现模拟实验后,我们就要确定一个随机变量,作为所要求的问题的解,我们称它为无偏估计。建立各种估计量,相当于对模拟实验的结果进行考察和登记,从中得到问题的解。 蒙特卡洛法模拟蒲丰(Buffon)投针实验-使用Matlab 2010年03月31日星期三8:47 蒲丰投针实验是一个著名的概率实验,其原理请参见此页: https://www.docsj.com/doc/aa2263305.html,/reese/buffon/buffon.html 现在我们利用Matlab来做模拟,顺便说一下,这种随机模拟方法便是传说中的“蒙特-

泊松分布及其应用研究

泊松分布及其应用研究 Prepared on 22 November 2020

湖南科技大学 信息与电气工程学院 《课程论文》 题目:泊松分布及其应用研究 专业:通信工程 班级: 13级3班 姓名:黄夏妮 学号: 目录 一、摘要 (1) 二、泊松分布的概念 (2) 三、计数过程为广义的泊松过程 (4) 四、泊松分布及泊松分布增量 (5) 五、泊松分布的特征 (5) 六、泊松分布的应用 (6) 七、基于MATLAB的泊松过程仿真 (8) 八、参考文献 (12)

摘要 作为一种常见的离散型随机变量的分布,泊松分布日益显示其重要性,成为概率论中最重要的几个分布之一。服从泊松分布的随机变量是常见的,它常与时间单位的计数过程相联系。 在现实生活中应用更为广泛,如数学建模、管理科学、运筹学及自然科学、概率论等等。并且在某些函数关系起着一种重要作用。例如线性的、指数的、三角函数的等等。同样, 在为观察现象构造确定性模型时, 某些概率分布也经常出现。泊松分布作为大量试验中稀有事件出现的频数的概率分布的数学模型, 它具有很多性质。为此本文讲述了泊松分布的一些性质, 并讨论了这些性质在实际生活中的重要作用。

二、泊松分布的概念: 定义1 设随机变量X 的可能取值为,,2,1,0 且 {}0,,2,1,0,! >===-λλ k e k x k X P k 为常数。 则称X 服从参数为λ的泊松分布,记作X ~ D(λ) 。 定义2 设ε是任意一个随机变量,称 )t (- e t)(it +∞<<∞=Φε是ε的特征函数。 主要结论: 定理1 如果X 是一个具有以λ为参数的泊松分布,则E( X) = λ且D ( X) =λ。 证明 设X 是一随机变量,若 ] X) E( - X [ E{2}存在,则称它为X 的方差,记作D( X) ,即 ] X) E( - X [ E{ X) D(2}=。设X 服从泊松分布D ( X) ,即有: 则()()λλλλλλλλ λ=?=-==- ∞ =--∞ =-∑∑ e e k e k e k X E k k k k 11 0!1! 从而()() () λλλλλλλ λ +=-+-==-∞ =-∞ =--∞ =∑ ∑ ∑2122 2 2 !1!2! e k e k e k k X E k k k k k k 故λλλλ - X) E( - ) X E( X) D(2222=+== 定理2 设随机变量) , ,2 1 n ( x n =服从二项分布,其分布律为 {}n k p p C k x P k n n k n k n n ,,2,1,0,)1( =-==-。 又设0>=λn np 是常数,则{}λλ-∞ →==e k k x P k n n ! lim 。 证明 由λ=n np 得: 显然,当k = 0 时,故λ-n e k} x P{→=。当k ≥1 且k → ∞时,有

浅析二项分布与泊松分布之间的关系

学年论文 题目:浅析二项分布与泊松分布之间的关系 学生: 学号: 院(系):理学院 专业:信息与计算科学 指导教师:安晓钢 2013 年11月25日

浅析二项分布与泊松分布之间的关系 信息121班; 指导教师:安晓钢 (陕西科技大学理学院 陕西 西安 710021) 摘 要:泊松分布刻画了稀有事件在一段时间内发生次数这一随机变量的分布,如电话交换台单位时间内接到的呼唤次数等。二项分布是n 个独立的是/非试验中成功的次数的离散概率分布。它们有着密切的关系。泊松分布是二项分布的特例。某现象的发生率很小,而样本例数n 很大时,则二项分布接近于泊松分布,即:如果试验次数n 很大,二项分布的概率p 很小,且乘积np =λ比较适中,则事件出现的次数的概率可以用泊松分布来逼近。事实上,二项分布可以看作泊松分布在离散时间上的对应物,是二项分布的特例。通过分析二项分布和泊松分布之间的关系,使学生对概率分布理论的理解更为深刻,能够将学到的理论知识应用在实际生活中,从而提高自己的综合素质。 关 键 词:二项分布, 泊松分布, 近似 The Application of Asignment Poblem ABSTRACT: Poisson distribution is used to depict the distribution of rare events that a random variable frequency over a period of time, such as a telephone exchange in unit time received the call number. The two distribution is n independent / discrete probability distributions of number of successful non trials. They have a close relationship. Poisson distribution is two distribution case. The incidence of the phenomenon is very small, and the number of sample n is large, then the two distribution is close to the Poisson distribution, i.e.: if the test number n is large, the two probability distribution P is small, and the product of lambda = N P is moderate, the probability of the event can be used to force the Poisson distribution near. In fact, the two distribution can be seen as the counterpart of Poisson distribution in discrete time, are the two distribution case. Through the analysis of the relationship between two binomial distribution and Poisson distribution, enables the student to the theory of probability distribution for more profound understanding will be able to learn the application of theoretical knowledge in real life, so as to improve their comprehensive quality. KEY WORDS : Two distribution, Poisson distribution, Approximate

蒙特卡洛模拟法

蒙特卡洛模拟法 蒙特卡洛(Monte Carlo)模拟是一种通过设定随机过程,反复生成时间序列,计算参数估计量和统计量,进而研究其分布特征的方法。具体的,当系统中各个单元的可靠性特征量已知,但系统的可靠性过于复杂,难以建立可靠性预计的精确数学模型或模型太复杂而不便应用时,可用随机模拟法近似计算出系统可靠性的预计值;随着模拟次数的增多,其预计精度也逐渐增高。由于涉及到时间序列的反复生成,蒙特卡洛模拟法是以高容量和高速度的计算机为前提条件的,因此只是在近些年才得到广泛推广。 这个术语是二战时期美国物理学家Metropolis执行曼哈顿计划的过程中提出来的。 蒙特卡洛模拟方法的原理是当问题或对象本身具有概率特征时,可以用计算机模拟的方法产生抽样结果,根据抽样计算统计量或者参数的值;随着模拟次数的增多,可以通过对各次统计量或参数的估计值求平均的方法得到稳定结论。 蒙特卡洛模拟法的应用领域 蒙特卡洛模拟法的应用领域主要有: 1.直接应用蒙特卡洛模拟:应用大规模的随机数列来模拟复杂系统,得到某些参数或重要指标。 2.蒙特卡洛积分:利用随机数列计算积分,维数越高,积分效率越高。 3.MCMC:这是直接应用蒙特卡洛模拟方法的推广,该方法中随机数的产生是采用的马尔科夫链形式。 (也叫随机模拟法)当系统中各个单元的可靠性特征量已知,但系统的可靠性过于复杂,难以建立可靠性预计的精确数学模型或模型太复杂而不便应用则可用随机模拟法近似计算出系统可靠性的预计值。随着模拟次数的增多,其预计精度也逐渐增高。由于需要大量反复的计算,一般均用计算机来完成。 应用此方法求解工程技术问题可以分为两类:确定性问题和随机性问题。解题步骤如下: 1.根据提出的问题构造一个简单、适用的概率模型或随机模型,使问题的解对应于该模型中随机变量的某些特征(如概率、均值和方差等),所构造的模型在主要特征参量方面要与实际问题或系统相一致 2 .根据模型中各个随机变量的分布,在计算机上产生随机数,实现一次模拟过程所需的足够数量的随机数。通常先产生均匀分布的随机数,然后生成服从某一分布的随机数,方可进行随机模拟试验。

(定价策略)期权定价中的蒙特卡洛模拟方法

期权定价中的蒙特卡洛模拟方法 期权作为最基础的金融衍生产品之一,为其定价一直是金融工程的重要研究领域,主要使用的定价方法有偏微分方程法、鞅方法和数值方法。而数值方法又包括了二叉树方法、有限差分法和蒙特卡洛模拟方法。 蒙特卡洛方法的理论基础是概率论与数理统计,其实质是通过模拟标的资产价格路径预测期权的平均回报并得到期权价格估计值。蒙特卡洛方法的最大优势是误差收敛率不依赖于问题的维数,从而非常适宜为高维期权定价。 §1. 预备知识 ◆两个重要的定理:柯尔莫哥洛夫(Kolmogorov)强大数定律和莱维一林德贝格(Levy-Lindeberg)中心极限定理。 大数定律是概率论中用以说明大量随机现象平均结果稳定性的一系列极限定律。在蒙特卡洛方法中用到的是随机变量序列同分布的Kolmogorov 强大数定律: 设12,,ξξL 为独立同分布的随机变量序列,若 [],1,2,k E k ξμ=<∞=L 则有1 1(lim )1n k n k p n ξμ→∞===∑ 显然,若12,,,n ξξξL 是由同一总体中得到的抽样,那么由 此大数定律可知样本均值1 1n k k n ξ=∑当 n 很大时以概率1收敛于

总体均值μ。 中心极限定理是研究随机变量之和的极限分布在何种情形下是正态的,并由此应用正态分布的良好性质解决实际问题。 设12,,ξξL 为独立同分布的随机变量序列,若 2 [],[],1,2,k k E D k ξμξσ=<∞=<∞=L (0,1)n k d n N ξ μ -??→∑ 其等价形式为2 1 1lim ()exp(),2n x k k n t n P x dt x ξμσ =→∞ -∞ -≤= --∞<<∞∑?。 ◆Black-Scholes 期权定价模型 模型的假设条件: 1、标的证券的价格遵循几何布朗运动 dS dt dW S μσ=+ 其中,标的资产的价格S 是时间t 的函数,μ为标的资产 的瞬时期望收益率,σ为标的资产的波动率,dW 是维纳过程。 2、证券允许卖空、证券交易连续和证券高度可分。 3、不考虑交易费用或税收等交易成本。 4、在衍生证券的存续期内不支付红利。 5、市场上不存在无风险的套利机会。 6、无风险利率r 为一个固定的常数。 下面,通过构造标的资产与期权的资产组合并根据无套利定价原理建立期权定价模型。首先,为了得到期权的微分形式,先介绍随机微积分中的最重要的伊藤公式。

蒙特卡洛方法模拟小例子

例在我方某前沿防守地域,敌人以一个炮排(含两门火炮)为单位对我方进行干扰和破坏.为躲避我方打击,敌方对其阵地进行了伪装并经常变换射击地点. 经过长期观察发现,我方指挥所对敌方目标的指示有50%是准确的,而我方火力单位,在指示正确时,有1/3的射击效果能毁伤敌人一门火炮,有1/6的射击效果能全部毁伤敌人火炮. 现在希望能用某种方式把我方将要对敌人实施的20次打击结果显现出来,确定有效射击的比率及毁伤敌方火炮的平均值。 使用蒙特卡洛方法模拟50次打击结果: function [out1 out2 out3 out4]=Msc(N) % N开炮次数 % out1射中概率 % out2平均每次击中次数 % out3击中敌人一门火炮的射击总数 % out4击中敌人2门火炮的射击总数 k1=0; k2=0; k3=0; for i=1:N x0=randperm(2)-1; y0=x0(1); if y0==1 fprintf('第%d次:指示正确||',i); x1=randperm(6); y1=x1(1); if y1==1|y1==2|y1==3 fprintf('第%d次:击中0炮||',i); k1=k1+1; elseif y1==4|y1==5 fprintf('第%d次:击中1炮||',i); k2=k2+1; else

fprintf('第%d次:击中2炮||',i); k3=k3+1; end else fprintf('第%d次:指示错误,击中0炮||',i); k1+1; end fprintf('\n'); end out1=(k2+k3)/N; out2=(0*k1+k2+2*k3)/20; out3=k2/N; out4=k3/N; 运行: 1.[out1 out2 out3 out4]=Msc(50) 结果: 1.第1次:指示正确||第1次:击中2炮|| 2.第2次:指示错误,击中0炮|| 3.第3次:指示错误,击中0炮|| 4.第4次:指示正确||第4次:击中0炮|| 5.第5次:指示错误,击中0炮|| 6.第6次:指示正确||第6次:击中1炮|| 7.第7次:指示正确||第7次:击中0炮|| 8.第8次:指示错误,击中0炮|| 9.第9次:指示正确||第9次:击中2炮|| 10.第10次:指示正确||第10次:击中1炮|| 11.第11次:指示正确||第11次:击中1炮|| 12.第12次:指示正确||第12次:击中2炮|| 13.第13次:指示错误,击中0炮|| 14.第14次:指示正确||第14次:击中1炮|| 15.第15次:指示错误,击中0炮|| 16.第16次:指示错误,击中0炮|| 17.第17次:指示正确||第17次:击中0炮|| 18.第18次:指示错误,击中0炮||

基于MATLAB的泊松分布的仿真

泊松过程样本轨道的MATLAB 仿真 一、 Poisson Process 定义 若有一个随机过程{:0}t N N t =≥是参数为λ>0的Poisson 过程,它满足下列条件: 1、0N = 0; 2、对任意的时间指标0s t ≤<,增量()()t s N N t s ω-ωλ(-)服从参数为泊松分布。 3、对任意的自然数n ≥2和任意的时间指标0120n t t t t =<<

基于MATLAB的数字模拟仿真..

基于MATLAB的数字模拟仿真 摘要:本文阐述了计算机模拟仿真在解决实际问题时的重要性,并较为系统的介绍了使用计算机仿真的原理及方法。对于计算机模拟仿真的三大类方法:蒙特卡罗法、连续系统模拟和离散事件系统模拟,在本文中均给出了与之对应的实例及基于MATLAB模拟仿真的相关程序,并通过实例深入的分析了计算机模拟解决实际问题的优势及不足。 关键词:计算机模拟;仿真原理;数学模型;蒙特卡罗法;连续系统模拟;离散事件系统模拟 在实际问题中,我们通常会面对一些带随机因素的复杂系统,用分析方法建模常常需要作许多简化假设,这样进行处理过后的模型与我们面临的实际问题可能相差很远,以致求解得到答案根本无法应用,这时,计算机模拟几乎成为唯一的选择。本文通过对计算机模拟仿真进行系统地介绍,寻求利用模拟仿真来解决问题的一般方法,并深入探讨了这些方法的长处和不足。我们定义一些具有特定的功能、相互之间以一定的规律联系的对象所组成的总体为一个系统,模拟就是利用物理的、数学的模型以系统为问题解决对象,来类比、模仿现实系统及其演变过程,以寻求过程规律的一种方法。模拟的基本思想是建立一个实验的模型,这个模型包含所研究系统的主要特点,这样做的目的就是通过对这个实验模型的运行,获得所要研究系统的必要信息。另外,系统的运行离不开算法,仿真算法是将系统模型转换成仿真模型的一类算法,在数字仿真模型中起核心和关键作用。 1、所谓计算机仿真 计算机仿真是利用计算机对一个实际系统的结构和行为进行动态演示,以评价或预测该系统的行为效果。它是解决较复杂的实际问题的一条有效途径。针对一个确定的系统,根据运行的相似原理,利用计算机来逼真模仿研究对象(研究对象可以是真实的系统,也可以是设想中的系统),计算机仿真是将研究对象进行数学描述,建模编程,且在计算机中运行实现。 对比于物理模拟通常花费较大、周期较长,且在物理模型上改变系统结构和系数都较困难的诸多缺陷,计算机模拟不怕破坏、易修改、可重用,有更强的系统适应能力。但是计算机模拟也有缺陷,比如受限于系统建模技术,即系统数学模型不易建立、程序调试复杂等。 计算机仿真可以用于研制产品或设计系统的全过程中,包括方案论证、技术指标确定、设计分析、生产制造、试验测试、维护训练、故障处理等各个阶段。 2、计算机仿真的目的 对于一个系统,是否选择进行计算机模拟的问题,基于判断计算机模拟与非计算机模拟方法孰优孰劣的问题。归纳以下运用计算机模拟的情况: (1)在一个实际系统还没有建立起来之前,要对系统的行为或结果进行分析研究时,计算机仿真是一种行之有效的方法。 (2)在有些真实系统上做实验会影响系统的正常运行,这时进行计算机模拟就是为了避免给实际系统带来不必要的损失。如在生产中任意改变工艺参数可能会导致废品,在经济活动中随意将一个决策付诸行动可能会引起经济混乱。 (3)当人是系统的一部分时,他的行为往往会影响实验的效果,这时运用系统进行仿真研究,就是为了排除人的主观因素的影响。

正确理解泊松分布

正确理解泊松分布 很多人在上概率论这门课的时候就没搞明白过泊松分布到底是怎么回事,至少我就是如此。虽然那个时候大家都会背“当试验的次数趋于无穷大,而乘积np固定时,二项分布收敛于泊松分布”,大部分的教科书上也都会给出这个收敛过程的数学推导,但是看懂它和真正的理解还有很大距离。如果我们学习的意义是为了通过考试,那么我们大可停留在“只会做题”的阶段,因为试卷上不会出现“请发表一下你对泊松公式的看法”这样的题目,因为那样一来卷子就变得不容易批改,大部分考试都会出一些客观题,比如到底是泊松分布还是肉松分布。 而如果我们学习的目的是为了理解一样东西,那么我们就有必要停下来去思考一下诸如“为什么要有泊松分布?”、“泊松分布的物理意义是什么?”这样的“哲学”问题。 如果我们要向一个石器时代的人解释什么是电话,我们一定会说:“电话是一种机器,两个距离很远的人可以通过它进行交谈”,而不会说:“电话在18XX年由贝尔发明,一台电话由几个部分构成……”(泊松分布在18XX年由泊松提出,泊松分布的公式是……)所以我们问的第一个问题应该是“泊松分布能拿来干嘛?” 泊松分布最常见的一个应用就是,它作为了排队论的一个输入。什么是排队论?比如我们去每天食堂打饭,最头疼的一个问题就是排队,之所以要排队是因为食堂打饭的大叔有限,假设学校有1000个学生,而食堂恰好配了1000个大叔和打饭的窗口,那么就永远不会有人排队。但是出于经营成本方面的考虑食堂通常不会这么干,因此如何控制窗口的数量并且保证学生不会因为排队时间太长而起义是一门很高深的学问。 在一段时间t(比如1个小时)内来到食堂就餐的学生数量肯定不会是一个常数(比如一直是200人),而应该符合某种随机规律:比如在1个小时内来200 个学生的概率是10%,来180个学生的概率是20%……一般认为,这种随机规律服从的就是泊松分布。 也就是在单位时间内有k个学生到达的概率为: 其中为单位时间内学生的期望到达数。 问题是“这个式子是怎么来的呢?”——我们知道泊松分布是二项分布满足某种条件的一个特殊形式,因此可以先从简单的二项分布入手,寻找两者之间的联系。

随机信号matlab仿真

电子科技大学通信与信息工程学院 标准实验报告 实验名称:随机数的产生及统计特性分析

电 子 科 技 大 学 实 验 报 告 学生姓名:吴振国 学 号:2011019190006 指导教师:周宁 实验室名称:通信系统实验室 实验项目名称: 随机数的产生及统计特性分析 【实验内容】 1、编写MATLAB 程序,产生正态分布或均匀分布或二项分布或泊松分布或你感 兴趣的分布的随机数,完成以下工作: (1)、测量该序列的均值,方差,并与理论值进行比较,测量其误差大小, 改变序列长度观察结果变化; (2)、分析其直方图、概率密度函数及分布函数,并与理论分布进行比较; (3)、计算其相关函数,检验是否满足 Rx(0)=mu^2+sigma2,观察均值mu 为0和不为0时的图形变化; (4)、 用变换法产生正态分布随机数,或用逆变换法产生其他分布随机数, (5)、重新完成以上内容,并与matlab 函数产生的随机数的结果进行比较。 2、已知随机信号: 仿真M 个样本,估计其自相关函数和样本的功率谱(用自相关法和周期图 法),并利用样本估计序列X (n )的功率谱。 【实验原理】 本实验采用matlab 实验方法进行实验,相关采样方法,作图方法等均在matlab 的学习中有过使用!下面不作具体介绍! 【实验程序】 1.程序1: clear; sigma=1; mu=1; N=100; X=normrnd(sigma,1,1,N); average=sigma; variable=sigma^2; 1212()cos(80)4cos(200)(),,~[0,2],()~(0,1)X n t t N t U N t N πφπφφφπ=++++白噪声

蒙特卡洛模拟原理及步骤

二、蒙特卡洛模拟原理及步骤 (一)蒙特卡洛模拟原理:经济生活中存在大量的不确定与风险问题,很多确定性问题实际上就是不确定与风险型问题的特例与简化,财务管理、管理会计中同样也存在大量的不确定与风险型问题,由于该问题比较复杂,一般教材对此问题涉及较少,但利用蒙特卡洛模拟可以揭示不确定与风险型问题的统计规律,还原一个真实的经济与管理客观面貌。 与常用确定性的数值计算方法不同,蒙特卡洛模拟就是用来解决工程与经济中的非确定性问题,通过成千上万次的模拟,涵盖相应的可能概率分布空间,从而获得一定概率下的不同数据与频度分布,通过对大量样本值的统计分析,得到满足一定精度的结果,因此蒙特卡洛模拟就是进行不确定与风险型问题的有力武器。 1、由于蒙特卡洛模拟就是以实验为基础的,因此可以成为财务人员进行风险分析的“实验库”,获得大量有关财务风险等方面的信息,弥补确定型分析手段的不足,避免对不确定与风险决策问题的误导; 2、财务管理、管理会计中存在大量的不确定与风险型问题,目前大多数教材很少涉及这类问题,通过蒙特卡洛模拟,可以对其进行有效分析,解决常用决策方法所无法解决的难题,更加全面深入地分析不确定与风险型问题。 (二)蒙特卡洛模拟步骤以概率型量本利分析为例,蒙特卡洛模拟的分析步骤如下: 1、分析评价参数的特征,如企业经营中的销售数量、销售价格、产品生产的变动成本以及固定成本等,并根据历史资料或专家意见,确定随机变量的某些统计参数; 2、按照一定的参数分布规律,在计算机上产生随机数,如利用EXCEL提供的RAND函数,模拟量本利分析的概率分布,并利用VLOOKUP寻找对应概率分布下的销售数量、销售价格、产品生产的变动成本以及固定成本等参数; 3、建立管理会计的数学模型,对于概率型量本利分析有如下关系式,产品利润=产品销售数量×(产品单位销售价格-单位变动成本)-固定成本,这里需要说明的就是以上分析参数不就是确定型的,就是依据某些概率分布存在的; 4、通过足够数量的计算机仿真,如文章利用RAND、VLOOKUP等函数进行30000次的模拟,得到30000组不同概率分布的各参数的排列与组合,由于模拟的数量比较大,所取得的实验数据具有一定的规律性; 5、根据计算机仿真的参数样本值,利用函数MAX、MIN、A VERAGE等,求出概率型量本利分析评价需要的指标值,通过对大量的评价指标值的样本分析,得到量本利分析中的利润点可能的概率分布,从而掌握企业经营与财务中的风险,为财务决策提供重要的参考。 三、概率型量本利分析与比较 (一)期望值分析方法假设某企业为生产与销售单一产品的企业,经过全面分析与研究,预计未来年度的单位销售价格、销售数量、单位变动成本与固定成本的估计值及相应的概率如表1,其中销售数量单位为件,其余反映价值的指标单位为元,试计算该企业的生产利润。 表1概率型量本利分析参数 项目概率数值 单位销售价格0、3 40 0、4 43 0、3 45 单位变动成本0、4 16 0、2 18 0、4 20 固定成本0、6 28000 0、4 30000

相关文档